
An Introduction to HPC and Advanced
Computing

In 105 Slides – Part 1
Carlos Jaime Barrios Hernández, PhD

@carlosjaimebh



The (Big) Questions: What and How?



• Large Data Sets
• Complex Mathematics
• Complex Models
• Real Time 
• Interaction and Confrontation 
• Large Scale Visualization
• High Resolution
• High Performance and Capacity

• VR Needs
• Big Data and Deep Learning

Why?

COLLABORATION



Big Problems, Smart Solutions 

High Performance 
(Computing) Knowledge

Infrastructure

Platforms

Applications



Challenges 

Infrastructure

Post Moore Era Architectures
• Parallel Balancing, I/O, Memory Challenges

Dark Sillico

Exascale
• Computer Efficiency (Processing/Energy Consumption)

Hybrid Platforms (CISC+RISC+Others)
• TPUs, ARM…

Data Management

Advanced Networks

Fog/Edge

HPC@Pocket

… Quantum Computing

Platform

Programmability
• New Languages and Compilers

Computing Efficiency

Data Movement and Processing (In Situ, In 
Transit, Workflows)

HPC as a Service
• Science Gateways, Containers

Viz as a Service (In Situ)

Protocols

IA and Deep Learning Frameworks

Quantum Computing

Applications

IA and Deep Learning

Algorithms Implementation

Use of Interpretators (as Python)

Community versions

Open Algorithms, Open Data

Utra Scale Applicatons

…and more!



About Parallelism
Ê Implicit parallelism is a characteristic of a 

programming language that allows a 
compiler or interpreter to automatically 
exploit the parallelism inherent to the 
computations expressed by some of the 
language's constructs.

Ê Explicit parallelism is the representation 
of concurrent computations by means of 
primitives in the form of special-purpose 
directives or function calls. 

Ê We need two (mixed) approach in 
Architecture: Applications and Hardware 
(system).

Ê Concurrency is a property of systems 
in which several computations are 
executing simultaneously, and 
potentially interacting with each 
other.



Elements of Parallelism
1. Computing Problems

• Numerical (Intensive Computing, Large Data Sets)
• Logical (AI Problems)

2. Parallel Algorithms and Data Structures
Ê Special Algorithms (Numerical, Symbolic)
Ê Data Structures (Dependency Analysis)
Ê Interdisciplinary Action (Due to the Computing Problems)

3. System Software Support
Ê High Level Languages (HLL)
Ê Assemblers, Linkers, Loaders
Ê Models Programming
Ê Portable Parallel Programming Directives and Libraries
Ê User Interfaces and Tools

4. Compiler Support
Ê Implicit Parallelism Approach

Ê Parallelizing Compiler
Ê Source Codes

Ê Explicit parallelism Approach
Ê Programmer Explicitly

Ê Sequential Compilers, Low Level Libraries
Ê Concurrent Compilers (HLL)

Ê Concurrency Preserving Compiler
5. Parallel Hardware Architecture

Ê Processors
Ê Memory
Ê Network and I/O
Ê Storage



Pervasive and Thinking Parallelism

Ê It is not a question of « Parallel Universes » (Almost)

Ê Data Sources

Ê Processing and Treatment

Ê Resources (Available and Desire)

Ê Energy Consumption

Ê Natural “thinking” (Natural Compute?)



Thinking in Parallel (computing) – The Typical Visions



Thinking in Parallel (computing) – an OPL hierarchy

Structural 
Patterns

Computation
al Patterns

Applications

Algorithm Strategy
Patterns

Parallel Algorithm 
Structures

Parallel Machine and 
Execution Models

Performance Analysis
and Optimization

Implementation Strategy 
Patterns

Parallel Program 
Structures

Parallel Execution Patterns



From J. Armstrong Notes: http://joearms.github.io/2013/04/05/concurrent-and-parallel-programming.html

Any Parallel System is concurrent: Simulatenous Processing, Parallel but limited ressources.

http://joearms.github.io/2013/04/05/concurrent-and-parallel-programming.html


Serial vs Concurrent/Parallel Approach 

Reduction in Execution Time (However, overhead problem)
Instructions to Multithreading (To exploit Parallelism)
Syncrhonization (with all derivated concerns...)



Concurrency vs Concurreny/Parallelism Behavior 

Shared Processing Ressources
Switching
Non Parallel Threards (Non Multitasking, Yes 
Multithreading)

Non Shared Processing Ressources (However 
the Memory...)
Switching
Parallel Threards (Multitasking, Multithreading)



Concurrency vs Concurreny/Parallelism Example 

Dual System
- Multiple Parallel Threads in Runtime
- Strategies to Paralellism following models 
(PRAM, LogP, etc) addressed to exploit 
memory and overhead reduction

Single System
- Multiple Threads in Runtime
- Almost Synchronization Strategies
- Memory Allocation



l Sequential Processing

l All of the algorithms we’ve seen so far are 
sequential:
l They have one “thread” of execution
l One step follows another in sequence
l One processor is all that is needed to run 

the algorithm



l Concurrent Systems

l A system in which:
l Multiple tasks can be executed at the 

same time
l The tasks may be duplicates of each 

other, or distinct tasks
l The overall time to perform the series 

of tasks is reduced



l Advantages of Concurrency

l Concurrent processes can reduce 
duplication in code.

l The overall runtime of the algorithm can be 
significantly reduced.

l More real-world problems can be solved 
than with sequential algorithms alone.

l Redundancy can make systems more 
reliable.



l Disadvantages of Concurrency

l Runtime is not always reduced, so 
careful planning is required

l Concurrent algorithms can be more 
complex than sequential algorithms

l Shared data can be corrupted
l Communications between tasks is 

needed



Parallel Computing
l Parallel Computing exploit 

Concurrency
l In “system” terms, concurrency exists 

when a problem can be decomposed in 
sub problems that can safely executed 
at same time (in other words, 
concurrently)

https://ignorelist.files.wordpress.com/2012/01/the-art-of-
concurrency.pdf

https://ignorelist.files.wordpress.com/2012/01/the-art-of-concurrency.pdf


How to Exploit (Better) Concurrency

Ê (Remember) Mixed Approach 
(Algorithms/Applications -
Hardware/System.

Ê Good Techniques from Software 
Engineering 

Ê Good Problem knowledge from 
scientific (domain) expertise

Ê Confrontation and Performance 
Evaluation



Questions?

From: www.bsc.es

@carlosjaimebh

http://www.bsc.es/

