
A Quickly 
Review of 
Algorithms
Carlos Jaime BARRIOS HERNANDEZ, 
PhD.

@carlosjaimebh





Introducing Algorithms…

• The word Algorithm means “a
process or set of rules to be
followed in calculations or other
problem-solving operations”.
Therefore Algorithm refers to a set
of rules/instructions that step-by-
step define how a work is to be
executed upon in order to get the
expected results.

From: https://www.geeksforgeeks.org/introduction-to-algorithms/

https://www.geeksforgeeks.org/fundamentals-of-algorithms/
https://www.geeksforgeeks.org/introduction-to-algorithms/


Introducing Algorithms…
• Similarly, algorithms help to do a task

in programming to get the expected
output. The Algorithm designed are
language or implementation
independent, i.e. they are just plain
instructions that can be implemented
in any language, and yet the output
will be the same, as expected.
• Language implementantion (or other

implementation) is a traduction to be
executed in a context (or runtime).

From: https://www.geeksforgeeks.org/introduction-to-algorithms/

https://en.wikipedia.org/wiki/Algorithm

https://www.geeksforgeeks.org/introduction-to-algorithms/
https://en.wikipedia.org/wiki/Algorithm


Characteristics of an Algorithm
• Clear and Unambiguous: Algorithm should be
clear and unambiguous. Each of its steps should
be clear in all aspects and must lead to only one
meaning.

• Well-Defined Inputs: If an algorithm says to take
inputs, it should be well-defined inputs.

• Well-Defined Outputs: The algorithm must
clearly define what output will be yielded and it
should be well-defined as well.

• Finite-ness: The algorithm must be finite, i.e. it
should not end up in an infinite loops or similar.

• Feasible: The algorithm must be simple, generic
and practical, such that it can be executed upon
will the available resources. It must not contain
some future technology, or anything.

• Language Independent: The Algorithm designed
must be language-independent, i.e. it must be
just plain instructions that can be implemented
in any language, and yet the output will be same,
as expected.

From: https://www.geeksforgeeks.org/introduction-to-algorithms/

https://en.wikipedia.org/wiki/Algorithm

https://www.geeksforgeeks.org/introduction-to-algorithms/
https://en.wikipedia.org/wiki/Algorithm


Advantanges and Disadvantages
• Advantages of Algorithms:
• It is easy to understand.
• Algorithm is a step-wise representation of a 

solution to a given problem.
• In Algorithm the problem is broken down 

into smaller pieces or steps hence, it is 
easier for the programmer to convert it into 
an actual program.
• Disadvantages of Algorithms:
• Writing an algorithm takes a long time so it 

is time-consuming.
• Branching and Looping statements are 

difficult to show in Algorithms.
• Linear Thinking (However, it is more for the 

way to understand and to create 
algorithms).

• Parallel Thinking (to see later) From: https://www.geeksforgeeks.org/introduction-to-algorithms/

https://www.geeksforgeeks.org/introduction-to-algorithms/


Designing algorithms
In order to write an algorithm, following
things are needed as a pre-requisite:

• The problem that is to be solved by this
algorithm.

• The constraints of the problem that must 
be considered while solving the problem.

• The input to be taken to solve the 
problem.

• The output to be expected when the 
problem the is solved.

• The solution to this problem, in the given
constraints.

Then the algorithm is written with the help 
of above parameters such that it solves the 
problem. From: https://www.geeksforgeeks.org/introduction-to-algorithms/

https://en.wikipedia.org/wiki/Algorithm

However, some authors propose a common and 
formal « algorithm » to define (and write) algorithms: 

1.Problem definition
2.Development of a model
3.Specification of the algorithm
4.Designing an algorithm
5.Checking the correctness of the algorithm
6.Analysis of algorithm
7.Implementation of algorithm
8.Program testing
9.Documentation preparation[cl

https://www.geeksforgeeks.org/introduction-to-algorithms/
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Correctness_(computer_science)
https://en.wikipedia.org/wiki/Wikipedia:Please_clarify


