Hybrid MPI/OpenMP Programming,
Compiling and Execution — An
Introduction

Carlos J. BARRIOS HERNANDEZ, PhD.
@carlosjaimebh

Big Problems : Smart Solutions

network

Time = 2.8800e+004
Velocity_ Restart (ft/s)

8.00
6.00
4.00
2.00
0.00

Computational Dynamic Fluids Problems

Architectural Considerations

Single and multilevel parallelism.

: Example of MPI-OpenMP buildup.
Overview .

* Performance suggestions.

Compilation and running.

* Code examples.

Architectural Considerations

RAM Arrangement on GUANE-1
(and the must part of the clusters)

Many nodes — distributed memory
— each node has its own local memory
— not directly addressable from other nodes

* Multiple sockets per node
— each node has 4 sockets (chips)

* Multiple cores per socket
— socket (chip) has 4/6 or 8 cores

 Memory spans all 16 cores — shared memory
— node’s full local memory is addressable from any core in any socket

 Memory is attached to sockets -
— 4 cores sharing the socket have fastest access to attached memory

Dealing with NUMA

How do we deal with NUMA (Non-Uniform Memory Access)?
Standard models for parallel programs assume a uniform architecture —
» Threads for shared memory
— parent process uses pthreads or OpenMP to fork multiple threads
— threads share the same virtual address space
— also known as SMP = Symmetric MultiProcessing
« Message passing for distributed memory
— processes use MPI to pass messages (data) between each other
— each process has its own virtual address space
If we attempt to combine both types of models —
 Hybrid programming
— try to exploit the whole shared/distributed memory hierarchy

Why Hybrid? Or Why Not?

Why hybrid?

» Eliminates domain decomposition at node level

« Automatic memory coherency at node level

« Lower (memory) latency and data movement within node
« Can synchronize on memory instead of barrier

« Efficient Energy Consumption

Why not hybrid?

« An SMP algorithm created by aggregating MPI parallel components on
a node (or on a socket) may actually run slower

 Possible waste of effort

Motivation for Hybrid

« Balance the computational load

« Scalability

« Efficiency

« Reduce memory traffic, especially for memory-bound applications

CPU-and Memory-bound Applications

-

° CPU-HouNG 7

-G otoBLAS
~B—-Streams

| N N S -

Speedup

Two Views of a Node

CCCCCCCCCCCC
2 4 3
CCCCCCCCCCCC
CCCCCCCCCCCC
1 F 0
CCCCCCCCCCCC
/' '\
’ N
’ N
, N
’ N
’ N
’ N

NENEERERREREEREY HEREERERRERNEREE

Two Views = Two Ways to Write Parallel

Programs
* OpenMP (or pthreads) only
— launch one process per node
— have each process fork one thread (or maybe more) per core
— share data using shared memory
— can’t share data with a different process (except maybe via file 1/0)

 MPI only
— launch one process per core, on one node or on many
— pass messages among processes without concern for location
— (maybe create different communicators intra-node vs. inter-node)
— ignore the potential for any memory to be shared
« With hybrid OpenMP/MPI programming, we want each MPI

process to launch multiple OpenMP threads that can share
local memory

What is Hybridization?

Node n outside
threaded region

Node n inside
threaded region

ol

- the use of inherently different models of programming in a complimentary
manner, in order to achieve some benefit not possible otherwise;

- a way to use different models of parallelization in a way that takes

advantage of the good points of each;

B. Estrade <estrabd@l|su.edu>, HPC @ LSU - High Performance Computing Workshop

..

Ewhile (there are bytes to read)

MPI File read at(records in FASTQ)
for (0 to number of records read)

E #pragma omp parallel num_ threads(16)
o

/* threads analyze records */

3
I
H
~
H
()
Q
S
T
H
D
0]
9]
D
Q
o
i
NI}
(\f.
O
P
QY
n
@!
*
~N

[] coreidle

o Each MPI process spawns multiple OpenMP threads

rankO
e

master
thread

{ parallel region } { parallel region}

mpirun

1 master

ran k thread

{ parallel region }

{ parallel region}

mailto:estrabd@lsu.edu

Some Possible MPI + Thread
Configurations

MPI everywhere
1 2 3

",-

l l

MPI+threads

Network Interface Card

Network Interface Card

. Software endpoint

Hardware resource

« Treat each node as an SMP
— launch a single MPI process per node
— create parallel threads sharing full-node memory
— typically want 16 threads/node on Ranger, e.g.
« Treat each socket as an SMP
— launch one MPI process on each socket
— create parallel threads sharing same-socket memory
— typically want 4 threads/socket on GUANE-1, e.g.
 No SMP, ignore shared memory (all MPI)
— assign an MPI process to each core

