
Hybrid MPI/OpenMP Programming,
Compiling and Execution – An
Introduction

Carlos J. BARRIOS HERNANDEZ, PhD.
@carlosjaimebh

Big Problems : Smart Solutions

Computational Dynamic Fluids Problems

Overview

• Architectural Considerations
• Single and multilevel parallelism.
• Example of MPI-OpenMP buildup.
• Compilation and running.
• Performance suggestions.
• Code examples.

Architectural Considerations
RAM Arrangement on GUANE-1
(and the must part of the clusters)

• Many nodes ® distributed memory
– each node has its own local memory
– not directly addressable from other nodes

• Multiple sockets per node
– each node has 4 sockets (chips)

• Multiple cores per socket
– socket (chip) has 4/6 or 8 cores

• Memory spans all 16 cores ® shared memory
– node’s full local memory is addressable from any core in any socket

• Memory is attached to sockets
– 4 cores sharing the socket have fastest access to attached memory

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU
RAM

RAM

RAM

RAM

How do we deal with NUMA (Non-Uniform Memory Access)?
Standard models for parallel programs assume a uniform architecture –
• Threads for shared memory

– parent process uses pthreads or OpenMP to fork multiple threads
– threads share the same virtual address space
– also known as SMP = Symmetric MultiProcessing

• Message passing for distributed memory
– processes use MPI to pass messages (data) between each other
– each process has its own virtual address space

If we attempt to combine both types of models –
• Hybrid programming

– try to exploit the whole shared/distributed memory hierarchy

Dealing with NUMA

Why hybrid?
• Eliminates domain decomposition at node level
• Automatic memory coherency at node level
• Lower (memory) latency and data movement within node
• Can synchronize on memory instead of barrier
• Efficient Energy Consumption

Why not hybrid?
• An SMP algorithm created by aggregating MPI parallel components on

a node (or on a socket) may actually run slower
• Possible waste of effort

Why Hybrid? Or Why Not?

Motivation for Hybrid
• Balance the computational load
• Scalability
• Efficiency
• Reduce memory traffic, especially for memory-bound applications

Two Views of a Node

OpenMP MPI

1

2 3
CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU 0

Two Views = Two Ways to Write Parallel
Programs

9

• OpenMP (or pthreads) only
– launch one process per node
– have each process fork one thread (or maybe more) per core
– share data using shared memory
– can’t share data with a different process (except maybe via file I/O)

• MPI only
– launch one process per core, on one node or on many
– pass messages among processes without concern for location
– (maybe create different communicators intra-node vs. inter-node)
– ignore the potential for any memory to be shared

• With hybrid OpenMP/MPI programming, we want each MPI
process to launch multiple OpenMP threads that can share
local memory

What is Hybridization?

B. Estrade <estrabd@lsu.edu>, HPC @ LSU – High Performance Computing Workshop

● the use of inherently different models of programming in a complimentary
manner, in order to achieve some benefit not possible otherwise;

● a way to use different models of parallelization in a way that takes
advantage of the good points of each;

mailto:estrabd@lsu.edu

Some Possible MPI + Thread
Configurations

• Treat each node as an SMP
– launch a single MPI process per node
– create parallel threads sharing full-node memory
– typically want 16 threads/node on Ranger, e.g.

• Treat each socket as an SMP
– launch one MPI process on each socket
– create parallel threads sharing same-socket memory
– typically want 4 threads/socket on GUANE-1, e.g.

• No SMP, ignore shared memory (all MPI)
– assign an MPI process to each core
– in a master/worker paradigm, one process per node

may be master
– not really hybrid, may at least make a distinction

between nodes

Creating Hybrid Configurations

12

16 MPI Tasks
1 MPI Task
16 Threads/Task

4 MPI Tasks
4 Threads/Task

Master MPI Process + Worker Thread
Worker Thread for Master MPI Process
Single MPI Process on Core

To achieve configurations like these, we must be able to:
• Assign to each process/thread an affinity for some set of cores
• Make sure the allocation of memory is appropriately matched

Pure SMP Node Pure MPI Node

NUMA Operations

13

Where do processes, threads, and memory allocations get assigned?
• If memory were completely uniform, there would be no need to worry

about questions like, “where do processes go?”
• Only for NUMA is the placement of processes/threads and allocated

memory (NUMA control) of any importance
The default NUMA control is set through policy
• The policy is applied whenever a process is executed, or a thread is

forked, or memory is allocated
• These are all events that are directed from within the kernel

NUMA control is managed by the kernel.
NUMA control can be changed with numactl.

