
A Survey of Instructions
for Computer

Instructions: Language
of the Computer

Revised and enlarged from original
slides provided
by MKP

Language Hierachy

3

Architecture
  Modern computers

are using Von
Neumann
Architecture (also
called stored-
program concept)

  It was derived by
Von Neumann
(obviously), John
Mauchly, and
Presper Eckert.

The ARM Reallity

5

Introduction
  Hierarchy of computer languages:

1. Application-Specific Language (Matlab
compiler)

2. High-Level Programming language (C++,
Java)

3. Assembly Language (Machine dependent)
4. Machine Language (Machine dependent)

6

Introduction (Cont.)
  There is nothing “below” machine

language – only hardware.
  Machine Language is the only language

understood by computers (i.e. it’s native to
processor)

  Impossible for humans to read. Consists of
only 0’s and 1’s.
  0001001111110000

Instruction Set
  The repertoire of instructions of a

computer
  Different computers have different

instruction sets
  But with many aspects in common

  Early computers had very simple
instruction sets
  Simplified implementation

  Many modern computers also have simple
instruction sets

§2.1 Introduction

The MIPS Instruction Set
  Used as the example throughout the book
  Stanford MIPS commercialized by MIPS

Technologies (www.mips.com)
  Large share of embedded core market

  Applications in consumer electronics, network/storage
equipment, cameras, printers, …

  Typical of many modern ISAs
  See MIPS Reference Data tear-out card, and

Appendixes B and E

Arithmetic Operations
  Add and subtract, three operands

  Two sources and one destination
 add a, b, c # a gets b + c

  All arithmetic operations have this form
  Design Principle 1: Simplicity favours

regularity
  Regularity makes implementation simpler
  Simplicity enables higher performance at

lower cost

§2.2 O
perations of the C

om
puter H

ardw
are

Chapter 2 — Instructions: Language of the Computer — 10

Arithmetic Example
  C code:
 f = (g + h) - (i + j);

  Compiled MIPS code:
 add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Register Operands
  Arithmetic instructions use register

operands
  MIPS has a 32 × 32-bit register file

  Use for frequently accessed data
  Numbered 0 to 31
  32-bit data called a “word”

  Assembler names
  $t0, $t1, …, $t9 for temporary values
  $s0, $s1, …, $s7 for saved variables

  Design Principle 2: Smaller is faster
  c.f. main memory: millions of locations

§2.3 O
perands of the C

om
puter H

ardw
are

Register Operand Example
  C code:
 f = (g + h) - (i + j);

  f, …, j in $s0, …, $s4
  Compiled MIPS code:
 add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Memory Operands
  Main memory used for composite data

  Arrays, structures, dynamic data
  To apply arithmetic operations

  Load values from memory into registers
  Store result from register to memory

  Memory is byte addressed
  Each address identifies an 8-bit byte

  Words are aligned in memory
  Address must be a multiple of 4

  MIPS is Big Endian
  Most-significant byte at least address of a word
  c.f. Little Endian: least-significant byte at least address

Memory Operand Example 1
  C code:
 g = h + A[8];

  g in $s1, h in $s2, base address of A in $s3
  Compiled MIPS code:

  Index 8 requires offset of 32
  4 bytes per word

 lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

Memory Operand Example 2
  C code:
 A[12] = h + A[8];

  h in $s2, base address of A in $s3
  Compiled MIPS code:

  Index 8 requires offset of 32
 lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Registers vs. Memory
  Registers are faster to access than

memory
  Operating on memory data requires loads

and stores
  More instructions to be executed

  Compiler must use registers for variables
as much as possible
  Only spill to memory for less frequently used

variables
  Register optimization is important!

