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Architecture 
  Modern computers 

are using Von 
Neumann 
Architecture (also 
called stored-
program concept) 

  It was derived by 
Von Neumann 
(obviously), John 
Mauchly, and 
Presper Eckert. 



The ARM Reallity 
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Introduction 
  Hierarchy of computer languages: 

1. Application-Specific Language (Matlab 
compiler) 

2. High-Level Programming language (C++, 
Java) 

3. Assembly Language (Machine dependent) 
4. Machine Language (Machine dependent) 



6 

Introduction (Cont.) 
  There is nothing “below” machine 

language – only hardware. 
  Machine Language is the only language 

understood by computers (i.e. it’s native to 
processor) 

  Impossible for humans to read. Consists of 
only 0’s and 1’s. 
  0001001111110000 



Instruction Set 
  The repertoire of instructions of a 

computer 
  Different computers have different 

instruction sets 
  But with many aspects in common 

  Early computers had very simple 
instruction sets 
  Simplified implementation 

  Many modern computers also have simple 
instruction sets 

§2.1 Introduction 



The MIPS Instruction Set 
  Used as the example throughout the book 
  Stanford MIPS commercialized by MIPS 

Technologies (www.mips.com) 
  Large share of embedded core market 

  Applications in consumer electronics, network/storage 
equipment, cameras, printers, … 

  Typical of many modern ISAs 
  See MIPS Reference Data tear-out card, and 

Appendixes B and E 



Arithmetic Operations 
  Add and subtract, three operands 

  Two sources and one destination 
 add a, b, c  # a gets b + c 

  All arithmetic operations have this form 
  Design Principle 1: Simplicity favours 

regularity 
  Regularity makes implementation simpler 
  Simplicity enables higher performance at 

lower cost 

§2.2 O
perations of the C
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Arithmetic Example 
  C code: 
 f = (g + h) - (i + j); 

  Compiled MIPS code: 
 add t0, g, h   # temp t0 = g + h 
add t1, i, j   # temp t1 = i + j 
sub f, t0, t1  # f = t0 - t1 



Register Operands 
  Arithmetic instructions use register 

operands 
  MIPS has a 32 × 32-bit register file 

  Use for frequently accessed data 
  Numbered 0 to 31 
  32-bit data called a “word” 

  Assembler names 
  $t0, $t1, …, $t9 for temporary values 
  $s0, $s1, …, $s7 for saved variables 

  Design Principle 2: Smaller is faster 
  c.f. main memory: millions of locations 

§2.3 O
perands of the C

om
puter H
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Register Operand Example 
  C code: 
 f = (g + h) - (i + j); 

  f, …, j in $s0, …, $s4 
  Compiled MIPS code: 
 add $t0, $s1, $s2 
add $t1, $s3, $s4 
sub $s0, $t0, $t1 



Memory Operands 
  Main memory used for composite data 

  Arrays, structures, dynamic data 
  To apply arithmetic operations 

  Load values from memory into registers 
  Store result from register to memory 

  Memory is byte addressed 
  Each address identifies an 8-bit byte 

  Words are aligned in memory 
  Address must be a multiple of 4 

  MIPS is Big Endian 
  Most-significant byte at least address of a word 
  c.f. Little Endian: least-significant byte at least address 



Memory Operand Example 1 
  C code: 
 g = h + A[8]; 

  g in $s1, h in $s2, base address of A in $s3 
  Compiled MIPS code: 

  Index 8 requires offset of 32 
  4 bytes per word 

 lw  $t0, 32($s3)    # load word 
add $s1, $s2, $t0 

offset base register 



Memory Operand Example 2 
  C code: 
 A[12] = h + A[8]; 

  h in $s2, base address of A in $s3 
  Compiled MIPS code: 

  Index 8 requires offset of 32 
 lw  $t0, 32($s3)    # load word 
add $t0, $s2, $t0 
sw  $t0, 48($s3)    # store word 



Registers vs. Memory 
  Registers are faster to access than 

memory 
  Operating on memory data requires loads 

and stores 
  More instructions to be executed 

  Compiler must use registers for variables 
as much as possible 
  Only spill to memory for less frequently used 

variables 
  Register optimization is important! 