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPUCPU

CPU CPU

CPU CPU

CPU CPU

CPUCPU

CPU CPU

NUMA Operations
• Process Affinity and Memory Policy can be controlled at socket and core

level with numactl.

Command: numactl < options socket/ ore > ./a.out

CPU CPU CPU CPU

CPU CPU

2 3 8,9,10,11 12,13,14,15
CPU CPU CPU CPU

CPU CPU CPU CPU

0

2 3
CPU CPU CPU CPU

CPU CPU CPU CPU

11 0

Process: SocketReferences
process assignment
-N

Memory: SocketReferences
memory allocation
–l –i --preferred–m

(local, interleaved, pref.,mandatory)

4,5,6,7 0,1,2,3

Process: Core References
core assignment

–C

Process Affinity and Memory Policy
• One would like to set the affinity of a process for a certain socket or

core, and the allocation of data in memory relative to a socket or core
• Individual users can alter kernel policies

(setting Process Affinity and Memory Policy == PAMPer)
– users can PAMPer their own processes
– root can PAMPer any process
– careful, libraries may PAMPer, too!

• Means by which Process Affinity and Memory Policy can be changed:
1. dynamically on a running process (knowing process id)
2. at start of process execution (with wrapper command)
3. within program through F90/C API

More information: www.intel.com/software/products/compilers/docs/fmac/doc_files/source/
extfile/optaps_for/common/optaps_openmp_thread_affinity.htm

http://www.intel.com/software/products/compilers/docs/fmac/doc_files/source/

Single level parallelism

• Shared memory computers
§ N processors, single system image
§ thread-based parallelism - OpenMP,

shmem
§ message-based parallelism - MPI
• Distributed memory computers
§ nodes with local memory,

coupled via network
§ message-based parallelism – MPI
§ partitioned global space – UPC,

Coarray Fortran

Remember: Shared-Distributed memory

• Each node has N processors that share
memory

• Nodes loosely connected (network)
• CHPC:
§ 8, 12, 16, 20, 24 core cluster nodes

Multilevel parallelism
• Coarse and fine grain level
§ coarse – nodes,

processors, fine – CPU
cores

§ MPI - nodes, CPU sockets
OpenMP, pthreads, shmem – CPU cores

§ OpenMP works best with processing intensive loops

• Multilevel advantages
§ memory limitations – extra memory for each copy of

executable on the node
§ process vs. thread overhead
§ message overhead
§ portability, ease to maintain (can disable OpenMP)

Example: GROMACS

Remember MPI and OpenMP
• MPI (Message Passing Interface)
§ standardized library (not a language)
§ collection of processes communicating via

messages
§ available for most architectures
§ http://www.mpi-forum.org/

• OpenMP
§ API for shared memory programming
§ available on most architectures as a compiler

extension (C/C++, Fortran)
§ includes compiler directives, library routines and

environment variables
§ www.openmp.org

http://www.mpi-forum.org/
http://www.openmp.org/

MPI with OpenMP -- Messaging

Single-threaded
messaging

Node

Multi-threaded
messaging

Node

Node Node

rank to rank
MPI from serial region or a single thread within parallel region

rank-thread ID to any rank-thread ID MPI from
multiple threads within parallel region Requires thread-
safe implementation

Processes vs. threads

• Process
§ have own address space
§ can have multiple threads

• MPI
§ many processes
§ shared-nothing

architecture
§ explicit messaging
§ implicit synchronization
§ all or nothing

parallelization
Slide

• Thread
§ execute within process
§ same address space
§ share process’s stack
§ thread specific data

• OpenMP
§ 1 process, many threads
§ shared-everything

architecture
§ implicit messaging
§ explicit synchronization
§ incremental parallelism

Hybrid – Program Model

• Start with MPI initialization
• Create OMP parallel regions

within MPI task (process).
• Serial regions are the

master thread or MPI task.
• MPI rank is known to all threads

• Call MPI library in serial
and parallel regions.