— in a master/worker paradigm, one process per node
may be master

— not really hybrid, may at least make a distinction
between nodes

Creating Hybrid Configurations

Pure SMP Node Pure MPI Node

1 MPI Task 4 MPI Tasks
16 Threads/Task 4 Threads/Task 16 MPI Tasks
-am_=a- Has_am- B
1) 1
22 anm am mm 2= ==
- | = | |- |

[} Master MPI Process + Worker Thread
Bl Worker Thread for Master MPI Process
[Single MPI Process on Core

To achieve configurations like these, we must be able to:
» Assign to each process/thread an affinity for some set of cores

« Make sure the allocation of memory is appropriately matched
12

NUMA Operations

Where do processes, threads, and memory allocations get assigned?

« If memory were completely uniform, there would be no need to worry
about questions like, “where do processes go?”

« Only for NUMA is the placement of processes/threads and allocated
memory (NUMA control) of any importance

The default NUMA control is set through policy

 The policy is applied whenever a process is executed, or a thread is
forked, or memory is allocated

» These are all events that are directed from within the kernel

NUMA control is managed by the kernel.
NUMA control can be changed with nhumactl.

13

NUMA Operations

* Process Affinity and Memory Policy can be controlled at
level with numactl.

numactl < options = ../ ore >

Ja.out

Command:
2 3
EE EE
-i.;_(. s T
HE ER
*—o *—o
HE Ea
1 Q
Process: References

process assignment

-N

Memory:
memory allocation

-l -i --preferred-m
(local, interleaved, pref., mandatory)

References

8,9,10,11 12,13,14,15

-) |
[o) o==0
Bl W~

!
18T Je
HE =N

4,5,6,7 0,1,2,3

Process: Core References
core assignment
-C

and core

Process Affinity and Memory Policy

« One would like to set the affinity of a process for a certain socket or
core, and the allocation of data in memory relative to a socket or core

» Individual users can alter kernel policies
(setting Process Affinity and Memory Policy == PAMPer)
— users can PAMPer their own processes
— root can PAMPer any process
— careful, libraries may PAMPer, too!

* Means by which Process Affinity and Memory Policy can be changed:
1. dynamically on a running process (knowing process id)

2. at start of process execution (with wrapper command)
3. within program through F90/C API

More information: www.intel.com/software/products/compilers/docs/fmac/doc files/source/
extfile/optaps_for/common/optaps_openmp_thread_affinity.htm

http://www.intel.com/software/products/compilers/docs/fmac/doc_files/source/

Single Threading
e

Task 1
Task 2

Task 4

Thread 1
—

4
ExecutionTime = 2 Task,
i=1

ny—2)/3]

o
I

-
|

i

[

ny—1)/3]

I

—0)/3]

[(ny

[(nc—0)/3] [(ne—1)/31 [(nc—2)/3]

Thread-level Parallelism

A A A A
. 4 v g

Task1 = Task2 [OTask: Task 4

Thread Thread Thread Thread

-1 .2 , 3 , 4

ExecutionTime = MAX (Task,.)

Single level parallelism

Shared memory computers
N processors, single system image

thread-based parallelism - OpenMP,
shmem

message-based parallelism - MPI

Distributed memory computers

nodes with local memory,
coupled via network

message-based parallelism — MPI

partitioned global space — UPC,
Coarray Fortran

Remember: Shared-Distributed memory

Memory Memory Memory Memory

CPU| |CPU| |CPU||CPU||CPU||CPU||CPU]||CPU

1
NETWORK

 Each node has N processors that share
memory

* Nodes loosely connected (network)
« CHPC:
= 8,12, 16, 20, 24 core cluster nodes

Multilevel parallelism

Grids

> .

= Multi-computers

L

= Multi-processors

£ .

