Computer Architecture
A Quantitative Approach, Fifth Edition

Memory Hierarchy Design and
SO on.

@carlosjaimebh

Memory is important to compute

associative memory function

© John Atkinson, Wrong Hands

Dist. by Universal Uclick

short-term

| visual

N ———

© John Atkinson, Wrong Hands « gocomics.com/wrong-hands « wronghands1.com

| Introduction

s Programmers want unlimited amounts of memory with
low latency

s Fast memory technology is more expensive per bit than
slower memory

= Solution: organize memory system into a hierarchy
= Entire addressable memory space available in largest, slowest
memory
= Incrementally smaller and faster memories, each containing a
subset of the memory below it, proceed in steps up toward the
processor
= [emporal and spatial locality ensure that nearly all
references can be found in smaller memories

uonoNpPOoJU|

= Gives the allusion of a large, fast memory being presented to the
processor

Principle of Locality

Copy more recently

Processing Chip accessed items Store everything on disk

Main Memory

—_——— e ———

Copy recently
accessed items

Speed: Fastest Slowest
Size: Smallest Biggest
Cost ($/bit): Highest Lowest

Or principle of reference is the tendency of a processor to access the same
set of memory locations repetitively over a short period. Then, programs
tend to reuse data and instructions they have used recently. (in other words,
most programs do not access all code or data uniformly).

= [emporal Locality states that recently accessed items are likely to be accessed in the near
future.

m Spatial Locality refers to using data elements within relatively close storage locations.

= Sequential locality, a particular case of spatial locality, occurs when data elements are
arranged and accessed linearly, such as traversing the elements in a one-dimensional
array.

) Relevance of Locality (1/2)

Predictability: Locality is

merely one type of sk LR o
predictable behavior in e IR
computer systems.)

. subroutine subroutine
Struqture of the program: ., | g ..,etum‘
Locality occurs often e O i T

because of the way in which

computer programs are G
H Data \‘e(a\‘o or: ™
Createda for handllng accesses . ° scalar accesses

decidable problems. SRR 1l
Generally, related data is

stored in nearby locations in

storage. One common

pattern in computing

involves the processing of

several items, one at a time.

| Relevance of Locality (2)

Linear data structures: Locality often occurs because
code contains loops that tend to reference arrays or
other data structures by indices. Sequential locality, a
special case of spatial locality, occurs when relevant data
elements are arranged and accessed linearly.

Efficiency of memory hierarchy use: Although
presents the programmer with the ability
to read or write anywhere at any time, in
practice and throughput are affected by the
efficiency of the , which is improved by increasing
the locality of reference. Poor locality of reference results
In cache and and to avoid it,
data elements with poor locality can be bypassed from
cache.

https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Latency_(engineering)
https://en.wikipedia.org/wiki/Cache_(computing)
https://en.wikipedia.org/wiki/Thrashing_(computer_science)
https://en.wikipedia.org/wiki/Cache_pollution

‘ General Usage of Locality

Lower Level

To Processor |Upper Level Memory
¢ Memory

Blk X

From Processor
>

Blk Y

. Increasing the locality of references (generally
on the software side)
. Exploiting the locality of references: Generally

achieved on the hardware side, hierarchical
storage hardware can capitalize temporal and

spatial locality.

Example: Matrix Multiplication (1/2)

A common example is matrix multiplication:

I8 for i in 0..n

2 for j in 0..m

3 for k in 0..p

4 C[i1[J] = c[i1[3] + A[il(k] * B[kI[]];

By switching the looping order for § and k , the speedup in large matrix multiplications becomes dramatic, at least for languages that put contiguous
array elements in the last dimension. This will not change the mathematical result, but it improves efficiency. In this case, "large" means, approximately,
more than 100,000 elements in each matrix, or enough addressable memory such that the matrices will not fit in L1 and L2 caches.