Immediate Operands 
  Constant data specified in an instruction 
 addi $s3, $s3, 4 

  No subtract immediate instruction 
  Just use a negative constant 
 addi $s2, $s1, -1 

  Design Principle 3: Make the common 
case fast 
  Small constants are common 
  Immediate operand avoids a load instruction 



The Constant Zero 
  MIPS register 0 ($zero) is the constant 0 

  Cannot be overwritten 
  Useful for common operations 

  E.g., move between registers 
 add $t2, $s1, $zero 



Unsigned Binary Integers 
  Given an n-bit number 

  Range: 0 to +2n – 1 
  Example 

  0000 0000 0000 0000 0000 0000 0000 10112 
= 0 + … + 1×23 + 0×22 +1×21 +1×20 
= 0 + … + 8 + 0 + 2 + 1 = 1110 

  Using 32 bits 
  0 to +4,294,967,295 

§2.4 S
igned and U

nsigned N
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bers 



Sign Extension 
  Representing a number using more bits 

  Preserve the numeric value 
  In MIPS instruction set 

  addi: extend immediate value 
  lb, lh: extend loaded byte/halfword 
  beq, bne: extend the displacement 

  Replicate the sign bit to the left 
  c.f. unsigned values: extend with 0s 

  Examples: 8-bit to 16-bit 
  +2: 0000 0010 => 0000 0000 0000 0010 
  –2: 1111 1110 => 1111 1111 1111 1110 



Representing Instructions 
  Instructions are encoded in binary 

  Called machine code 
  MIPS instructions 

  Encoded as 32-bit instruction words 
  Small number of formats encoding operation code 

(opcode), register numbers, … 
  Regularity! 

  Register numbers 
  $t0 – $t7 are reg’s 8 – 15 
  $t8 – $t9 are reg’s 24 – 25 
  $s0 – $s7 are reg’s 16 – 23 

§2.5 R
epresenting Instructions in the C
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puter 



MIPS R-format Instructions 

  Instruction fields 
  op: operation code (opcode) 
  rs: first source register number 
  rt: second source register number 
  rd: destination register number 
  shamt: shift amount (00000 for now) 
  funct: function code (extends opcode) 

op rs rt rd shamt funct 
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 



R-format Example 

 add $t0, $s1, $s2 

special $s1 $s2 $t0 0 add 

0 17 18 8 0 32 

000000 10001 10010 01000 00000 100000 

000000100011001001000000001000002 = 0232402016 

op rs rt rd shamt funct 
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 



Hexadecimal 
  Base 16 

  Compact representation of bit strings 
  4 bits per hex digit 

0 0000 4 0100 8 1000 c 1100 
1 0001 5 0101 9 1001 d 1101 
2 0010 6 0110 a 1010 e 1110 
3 0011 7 0111 b 1011 f 1111 

  Example: eca8 6420 
  1110 1100 1010 1000 0110 0100 0010 0000 



MIPS I-format Instructions 

  Immediate arithmetic and load/store instructions 
  rt: destination or source register number 
  Constant: –215 to +215 – 1 
  Address: offset added to base address in rs 

  Design Principle 4: Good design demands good 
compromises 
  Different formats complicate decoding, but allow 32-bit 

instructions uniformly 
  Keep formats as similar as possible 

op rs rt constant or address 
6 bits 5 bits 5 bits 16 bits 



Stored Program Computers 
  Instructions represented in 

binary, just like data 
  Instructions and data stored 

in memory 
  Programs can operate on 

programs 
  e.g., compilers, linkers, … 

  Binary compatibility allows 
compiled programs to work 
on different computers 
  Standardized ISAs 