(O] Multi-core

Dom. Decomp. RS GPUs CPUs

I — il meee
& & & 1 /| ESSSSses| I | A7)
e | B RN || eeew
&&/ N | ' —
@ i [| eae
o ol o | [HH

Example: GROMACS

Coarse and fine grain level

coarse — nodes,

processors, fine — CPU

cores

MPI - nodes, CPU sockets

OpenMP, pthreads, shmem — CPU cores

OpenMP works best with processing intensive loops

Multilevel advantages

memory limitations — extra memory for each copy of
executable on the node

process vs. thread overhead

message overhead

portability, ease to maintain (can disable OpenMP)

Remember MPl and OpenMP

MPI| (Message Passing Interface)
standardized library (not a language)

collection of processes communicating via
messages

available for most architectures
http://www.mpi-forum.org/

OpenMP

API for shared memory programming

available on most architectures as a compiler
extension (C/C++, Fortran)

iIncludes compiler directives, library routines and
environment variables

WWW.0pPenmp.org

http://www.mpi-forum.org/
http://www.openmp.org/

MPI with OpenMP -- Messaging

Single-threaded

messaging EE EE
<>

rank to rank
MPI from serial region or a single thread within parallel region

Multi-threaded
messaging

rank-thread 1D to any rank-thread ID MPI from
multiple threads within parallel region Requires thread-
safe implementation

Processes vs. threads

Process
have own address space

can have multiple threads

MPI

many processes

shared-nothing
architecture

explicit messaging
implicit synchronization
all or nothing
parallelization

Thread

execute within process

" same address space

share process’s stack
thread specific data

OpenMP

1 process, many threads

shared-everything
architecture

Implicit messaging
explicit synchronization
Incremental parallelism

Hybrid — Program Model

Start with MPI initialization

Create OMP parallel regions
within MPI task (process).

« Serial regions are the
master thread or MP| task.

« MPI rank is known to all threads

Call MPI library in serial
and parallel regions.

Finalize MPI

Program

MPI_Init

MPI_call

OMP Parallel

MPI_call

end parallel

MPI _call

IMPI|_Finalize

Hello World Example

#include <stdio.h>
#include <mpi.h>
#include <omp.h>

int main(int argc, char *argv[]) {
int numprocs, rank, namelen;
char processor_name [MPI_MAX_PROCESSOR_NAME] ;
int iam = 0, np = 1;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Get_processor_name(processor_name, &namelen);

//omp_set_num_threads(4);
#pragma omp parallel default(shared) private(iam, np)

np = omp_get_num_threads();

iam = omp_get_thread_num();

printf("Hello from thread %d out of %d from process %d out of %d on %s\n",
iam, np, rank, numprocs, processor_name);

by

MPI_Finalize();
}

Compilation, Execution and output

Compilation

mpicc —-fopenmp hello.c -o hello then ran using
export OMP NUM THREADS=4
Execution

mpirun ./hello -np 2 -x OMP NUM THREADS
e Here is the output | am getting:

Hello
Hello
Hello
Hello

from
from
from

from

thread 0 out
thread 2 out
thread 1 out
thread 3 out

of 4
of 4
of 4
of 4

from process 0
from process 0
from process 0

from process 0

out
out
out

out

of
of
of
of

e

on

on

on

on

GUANE-09
GUANE-09
GUANE-09
GUANE-09

However, the sbatch file...

#!/bin/bash

A job submission script for running a hybrid MPI/OpenMP job on
GUANE-1.

#SBATCH --job-name=hellohybrid
#SBATCH —--output=hellohybrid.out
#SBATCH —--ntasks=4

#SBATCH —-cpus—-per-task=8
#SBATCH —-partition=default
#SBATCH —--constraint=edr

Load the default OpenMPI module.
module load openmpi

Set OMP_NUM_THREADS to the number of CPUs per task we asked for.
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

Run the process with mpirun. Note that the -n option is not required
in this case; mpirun willlJautomatically determine how many processes
to run from the Slurm settings.