i for i in O..n

2 for k in 0..p

3 for j in 0..m

4 C[i1[J] = c[i1[3] + A[i]l(k] * B[kI[]];

The reason for this speedup is that in the first case, the reads of A[i][k] are in cache (since the k index is the contiguous, last dimension), but B[k]
[j1 is not, so there is a cache miss penalty on B[k][j]. C[i][]] Isirrelevant, because it can be hoisted out of the inner loop -- the loop variable
thereis k.

for 1 im O..n
for j in 0..m
temp = C[i][]]
for k in 0..p
temp = temp + A[i][k] * B[k][]];
C[i]l[j] = temp

oUW N

In the second case, the reads and writes of c[i][j] are both in cache, the reads of B[k][j] arein cache, and the read of A[i][k] can be hoisted

out of the inner loop.

for i in 0..n
for k in 0..p
temp = A[i][k]
for j in 0..m
C[i][3] = C[i1[j] + temp * B[k][]];

U W N

Thus, the second example has no cache miss penalty in the inner loop while the first example has a cache penalty.

MK

MORGAN KAUFMANN

https://en.wikipedia.org/wiki/Locality_of_reference

Example: Matrix Multiplication (2/2

Temporal locality can also be improved in the above example by using a technique called blocking. The larger matrix can be divided into evenly sized sub-
matrices, so that the smaller blocks can be referenced (multiplied) several times while in memory. Note that this example works for square matrices of
dimensions SIZE x SIZE, but it can easily be extended for arbitrary matrices by substituting SIZE_|, SIZE_J and SIZE_K where appropriate.

for (ii = 0; ii < SIZE; ii += BLOCK_SIZE)
for (kk = 0; kk < SIZE; kk += BLOCK_SIZE)
for (jj = 0; jj < SIZE; jj += BLOCK SIZE)
maxi = min(ii + BLOCK_SIZE, SIZE);
for (i = ii; i < maxi; i++)
maxk = min(kk + BLOCK_SIZE, SIZE);
for (k = kk; k < maxk; k++)
maxj = min(jj + BLOCK_SIZE, SIZE);
for (j = Jjji; J < maxj; j++)
C[il[3J] = Cri1[31 + A[i]l[k] * B[k1[]]1;

O 0o Jo U b WN -

[y
o

The temporal locality of the above solution is provided because a block can be used several times before moving on, so that it is moved in and out of
memory less often. Spatial locality is improved because elements with consecutive memory addresses tend to be pulled up the memory hierarchy together.

MK

MORGAN KAUFMANN

https://en.wikipedia.org/wiki/Locality_of_reference

Memory Hierarchy

uo1PNPOU|

L1 L2 L3
C C C B Memory
CPU a a a bus k
Memory I/O bus [Disk stora
g - : g
= = © Disk
memo
Register Level 1 Level 2 Level 3 Memory referen?e
reference Cache Cache Cache reference
reference reference reference
Size: 1000 bytes 64 KB 256 KB 2-4MB 4-16 GB 4-16 TB
Speed: 300 ps 1ns 3-10 ns 10-20ns 50-100 ns 5-10 ms

(a) Memory hierarchy for server

L1 L2
G c @ Memory
CPU a a bus
: c
2 o FLASH
Register Level 1 Level 2 Memory n}emory
reference Cache Cache reference ISierance
reference reference
Size: 500 bytes 64 KB 256 KB 256-512 MB 4-8 GB
Speed: 500 ps 2ns 10-20 ns 50-100 ns 25-50 us

(b) Memory hierarchy for a personal mobile device

MK

MORGAN KAUFMANN

| Memory Performance Gap

uonoNpPOoJU|

100,000

10, 00 -] I

Performance

I I I I I
1980 1985 1990 1995 2000 2005 2010

Year

} Memory Hierarchy Design

= Memory hierarchy design becomes more crucial
with recent multi-core processors:

» Aggregate peak bandwidth grows with # cores:
= Intel Core i7 can generate two references per core per clock
= Four cores and 3.2 GHz clock
= 25.6 billion 64-bit data references/second +
= 12.8 billion 128-bit instruction references
= =409.6 GB/s!

