e COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 7

Multicores,
Multiprocessors, and
Clusters

Introduction

Goal: connecting multiple computers
to get higher performance

Multiprocessors
Scalability, availability, power efficiency

Job-level (process-level) parallelism
High throughput for independent jobs
Parallel processing program
Single program run on multiple processors

Multicore microprocessors
Chips with multiple processors (cores)

Chapter 7 — Multicores, Multiprocessors, and Clusters — 2

Hardware and Software

Hardware

Serial: e.g., Pentium 4

Parallel: e.g., quad-core Xeon €5345
Software

Sequential: e.g., matrix multiplication

Concurrent: e.g., operating system
Sequential/concurrent software can run on

serial/parallel hardware

Challenge: making effective use of parallel
hardware

Chapter 7 — Multicores, Multiprocessors, and Clusters — 3

What We’ve Already Covered

§2.11: Parallelism and Instructions
Synchronization

§3.6: Parallelism and Computer Arithmetic
Associativity

§4.10: Parallelism and Advanced
Instruction-Level Parallelism

§5.8: Parallelism and Memory Hierarchies
Cache Coherence

§6.9: Parallelism and |/O:

Redundant Arrays of Inexpensive Disks

Chapter 7 — Multicores, Multiprocessors, and Clusters — 4

Parallel Programming

Parallel software is the problem
Need to get significant performance
improvement

Otherwise, just use a faster uniprocessor,
since it's easier!

Difficulties
Partitioning
Coordination
Communications overhead

Chapter 7 — Multicores, Multiprocessors, and Clusters — 5

Amdahl’s Law

Sequential part can limit speedup

Example: 100 processors, 90x speedup?
T ., =T /100 + T

1
)+F

parallelizable

parallelizable sequential

Speedup =

- 90
(1-F /100

parallelizable

parallelizable =0.999

Need sequential part to be 0.1% of original
time

Solving: F

Chapter 7 — Multicores, Multiprocessors, and Clusters — 6

Scaling Example

Workload: sum of 10 scalars, and 10 x 10 matrix
sum

Speed up from 10 to 100 processors
Single processor: Time = (10 + 100) x t_4
10 processors
Time=10x1t,,+100/10 x t_4, =20 x t_ 4
Speedup = 110/20 = 5.5 (55% of potential)
100 processors
Time =10 xt_,,+ 100/100 x t_,, = 11 x t_44
Speedup = 110/11 = 10 (10% of potential)

Assumes load can be balanced across
Processors

Chapter 7 — Multicores, Multiprocessors, and Clusters — 7

Scaling Example (cont)

What if matrix size is 100 x 1007
Single processor: Time = (10 + 10000) x t_,,
10 processors
Time = 10 x t_,, + 10000/10 x t_,, = 1010 x t_,
Speedup = 10010/1010 = 9.9 (99% of potential)
100 processors
Time = 10 x t_4, + 10000/100 % t,, = 110 x t_,
Speedup = 10010/110 = 91 (91% of potential)

Assuming load balanced

Chapter 7 — Multicores, Multiprocessors, and Clusters — 8

Strong vs Weak Scaling

Strong scaling: problem size fixed
As Iin example

Weak scaling: problem size proportional to
number of processors

10 processors, 10 x 10 matrix

Time =20 x t_g,
100 processors, 32 x 32 matrix

Time = 10 x t_,, + 1000/100 x t_,, = 20 X t g,
Constant performance in this example

Chapter 7 — Multicores, Multiprocessors, and Clusters — 9

Shared Memory

SMP: shared memory multiprocessor

Hardware provides single physical
address space for all processors

Synchronize shared variables using locks

Memory access time
UMA (uniform) vs. NUMA (nonuniform)

Processor Processor R Processor

Interconnection Network

A
Y

Memory I/O

Chapter 7 — Multicores, Multiprocessors, and Clusters — 10

Example: Sum Reduction

Sum 100,000 numbers on 100 processor UMA
Each processor has ID: 0 < Pn <99
Partition 1000 numbers per processor
Initial summation on each processor
sum[Pn] = O;
for (i = 1000*Pn;
1 < 1000*(Pn+1); 1 =1 + 1)
sum[Pn] = sum[Pn] + A[1];
Now need to add these partial sums
Reduction: divide and conquer
Half the processors add pairs, then quarter, ...