mpirun ./hellohybrid

~

Another Example: Pi

 Calculation of value of 1T using integral:

j' dx T
x> +1 4
* trapezoidal rule

* simple loop easy to parallelize both with
MP| and OpenMP

0

Serial code

#include <stdio.h>

#include <math.h>

#include "timer.h"

int main(int argc, char *argv|[]) {
const int N = 10000000000;

const double h = 1.0/N;

const double PI = 3.1415926535897932384620643;

double x,sum,pi,error,time; int i;

time = ctimer () ;

sum = 0.0;

for (1=0;1<=N;i++) {
X = h * (double)i;

sum += 4.0/ (1.0+x*x);}

pi = h*sum;
time += ctimer () ;

error
error

pi - PI;

error<0 ? —-error:error;
printf ("time = %$18.16f sec\n",time);
return 0;}

printf ("pi = %18.16f +/- %18.16f\n",pi,error);
('

e User-defined timer

e Calculation loop

¢ Print out result

OpenMP code

#include <stdio.h>

#include <math.h>

#include "timer.h"

int main(int argc, char *argv|[]) {
const int N = 10000000000;

const double h = 1.0/N;

const double PI = 3.1415926535897932384620643;

double x,sum,pi,error,time; int i;

time = -ctimer () ;
sum = 0.0;

e OpenMP directive

#pragma omp parallel for shared(N,h),private (i, x),reduction (+:sum)

for (1=0;i<=N;i++) {
x = h * (double)i;
sum += 4.0/ (1.0+x*x);}

pi = h*sum;
time += ctimer () ;

return 0;}

MPI code

#include <stdio.h>

#include <math.h>

#include "timer.h"

int main(int argc, char *argv|[]) {
const int N = 10000000000;

const double h = 1.0/N;

const double PI = 3.141592653589793238462643;

double x,sum,pi,error,time,mypi; int 1i;
int myrank,nproc;

MPI Init (&argc, &argv);
MPI Comm rank (MPI COMM WORLD, &myrank) ;
MPI Comm size (MPI COMM WORLD, &nproc) ;

time = -ctimer () ;
sum = 0.0;

for (i=myrank;i<=N;i=i+nproc) {
X = h * (double)i;
sum += 4.0/ (1.0+x*x) ;}

mypl = h*sum;

e MPI initialization

e Distributed loop

e Global reduction

MPI Reduce (&mypi, &pi, 1,MPI DOUBLE,MPI SUM,0,MPI COMM WORLD) ;

time += ctimer () ;

return 0;}

MPI-OpenMP code

#include <stdio.h>

#include <math.h>

#include "timer.h"

int main (int argc, char *argv([]) {

const int N = 10000000000;

const double h = 1.0/N;

const double PI = 3.141592653589793238462643;
double x,sum,pi,error,time,mypi; int 1i;

int myrank,nproc;

MPI Init (&argc, &argv);
MPI Comm rank (MPI COMM WORLD, &myrank) ;
MPI Comm size (MPI COMM WORLD, &nproc) ;

e OpenMP directive
time = -ctimer () ; to parallelize local loop
sum = 0.0; using threads

#fpragma omp parallel for shared(N,h,myrank,nproc),private (i, x),reduction (+:sum
for (i=myrank;i<=N;i=i+nproc) {

x = h * (double)i;

sum += 4.0/ (1.0+x*x) ;}

mypl — IXsSun,
MPI Reduce (&mypi, &pi, 1,MPI_DOUBLE,MPI SUM,0,MPI_COMM WORLD); e Sum local values of n
time += ctimer();

return 0;}

Compilation

= GNU, PGI, Intel compilers, OpenMP with
—fopenmp, -mp, -openmp switch

= MPICHZ2, MVAPICHZ2, OpenMPI or Intel MPI

module

module
module
module

load

load
load
load

mpich2 MPICH2
mvapich2?2 MVAPICH2
openmpi OpenMPI
impi Intel MPI

mplcc —-mp=numa source.c -0 program.exe (PGI)
mp1f90 —-openmp source.f -0 program.exe (Intel)
mp1f90 —-fopenmp source.f —-o program.exe (GNU)

Third party libraries

« BLASes and FFTW are threaded

* Intel compilers:
—-I.../pkg/fftw/std intel/include

-1fftw3 -1fftw3 omp
-L.../sys/pkg/fftw/std intel/1lib

-W1l,-rpath=/../sys/installdir/intel/mkl/1lib/intel64
-L/../sys/installdir/intel/mkl/1ib/intel64
—1lmkl intel 1p64 -1lmkl intel thread -lmkl core -liomp5 -lpthread