Immediate Operands
  Constant data specified in an instruction
 addi $s3, $s3, 4

  No subtract immediate instruction
  Just use a negative constant
 addi $s2, $s1, -1

  Design Principle 3: Make the common
case fast
  Small constants are common
  Immediate operand avoids a load instruction

The Constant Zero
  MIPS register 0 ($zero) is the constant 0

  Cannot be overwritten
  Useful for common operations

  E.g., move between registers
 add $t2, $s1, $zero

Unsigned Binary Integers
  Given an n-bit number

  Range: 0 to +2n – 1
  Example

  0000 0000 0000 0000 0000 0000 0000 10112
= 0 + … + 1×23 + 0×22 +1×21 +1×20
= 0 + … + 8 + 0 + 2 + 1 = 1110

  Using 32 bits
  0 to +4,294,967,295

§2.4 S
igned and U

nsigned N
um

bers

Sign Extension
  Representing a number using more bits

  Preserve the numeric value
  In MIPS instruction set

  addi: extend immediate value
  lb, lh: extend loaded byte/halfword
  beq, bne: extend the displacement

  Replicate the sign bit to the left
  c.f. unsigned values: extend with 0s

  Examples: 8-bit to 16-bit
  +2: 0000 0010 => 0000 0000 0000 0010
  –2: 1111 1110 => 1111 1111 1111 1110

Representing Instructions
  Instructions are encoded in binary

  Called machine code
  MIPS instructions

  Encoded as 32-bit instruction words
  Small number of formats encoding operation code

(opcode), register numbers, …
  Regularity!

  Register numbers
  $t0 – $t7 are reg’s 8 – 15
  $t8 – $t9 are reg’s 24 – 25
  $s0 – $s7 are reg’s 16 – 23

§2.5 R
epresenting Instructions in the C

om
puter

MIPS R-format Instructions

  Instruction fields
  op: operation code (opcode)
  rs: first source register number
  rt: second source register number
  rd: destination register number
  shamt: shift amount (00000 for now)
  funct: function code (extends opcode)

op rs rt rd shamt funct
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

R-format Example

 add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

Hexadecimal
  Base 16

  Compact representation of bit strings
  4 bits per hex digit

0 0000 4 0100 8 1000 c 1100
1 0001 5 0101 9 1001 d 1101
2 0010 6 0110 a 1010 e 1110
3 0011 7 0111 b 1011 f 1111

  Example: eca8 6420
  1110 1100 1010 1000 0110 0100 0010 0000

MIPS I-format Instructions

  Immediate arithmetic and load/store instructions
  rt: destination or source register number
  Constant: –215 to +215 – 1
  Address: offset added to base address in rs

  Design Principle 4: Good design demands good
compromises
  Different formats complicate decoding, but allow 32-bit

instructions uniformly
  Keep formats as similar as possible

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

Stored Program Computers
  Instructions represented in

binary, just like data
  Instructions and data stored

in memory
  Programs can operate on

programs
  e.g., compilers, linkers, …

  Binary compatibility allows
compiled programs to work
on different computers
  Standardized ISAs

The BIG Picture

Logical Operations
  Instructions for bitwise manipulation

Operation C Java MIPS
Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

  Useful for extracting and inserting
groups of bits in a word

§2.6 Logical O
perations

Shift Operations

  shamt: how many positions to shift
  Shift left logical

  Shift left and fill with 0 bits
  sll by i bits multiplies by 2i

  Shift right logical
  Shift right and fill with 0 bits
  srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

AND Operations
  Useful to mask bits in a word

  Select some bits, clear others to 0

 and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000 $t0

OR Operations
  Useful to include bits in a word

  Set some bits to 1, leave others unchanged

 or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000 $t0

NOT Operations
  Useful to invert bits in a word

  Change 0 to 1, and 1 to 0
  MIPS has NOR 3-operand instruction

  a NOR b == NOT (a OR b)

 nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000 $t1

1111 1111 1111 1111 1100 0011 1111 1111 $t0

Register 0: always
read as zero

Conditional Operations
  Branch to a labeled instruction if a

condition is true
  Otherwise, continue sequentially

  beq rs, rt, L1
  if (rs == rt) branch to instruction labeled L1;

  bne rs, rt, L1
  if (rs != rt) branch to instruction labeled L1;

  j L1
  unconditional jump to instruction labeled L1

§2.7 Instructions for M
aking D

ecisions

Compiling If Statements
  C code:
 if (i==j) f = g+h;
else f = g-h;

  f, g, … in $s0, $s1, …
  Compiled MIPS code:
 bne $s3, $s4, Else
 add $s0, $s1, $s2
 j Exit
Else: sub $s0, $s1, $s2
Exit: … Assembler calculates addresses

