
Introduction to 
Accelerated/Hybrid Computing 

with GPGPU Architectures
Carlos J. Barrios H., PhD

@carlosjaimebh
@SuperCCamp



Fastest Performance on Scientific Applications
Comparing Tesla K20X Speed-Up over Sandy Bridge CPUs

CPU results: Dual socket E5-2687w, 3.10 GHz, GPU results: Dual socket E5-2687w + 2 Tesla K20X GPUs
*MATLAB results comparing one i7-2600K CPU vs with Tesla K20 GPU
Disclaimer: Non-NVIDIA implementations may not have been fully optimized 

0,0x 5,0x 10,0x 15,0x 20,0x

AMBER

SPECFEM3D

Chroma

MATLAB (FFT)*Engineering

Earth 
Science

Physics

Molecular
Dynamics

© NVIDIA 2013



Interesting @SC3UIS Experiences

Processing and  Visualization for Oil Reservoirs (3D seismic modelling in isotropic and heterogeneous media )

Processing Genomic Data for Mexican Flu AHN1 Discovering

For 10 Millons of bases 
0. Original App  3 Months
1. App (3 Weeks)
2. App (2- Days)
3. App (4 Minutes)



About Top500 List -2021

• 9/10 Powerful Machines are MPP 
Clusters
• 7/10 are Hybrid Machines with 

Accelerators
• 5 NVIDIA GPU Technology

• 3 Different Generations (Keppler, 
Pascal and Volta)

• 2 Chinesse PU’s Technology
• 1 Combines GPUs + MICs 



Why Computing Perf/Watt Matters?

Traditional CPUs are
not economically feasible

2.3 PFlops 7000 homes

7.0 Megawatts 7.0 Megawatts

CPU
Optimized for 
Serial Tasks

GPU Accelerator
Optimized for Many 

Parallel Tasks

10x performance/socket

> 5x energy  efficiency

Era of GPU-accelerated  computing is 
here



10 Years NVIDIA GPUs Development



Remember Architectural Systems Facts (From 
Flynn’s Taxonomy)

SIMD: All processors units are 
executing the same instructions 
in any instant.

SPMD: Parallel Processing Units execute 
the same program on multiple parts of 
data

CU

P P P P

Input Data Input DataInput DataInput Data

Output 
Data

Output 
Data

Output 
Data

Output 
Data

SIMD

Instructions

Data

Program Program

Program

Program

Processor



Massive Parallel Processing (MPP)

• Computer system with many 
independent arithmetic units or 
entire microprocessors, that run 
in parallel
• MPPA is a MIMD (Multiple 

Instruction streams, Multiple 
Data) architecture, with 
distributed memory accessed 
locally, not shared globally



CPUs and GPUs Architecture



Small Changes, Big Speed-up

Application Code

+

GPU CPU

Use GPU to Parallelize

Compute-Intensive Functions

Rest of Sequential
CPU Code

© NVIDIA 2013



NVIDIA TESLA® Architecture



NVIDIA TESLA™ Graphics and Computing 
Architecture Features 

• TESLA™ shader processors are fully programmable
• Large instructions memory 
• Cache Instructions
• Logic Sequence Instructions

• TESLA™ to non-graphics programs:
• Hierarchical Parallel Threads
• Barrier Synchronization
• Atomic Operators (Manage Highly Parallel Computing Work)



Heterogeneous Computing
§ Terminology:

§ Host The CPU and its memory (host memory)
§ Device The GPU and its memory (device memory)

Host Device



GPUCPU

GPGPU Accelerate Computing
Latency Processor + Throughput processor



Low Latency or High Throughput?

CPU
Optimized for low-latency 
access to cached data 
sets
Control logic for out-of-
order and speculative 
execution

GPU
Optimized for data-parallel, throughput 
computation
Architecture tolerant of memory 
latency
More transistors dedicated to 
computation



Processing Flow

1. Copy input data from CPU memory to GPU memory

PCIe Bus



Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute,

caching data on chip for performance

PCIe Bus



Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute,

caching data on chip for performance
3. Copy results from GPU memory to CPU memory

PCIe Bus



CUDA Parallel Computing Platform

Hardware 
Capabilities

GPUDirectSMX Dynamic Parallelism HyperQ

Programming 
Approaches

Libraries

“Drop-in” Acceleration

Programming 
LanguagesOpenACC Directives

Maximum FlexibilityEasily Accelerate Apps

Development
Environment

Nsight IDE
Linux, Mac and Windows

GPU Debugging and Profiling

CUDA-GDB debugger
Nsight Visual Profiler

Open Compiler
Tool Chain

Enables compiling new languages to CUDA platform, and CUDA 
languages to other architectures

www.nvidia.com/getcuda

© NVIDIA 2013



Applications

Libraries

“Drop-in” 
Acceleration

Programming 
Languages

OpenACC 
Directives

Easily Accelerate Applications

3 Ways to Accelerate Applications

Maximum
Flexibility

© NVIDIA 2013



3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in” 
Acceleration

Programming 
Languages

OpenACC
Directives

Maximum
Flexibility

Easily Accelerate
Applications

© NVIDIA 2013



Libraries: Easy, High-Quality Acceleration

• Ease of use: Using libraries enables GPU acceleration without in-depth knowledge of 
GPU programming