« PGI compilers:
-I/../sys/pkg/fftw/std pgi/include

-1fftw3 -1fftw3 omp
-L/../sys/pkg/fftw/std pgi/lib -lacml mp

« MKL ScaLAPACK w/ Intel

-W1l,-rpath=/../sys/installdir/intel/mkl/1lib/intel64
-L/uufs../sys/installdir/intel/mkl/lib/intel64

—1lmkl scalapack i1lp64 -1lmkl intel 1lp64 -1lmkl core

—1lmkl intel thread -lmkl blacs intelmpi ilp64 -liomp5 -lpthread -1m

https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

Running

Ask for #MPI processes

Use SLURM environment variables to get OpenMP thread count
Interactive batch (asking for 2 nodes, 2 tasks/node)

srun —-n 4 -N 2 -t 1:00:00 —-p kingspeak —-A chpc -pty
/bin/tcsh -1

. wait for prompt ..

set TPN='echo $SLURM TASKS PER NODE | cut -f 1 -d \(°
set PPN="echo $SLURM JOB CPUS PER NODE | cut -f 1 -d \(°
@ THREADS = (PPN / STPN)

mpirun —-genv OMP_NUM_THREADS=$THREADS —np $SLURM_NTASKS
./program.exe

Non-interactive batch
same thing, except in a Slurm script

Running — process pinning

* Current NUMA architectures penalize memory access on
neighboring CPU sockets

e Distribute and bind processes to CPU sockets

* Intel compilers can also pin threads to cores
* module load intel mvapich?

* mpirun -genv KMP AFFINITY granularity=fine,compact, 1,0 —genv
MVZ2 BINDING POLICY scatter —genv MVZ BINDING LEVEL socket
* —genv OMP NUM THREADS 8 -np 4

* Intel MPI binds processes to sockets by default

* Module load intel impi

* mpirun -x KMP AFFINITY granularity=fine, compact,1,0
* —genv OMP NUM THREADS 8 -np 4

e oruseI MPI PIN DOMAIN=socket

Performance Comparison

. Total Execution Time for ADI {512x128x5192, Intel compiler)
Pure MPI Hybrid 1 , . , , , ,
Pure MPI (8 nodes) —+——
fine- in hvbrid des, h d h) -—--
4 MPI nodes 2 MPI nodes x 2 OpenMP threads Lo conroe-grain hobrid (4 modes. 3 threads coch) o
¥
9
- 8
9]
U
7]
- 7
U
E
-A
H
6 I
5
a
D D . 3
: MPI process 0 : MPI process 2 : MPI communicaticn 0 50 100 150 200 250 300 350 200

Tile Height

D: MPI process 1 .: MPI process 3 I: OpenMP synchronization

DOI:10.1109/IPDPS.2004.1302919, Corpus ID: 5129233
Performance comparison of pure MPI vs hybrid MPI-OpenMP parallelization models on SMP clusters, Nikolaos Drosinos, Nectarios Koziris

https://doi.org/10.1109/IPDPS.2004.1302919
https://www.semanticscholar.org/author/Nikolaos-Drosinos/1817857
https://www.semanticscholar.org/author/Nectarios-Koziris/1774783

General multilevel approach

Parallelize main problem using MPI
task decomposition

= frequencies in wave solvers
domain decomposition

= distribute atoms in molecular dynamics

= distribute mesh in ODE/PDE solvers

Exploit internal parallelism with OpenMP

use profiler to find most computationally intense areas
= internal frequency loop in wave solvers
= |ocal force loop in MD
= |ocal element update loop in ODE/PDE solvers

measure the efficiency to determine optimal number of
threads to use

Intel AdvisorXE can be helpful (module load advisorxe)

Attention!