Compiling Loop Statements
  C code:
 while (save[i] == k) i += 1;

  i in $s3, k in $s5, address of save in $s6
  Compiled MIPS code:
 Loop: sll $t1, $s3, 2
 add $t1, $t1, $s6
 lw $t0, 0($t1)
 bne $t0, $s5, Exit
 addi $s3, $s3, 1
 j Loop
Exit: …

Basic Blocks
  A basic block is a sequence of instructions

with
  No embedded branches (except at end)
  No branch targets (except at beginning)

  A compiler identifies basic
blocks for optimization

  An advanced processor
can accelerate execution
of basic blocks

Branch Instruction Design
  Why not blt, bge, etc?
  Hardware for <, ≥, … slower than =, ≠

  Combining with branch involves more work
per instruction, requiring a slower clock

  All instructions penalized!
  beq and bne are the common case
  This is a good design compromise

Procedure Calling
  Steps required

1.  Place parameters in registers
2.  Transfer control to procedure
3.  Acquire storage for procedure
4.  Perform procedure’s operations
5.  Place result in register for caller
6.  Return to place of call

§2.8 S
upporting P

rocedures in C
om

puter H
ardw

are

Procedure Call Instructions
  Procedure call: jump and link
 jal ProcedureLabel

  Address of following instruction put in $ra
  Jumps to target address

  Procedure return: jump register
 jr $ra

  Copies $ra to program counter
  Can also be used for computed jumps

  e.g., for case/switch statements

Local Data on the Stack

  Local data allocated by callee
  e.g., C automatic variables

  Procedure frame (activation record)
  Used by some compilers to manage stack storage

Memory Layout
  Text: program code
  Static data: global

variables
  e.g., static variables in C,

constant arrays and strings
  $gp initialized to address

allowing ±offsets into this
segment

  Dynamic data: heap
  E.g., malloc in C, new in

Java
  Stack: automatic storage

Character Data
  Byte-encoded character sets

  ASCII: 128 characters
  95 graphic, 33 control

  Latin-1: 256 characters
  ASCII, +96 more graphic characters

  Unicode: 32-bit character set
  Used in Java, C++ wide characters, …
  Most of the world’s alphabets, plus symbols
  UTF-8, UTF-16: variable-length encodings

§2.9 C
om

m
unicating w

ith P
eople

Byte/Halfword Operations
  Could use bitwise operations
  MIPS byte/halfword load/store

  String processing is a common case
lb rt, offset(rs) lh rt, offset(rs)

  Sign extend to 32 bits in rt
lbu rt, offset(rs) lhu rt, offset(rs)

  Zero extend to 32 bits in rt
sb rt, offset(rs) sh rt, offset(rs)

  Store just rightmost byte/halfword

String Copy Example
  C code (naïve):

  Null-terminated string
 void strcpy (char x[], char y[])
{ int i;
 i = 0;
 while ((x[i]=y[i])!='\0')
 i += 1;
}