Need to synchronize between reduction steps

Chapter 7 — Multicores, Multiprocessors, and Clusters — 11

Example: Sum Reduction

0
~
(half=1)|0]| 1
™
(half=2)[0|[1][2]|3
half = 100;
repeat (half=4)[o][1]/2]|3]{4]|5][6][7
synch();

if (half%2 = 0 & Pn == 0)
sum[0] = sum[0] + sum[half-1];
/* Conditional sum needed when half 1is odd;
ProcessorQ gets missing element */
half = half/2; /* dividing 1ine on who sums */
if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];
until (half == 1);

Chapter 7 — Multicores, Multiprocessors, and Clusters — 12

Message Passing

Each processor has private physical
address space

Hardware sends/receives messages
between processors

Processor Processor . Processor
A A \

Y Y Y
Cache Cache . Cache
A A \

Y Y Y
Memory Memory e Memory

A A A
Y Y Y

Interconnection Network

Chapter 7 — Multicores, Multiprocessors, and Clusters — 13

Loosely Coupled Clusters

Network of independent computers

Each has private memory and OS

Connected using I/O system
E.g., Ethernet/switch, Internet

Suitable for applications with independent tasks
Web servers, databases, simulations, ...

High availability, scalable, affordable
Problems

Administration cost (prefer virtual machines)

Low interconnect bandwidth
c.f. processor/memory bandwidth on an SMP

Chapter 7 — Multicores, Multiprocessors, and Clusters — 14

Sum Reduction (Again)

Sum 100,000 on 100 processors

First distribute 100 numbers to each
The do partial sums
sum = 0;
for (1 = 0; 1<1000; 1 =1 + 1)
sum = sum + AN[1];
Reduction

Half the processors send, other half receive
and add

The quarter send, quarter receive and add, ...

Chapter 7 — Multicores, Multiprocessors, and Clusters — 15

Sum Reduction (Again)

Given send() and receive() operations

Timit = 100; half = 100;/* 100 processors */
repeat
half = (half+1)/2; /* send vs. receive
dividing line */
if (Pn >= half && Pn < Timit)
send(Pn - half, sum);
if (Pn < (11mit/2))
sum sum + receive();
Timit half; /* upper 1imit of senders */
until (half == 1); /* exit with final sum */

Send/receive also provide synchronization
Assumes send/receive take similar time to addition

Chapter 7 — Multicores, Multiprocessors, and Clusters — 16

Grid Computing

Separate computers interconnected by
long-haul networks

E.g., Internet connections
Work units farmed out, results sent back

Can make use of idle time on PCs
E.g., SETI@home, World Community Grid

Chapter 7 — Multicores, Multiprocessors, and Clusters — 17

Multithreading

Performing multiple threads of execution in
parallel

Replicate registers, PC, etc.
Fast switching between threads

Fine-grain multithreading
Switch threads after each cycle
Interleave instruction execution
If one thread stalls, others are executed
Coarse-grain multithreading

Only switch on long stall (e.g., L2-cache miss)

Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)

Chapter 7 — Multicores, Multiprocessors, and Clusters — 18

Simultaneous Multithreading

In multiple-issue dynamically scheduled
processor
Schedule instructions from multiple threads

Instructions from independent threads execute
when function units are available

Within threads, dependencies handled by
scheduling and register renaming

Example: Intel Pentium-4 HT

Two threads: duplicated registers, shared
function units and caches

Chapter 7 — Multicores, Multiprocessors, and Clusters — 19

Multithreading Example

Issue slots ——

Thread A Thread B Thread C Thread D
HEN]
HN
Time
HE
[
[
[]
||
HEN
Issue slots ——
Coarse MT Fine MT SMT
Time N HE HENEN
| 1] HEEN
HEN 1 | HEN
HE 1 | 1
[| [|
HE NN
= n Ha
1 1 1 |
] 1] | H
]]

Chapter 7 — Multicores, Multiprocessors, and Clusters — 20

Future of Multithreading

Will it survive? In what form??