MPI + OpenMP

Pure MPI
Performance

MPI vs OpenMP Speed Up

| | I I

15
10 | MPI(Altix)
OpenMP(Altix)

SH / MPI(XDI) — -
) Linear
| |

0O - | |] |
0 20 40 60 s0 100 120 1440

Speed Up

Modeling pulse propagation.andscatterng in a dispersive medium:

Performance of MP1/OpenMP hybrid code
*DOI: 10.1145/1188455.1188555

Not every MPI| program will
benefit from adding threads

Not worth with loosely parallel
codes (too little communication)

Overhead with thread creation about
104 flops

Time with different node/thread count
to get the best performing combination

MP| communication within
OpenMP

Can be tricky if each thread
communicates

Some MPI implementations still have

trouble with
MP|I THREAD MULTIPLE

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1145%2F1188455.1188555?_sg%5B0%5D=fy03Fc6Su1QFeKI-RdIFMDGCm3_zB-S1itEnmvcMcPYRybilfLlObIzV6qOaI462qdhIvlVuH0g1QQk8ijz9pONJIA.p3UhU1z4Hi-Wc5VF81CUmvIdwFrzbOEN4KY5doGj1GZ47Pt-Fr91k5PjGgyV4fj-kAZ2d9WpCPvxTOv7HBnTFA

Four MPI threading models
MP|_THREAD_SINGLE

only non-threaded section communicates

MPI_THREAD_FUNNELLED

process may be multithreaded but only master thread
communicates

MPI_THREAD_SERIALIZED

multiple threads may communicate but only one at
time

MPI_THREAD_ MULTIPLE

all threads communicate

Example of single thread communication.

 Complex norm routine

int main (int argc, char **argv) {

MPI Init (&argc, &argv);

MPI Comm size (MPI COMM WORLD, &numprocs) ;
MPI Comm rank (MPI COMM WORLD, &myid) ;

double Complex stabWmnorm(double *Wm, double Complex *stab, int
size)
{
double Complex norm, vec, norml;
int 1i;
norml = 0 + I*0;
#pragma omp parallel for private (i,vec) reduction (+:norml) Parallel OpenMP for |00p
for (1i=0;i<size;i++)
{
vec = stab[i]*Wm[i];
norml = norml + wvec*conj (vec);
}
MPI_Allreduce(&norml,&norm,1,MPI_DOUBLE_COMPLEX,MPI_SUM,MPI_COMM_WORLD);

_ MPI communication outside OpenMP
return sqgrt(norm);

MPI Finalize();

Multiple threads comm.
- initialization

« Special MPI_Init

= Returns variable thread status which indicates what
level of threading is supported

int thread status;

MPI Init thread(&argc, &argv,MPI THREAD MULTIPLE, &thread status);

if (thread status!=MPI THREAD MULTIPLE)

{
printf ("Failed to initialize MPI THREAD MULTIPLE\n");
exit (-1);

}

MPI Finalize();

Multiple threads point-to- point communication

#pragma omp parallel private(iis,niip,iip,iisf) Start para”el OpenMP section

{

double Complex *ne, *nh; int comlab, mythread, nthreads; .
MPI_Status statx[fwdd->Nz]; Data structures for non-blocking

MPI Request regx[fwdd->Nz]; communication

#ifdef OPENMP

mythread = omp_get thread num(); nthreads = omp_get num threads(); Find thread # and # of threads
#endif

ne = (double Complex *)malloc (sizeof (double Complex)*3*Nxy); Allocate local thread arrays

comlab=mythread*10000; // different tag for each proc/thread

for (iis=mythread; iis < Nep(0]; iist=nthreads) Each thread does different iteration of this loop
if (cpuinfol0] == iip)
{ Each communication pair has unique tag

MPI Isend(&ne[0], Nxy, MPI DOUBLE COMPLEX, Dp[0], comlab, MPI COMM WORLD, regx[Nregi[O0]]);
Nregi [0] ++;

1

else if (cpuinfo[0] == Dp[0])

{

MPI Irecv (&Ebb[ie[0]*Nxy], Nxy, MPI DOUBLE COMPLEX, iip, comlab, MPI COMM WORLD, regx[Nregi[0]]);
Nregi [0] ++;

1

MPI Waitall (Nregi[O], ®x[0], é&statx[0]);

} Finalize non-blocking communication

free (ne) ; Free local thread arrays

) End OpenMP parallel section
-> use message tag to differentiate between threads

Multiple threads collective communication

MPI Comm comm thread[NOMPCPUS];