  Addresses of x, y in $a0, $a1
  i in $s0

String Copy Example
  MIPS code:
 strcpy:

 addi $sp, $sp, -4 # adjust stack for 1 item
 sw $s0, 0($sp) # save $s0
 add $s0, $zero, $zero # i = 0
L1: add $t1, $s0, $a1 # addr of y[i] in $t1
 lbu $t2, 0($t1) # $t2 = y[i]
 add $t3, $s0, $a0 # addr of x[i] in $t3
 sb $t2, 0($t3) # x[i] = y[i]
 beq $t2, $zero, L2 # exit loop if y[i] == 0
 addi $s0, $s0, 1 # i = i + 1
 j L1 # next iteration of loop
L2: lw $s0, 0($sp) # restore saved $s0
 addi $sp, $sp, 4 # pop 1 item from stack
 jr $ra # and return

0000 0000 0111 1101 0000 0000 0000 0000

32-bit Constants
  Most constants are small

  16-bit immediate is sufficient
  For the occasional 32-bit constant
 lui rt, constant

  Copies 16-bit constant to left 16 bits of rt
  Clears right 16 bits of rt to 0

lhi $s0, 61

0000 0000 0111 1101 0000 1001 0000 0000 ori $s0, $s0, 2304

§2.10 M
IP

S
 A

ddressing for 32-B
it Im

m
ediates and A

ddresses

Branch Addressing
  Branch instructions specify

  Opcode, two registers, target address
  Most branch targets are near branch

  Forward or backward

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

  PC-relative addressing
  Target address = PC + offset × 4
  PC already incremented by 4 by this time

Jump Addressing
  Jump (j and jal) targets could be

anywhere in text segment
  Encode full address in instruction

op address
6 bits 26 bits

  (Pseudo)Direct jump addressing
  Target address = PC31…28 : (address × 4)

Target Addressing Example
  Loop code from earlier example

  Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

 add $t1, $t1, $s6 80004 0 9 22 9 0 32

 lw $t0, 0($t1) 80008 35 9 8 0

 bne $t0, $s5, Exit 80012 5 8 21 2

 addi $s3, $s3, 1 80016 8 19 19 1

 j Loop 80020 2 20000

Exit: … 80024

Branching Far Away
  If branch target is too far to encode with

16-bit offset, assembler rewrites the code
  Example

 beq $s0,$s1, L1

 ↓
 bne $s0,$s1, L2
 j L1
L2: …

Addressing Mode Summary

Synchronization
  Two processors sharing an area of memory

  P1 writes, then P2 reads
  Data race if P1 and P2 don’t synchronize

  Result depends of order of accesses

  Hardware support required
  Atomic read/write memory operation
  No other access to the location allowed between the

read and write
  Could be a single instruction

  E.g., atomic swap of register ↔ memory
  Or an atomic pair of instructions

§2.11 P
arallelism

 and Instructions: S
ynchronization

Synchronization in MIPS
  Load linked: ll rt, offset(rs)
  Store conditional: sc rt, offset(rs)

  Succeeds if location not changed since the ll
  Returns 1 in rt

  Fails if location is changed
  Returns 0 in rt

  Example: atomic swap (to test/set lock variable)
try: add $t0,$zero,$s4 ;copy exchange value

 ll $t1,0($s1) ;load linked

 sc $t0,0($s1) ;store conditional

 beq $t0,$zero,try ;branch store fails

 add $s4,$zero,$t1 ;put load value in $s4

Translation and Startup

Many compilers produce
object modules directly

Static linking

§2.12 Translating and S
tarting a P

rogram

Assembler Pseudoinstructions
  Most assembler instructions represent

machine instructions one-to-one
  Pseudoinstructions: figments of the

assembler’s imagination
 move $t0, $t1 → add $t0, $zero, $t1

 blt $t0, $t1, L → slt $at, $t0, $t1
 bne $at, $zero, L

  $at (register 1): assembler temporary

Producing an Object Module
  Assembler (or compiler) translates program into

machine instructions
  Provides information for building a complete

program from the pieces
  Header: described contents of object module
  Text segment: translated instructions
  Static data segment: data allocated for the life of the

program
  Relocation info: for contents that depend on absolute

location of loaded program
  Symbol table: global definitions and external refs
  Debug info: for associating with source code