Power considerations = simplified
microarchitectures

Simpler forms of multithreading
Tolerating cache-miss latency
Thread switch may be most effective

Multiple simple cores might share
resources more effectively

Chapter 7 — Multicores, Multiprocessors, and Clusters — 21

Instruction and Data Streams

An alternate classification

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon €5345

SPMD: Single Program Multiple Data
A parallel program on a MIMD computer
Conditional code for different processors

Chapter 7 — Multicores, Multiprocessors, and Clusters — 22

SIMD

Operate elementwise on vectors of data
E.g., MMX and SSE instructions in x86

Multiple data elements in 128-bit wide registers

All processors execute the same
Instruction at the same time
Each with different data address, etc.

Simplifies synchronization
Reduced instruction control hardware

Works best for highly data-parallel
applications

Chapter 7 — Multicores, Multiprocessors, and Clusters — 23

Vector Processors

Highly pipelined function units

Stream data from/to vector registers to units
Data collected from memory into registers
Results stored from registers to memory

Example: Vector extension to MIPS
32 x 64-element registers (64-bit elements)

Vector instructions
1v, sv: load/store vector
addv.d: add vectors of double
addvs.d: add scalar to each element of vector of double

Significantly reduces instruction-fetch bandwidth

Chapter 7 — Multicores, Multiprocessors, and Clusters — 24

Example: DAXPY (Y = a x X +Y)

Conventional MIPS code
1.d $f0,a($sp) *Toad scalar a
addiu r4,%$s0,#512 ;upper bound of what to load

loop: 1.d ! ~<O($SO) ; load x(1)
. df2 §F0 a x x(i)

¢ ;load y(1)
add : $f4 la x x(1) + y(i)
O($sl)

;store into y(1)

add1u $sO $s0,#8 ‘increment index to x
addiu $51,$51,#8 sincrement index to y
subu $t0,r4, $s0 ; compute bound

bne $t0, $zero, loop ;check 1f done
Vector MIPS code

1.d $f0,a($sp) *Toad scalar a

Tv $v1,0($s0) *Toad vector x

mulvs.d $v2,%v1,$f0 ;vector-scalar multiply
Tv $v3,0($s1D) :load vector y

addv.d $v4,%$v2,$v3 ;add y to product

SV $v4,0($s1) :store the result

Chapter 7 — Multicores, Multiprocessors, and Clusters — 25

Vector vs. Scalar

Vector architectures and compilers
Simplify data-parallel programming

Explicit statement of absence of loop-carried
dependences

Reduced checking in hardware

Regular access patterns benefit from
interleaved and burst memory

Avoid control hazards by avoiding loops

More general than ad-hoc media
extensions (such as MMX, SSE)

Better match with compiler technology

Chapter 7 — Multicores, Multiprocessors, and Clusters — 26

History of GPUs

Early video cards

Frame buffer memory with address generation for
video output

3D graphics processing
Originally high-end computers (e.g., SGI)
Moore’s Law = lower cost, higher density
3D graphics cards for PCs and game consoles

Graphics Processing Units
Processors oriented to 3D graphics tasks

Vertex/pixel processing, shading, texture mapping,
rasterization

Chapter 7 — Multicores, Multiprocessors, and Clusters — 27

Graphics in the System

CPU

\
:7 Front Side Bus

display

x16 PCI-Express Link

x4 PCI-Express Link 4

GPU
Memory

North

Bridge

Memory

PCI Bus

T >

A
\
A
\

South
Bridge

i

;