#fpragma omp parallel private(iis,niip,iip,iisf) Start para”el OpenMP SeCtlon
{ .

double Complex *ne; int mythread, nthreads Local thread variables
#ifdef OPENMP _

mythread = omp get thread num(); nthreads = omp get num threads(); Find thread # and # of threads
fendif

ne = (double Complex *)malloc (sizeof (double Complex)*3*Nxy); Allocate local thread arrays

}

for(ithr=0;ithr<nthreads;ithr++)
{
#pragma omp barrier // synchronize so that each process gets the right thread

if (ithr==mythread) MPI Comm dup (comm domain, &comm thread[mythread]) ; .
\ Per thread communicator

for (1is=mythread; iis < Nep[0]; iist=nthreads) Egch thread does different iteration of this loop

. calculate ne ..

MPI Gatherv(&nelindgbpliic]],Nxy loc,MPI DOUBLE COMPLEX, &Gblie[ic]*Nxy2 + 1iit2], Nxy rec,
Nxy disp, MPI DOUBLE COMPLEX, Dplic],comm thread[mythread]) ;

} Thread communicator

for(ithr=0;ithr<nthreads;ithr++)

{ Free thread communicators
if (ithr==mythread) MPI Comm free (&comm_ thread[mythread]) ;

} Free local thread arrays

free(ne);

End OpenMP parallel section

-> use communicators to differentiate between threads Slide 23

Further Use

Mixed MPI-OpenMP has become commonplace
reduces memory footprint per core
better locality of memory access per core

faster inter-node communication — larger messages, smaller
overhead

More Complex Codes Needs More Hybrid Solutions (Smart
Solutions)

Also we can mix CUDA+OpenMP+MPI
... or use OpenACC, OMPSs...

Another MPI-OpenMP example

Master-worker code

» good for parallelization of problems of varying run time
* master feeds workers with work until all is done

Disadvantage — master does not do any work

Run two OpenMP threads on the master

= distribute work
= do work

Critical section at the work selection
Can run also on single processor nodes

Master-worker MPIl- OpenMP implementation

int main(int argc, char **argv) {

MPI Init (&argc, &argv);

MPI Comm size (MPI COMM WORLD, &numprocs) ;
MPI Comm rank (MPI COMM WORLD, &myid) ;

master = numprocs - 1;

if (myid == master) { Master section
"""" Master thread master

omp set num threads(2);

#pragma omp parallel sections private (request) { processor
#fpragma omp section {

....... Critical section — work

#pragma omp critical (gen work) { .
work = generate work (&work data, num tasks, work array, Jjob flag); genel‘atlon

....... Worker thread of the
master processor

#pragma omp critical (gen work) {

_Critical section — work

work = generate work (&work sl data, num tasks, work array, job flag);

) generation

i -
#pragma omp barrier End OpenMP sections
}

else f Workers - send work

....... requests and receive work

MPI Barrier (world); MPI Finalize();}

Conclusions

* You need to know your platform (architecture
features)

* It Iis possible to achieve single and multilevel
parallelism

« Compilation, running is easy (however it is
possible to be differences between platforms)

» Scalablility Guaranteed
« However, be careful

References

Yun (Helen) He and Chris Ding, Lawrence Berkeley National
Laboratory, June 24, 2004: Hybrid OpenMP and MPI Programming
and Tuning (NUG2004).

www.nhersc.gov/nusers/services/training/classes/NUG/Jun04/NUG2004 yvhe hybrid.ppt

Texas Advanced Computing Center: Ranger User Guide, see numa

section. www.tacc.utexas.edu/services/userguides/ranger

Message Passing Interface Forum: MPI-2: MPI and Threads (specific
section of the MPI-2 report).

http://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-2.0/node162.htm

http://www.chpc.utah.edu/short courses/mpi omp

http://www.nersc.gov/nusers/services/training/classes/NUG/Jun04/NUG2004_yhe_hybrid.ppt
http://www.nersc.gov/nusers/services/training/classes/NUG/Jun04/NUG2004_yhe_hybrid.ppt
http://www.tacc.utexas.edu/services/userguides/ranger
http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/node162.htm
http://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-2.0/node162.htm
http://www.chpc.utah.edu/short_courses/mpi_omp