The BIG Picture 



Logical Operations 
  Instructions for bitwise manipulation 

Operation C Java MIPS 
Shift left << << sll 

Shift right >> >>> srl 

Bitwise AND & & and, andi 

Bitwise OR | | or, ori 

Bitwise NOT ~ ~ nor 

  Useful for extracting and inserting 
groups of bits in a word 

§2.6 Logical O
perations 



Shift Operations 

  shamt: how many positions to shift  
  Shift left logical 

  Shift left and fill with 0 bits 
  sll by i bits multiplies by 2i 

  Shift right logical 
  Shift right and fill with 0 bits 
  srl by i bits divides by 2i (unsigned only) 

op rs rt rd shamt funct 
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 



AND Operations 
  Useful to mask bits in a word 

  Select some bits, clear others to 0 

 and $t0, $t1, $t2 

0000 0000 0000 0000 0000 1101 1100 0000 

0000 0000 0000 0000 0011 1100 0000 0000 

$t2 

$t1 

0000 0000 0000 0000 0000 1100 0000 0000 $t0 



OR Operations 
  Useful to include bits in a word 

  Set some bits to 1, leave others unchanged 

 or $t0, $t1, $t2 

0000 0000 0000 0000 0000 1101 1100 0000 

0000 0000 0000 0000 0011 1100 0000 0000 

$t2 

$t1 

0000 0000 0000 0000 0011 1101 1100 0000 $t0 



NOT Operations 
  Useful to invert bits in a word 

  Change 0 to 1, and 1 to 0 
  MIPS has NOR 3-operand instruction 

  a NOR b == NOT ( a OR b ) 

 nor $t0, $t1, $zero 

0000 0000 0000 0000 0011 1100 0000 0000 $t1 

1111 1111 1111 1111 1100 0011 1111 1111 $t0 

Register 0: always 
read as zero 



Conditional Operations 
  Branch to a labeled instruction if a 

condition is true 
  Otherwise, continue sequentially 

  beq rs, rt, L1 
  if (rs == rt) branch to instruction labeled L1; 

  bne rs, rt, L1 
  if (rs != rt) branch to instruction labeled L1; 

  j L1 
  unconditional jump to instruction labeled L1 

§2.7 Instructions for M
aking D

ecisions 



Compiling If Statements 
  C code: 
 if (i==j) f = g+h; 
else f = g-h; 

  f, g, … in $s0, $s1, … 
  Compiled MIPS code: 
       bne $s3, $s4, Else 
      add $s0, $s1, $s2 
      j   Exit 
Else: sub $s0, $s1, $s2 
Exit: … Assembler calculates addresses 



Compiling Loop Statements 
  C code: 
 while (save[i] == k) i += 1; 

  i in $s3, k in $s5, address of save in $s6 
  Compiled MIPS code: 
 Loop: sll  $t1, $s3, 2 
      add  $t1, $t1, $s6 
      lw   $t0, 0($t1) 
      bne  $t0, $s5, Exit 
      addi $s3, $s3, 1 
      j    Loop 
Exit: … 



Basic Blocks 
  A basic block is a sequence of instructions 

with 
  No embedded branches (except at end) 
  No branch targets (except at beginning) 

  A compiler identifies basic 
blocks for optimization 

  An advanced processor 
can accelerate execution 
of basic blocks 



Branch Instruction Design 
  Why not blt, bge, etc? 
  Hardware for <, ≥, … slower than =, ≠ 

  Combining with branch involves more work 
per instruction, requiring a slower clock 

  All instructions penalized! 
  beq and bne are the common case 
  This is a good design compromise 



Procedure Calling 
  Steps required 

1.  Place parameters in registers 
2.  Transfer control to procedure 
3.  Acquire storage for procedure 
4.  Perform procedure’s operations 
5.  Place result in register for caller 
6.  Return to place of call 