= DRAM bandwidth is only 6% of this (25 GB/s)

=« Requires:
= Multi-port, pipelined caches
= Two levels of cache per core
= Shared third-level cache on chip

uonoNpPOoJU|

Performance and Power

uo1PNPOU|

= High-end microprocessors have >10 MB on-chip
cache

= Consumes large amount of area and power budget

} Memory Hierarchy Basics

x When a word is not found in the cache, a miss
OCCUrS:

« Fetch word from lower level in hierarchy, requiring a
higher latency reference

= Lower level may be another cache or the main
memory

s Also fetch the other words contained within the block

uonoNpPOoJU|

= [akes advantage of spatial locality

= Place block into cache in any location within its set,
determined by address
= block address MOD number of sets

} Memory Hierarchy Basics

= N sets => n-way set associative
s Direct-mapped cache => one block per set
s Fully associative => one set

uonoNpPOoJU|

= Writing to cache: two strategies
» Whrite-through

=« Immediately update lower levels of hierarchy

s Wirite-back

= Only update lower levels of hierarchy when an updated block
is replaced

» Both strategies use write buffer to make writes
asynchronous

) Memory Hierarchy Basics

s Miss rate
s Fraction of cache access that result in a miss

uo1PNPOU|

s Causes of misses
= Compulsory
= First reference to a block
= Capacity
= Blocks discarded and later retrieved

s Conflict

= Program makes repeated references to multiple addresses
from different blocks that map to the same location in the
cache

| Memory Hierarchy Basics

Misses ~ Miss rate X Memory accesses _ Miss rate X Memory accesses
[nstruction Instruction count - [nstruction

Average memory access time = Hit time + Miss rate X Miss penalty

= Note that speculative and multithreaded
processors may execute other instructions
during a miss
= Reduces performance impact of misses

uo1PNPOU|

Memory Hierarchy Basics

s SiX basic cache optimizations:

= Larger block size
= Reduces compulsory misses
= Increases capacity and conflict misses, increases miss penalty

s Larger total cache capacity to reduce miss rate
= Increases hit time, increases power consumption

Higher associativity
= Reduces conflict misses
= Increases hit time, increases power consumption

Higher number of cache levels
= Reduces overall memory access time

Giving priority to read misses over writes
= Reduces miss penalty

Avoiding address translation in cache indexing
= Reduces hit time

uonoNpPOoJU|

Ten Advanced Optimizations

s Small and simple first level caches
= Critical timing path:

» addressing tag memory, then
= comparing tags, then
= Selecting correct set

= Direct-mapped caches can overlap tag compare and
transmission of data

suoneziwndQO pasueApy

= Lower associativity reduces power because fewer
cache lines are accessed

} L1 Size and Associativity

Access time in picrosecornds

900 -

800

700 1

600

500 +

400

300

200 1

100 1

m 1-way o 2-way
m 4-way m 8-way

16KB 32KB 64 KB 128 KB 256 KB
Cache size

Access time vs. size and associativity

suoneziwndQO pasueApy

L1 Size and Associativity

0.5 -

W 1-way [2-way
M 4-way @ 8-way

0.45

o
S

:
suoneziwndQO pasueApy

ot
w
!

ot
o

Energy per read in nano joules
°
—
)]

o
-

0.05 -

16 KB 32 KB 64 KB 128 KB 256 KB
Cache size

Energy per read vs. size and associativity

Way Prediction

= [0 Improve hit time, predict the way to pre-set
Mmux
= Mis-prediction gives longer hit time
= Prediction accuracy

= > 90% for two-way
= > 80% for four-way
» |-cache has better accuracy than D-cache

s First used on MIPS R10000 in mid-90s
= Used on ARM Cortex-A8

suoneziwndQO pasueApy

s Extend to predict block as well

=« "Way selection”
= Increases mis-prediction penalty

Pipelining Cache

m Pipeline cache access to improve bandwidth

« Examples:
=« Pentium: 1 cycle
= Pentium Pro — Pentium lll: 2 cycles
= Pentium 4 — Core i7: 4 cycles

suoneziwndQO pasueApy

= Increases branch mis-prediction penalty
= Makes it easier to increase associativity