• Finalize MPI

Program
MPI_Init

MPI_call

OMP Parallel

MPI_call

end parallel

MPI_call

MPI_Finalize

Hello World Example

Compilation, Execution and output

Compilation
mpicc -fopenmp hello.c -o hello then ran using
export OMP_NUM_THREADS=4
Execution
mpirun ./hello -np 2 -x OMP_NUM_THREADS
• Here is the output I am getting:
Hello from thread 0 out of 4 from process 0 out of 1 on GUANE-09

Hello from thread 2 out of 4 from process 0 out of 1 on GUANE-09

Hello from thread 1 out of 4 from process 0 out of 1 on GUANE-09

Hello from thread 3 out of 4 from process 0 out of 1 on GUANE-09

However, the sbatch file…

Another Example: Pi

• Calculation of value of π using integral:

• trapezoidal rule
• simple loop easy to parallelize both with

MPI and OpenMP

1

0 +1
=
4òx 2

dx p

Serial code
#include <stdio.h>
#include <math.h>
#include "timer.h"
int main(int argc, char *argv[]){
const int N = 10000000000;
const double h = 1.0/N;
const double PI = 3.141592653589793238462643;
double x,sum,pi,error,time; int i;

time = ctimer();
sum = 0.0;
for (i=0;i<=N;i++){

x = h * (double)i;
sum += 4.0/(1.0+x*x);}

pi = h*sum;
time += ctimer();

error = pi - PI;
error = error<0 ? -error:error;
printf("pi = %18.16f +/- %18.16f\n",pi,error);
printf("time = %18.16f sec\n",time);
return 0;}

• Print out result

• Calculation loop

• User-defined timer

OpenMP code

#include <stdio.h>
#include <math.h>
#include "timer.h"
int main(int argc, char *argv[]){
const int N = 10000000000;
const double h = 1.0/N;
const double PI = 3.141592653589793238462643;
double x,sum,pi,error,time; int i;

time = -ctimer();
sum = 0.0;
#pragma omp parallel for shared(N,h),private(i,x),reduction(+:sum)
for (i=0;i<=N;i++){

x = h * (double)i;
sum += 4.0/(1.0+x*x);}

pi = h*sum;
time += ctimer();

.......

return 0;}

• OpenMP directive

MPI code
#include <stdio.h>
#include <math.h>
#include "timer.h"
int main(int argc, char *argv[]){
const int N = 10000000000;
const double h = 1.0/N;
const double PI = 3.141592653589793238462643;
double x,sum,pi,error,time,mypi; int i;
int myrank,nproc;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
MPI_Comm_size(MPI_COMM_WORLD,&nproc);

time = -ctimer();
sum = 0.0;
for (i=myrank;i<=N;i=i+nproc){
x = h * (double)i;
sum += 4.0/(1.0+x*x);}

mypi = h*sum;
MPI_Reduce(&mypi,&pi,1,MPI_DOUBLE,MPI_SUM,0,MPI_COMM_WORLD);
time += ctimer();
......
return 0;}

• Distributed loop

• MPI initialization

• Global reduction

MPI-OpenMP code
#include <stdio.h>
#include <math.h>
#include "timer.h"
int main(int argc, char *argv[]){
const int N = 10000000000;
const double h = 1.0/N;
const double PI = 3.141592653589793238462643;
double x,sum,pi,error,time,mypi; int i;
int myrank,nproc;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
MPI_Comm_size(MPI_COMM_WORLD,&nproc);

time = -ctimer();
sum = 0.0;

#pragma omp parallel for shared(N,h,myrank,nproc),private(i,x),reduction(+:sum)
for (i=myrank;i<=N;i=i+nproc){
x = h * (double)i;
sum += 4.0/(1.0+x*x);}

mypi = h*sum;
MPI_Reduce(&mypi,&pi,1,MPI_DOUBLE,MPI_SUM,0,MPI_COMM_WORLD);
time += ctimer();
......
return 0;}