§2.8 S
upporting P
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Procedure Call Instructions 
  Procedure call: jump and link 
 jal ProcedureLabel 

  Address of following instruction put in $ra 
  Jumps to target address 

  Procedure return: jump register 
 jr $ra 

  Copies $ra to program counter 
  Can also be used for computed jumps 

  e.g., for case/switch statements 



Local Data on the Stack 

  Local data allocated by callee 
  e.g., C automatic variables 

  Procedure frame (activation record) 
  Used by some compilers to manage stack storage 



Memory Layout 
  Text: program code 
  Static data: global 

variables 
  e.g., static variables in C, 

constant arrays and strings 
  $gp initialized to address 

allowing ±offsets into this 
segment 

  Dynamic data: heap 
  E.g., malloc in C, new in 

Java 
  Stack: automatic storage 



Character Data 
  Byte-encoded character sets 

  ASCII: 128 characters 
  95 graphic, 33 control 

  Latin-1: 256 characters 
  ASCII, +96 more graphic characters 

  Unicode: 32-bit character set 
  Used in Java, C++ wide characters, … 
  Most of the world’s alphabets, plus symbols 
  UTF-8, UTF-16: variable-length encodings 

§2.9 C
om
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Byte/Halfword Operations 
  Could use bitwise operations 
  MIPS byte/halfword load/store 

  String processing is a common case 
lb rt, offset(rs)     lh rt, offset(rs) 

  Sign extend to 32 bits in rt 
lbu rt, offset(rs)    lhu rt, offset(rs) 

  Zero extend to 32 bits in rt 
sb rt, offset(rs)     sh rt, offset(rs) 

  Store just rightmost byte/halfword 



String Copy Example 
  C code (naïve): 

  Null-terminated string 
 void strcpy (char x[], char y[]) 
{ int i; 
  i = 0; 
  while ((x[i]=y[i])!='\0') 
    i += 1; 
} 

  Addresses of x, y in $a0, $a1 
  i in $s0 



String Copy Example 
  MIPS code: 
 strcpy: 

    addi $sp, $sp, -4      # adjust stack for 1 item 
    sw   $s0, 0($sp)       # save $s0 
    add  $s0, $zero, $zero # i = 0 
L1: add  $t1, $s0, $a1     # addr of y[i] in $t1 
    lbu  $t2, 0($t1)       # $t2 = y[i] 
    add  $t3, $s0, $a0     # addr of x[i] in $t3 
    sb   $t2, 0($t3)       # x[i] = y[i] 
    beq  $t2, $zero, L2    # exit loop if y[i] == 0   
    addi $s0, $s0, 1       # i = i + 1 
    j    L1                # next iteration of loop 
L2: lw   $s0, 0($sp)       # restore saved $s0 
    addi $sp, $sp, 4       # pop 1 item from stack 
    jr   $ra               # and return 



0000 0000 0111 1101 0000 0000 0000 0000 

32-bit Constants 
  Most constants are small 

  16-bit immediate is sufficient 
  For the occasional 32-bit constant 
 lui rt, constant 

  Copies 16-bit constant to left 16 bits of rt 
  Clears right 16 bits of rt to 0 

lhi $s0, 61 

0000 0000 0111 1101 0000 1001 0000 0000 ori $s0, $s0, 2304 

§2.10 M
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Branch Addressing 
  Branch instructions specify 

  Opcode, two registers, target address 
  Most branch targets are near branch 

  Forward or backward 

op rs rt constant or address 
6 bits 5 bits 5 bits 16 bits 

  PC-relative addressing 
  Target address = PC + offset × 4 
  PC already incremented by 4 by this time 



Jump Addressing 
  Jump (j and jal) targets could be 

anywhere in text segment 
  Encode full address in instruction 

op address 
6 bits 26 bits 

  (Pseudo)Direct jump addressing 
  Target address = PC31…28 : (address × 4) 