Nonblocking Caches

suoneziwndQO pasueApy

= Allow hits before —
previous misses A e ttnda o manes |
complete
= “Hit under miss” > 70%
= “Hit under multiple 2 o m

miSS” ESO%‘W

s L2 must support this s.a\/

= In general, £ o Y \//\
processors can hide 20% e -
L1 miss penalty but
not L2 miss penalty) f@& PGP S0 T

N\ & &

) Multibanked Caches

= Organize cache as independent banks to
support simultaneous access

= ARM Cortex-A8 supports 1-4 banks for L2
= Intel i7 supports 4 banks for L1 and 8 banks for L2

= Interleave banks according to block address

Block Block Block Block
address Bank 0 address Bank 1 address Bank 2 address Bank 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte
addressing.

suoneziwndQO pasueApy

} Critical Word First, Early Restart

s Critical word first
= Request missed word from memory first
= Send it to the processor as soon as it arrives

= Early restart

= Request words in normal order

= Send missed work to the processor as soon as it
arrives

suoneziwndQO pasueApy

m Effectiveness of these strategies depends on
block size and likelihood of another access to
the portion of the block that has not yet been
fetched

Merging Write Buffer

= When storing to a block that is already pending in the
write buffer, update write buffer

= Reduces stalls due to full write buffer
= Do not apply to I/O addresses

suoneziwndQO pasueApy

Write address V Vv Vv Vv
100 1 | Mem[100] | O 0 0
108 1 | Mem[108] | 0 0 0 NO erte
116 1 | Mem[116] | O 0 0 .
buffering
124 1 | Mem[124] | o 0 0

Write address V \ \ \

100 1 | Mem[100] | 1 | Mem[108] | 1 | Mem[116] | 1 | Mem[124]

Write buffering

| Compiler Optimizations

= Loop Interchange

= Swap nested loops to access memory in
sequential order

suoneziwndQO pasueApy

= Blocking

= Instead of accessing entire rows or columns,
subdivide matrices into blocks

= Requires more memory accesses but improves
locality of accesses

Prefetching
-

L1 Cache

—p Prefetched Data

Buiyoiejald 1noqy

A+l

-
| ‘
r

-—

Stream Buff 2
Stream Buffer 3

A+2

A+3

Stream Buffer 1

A+4

1T T

Lower level memory

Cache prefetching is a technique used by computer
processors to boost execution performance by fetching
instructions or data from their original storage in slower

memory to a faster local memory before it is actually needed
(hence the term 'prefetch')

2>
n o
| Hardware Prefetching
2
= Fetch two blocks on miss (include next 8
sequential block) 3
Q
2.20 8‘
7
‘§ 1.60 o
g 1 40- - 1.40
i ‘i“i“i‘lllll
100 gap I mcf fam3d IwupwiseI galgel Ifacerecl swim l applu I lucas | mgrid quuake

SPECint2000 SPEC{p2000

Pentium 4 Pre-fetching

Compiler Prefetching

» |Insert prefetch instructions before data is
needed

= Non-faulting: prefetch doesn’t cause
exceptions

suoneziwndQO pasueApy

= Register prefetch
« Loads data into register

s Cache prefetch
s Loads data into cache

= Combine with loop unrolling and software
pipelining

summary

Hit Band- Miss Miss Power

Hardware cost/

suoneziwndQO pasueApy

Technique time width penalty rate consumption complexity Comment

Small and simple + - + 0 Trivial; widely used

caches

Way-predicting caches + + 1 Used in Pentium 4

Pipelined cache access - 1 Widely used

Nonblocking caches + 3 Widely used

Banked caches + 1 Used in L2 of both 17 and
Cortex-A8

Critical word first + 2 Widely used

and early restart

Merging write buffer + 1 Widely used with write
through

Compiler techniques to + 0 Software is a challenge, but

reduce cache misses many compilers handle
common linear algebra
calculations

Hardware prefetching + + - 2 instr., Most provide prefetch

of instructions and data 3 data instructions; modern high-
end processors also
automatically prefetch in
hardware.