Linking Object Modules
  Produces an executable image

1. Merges segments
2. Resolve labels (determine their addresses)
3. Patch location-dependent and external refs

  Could leave location dependencies for
fixing by a relocating loader
  But with virtual memory, no need to do this
  Program can be loaded into absolute location

in virtual memory space

Loading a Program
  Load from image file on disk into memory

1. Read header to determine segment sizes
2. Create virtual address space
3. Copy text and initialized data into memory

  Or set page table entries so they can be faulted in

4. Set up arguments on stack
5. Initialize registers (including $sp, $fp, $gp)
6. Jump to startup routine

  Copies arguments to $a0, … and calls main
  When main returns, do exit syscall

Dynamic Linking
  Only link/load library procedure when it is

called
  Requires procedure code to be relocatable
  Avoids image bloat caused by static linking of

all (transitively) referenced libraries
  Automatically picks up new library versions

Lazy Linkage

Indirection table

Stub: Loads routine ID,
Jump to linker/loader

Linker/loader code

Dynamically
mapped code

Starting Java Applications

Simple portable
instruction set for

the JVM

Interprets
bytecodes

Compiles
bytecodes of
“hot” methods

into native
code for host

machine

C Sort Example
  Illustrates use of assembly instructions

for a C bubble sort function
  Swap procedure (leaf)

 void swap(int v[], int k)
{
 int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

  v in $a0, k in $a1, temp in $t0

§2.13 A C
 S

ort E
xam

ple to P
ut It A

ll Together

The Procedure Swap
swap: sll $t1, $a1, 2 # $t1 = k * 4

 add $t1, $a0, $t1 # $t1 = v+(k*4)

 # (address of v[k])

 lw $t0, 0($t1) # $t0 (temp) = v[k]

 lw $t2, 4($t1) # $t2 = v[k+1]

 sw $t2, 0($t1) # v[k] = $t2 (v[k+1])

 sw $t0, 4($t1) # v[k+1] = $t0 (temp)

 jr $ra # return to calling routine

The Sort Procedure in C
  Non-leaf (calls swap)

 void sort (int v[], int n)

 {

 int i, j;

 for (i = 0; i < n; i += 1) {

 for (j = i – 1;

 j >= 0 && v[j] > v[j + 1];

 j -= 1) {

 swap(v,j);

 }

 }

 }

  v in $a0, k in $a1, i in $s0, j in $s1

The Procedure Body
 move $s2, $a0 # save $a0 into $s2

 move $s3, $a1 # save $a1 into $s3

 move $s0, $zero # i = 0

for1tst: slt $t0, $s0, $s3 # $t0 = 0 if $s0 ≥ $s3 (i ≥ n)

 beq $t0, $zero, exit1 # go to exit1 if $s0 ≥ $s3 (i ≥ n)

 addi $s1, $s0, –1 # j = i – 1

for2tst: slti $t0, $s1, 0 # $t0 = 1 if $s1 < 0 (j < 0)

 bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)

 sll $t1, $s1, 2 # $t1 = j * 4

 add $t2, $s2, $t1 # $t2 = v + (j * 4)

 lw $t3, 0($t2) # $t3 = v[j]

 lw $t4, 4($t2) # $t4 = v[j + 1]

 slt $t0, $t4, $t3 # $t0 = 0 if $t4 ≥ $t3

 beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3

 move $a0, $s2 # 1st param of swap is v (old $a0)