Target Addressing Example 
  Loop code from earlier example 

  Assume Loop at location 80000 

Loop: sll  $t1, $s3, 2 80000 0 0 19 9 4 0 

      add  $t1, $t1, $s6 80004 0 9 22 9 0 32 

      lw   $t0, 0($t1) 80008 35 9 8 0 

      bne  $t0, $s5, Exit 80012 5 8 21 2 

      addi $s3, $s3, 1 80016 8 19 19 1 

      j    Loop 80020 2 20000 

Exit: … 80024 



Branching Far Away 
  If branch target is too far to encode with 

16-bit offset, assembler rewrites the code 
  Example 

  beq $s0,$s1, L1 

    ↓ 
  bne $s0,$s1, L2 
 j L1 
L2: … 



Addressing Mode Summary 



Synchronization 
  Two processors sharing an area of memory 

  P1 writes, then P2 reads 
  Data race if P1 and P2 don’t synchronize 

  Result depends of order of accesses 

  Hardware support required 
  Atomic read/write memory operation 
  No other access to the location allowed between the 

read and write 
  Could be a single instruction 

  E.g., atomic swap of register ↔ memory 
  Or an atomic pair of instructions 

§2.11 P
arallelism
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Synchronization in MIPS  
  Load linked: ll rt, offset(rs) 
  Store conditional: sc rt, offset(rs) 

  Succeeds if location not changed since the ll 
  Returns 1 in rt 

  Fails if location is changed 
  Returns 0 in rt 

  Example: atomic swap (to test/set lock variable) 
try: add $t0,$zero,$s4 ;copy exchange value 

     ll  $t1,0($s1)    ;load linked 

     sc  $t0,0($s1)    ;store conditional 

     beq $t0,$zero,try ;branch store fails 

     add $s4,$zero,$t1 ;put load value in $s4 



Translation and Startup 

Many compilers produce 
object modules directly 

Static linking 

§2.12 Translating and S
tarting a P

rogram
 



Assembler Pseudoinstructions 
  Most assembler instructions represent 

machine instructions one-to-one 
  Pseudoinstructions: figments of the 

assembler’s imagination 
 move $t0, $t1 → add $t0, $zero, $t1 

 blt $t0, $t1, L  →  slt $at, $t0, $t1 
  bne $at, $zero, L 

  $at (register 1): assembler temporary 



Producing an Object Module 
  Assembler (or compiler) translates program into 

machine instructions 
  Provides information for building a complete 

program from the pieces 
  Header: described contents of object module 
  Text segment: translated instructions 
  Static data segment: data allocated for the life of the 

program 
  Relocation info: for contents that depend on absolute 

location of loaded program 
  Symbol table: global definitions and external refs 
  Debug info: for associating with source code 



Linking Object Modules 
  Produces an executable image 

1. Merges segments 
2. Resolve labels (determine their addresses) 
3. Patch location-dependent and external refs 

  Could leave location dependencies for 
fixing by a relocating loader 
  But with virtual memory, no need to do this 
  Program can be loaded into absolute location 

in virtual memory space 



Loading a Program 
  Load from image file on disk into memory 

1. Read header to determine segment sizes 
2. Create virtual address space 
3. Copy text and initialized data into memory 

  Or set page table entries so they can be faulted in 

4. Set up arguments on stack 
5. Initialize registers (including $sp, $fp, $gp) 
6. Jump to startup routine 

  Copies arguments to $a0, … and calls main 
  When main returns, do exit syscall 



Dynamic Linking 
  Only link/load library procedure when it is 

called 
  Requires procedure code to be relocatable 
  Avoids image bloat caused by static linking of 

all (transitively) referenced libraries 
  Automatically picks up new library versions 