Compiler-controlled + + 3 Needs nonblocking cache:

possible instruction overhead:
in many CPUs

prefetching

Figure 2.11 Summary of 10 advanced cache optimizations showing impact on cache performance, power con-
sumption, and complexity. Although generally a technique helps only one factor, prefetching can reduce misses if
done sufficiently early; if not, it can reduce miss penalty. + means that the technique improves the factor, - means it
hurts that factor, and blank means it has no impact. The complexity measure is subjective, with 0 being the easiest and
3 being a challenge.

MK

MORGAN KAUFMANN

) Memory Technology

s Performance metrics
=« Latency is concern of cache
= Bandwidth is concern of multiprocessors and 1/O

s Access time

= Time between read request and when desired word
arrives

=« Cycle time
« Minimum time between unrelated requests to memory

ABojouyoa| Alowas|n

= DRAM used for main memory, SRAM used
for cache

} Memory Technology

= SRAM

= Requires low power to retain bit
= Requires 6 transistors/bit

ABojouyoa| Alowas|n

= DRAM

= Must be re-written after being read

= Must also be periodically refeshed
« Every ~8 ms
= Each row can be refreshed simultaneously

= One transistor/bit

= Address lines are multiplexed:

= Upper half of address: row access strobe (RAS)
= Lower half of address: column access strobe (CAS)

| Memory Technology

» Amdahl:

= Memory capacity should grow linearly with processor speed

= Unfortunately, memory capacity and speed has not kept
pace with processors

ABojouyoa| Alowas|n

= Some optimizations:

= Multiple accesses to same row
= Synchronous DRAM

= Added clock to DRAM interface
= Burst mode with critical word first

Wider interfaces
= Double data rate (DDR)
Multiple banks on each DRAM device

Memory Optimizations

Row access strobe (RAS)

ABojouyoa| Alowas|n

Slowest Fastest Column access strobe (CAS)/ Cycle
Production year Chipsize DRAMType DRAM(ns) DRAM (ns) data transfer time (ns) time (ns)
1980 64K bit DRAM 180 150 75 250
1983 256K bit DRAM 150 120 50 220
1986 1M bit DRAM 120 100 25 190
1989 4M bit DRAM 100 80 20 165
1992 16M bit DRAM 80 60 15 120
1996 64M bit SDRAM 70 50 12 110
1998 128M bit SDRAM 70 50 10 100
2000 256M bit DDRI 65 45 7 90
2002 512M bit DDRI 60 40 5 80
2004 1G bit DDR2 55 35 5 70
2006 2G bit DDR2 50 30 2.5 60
2010 4G bit DDR3 36 28 1 37
2012 8G bit DDR3 30 24 0.5 31

Figure 2.13 Times of fast and slow DRAMs vary with each generation. (Cycle time is defined on page 95.) Perfor-
mance improvement of row access time is about 5% per year. The improvement by a factor of 2 in column access in
1986 accompanied the switch from NMOS DRAMs to CMOS DRAMs. The introduction of various burst transfer
modes in the mid-1990s and SDRAMs in the late 1990s has significantly complicated the calculation of access time
for blocks of data; we discuss this later in this section when we talk about SDRAM access time and power. The DDR4
designs are due for introduction in mid- to late 2012. We discuss these various forms of DRAMs in the next few pages.