 move $a1, $s1 # 2nd param of swap is j

 jal swap # call swap procedure

 addi $s1, $s1, –1 # j –= 1

 j for2tst # jump to test of inner loop

exit2: addi $s0, $s0, 1 # i += 1

 j for1tst # jump to test of outer loop

Pass
params
& call

Move
params

Inner loop

Outer loop

Inner loop

Outer loop

sort: addi $sp,$sp, –20 # make room on stack for 5 registers

 sw $ra, 16($sp) # save $ra on stack

 sw $s3,12($sp) # save $s3 on stack

 sw $s2, 8($sp) # save $s2 on stack

 sw $s1, 4($sp) # save $s1 on stack

 sw $s0, 0($sp) # save $s0 on stack

 … # procedure body

 …

 exit1: lw $s0, 0($sp) # restore $s0 from stack

 lw $s1, 4($sp) # restore $s1 from stack

 lw $s2, 8($sp) # restore $s2 from stack

 lw $s3,12($sp) # restore $s3 from stack

 lw $ra,16($sp) # restore $ra from stack

 addi $sp,$sp, 20 # restore stack pointer

 jr $ra # return to calling routine

The Full Procedure

Effect of Compiler Optimization
Compiled with gcc for Pentium 4 under Linux

Effect of Language and Algorithm

Lessons Learnt
  Instruction count and CPI are not good

performance indicators in isolation
  Compiler optimizations are sensitive to the

algorithm
  Java/JIT compiled code is significantly

faster than JVM interpreted
  Comparable to optimized C in some cases

  Nothing can fix a dumb algorithm!

Arrays vs. Pointers
  Array indexing involves

  Multiplying index by element size
  Adding to array base address

  Pointers correspond directly to memory
addresses
  Can avoid indexing complexity

§2.14 A
rrays versus P

ointers

Example: Clearing and Array
clear1(int array[], int size) {
 int i;
 for (i = 0; i < size; i += 1)
 array[i] = 0;
}

clear2(int *array, int size) {
 int *p;
 for (p = &array[0]; p < &array[size];
 p = p + 1)
 *p = 0;
}

 move $t0,$zero # i = 0

loop1: sll $t1,$t0,2 # $t1 = i * 4

 add $t2,$a0,$t1 # $t2 =

 # &array[i]

 sw $zero, 0($t2) # array[i] = 0

 addi $t0,$t0,1 # i = i + 1

 slt $t3,$t0,$a1 # $t3 =

 # (i < size)

 bne $t3,$zero,loop1 # if (…)
 # goto loop1

 move $t0,$a0 # p = & array[0]

 sll $t1,$a1,2 # $t1 = size * 4

 add $t2,$a0,$t1 # $t2 =

 # &array[size]

loop2: sw $zero,0($t0) # Memory[p] = 0

 addi $t0,$t0,4 # p = p + 4

 slt $t3,$t0,$t2 # $t3 =

 #(p<&array[size])

 bne $t3,$zero,loop2 # if (…)

 # goto loop2

Comparison of Array vs. Ptr
  Multiply “strength reduced” to shift
  Array version requires shift to be inside

loop
  Part of index calculation for incremented i
  c.f. incrementing pointer

  Compiler can achieve same effect as
manual use of pointers
  Induction variable elimination
  Better to make program clearer and safer

ARM & MIPS Similarities
  ARM: the most popular embedded core
  Similar basic set of instructions to MIPS

§2.16 R
eal S

tuff: A
R

M
 Instructions

ARM MIPS
Date announced 1985 1985
Instruction size 32 bits 32 bits
Address space 32-bit flat 32-bit flat
Data alignment Aligned Aligned
Data addressing modes 9 3
Registers 15 × 32-bit 31 × 32-bit
Input/output Memory

mapped
Memory
mapped

Compare and Branch in ARM
  Uses condition codes for result of an

arithmetic/logical instruction
  Negative, zero, carry, overflow
  Compare instructions to set condition codes

without keeping the result
  Each instruction can be conditional

  Top 4 bits of instruction word: condition value
  Can avoid branches over single instructions

Instruction Encoding

The Intel x86 ISA
  Evolution with backward compatibility

  8080 (1974): 8-bit microprocessor
  Accumulator, plus 3 index-register pairs

  8086 (1978): 16-bit extension to 8080
  Complex instruction set (CISC)

  8087 (1980): floating-point coprocessor
  Adds FP instructions and register stack