Example: Consider the example to add three
numbers and print the sum. (1/3) (Sum = Num_1+Num2+Num3)

• Step 1: Fulfilling the pre-requisites
As discussed above, in order to write an algorithm, its pre-requisites must be fulfilled.
• The problem that is to be solved by this algorithm: Add 3 numbers and print their sum.
• The constraints of the problem that must be considered while solving the problem: The numbers must contain only digits 

and no other characters.
• The input to be taken to solve the problem: The three numbers to be added.
• The output to be expected when the problem the is solved: The sum of the three numbers taken as the input.
• The solution to this problem, in the given constraints: The solution consists of adding the 3 numbers. It can be done with the 

help of ‘+’ operator, or bit-wise, or any other method.

• Step 2: Designing the algorithm
Now let’s design the algorithm with the help of above pre-requisites:
Algorithm to add 3 numbers and print their sum:
• START
• Declare 3 integer variables Num1, Num2 and Num3.
• Take the three numbers, to be added, as inputs in variables num1, num2, and num3 respectively.
• Declare an integer variable sum to store the resultant sum of the 3 numbers.
• Add the 3 numbers and store the result in the variable sum.
• Print the value of variable sum
• END

This is a Pseudocode! From: https://www.geeksforgeeks.org/introduction-to-algorithms/

https://www.geeksforgeeks.org/introduction-to-algorithms/


• Step 3: Flowchart
Begin

End

Num1, 
Num2, Num3

Sum

Sum = 
Num1+Num2+Num3

Sum

(The graphic representation is very useful!)

Example: Consider the example to add three
numbers and print the sum. (2/3) (Sum = Num_1+Num2+Num3)



• Step 4: Testing the algorithm by implementing it. (In order to test the algorithm, let’s
implement it in C language).

Output

Enter the 1st number: 0
Enter the 2nd number: 0 
Enter the 3rd number: -1577141152 
Sum of the 3 numbers is: -1577141152

From: https://www.geeksforgeeks.org/introduction-to-algorithms/

Example: Consider the example to add three
numbers and print the sum. (3/3) (Sum = Num_1+Num2+Num3)

https://www.geeksforgeeks.org/introduction-to-algorithms/


Possible Analysis of an Algorithm
• Priori Analysis: “Priori” means “before”. Hence Priori analysis means

checking the algorithm before its implementation. In this, the algorithm is
checked when it is written in the form of theoretical steps. This Efficiency
of an algorithm is measured by assuming that all other factors, for 
example, processor speed, are constant and have no effect on the 
implementation. This is done usually by the algorithm designer. It is in this
method, that the Algorithm Complexity is determined.
• Posterior Analysis: “Posterior” means “after”. Hence Posterior analysis

means checking the algorithm after its implementation. In this, the 
algorithm is checked by implementing it in any programming language and 
executing it. This analysis helps to get the actual and real analysis report 
about correctness, space required, time consumed etc.
• Time Factor: Time is measured by counting the number of key operations such as 

comparisons in the sorting algorithm.
• Space Factor: Space is measured by counting the maximum memory space required

by the algorithm.
From: https://www.geeksforgeeks.org/introduction-to-algorithms/

https://www.geeksforgeeks.org/introduction-to-algorithms/


Complexity (1/2)
• Space Complexity: Space complexity of an algorithm refers to the 

amount of memory that this algorithm requires to execute and get
the result. This can be for inputs, temporary operations, or outputs.

How to calculate Space Complexity?
The space complexity of an algorithm is calculated by determining
following 2 components:
• Fixed Part: This refers to the space that is definitely required by the 

algorithm. For example, input variables, output variables, program size, etc.
• Variable Part: This refers to the space that can be different based on the 

implementation of the algorithm. For example, temporary variables, dynamic
memory allocation, recursion stack space, etc.