Lazy Linkage 

Indirection table 

Stub: Loads routine ID, 
Jump to linker/loader 

Linker/loader code 

Dynamically 
mapped code 



Starting Java Applications 

Simple portable 
instruction set for 

the JVM 

Interprets 
bytecodes 

Compiles 
bytecodes of 
“hot” methods 

into native 
code for host 

machine 



C Sort Example 
  Illustrates use of assembly instructions 

for a C bubble sort function 
  Swap procedure (leaf) 

 void swap(int v[], int k) 
{ 
  int temp; 
  temp = v[k]; 
  v[k] = v[k+1]; 
  v[k+1] = temp; 
} 

  v in $a0, k in $a1, temp in $t0 

§2.13 A C
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The Procedure Swap 
swap: sll $t1, $a1, 2   # $t1 = k * 4 

      add $t1, $a0, $t1 # $t1 = v+(k*4) 

                        #   (address of v[k]) 

      lw $t0, 0($t1)    # $t0 (temp) = v[k] 

      lw $t2, 4($t1)    # $t2 = v[k+1] 

      sw $t2, 0($t1)    # v[k] = $t2 (v[k+1]) 

      sw $t0, 4($t1)    # v[k+1] = $t0 (temp) 

      jr $ra            # return to calling routine 



The Sort Procedure in C 
  Non-leaf (calls swap) 

 void sort (int v[], int n) 

 { 

   int i, j; 

   for (i = 0; i < n; i += 1) { 

     for (j = i – 1; 

          j >= 0 && v[j] > v[j + 1]; 

          j -= 1) { 

       swap(v,j); 

     } 

   } 

 } 

  v in $a0, k in $a1, i in $s0, j in $s1 



The Procedure Body 
         move $s2, $a0           # save $a0 into $s2 

         move $s3, $a1           # save $a1 into $s3 

         move $s0, $zero         # i = 0 

for1tst: slt  $t0, $s0, $s3      # $t0 = 0 if $s0 ≥ $s3 (i ≥ n) 

         beq  $t0, $zero, exit1  # go to exit1 if $s0 ≥ $s3 (i ≥ n) 

         addi $s1, $s0, –1       # j = i – 1 

for2tst: slti $t0, $s1, 0        # $t0 = 1 if $s1 < 0 (j < 0) 

         bne  $t0, $zero, exit2  # go to exit2 if $s1 < 0 (j < 0) 

         sll  $t1, $s1, 2        # $t1 = j * 4 

         add  $t2, $s2, $t1      # $t2 = v + (j * 4) 

         lw   $t3, 0($t2)        # $t3 = v[j] 

         lw   $t4, 4($t2)        # $t4 = v[j + 1] 

         slt  $t0, $t4, $t3      # $t0 = 0 if $t4 ≥ $t3 

         beq  $t0, $zero, exit2  # go to exit2 if $t4 ≥ $t3 

         move $a0, $s2           # 1st param of swap is v (old $a0) 

         move $a1, $s1           # 2nd param of swap is j 

         jal  swap               # call swap procedure 

         addi $s1, $s1, –1       # j –= 1 

         j    for2tst            # jump to test of inner loop 

exit2:   addi $s0, $s0, 1        # i += 1 

         j    for1tst            # jump to test of outer loop 

Pass 
params 
& call 

Move 
params 

Inner loop 

Outer loop 

Inner loop 

Outer loop 



sort:    addi $sp,$sp, –20      # make room on stack for 5 registers 

         sw $ra, 16($sp)        # save $ra on stack 

         sw $s3,12($sp)         # save $s3 on stack 

         sw $s2, 8($sp)         # save $s2 on stack 

         sw $s1, 4($sp)         # save $s1 on stack 

         sw $s0, 0($sp)         # save $s0 on stack 

         …                      # procedure body 

         … 

         exit1: lw $s0, 0($sp)  # restore $s0 from stack 

         lw $s1, 4($sp)         # restore $s1 from stack 

         lw $s2, 8($sp)         # restore $s2 from stack 

         lw $s3,12($sp)         # restore $s3 from stack 

         lw $ra,16($sp)         # restore $ra from stack 

         addi $sp,$sp, 20       # restore stack pointer 

         jr $ra                 # return to calling routine 

The Full Procedure 



Effect of Compiler Optimization 
Compiled with gcc for Pentium 4 under Linux 



Effect of Language and Algorithm 



Lessons Learnt 
  Instruction count and CPI are not good 

performance indicators in isolation 
  Compiler optimizations are sensitive to the 