  80286 (1982): 24-bit addresses, MMU
  Segmented memory mapping and protection

  80386 (1985): 32-bit extension (now IA-32)
  Additional addressing modes and operations
  Paged memory mapping as well as segments

§2.17 R
eal S

tuff: x86 Instructions

The Intel x86 ISA
  Further evolution…

  i486 (1989): pipelined, on-chip caches and FPU
  Compatible competitors: AMD, Cyrix, …

  Pentium (1993): superscalar, 64-bit datapath
  Later versions added MMX (Multi-Media eXtension)

instructions
  The infamous FDIV bug

  Pentium Pro (1995), Pentium II (1997)
  New microarchitecture (see Colwell, The Pentium Chronicles)

  Pentium III (1999)
  Added SSE (Streaming SIMD Extensions) and associated

registers
  Pentium 4 (2001)

  New microarchitecture
  Added SSE2 instructions

The Intel x86 ISA
  And further…

  AMD64 (2003): extended architecture to 64 bits
  EM64T – Extended Memory 64 Technology (2004)

  AMD64 adopted by Intel (with refinements)
  Added SSE3 instructions

  Intel Core (2006)
  Added SSE4 instructions, virtual machine support

  AMD64 (announced 2007): SSE5 instructions
  Intel declined to follow, instead…

  Advanced Vector Extension (announced 2008)
  Longer SSE registers, more instructions

  If Intel didn’t extend with compatibility, its
competitors would!
  Technical elegance ≠ market success

Basic x86 Registers

Basic x86 Addressing Modes
  Two operands per instruction

Source/dest operand Second source operand
Register Register
Register Immediate
Register Memory
Memory Register
Memory Immediate

  Memory addressing modes
  Address in register
  Address = Rbase + displacement
  Address = Rbase + 2scale × Rindex (scale = 0, 1, 2, or 3)
  Address = Rbase + 2scale × Rindex + displacement

x86 Instruction Encoding
  Variable length

encoding
  Postfix bytes specify

addressing mode
  Prefix bytes modify

operation
  Operand length,

repetition, locking, …

Implementing IA-32
  Complex instruction set makes

implementation difficult
  Hardware translates instructions to simpler

microoperations
  Simple instructions: 1–1
  Complex instructions: 1–many

  Microengine similar to RISC
  Market share makes this economically viable

  Comparable performance to RISC
  Compilers avoid complex instructions

Fallacies
  Powerful instruction ⇒ higher performance

  Fewer instructions required
  But complex instructions are hard to implement

  May slow down all instructions, including simple ones

  Compilers are good at making fast code from simple
instructions

  Use assembly code for high performance
  But modern compilers are better at dealing with

modern processors
  More lines of code ⇒ more errors and less

productivity

§2.18 Fallacies and P
itfalls

Fallacies
  Backward compatibility ⇒ instruction set

doesn’t change
  But they do accrete more instructions

x86 instruction set

Pitfalls
  Sequential words are not at sequential

addresses
  Increment by 4, not by 1!

  Keeping a pointer to an automatic variable
after procedure returns
  e.g., passing pointer back via an argument
  Pointer becomes invalid when stack popped

Concluding Remarks
  Design principles

1. Simplicity favors regularity
2. Smaller is faster
3. Make the common case fast
4. Good design demands good compromises

  Layers of software/hardware
  Compiler, assembler, hardware

  MIPS: typical of RISC ISAs
  c.f. x86

§2.19 C
oncluding R

em
arks

Concluding Remarks
  Measure MIPS instruction executions in

benchmark programs
  Consider making the common case fast
  Consider compromises

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP
Arithmetic add, sub, addi 16% 48%

Data transfer lw, sw, lb, lbu,
lh, lhu, sb, lui

35% 36%

Logical and, or, nor, andi,
ori, sll, srl

12% 4%

Cond. Branch beq, bne, slt,
slti, sltiu

34% 8%

Jump j, jr, jal 2% 0%