• Sum local values of π

• OpenMP directive
to parallelize local loop
using threads

Compilation

§ GNU, PGI, Intel compilers, OpenMP with
–fopenmp, -mp, -openmp switch

§ MPICH2, MVAPICH2, OpenMPI or Intel MPI
module load mpich2 MPICH2
module load mvapich2 MVAPICH2
module load openmpi OpenMPI
module load impi Intel MPI

mpicc –mp=numa source.c –o program.exe (PGI)
mpif90 –openmp source.f –o program.exe (Intel)
mpif90 –fopenmp source.f –o program.exe (GNU)

Third party libraries

• BLASes and FFTW are threaded
• Intel compilers:
-I…./pkg/fftw/std_intel/include

-lfftw3 -lfftw3_omp
-L.../sys/pkg/fftw/std_intel/lib

-Wl,-rpath=/…/sys/installdir/intel/mkl/lib/intel64
-L/…/sys/installdir/intel/mkl/lib/intel64
-lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core -liomp5 -lpthread

• PGI compilers:
-I/…/sys/pkg/fftw/std_pgi/include

-lfftw3 -lfftw3_omp
-L/…/sys/pkg/fftw/std_pgi/lib -lacml_mp

• MKL ScaLAPACK w/ Intel
-Wl,-rpath=/…/sys/installdir/intel/mkl/lib/intel64
-L/uufs…/sys/installdir/intel/mkl/lib/intel64
-lmkl_scalapack_ilp64 -lmkl_intel_ilp64 -lmkl_core
-lmkl_intel_thread -lmkl_blacs_intelmpi_ilp64 -liomp5 -lpthread -lm

https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

Running
• Ask for #MPI processes
• Use SLURM environment variables to get OpenMP thread count
• Interactive batch (asking for 2 nodes, 2 tasks/node)

srun –n 4 –N 2 –t 1:00:00 –p kingspeak –A chpc –pty
/bin/tcsh -l
… wait for prompt …

set TPN=`echo $SLURM_TASKS_PER_NODE | cut -f 1 -d \(`
set PPN=`echo $SLURM_JOB_CPUS_PER_NODE | cut -f 1 -d \(`
@ THREADS = ($PPN / $TPN)
mpirun –genv OMP_NUM_THREADS=$THREADS –np $SLURM_NTASKS
./program.exe

• Non-interactive batch
§ same thing, except in a Slurm script

Running – process pinning
• Current NUMA architectures penalize memory access on

neighboring CPU sockets
• Distribute and bind processes to CPU sockets

• Intel compilers can also pin threads to cores
• module load intel mvapich2

• mpirun -genv KMP_AFFINITY granularity=fine,compact,1,0 –genv
MV2_BINDING_POLICY scatter –genv MV2_BINDING_LEVEL socket

• -genv OMP_NUM_THREADS 8 -np 4

• Intel MPI binds processes to sockets by default
• Module load intel impi

• mpirun -x KMP_AFFINITY granularity=fine,compact,1,0

• -genv OMP_NUM_THREADS 8 -np 4

• or use I_MPI_PIN_DOMAIN=socket

Performance Comparison

DOI:10.1109/IPDPS.2004.1302919, Corpus ID: 5129233
Performance comparison of pure MPI vs hybrid MPI-OpenMP parallelization models on SMP clusters, Nikolaos Drosinos, Nectarios Koziris

https://doi.org/10.1109/IPDPS.2004.1302919
https://www.semanticscholar.org/author/Nikolaos-Drosinos/1817857
https://www.semanticscholar.org/author/Nectarios-Koziris/1774783

General multilevel approach
• Parallelize main problem using MPI
§ task decomposition

§ frequencies in wave solvers
§ domain decomposition

§ distribute atoms in molecular dynamics
§ distribute mesh in ODE/PDE solvers

• Exploit internal parallelism with OpenMP
§ use profiler to find most computationally intense areas

§ internal frequency loop in wave solvers
§ local force loop in MD
§ local element update loop in ODE/PDE solvers

§ measure the efficiency to determine optimal number of
threads to use

§ Intel AdvisorXE can be helpful (module load advisorxe)