• “Drop-in”: Many GPU-accelerated libraries follow standard APIs, thus enabling 
acceleration with minimal code changes

• Quality: Libraries offer high-quality implementations of functions encountered in 
a broad range of applications 

• Performance: NVIDIA libraries are tuned by experts 

© NVIDIA 2013



Some GPU-accelerated Libraries

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU Accelerated
Linear Algebra

Matrix Algebra on GPU 
and Multicore NVIDIA cuFFT

C++ STL Features 
for CUDAIMSL Library

Building-block 
Algorithms for CUDA

ArrayFire Matrix 
Computations

Sparse Linear 
Algebra

© NVIDIA 2013



3 Steps to CUDA-accelerated application

• Step 1: Substitute library calls with equivalent CUDA library calls
saxpy ( … )            cublasSaxpy ( … )

• Step 2: Manage data locality
- with CUDA: cudaMalloc(), cudaMemcpy(), etc.
- with CUBLAS: cublasAlloc(), cublasSetVector(), etc.

• Step 3: Rebuild and link the CUDA-accelerated library
nvcc myobj.o –l cublas

© NVIDIA 2013



Explore the CUDA (Libraries) Ecosystem

• CUDA Tools and Ecosystem described in detail on NVIDIA Developer Zone: developer.nvidia.com/cuda-tools-ecosystem

http://developer.nvidia.com/cuda-tools-ecosystem


3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in” 
Acceleration

Programming 
Languages

OpenACC
Directives

Maximum
Flexibility

Easily Accelerate
Applications

© NVIDIA 2013



OpenACC Directives

© NVIDIA 2013

Program myscience
... serial code ...

!$acc kernels
do k = 1,n1
do i = 1,n2
... parallel code ...

enddo
enddo

!$acc end kernels
...

End Program myscience

CPU GPU

Your original 
Fortran or C code

Simple Compiler hints

Compiler Parallelizes code

Works on many-core GPUs & 
multicore CPUs

OpenACC
compiler

Hint



• Easy: Directives are the easy path to 
accelerate compute intensive applications

• Open: OpenACC is an open GPU directives 
standard, making GPU programming 
straightforward and portable across 
parallel and multi-core processors

• Powerful: GPU Directives allow complete access to 
the massive parallel power of a GPU

OpenACC
The Standard for GPU Directives

© NVIDIA 2013



Start Now with OpenACC Directives

Free trial license to PGI Accelerator

Tools for quick ramp

https://developer.nvidia.com/openacc

https://developer.nvidia.com/openacc


3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in” 
Acceleration

Programming 
Languages

OpenACC
Directives

Maximum
Flexibility + Best 

Performance

Easily Accelerate
Applications

© NVIDIA 2013



GPU Programming Languages

OpenACC, CUDA FortranFortran

OpenACC, CUDA CC

Thrust, CUDA C++C++

PyCUDA, CopperheadPython

Alea.cuBaseF#

MATLAB, Mathematica, LabVIEWNumerical analytics

© NVIDIA 2013



MATLAB
http://www.mathworks.com/discovery/
matlab-gpu.html

Learn More
These languages are supported on all CUDA-capable GPUs.
You might already have a CUDA-capable GPU in your laptop or desktop PC!

CUDA C/C++
http://developer.nvidia.com/cuda-toolkit

Thrust C++ Template Library
http://developer.nvidia.com/thrust

CUDA Fortran
http://developer.nvidia.com/cuda-toolkit

GPU.ORG Different Resources 
http://gpgpu.org

PyCUDA (Python)
http://mathema.tician.de/software/pycuda

Mathematica
http://www.wolfram.com/mathematica/new
-in-8/cuda-and-opencl-support/ or 
http://www.wolfram.com/gridmathematica/

http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/thrust
http://developer.nvidia.com/cuda-toolkit
http://gpgpu.org
http://mathema.tician.de/software/pycuda
http://www.wolfram.com/mathematica/new-in-8/cuda-and-opencl-support/
http://www.wolfram.com/gridmathematica/


Getting Started

• Download CUDA Toolkit & SDK: https://developer.nvidia.com/cuda-downloads
• Nsight IDE (Eclipse or Visual Studio): http://www.nvidia.com/object/nsight.html

• General GPU Computing Community: http://gpgpu.org/

• Programming Guide/Best Practices:
• docs.nvidia.com

• Questions:
• NVIDIA Developer forums: devtalk.nvidia.com
• Search or ask on: www.stackoverflow.com/tags/cuda

• Developer Community: https://developer.nvidia.com/ (Join Now!)

http://www.nvidia.com/object/nsight.html
http://gpgpu.org/
http://www.stackoverflow.com/
https://developer.nvidia.com/


Thank you!
@carlosjaimebh

https://www.nvidia.com/gtc

https://www.nvidia.com/gtc