algorithm 
  Java/JIT compiled code is significantly 

faster than JVM interpreted 
  Comparable to optimized C in some cases 

  Nothing can fix a dumb algorithm! 



Arrays vs. Pointers 
  Array indexing involves 

  Multiplying index by element size 
  Adding to array base address 

  Pointers correspond directly to memory 
addresses 
  Can avoid indexing complexity 

§2.14 A
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Example: Clearing and Array 
clear1(int array[], int size) { 
  int i; 
  for (i = 0; i < size; i += 1) 
    array[i] = 0; 
} 

clear2(int *array, int size) { 
  int *p; 
  for (p = &array[0]; p < &array[size]; 
       p = p + 1) 
    *p = 0; 
} 

       move $t0,$zero   # i = 0 

loop1: sll $t1,$t0,2    # $t1 = i * 4 

       add $t2,$a0,$t1  # $t2 = 

                        #   &array[i] 

       sw $zero, 0($t2) # array[i] = 0 

       addi $t0,$t0,1   # i = i + 1 

       slt $t3,$t0,$a1  # $t3 = 

                        #   (i < size) 

       bne $t3,$zero,loop1 # if (…) 
                           # goto loop1 

       move $t0,$a0    # p = & array[0] 

       sll $t1,$a1,2   # $t1 = size * 4 

       add $t2,$a0,$t1 # $t2 = 

                       #   &array[size] 

loop2: sw $zero,0($t0) # Memory[p] = 0 

       addi $t0,$t0,4  # p = p + 4 

       slt $t3,$t0,$t2 # $t3 = 

                       #(p<&array[size]) 

       bne $t3,$zero,loop2 # if (…) 

                           # goto loop2 



Comparison of Array vs. Ptr 
  Multiply “strength reduced” to shift 
  Array version requires shift to be inside 

loop 
  Part of index calculation for incremented i 
  c.f. incrementing pointer 

  Compiler can achieve same effect as 
manual use of pointers 
  Induction variable elimination 
  Better to make program clearer and safer 



ARM & MIPS Similarities 
  ARM: the most popular embedded core 
  Similar basic set of instructions to MIPS 

§2.16 R
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ARM MIPS 
Date announced 1985 1985 
Instruction size 32 bits 32 bits 
Address space 32-bit flat 32-bit flat 
Data alignment Aligned Aligned 
Data addressing modes 9 3 
Registers 15 × 32-bit 31 × 32-bit 
Input/output Memory 

mapped 
Memory 
mapped 



Compare and Branch in ARM 
  Uses condition codes for result of an 

arithmetic/logical instruction 
  Negative, zero, carry, overflow 
  Compare instructions to set condition codes 

without keeping the result 
  Each instruction can be conditional 

  Top 4 bits of instruction word: condition value 
  Can avoid branches over single instructions 



Instruction Encoding 



The Intel x86 ISA 
  Evolution with backward compatibility 

  8080 (1974): 8-bit microprocessor 
  Accumulator, plus 3 index-register pairs 

  8086 (1978): 16-bit extension to 8080 
  Complex instruction set (CISC) 

  8087 (1980): floating-point coprocessor 
  Adds FP instructions and register stack 

  80286 (1982): 24-bit addresses, MMU 
  Segmented memory mapping and protection 

  80386 (1985): 32-bit extension (now IA-32) 
  Additional addressing modes and operations 
  Paged memory mapping as well as segments 
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The Intel x86 ISA 
  Further evolution… 

  i486 (1989): pipelined, on-chip caches and FPU 
  Compatible competitors: AMD, Cyrix, … 