MK

MORGAN KAUFMANN

Memory Optimizations

Standard Clock rate (MHz) M transfers per second DRAM name MB/sec /DIMM DIMM name

ABojouyoa| Alowas|n

DDR 133 266 DDR266 2128 PC2100
DDR 150 300 DDR300 2400 PC2400
DDR 200 400 DDR400 3200 PC3200
DDR2 266 533 DDR2-533 4264 PC4300
DDR2 333 667 DDR2-667 5336 PC5300
DDR2 400 800 DDR2-800 6400 PC6400
DDR3 533 1066 DDR3-1066 8528 PC8500
DDR3 666 1333 DDR3-1333 10,664 PC10700
DDR3 800 1600 DDR3-1600 12,800 PC12800
DDR4 10661600 2133-3200 DDR4-3200 17.,056-25,600 PC25600

Figure 2.14 Clock rates, bandwidth, and names of DDR DRAMS and DIMMs in 2010. Note the numerical relation-
ship between the columns. The third column is twice the second, and the fourth uses the number from the third col-
umn in the name of the DRAM chip. The fifth column is eight times the third column, and a rounded version of this
number is used in the name of the DIMM. Although not shown in this figure, DDRs also specify latency in clock cycles
as four numbers, which are specified by the DDR standard. For example, DDR3-2000 CL 9 has latencies of 9-9-9-28.
What does this mean? With a 1 ns clock (clock cycle is one-half the transfer rate), this indicate 9 ns for row to columns
address (RAS time), 9 ns for column access to data (CAS time), and a minimum read time of 28 ns. Closing the row
takes 9 ns for precharge but happens only when the reads from that row are finished. In burst mode, transfers occur
on every clock on both edges, when the first RAS and CAS times have elapsed. Furthermore, the precharge in not
needed until the entire row is read. DDR4 will be produced in 2012 and is expected to reach clock rates of 1600 MHz
in 2014, when DDRS5 is expected to take over. The exercises explore these details further.

MK

MORGAN KAUFMANN

<

| Memory Optimizations E
s DDR: %

« DDR2 9

=« Lower power (2.5V ->1.8V)
= Higher clock rates (266 MHz, 333 MHz, 400 MHz)

» DDR3
= 1.5V
= 800 MHz

» DDR4

« 1-1.2V
= 1600 MHz

s GDDRS is graphics memory based on DDR3

| Memory Optimizations

» Graphics memory:

= Achieve 2-5 X bandwidth per DRAM vs. DDR3

= Wider interfaces (32 vs. 16 bit)

= Higher clock rate

= Possible because they are attached via soldering instead of
socketted DIMM modules

ABojouyoa| Alowas|n

= Reducing power in SDRAMs:
= Lower voltage

= Low power mode (ignores clock, continues to
refresh)

Memory Power Consumption

600 -

500 A
400 A _ '
B Read, write, terminate
300 - power
200 - O Activate power
B Background power
100 - I
0 : :

ABojouyos] Aiows

Power in mW

Low Typical Fully
power usage active
mode

Flash Memory

= [ype of EEPROM

= Must be erased (in blocks) before being
overwritten

= Non volatile
= Limited number of write cycles

s Cheaper than SDRAM, more expensive than
disk

ABojouyoa| Alowas|n

s Slower than SRAM, faster than disk

| Memory Dependability

= Memory is susceptible to cosmic rays

m Soft errors. dynamic errors

= Detected and fixed by error correcting codes
(ECC)

s Hard errors. permanent errors
= Use sparse rows to replace defective rows

ABojouyoa| Alowas|n

= Chipkill: a RAID-like error recovery technique

) Virtual Memory

= Protection via virtual memory
s Keeps processes in their own memory space

s Role of architecture:

= Provide user mode and supervisor mode
= Protect certain aspects of CPU state

= Provide mechanisms for switching between user
mode and supervisor mode

= Provide mechanisms to limit memory accesses
= Provide TLB to translate addresses

SauIYoe\ [enuiA pue Alowsp [enJIA

| Virtual Memory at Glance

Main memory can act as a cache for the secondary
storage (disk)

virtual memory physical memory
Address translation
\

—— - /

5 Disk addresses

AL

/
N
/
x

11\
)
/
%

TU/e Processor Design 52032

) Virtual Machines

= Supports isolation and security
= Sharing a computer among many unrelated users