Attention!
• Not every MPI program will

benefit from adding threads
§ Not worth with loosely parallel

codes (too little communication)
§ Overhead with thread creation about

104 flops
§ Time with different node/thread count

to get the best performing combination
• MPI communication within

OpenMP
§ Can be tricky if each thread

communicates
§ Some MPI implementations still have

trouble with
MPI_THREAD_MULTIPLE

Modeling pulse propagation and scattering in a dispersive medium:
Performance of MPI/OpenMP hybrid code
•DOI: 10.1145/1188455.1188555

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1145%2F1188455.1188555?_sg%5B0%5D=fy03Fc6Su1QFeKI-RdIFMDGCm3_zB-S1itEnmvcMcPYRybilfLlObIzV6qOaI462qdhIvlVuH0g1QQk8ijz9pONJIA.p3UhU1z4Hi-Wc5VF81CUmvIdwFrzbOEN4KY5doGj1GZ47Pt-Fr91k5PjGgyV4fj-kAZ2d9WpCPvxTOv7HBnTFA

Four MPI threading models
• MPI_THREAD_SINGLE
§ only non-threaded section communicates
• MPI_THREAD_FUNNELLED
§ process may be multithreaded but only master thread

communicates
• MPI_THREAD_SERIALIZED
§ multiple threads may communicate but only one at

time
• MPI_THREAD_MULTIPLE
§ all threads communicate

Example of single thread communication.

norml = 0 + I*0;
#pragma omp parallel for private(i,vec) reduction(+:norml)
for (i=0;i<size;i++)
{

vec = stab[i]*Wm[i];
norml = norml + vec*conj(vec);

}
MPI_Allreduce(&norml,&norm,1,MPI_DOUBLE_COMPLEX,MPI_SUM,MPI_COMM_WORLD);

return sqrt(norm);
}

MPI_Finalize();

Parallel OpenMP for loop

MPI communication outside OpenMP

• Complex norm routine
int main(int argc, char **argv){
.......
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
.......

double _Complex stabWmnorm(double *Wm, double _Complex *stab, int
size)
{
double _Complex norm, vec, norml;
int i;

Multiple threads comm.
- initialization

int thread_status;

MPI_Init_thread(&argc, &argv,MPI_THREAD_MULTIPLE,&thread_status);
if (thread_status!=MPI_THREAD_MULTIPLE)
{
printf("Failed to initialize MPI_THREAD_MULTIPLE\n");
exit(-1);
}

...

MPI_Finalize();

• Special MPI_Init
§ Returns variable thread_status which indicates what

level of threading is supported

Multiple threads point-to- point communication
#pragma omp parallel private(iis,niip,iip,iisf)
{
double _Complex *ne, *nh; int comlab, mythread, nthreads;
MPI_Status statx[fwdd->Nz];
MPI_Request reqx[fwdd->Nz];

#ifdef _OPENMP
mythread = omp_get_thread_num(); nthreads = omp_get_num_threads();
#endif

ne = (double _Complex *)malloc(sizeof(double _Complex)*3*Nxy);

comlab=mythread*10000; // different tag for each proc/thread

for (iis=mythread; iis < Ncp[0]; iis+=nthreads)
{
if (cpuinfo[0] == iip)
{
MPI_Isend(&ne[0], Nxy, MPI_DOUBLE_COMPLEX, Dp[0], comlab, MPI_COMM_WORLD, reqx[Nreqi[0]]);
Nreqi[0]++;

}
else if (cpuinfo[0] == Dp[0])
{
MPI_Irecv(&Ebb[ie[0]*Nxy], Nxy, MPI_DOUBLE_COMPLEX, iip, comlab, MPI_COMM_WORLD, reqx[Nreqi[0]]);
Nreqi[0]++;

}
MPI_Waitall(Nreqi[0], &reqx[0], &statx[0]);

}

free(ne);

}

Allocate local thread arrays

Data structures for non-blocking
communication

Find thread # and # of threads

Each communication pair has unique tag

Finalize non-blocking communication

Free local thread arrays

Start parallel OpenMP section

End OpenMP parallel section

Each thread does different iteration of this loop

-> use message tag to differentiate between threads

Multiple threads collective communication

Slide 23

MPI_Comm comm_thread[NOMPCPUS];

#pragma omp parallel private(iis,niip,iip,iisf)
{
double _Complex *ne; int mythread, nthreads