From: https://www.geeksforgeeks.org/introduction-to-algorithms/

https://www.geeksforgeeks.org/introduction-to-algorithms/


• Time Complexity: Time complexity of an algorithm refers to the amount of 
time that this algorithm requires to execute and get the result. This can be
for normal operations, conditional if-else statements, loop statements, etc.

How to calculate Time Complexity?
The time complexity of an algorithm is also calculated by determining
following 2 components:
• Constant time part: Any instruction that is executed just once comes in this

part. For example, input, output, if-else, switch, etc.
• Variable Time Part: Any instruction that is executed more than once, say n 

times, comes in this part. For example, loops, recursion, etc.

Complexity (2/2)

From: https://www.geeksforgeeks.org/introduction-to-algorithms/

https://www.geeksforgeeks.org/introduction-to-algorithms/


Re-Taking FlowChart (Short Review)
• A flowchart is a diagram that depicts a process, system or computer 

algorithm. Well-known symbols: 



From Space Complexity to Big O Notation
• The space complexity of an algorithm or a computer program is the amount of memory space required

to solve an instance of the computational problem as a function of characteristics of the input. It is the 
memory required by an algorithm until it executes completely.

• Similar to time complexity, space complexity is often expressed asymptotically in big O notation, such
O(n), O(n\log n), O(n⍺), O(2n), etc., where n is a characteristic of the input influencing space complexity.

From: https://en.wikipedia.org/wiki/Space_complexity

• Analogously to time complexity classes DTIME(f(n)) and NTIME(f(n)), the complexity
classes DSPACE(f(n)) and NSPACE(f(n)) are the sets of languages that are decidable by deterministic
(respectively, non-deterministic) Turing machines that use O(f(n)) space. 

• The complexity classes PSPACE and NPSPACE allow f to be any polynomial, analogously
to P and NP. That is,

https://en.wikipedia.org/wiki/Space_complexity
https://en.wikipedia.org/wiki/DTIME
https://en.wikipedia.org/wiki/NTIME
https://en.wikipedia.org/wiki/DSPACE
https://en.wikipedia.org/wiki/NSPACE
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/PSPACE
https://en.wikipedia.org/wiki/NPSPACE
https://en.wikipedia.org/wiki/P_(complexity)
https://en.wikipedia.org/wiki/NP_(complexity)


A little about the Big O Notation
• Big O notation is special notation that tells you how fast an algorithm is.

• Big O doesn’t tell you the speed in seconds. Big O notation lets you compare the number of 
operations. It tells you how fast the algorithm grows.

• This tell you the number of operations an algorithm will make. It’s called Big O notation because
you put a « big O » in front of the number of operations.

• Also, Big O notation is called as Bachmann–Landau notation or asymptotic notation.

From: https://github.com/egonSchiele/grokking_algorithms
https://en.wikipedia.org/wiki/Big_O_notation

https://github.com/egonSchiele/grokking_algorithms
https://en.wikipedia.org/wiki/Big_O_notation


Running Time
• It’s the running phase of an algorithm

Linear Time Logarithmic Time

An algorithm is said to take linear
time, or O(n) time, if its time 
complexity is O(n). Informally, this
means that the running time 
increases at most linearly with the 
size of the input.

An algorithm is said to take logarithmic
time when T(n) = O(log n).
Algorithms taking logarithmic time are 
commonly found in operations on binary 
trees or when using binary search.

From: https://en.wikipedia.org/wiki/Time_complexity

Factorial Time

Recall that a factorial is the product of the 
sequence of n integers. For example, the 
factorial of 5, or 5!, is: 5 * 4 * 3 * 2 * 1 = 120. 
We will find ourselves writing algorithms with
factorial time complexity when calculating
permutations and combinations.

https://en.wikipedia.org/wiki/Binary_tree
https://en.wikipedia.org/wiki/Binary_search
https://en.wikipedia.org/wiki/Time_complexity


From Fast to Slow Algorithms… 

From: https://github.com/egonSchiele/grokking_algorithms

• O(log n) also kwnon as log time . Example: Binary Search
• O(n) also known as linear time. Example: Simple Search
• O(n log n). Example: a fast sorting algorithm like Quicksort
• O(n2). Example: a slow sorting algorithm, like Selection Sort
• O(n!). Example a really slow algorithm , like the traveling salesperson.

https://github.com/egonSchiele/grokking_algorithms


And a Little more of Complexity
• A complexity class is a set of computational problems of related

resource-based complexity. The two most commonly analyzed
resources are time and memory.