  Pentium (1993): superscalar, 64-bit datapath 
  Later versions added MMX (Multi-Media eXtension) 

instructions 
  The infamous FDIV bug 

  Pentium Pro (1995), Pentium II (1997) 
  New microarchitecture (see Colwell, The Pentium Chronicles) 

  Pentium III (1999) 
  Added SSE (Streaming SIMD Extensions) and associated 

registers 
  Pentium 4 (2001) 

  New microarchitecture 
  Added SSE2 instructions 



The Intel x86 ISA 
  And further… 

  AMD64 (2003): extended architecture to 64 bits 
  EM64T – Extended Memory 64 Technology (2004) 

  AMD64 adopted by Intel (with refinements) 
  Added SSE3 instructions 

  Intel Core (2006) 
  Added SSE4 instructions, virtual machine support 

  AMD64 (announced 2007): SSE5 instructions 
  Intel declined to follow, instead… 

  Advanced Vector Extension (announced 2008) 
  Longer SSE registers, more instructions 

  If Intel didn’t extend with compatibility, its 
competitors would! 
  Technical elegance ≠ market success 



Basic x86 Registers 



Basic x86 Addressing Modes 
  Two operands per instruction 

Source/dest operand Second source operand 
Register Register 
Register Immediate 
Register Memory 
Memory Register 
Memory Immediate 

  Memory addressing modes 
  Address in register 
  Address = Rbase + displacement 
  Address = Rbase + 2scale × Rindex (scale = 0, 1, 2, or 3) 
  Address =  Rbase + 2scale × Rindex + displacement 



x86 Instruction Encoding 
  Variable length 

encoding 
  Postfix bytes specify 

addressing mode 
  Prefix bytes modify 

operation 
  Operand length, 

repetition, locking, … 



Implementing IA-32 
  Complex instruction set makes 

implementation difficult 
  Hardware translates instructions to simpler 

microoperations 
  Simple instructions: 1–1 
  Complex instructions: 1–many 

  Microengine similar to RISC 
  Market share makes this economically viable 

  Comparable performance to RISC 
  Compilers avoid complex instructions 



Fallacies 
  Powerful instruction ⇒ higher performance 

  Fewer instructions required 
  But complex instructions are hard to implement 

  May slow down all instructions, including simple ones 

  Compilers are good at making fast code from simple 
instructions 

  Use assembly code for high performance 
  But modern compilers are better at dealing with 

modern processors 
  More lines of code ⇒ more errors and less 

productivity 
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Fallacies 
  Backward compatibility ⇒ instruction set 

doesn’t change 
  But they do accrete more instructions 

x86 instruction set 



Pitfalls 
  Sequential words are not at sequential 

addresses 
  Increment by 4, not by 1! 

  Keeping a pointer to an automatic variable 
after procedure returns 
  e.g., passing pointer back via an argument 
  Pointer becomes invalid when stack popped 



Concluding Remarks 
  Design principles 

1. Simplicity favors regularity 
2. Smaller is faster 
3. Make the common case fast 
4. Good design demands good compromises 

  Layers of software/hardware 
  Compiler, assembler, hardware 

  MIPS: typical of RISC ISAs 
  c.f. x86 
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Concluding Remarks 
  Measure MIPS instruction executions in 

benchmark programs 
  Consider making the common case fast 
  Consider compromises 

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP 
Arithmetic add, sub, addi 16% 48% 

Data transfer lw, sw, lb, lbu, 
lh, lhu, sb, lui 

35% 36% 

Logical and, or, nor, andi, 
ori, sll, srl 

12% 4% 

Cond. Branch beq, bne, slt, 
slti, sltiu 

34% 8% 

Jump j, jr, jal 2% 0% 