#ifdef _OPENMP
mythread = omp_get_thread_num(); nthreads = omp_get_num_threads();
#endif

ne = (double _Complex *)malloc(sizeof(double _Complex)*3*Nxy);

for(ithr=0;ithr<nthreads;ithr++)
{

#pragma omp barrier // synchronize so that each process gets the right thread
if (ithr==mythread) MPI_Comm_dup(comm_domain,&comm_thread[mythread]);

}
for (iis=mythread; iis < Ncp[0]; iis+=nthreads)
{

… calculate ne …
MPI_Gatherv(&ne[indgbp[iic]],Nxy_loc,MPI_DOUBLE_COMPLEX, &Gb[ie[ic]*Nxy2 + iit2], Nxy_rec,
Nxy_disp, MPI_DOUBLE_COMPLEX, Dp[ic],comm_thread[mythread]);

}

for(ithr=0;ithr<nthreads;ithr++)
{
if (ithr==mythread) MPI_Comm_free(&comm_thread[mythread]);

}

Find thread # and # of threads

Per thread communicator

Thread communicator

Allocate local thread arrays

Start parallel OpenMP section

Local thread variables

Free thread communicators

Free local thread arrays

End OpenMP parallel section

Each thread does different iteration of this loop

free(ne);
}

-> use communicators to differentiate between threads

Further Use
• Mixed MPI-OpenMP has become commonplace
§ reduces memory footprint per core
§ better locality of memory access per core
§ faster inter-node communication – larger messages, smaller

overhead
§ More Complex Codes Needs More Hybrid Solutions (Smart

Solutions)
§ Also we can mix CUDA+OpenMP+MPI
§ … or use OpenACC, OMPSs…

Another MPI-OpenMP example

• Master-worker code
§ good for parallelization of problems of varying run time
§ master feeds workers with work until all is done

• Disadvantage – master does not do any work
• Run two OpenMP threads on the master

§ distribute work
§ do work

• Critical section at the work selection
• Can run also on single processor nodes

Master-worker MPI- OpenMP implementation
int main(int argc, char **argv){
.......
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
.......
master = numprocs - 1;
.......
if (myid == master) {
.......
omp_set_num_threads(2);
#pragma omp parallel sections private(request) {
#pragma omp section {
.......
#pragma omp critical (gen_work) {

work = generate_work(&work_data, num_tasks, work_array, job_flag);
}
.......
}
#pragma omp section{
.......
#pragma omp critical (gen_work){

work = generate_work(&work_sl_data, num_tasks, work_array, job_flag);
}
.......
}
#pragma omp barrier
.......
}
else {
.......
}
.......
MPI_Barrier(world); MPI_Finalize();}

Worker thread of the
master processor

Workers - send work
requests and receive work

End OpenMP sections

generation

Critical section – work
generation

Master section
Master thread master
processor

Critical section – work

Conclusions

• You need to know your platform (architecture
features)

• It is possible to achieve single and multilevel
parallelism

• Compilation, running is easy (however it is
possible to be differences between platforms)

• Scalability Guaranteed
• However, be careful

References

• Yun (Helen) He and Chris Ding, Lawrence Berkeley National
Laboratory, June 24, 2004: Hybrid OpenMP and MPI Programming
and Tuning (NUG2004).

www.nersc.gov/nusers/services/training/classes/NUG/Jun04/NUG2004_yhe_hybrid.ppt

• Texas Advanced Computing Center: Ranger User Guide, see numa
section. www.tacc.utexas.edu/services/userguides/ranger

• Message Passing Interface Forum: MPI-2: MPI and Threads (specific
section of the MPI-2 report).

http://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-2.0/node162.htm

• http://www.chpc.utah.edu/short_courses/mpi_omp

http://www.nersc.gov/nusers/services/training/classes/NUG/Jun04/NUG2004_yhe_hybrid.ppt
http://www.nersc.gov/nusers/services/training/classes/NUG/Jun04/NUG2004_yhe_hybrid.ppt
http://www.tacc.utexas.edu/services/userguides/ranger
http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/node162.htm
http://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-2.0/node162.htm
http://www.chpc.utah.edu/short_courses/mpi_omp