= Enabled by raw speed of processors, making the
overhead more acceptable

= Allows different ISAs and operating systems to be
presented to user programs
= “System Virtual Machines”

s SVM software is called “virtual machine monitor” or
“hypervisor”

» Individual virtual machines run under the monitor are called
“‘guest VMs”

SauIYoe\ [enuiA pue Alowsp [enJIA

| Impact of VMs on Virtual Memory

= Each guest OS maintains its own set of page
tables
= VMM adds a level of memory between physical
and virtual memory called “real memory”

= VMM maintains shadow page table that maps
guest virtual addresses to physical addresses

« Requires VMM to detect guest's changes to its own page
table

SauIYoe\ [enuiA pue Alowsp [enJIA

= Occurs naturally if accessing the page table pointer is a
privileged operation

Memory Organization

OXFFFFFFFF

The memory that is reserved
by the memory manager

If the heap and the
stack collide, we’re out
of memory

-

The local variables in the
routines. With each routine
call, a new set of variables
if put in the stack.

—

e Stack pointer

Before the first line of the program is run,
all global variables and
constants are initialized.

_) size
\ Fixed
size

instructions. This is in the .exe

The program itself: a set of machine
J 0x00000000

Memory Management

Problem: many programs run simultaneously
= MMU manages the memory access.

Logical P
CPU "0OCess | Physical
address table

Each program thinks

that it owns all the
memory.

Virtual

Physical
address

Checks whether the

requested address
is 'in core’

| Review: Hierarchy of Memory

0 Take advantage of the principle of locality to present the
user with as much memory as is available in the cheapest
technology at the speed offered by the fastest technology

Processor
I 4-8 bytes (word)

Inclusive— what
Increasing L1$ isinL1$ is a
distance 4 subset of what
from the v 8-32 hytes (block) isinL2$ is a
processor in L2$ subset of what
access time o BT A is in MM that is
04 e a subset of is
Main gllemory in SM
i1,024+ bytes (disk\sector 5 page)
Secondary Memory

v

A

(Relative) size of the memory at each level

Review: The Memory Wall

0 Logic vs DRAM speed gap continues to grow

1000

100 -

10 <
—+—Core ——Memory

Clocks per instruction

0,1 1

Clocks per DRAM access

0,01

VAX/1980 PPro/1996 2010+

Review: Types of Memory Computing

l._',- .
DEE)

Sooc

From Conventional Memory to Computational Memory

Processing unit Conventional memory
Data D

P
010001010101011000101010

Digital interface

Control unit

Memory array
(storing D)

11101001010001010100100100
—
Result (D)

*._ processor

~ -

b Processing unit Saae Computational memory
Control unit Computation in N D
memory . Sarinhe
5 : Memory array
. ; (storing D)

o N

ALU
1001, ﬁ SR
Command ("perform fon D") A\

v Y

Charge-based memory | I Resistance-based memory
=]
—
—
B
SRAM DRAM Flash RRAM PCM STT-MRAM

https://www.nature.com/articles/s41565-020-0655-z

https://www.nature.com/articles/s41565-020-0655-z

Memory Computing (Data Grid) for Big Data

—

Advances in Hardware
64 bit address space — 2TB in

I‘-\ current server boards

25GB/s data throughput

E

Multi-Core Architecture
(8 x 10core CPU per blade)

P

Parallel scaling across blades

One blade ~$50.000 = |
Enterprise Class Server

Cost-performance ratio
rapidly declining

-
-

Advances in Software —

— ' an
=) < m@ g [o
] =z L
Row and Compression Partitioning No Aggregate Insert Only On-the-fly
Column Store Tables extensibility

https://natishalom.typepad.com/nati shaloms blog/2013/01/in-memory-computing-data-grid-for-big-data.html

https://natishalom.typepad.com/nati_shaloms_blog/2013/01/in-memory-computing-data-grid-for-big-data.html