• A complexity class is defined in terms of a type of computational problem, a model of 
computation, and a bounded resource like time or memory.

• Complexity classes consist of decision problems that are solvable with a Turing 
machine, and are differentiated by their time or space (memory) requirements. 

• The class P is the set of decision problems solvable by a deterministic Turing 
machine in polynomial time. 

• NP is the class of problems that are solvable by a nondeterministic Turing machine in 
polynomial time.

• Many complexity classes defined in terms of other types of problems (e.g. counting 
problems and function problems) and using other models of computation 
(e.g. probabilistic Turing machines, interactive proof systems, Boolean circuits, 
and quantum computers).

From: https://en.wikipedia.org/wiki/Complexity_class#P_and_NP

The Decision Problem

A representation of the relationships
between several important complexity

classes

https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Computational_complexity
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Space_complexity
https://en.wikipedia.org/wiki/Model_of_computation
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Space_complexity
https://en.wikipedia.org/wiki/Decision_problem
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/P_(complexity)
https://en.wikipedia.org/wiki/Polynomial_time
https://en.wikipedia.org/wiki/Nondeterministic_Turing_machine
https://en.wikipedia.org/wiki/Counting_problem_(complexity)
https://en.wikipedia.org/wiki/Function_problem
https://en.wikipedia.org/wiki/Probabilistic_Turing_machine
https://en.wikipedia.org/wiki/Interactive_proof_system
https://en.wikipedia.org/wiki/Boolean_circuit
https://en.wikipedia.org/wiki/Quantum_computer
https://en.wikipedia.org/wiki/Complexity_class


Deterministic and Non-Deterministic Turing 
Machines



So, why it is important to know all of this?
• Because you can decide how to attack a 

physical problem using computation
• Selecting type of algorithm and possible 

design of the treatment from the 
mathematical representation (Remember
the Big O)
• Selecting the language and optimisation 

possibilities. (Or interepretators as Python)
• Selecting the kind of computer to use 

(computer architecture characteristicis)
• Classical Von-Newman Computer 
• Non Von-Newman Computer (As a Quantum 

Computer)
• Variations and Hybrid Computer (i.e. using

multiple processors : CPUs, GPUs, XPUs, DPUs, 
ASICs, etc.)

• Selectiing Programming Paradigms
(Sequential, Parallel Computing
(Shared Memory, Distributed
Memory, Hybrid Memory))

• Because Big Problems need
Smart Solutions



Now, time to work in Class
(In teams)
1. The Simple Daily Problem
• Propose an algorithm

(flowchart and pseudocode) for 
a simple daily task (i.e. walk to 
the classroom from the door of
the building to your desktop, 
send a message by whatsapp…)

• Try to Analize complexity and 
other characteristics (i.e. Number
of steps, possible Big O, class of 
complexity)



2. Visualizing different Big O run times

Take a Piece of paper and a pencil. Suppose 
you have to draw a grid of 16 boxes.
You have the possibility of two algorithms:
• Algorithm 1: Draw one box at time. How 

many operations will it take, drawing one 
box at time? 
• Algorithm 2: Fold the paper, again and 

again, and again. Unfold it after four folds.
How many operations will it tak?

• Taking the Big O notation, what algorithm
is linear and what is logarithmic?

From: https://github.com/egonSchiele/grokking_algorithms

https://github.com/egonSchiele/grokking_algorithms


Thanks

@carlosjaimebh