LAN | | UART ——|ll pisplay

VGA

Framebuffer
Memory

Intel
CPU

A
Front Side Bus
\

DDR2
Memory

North L
Bridge g
128-bit
derivative y 667 MT/s
South
Bridge

display

AMD
CPU

CPU
core

. A
internal bus Il

North

128-bit
667 MT/s

DDR2

Bridge

A

Memory

x16 PCI-Express Link ¢ HyperTransport 1.03

GPU
Memory

|

Chipset

Chapter 7 — Multicores, Multiprocessors, and Clusters — 28

GPU Architectures

Processing is highly data-parallel
GPUs are highly multithreaded

Use thread switching to hide memory latency
Less reliance on multi-level caches

Graphics memory is wide and high-bandwidth
Trend toward general purpose GPUs

Heterogeneous CPU/GPU systems

CPU for sequential code, GPU for parallel code
Programming languages/APIls

DirectX, OpenGL

C for Graphics (Cg), High Level Shader Language
(HLSL)

Compute Unified Device Architecture (CUDA)

Chapter 7 — Multicores, Multiprocessors, and Clusters — 29

Example: NVIDIA Tesla

Streaming
multiprocessor

SM

|I-Cache

MT Issue

C-Cache

‘ Bridge |—| System Memory
GPU
I Host Interface I T
| Viewport/Clip/
Setup/Raster/
‘ Input Assembler | ZCull
| |
Vertex Work Pixel Work Compute Work
Distribution Distribution Distribution
| | |
| | |] |]] Y
TPC TPC TPC TPC TPC TPC TPC ¢
[|| | 1| [|| | /
[Il Il 1| |l [Il Il /
SM SM SM SM SM SM SM SM SM SM SM
[Jif || Jif ([] Jif || — |] Iif ||]
[Iif || Iif ||] Iif |IL — Iif || |
— | — | — [—
553 53 15 53 5 5 5 5 5 5 5 5 i 5 5 5 5 i[5 S 5355
53 5 15 5 S 5 5 5 5 5 5 5 5 i 5 i S 5 S S 5355
553 53 15 53 W 5 5 5 i 5 5 5 5 i 5 5 5 5 S 5355
53 53 1531 531 W 3 5 5 5 5 a3 53 S 5 53 0 5 5 5 53 53 5 S 53] 55
CIEEIE) EIE CIE 10
She:‘md ared Shared Sg:‘led lﬁhﬂ Shaved Snarsd Shared ared St Shared

Texture Unit

Texture Unit

Texture Unit

Texture Unit

Texture Unit

Shared

Memory

Texture Unit Texture Ugit
Tex L1 I Tex L1 I | Tex L1 I I Tex L1 I | Tex L1 | | Tex L1 I | Tex L1 ;
(Interconnection Network
| |
[rop || o | [mop|[2 | [Rop|| 2 | [mop]| L2 | | Display Interface |
— — — — E———— |
DRAM DRAM DRAM DRAM . Display -
L o e e e e - = - —_

8 x Streaming
processors

Chapter 7 — Multicores, Multiprocessors, and Clusters — 30

Example: NVIDIA Tesla

Streaming Processors
Single-precision FP and integer units
Each SP is fine-grained multithreaded

Warp: group of 32 threads

Processors ——

Executed in parallel, s
Thread0

S I M D Style [l Threadt
Bl Thread2

8 SPS Hardware . Thread3
Supported [l Threads4

x 4 clock cycles Trroads I Threads

Hardware contexts

for 24 warps

\ [l Threads

[l Thread?

Registers, PCs, ...

Tesla Multiprocessor

WarpO

Warp1

Warp23

Chapter 7 — Multicores, Multiprocessors, and Clusters — 31

Classifying GPUs

Don't fit nicely into SIMD/MIMD model

Conditional execution in a thread allows an
illusion of MIMD

But with performance degredation
Need to write general purpose code with care

Static: Discovered Dynamic: Discovered
at Compile Time at Runtime
Instruction-Level VLIW Superscalar
Parallelism
Data-Level SIMD or Vector Tesla Multiprocessor
Parallelism

Chapter 7 — Multicores, Multiprocessors, and Clusters — 32

Interconnection Networks

Network topologies
Arrangements of processors, switches, and links

R T i i i i

Bus Ring

(_’\ N N N

T T Tw

Tt TwTa | Tw

Tt e Tw | Tw

C

Un J‘h‘ﬁ N-cube (N = 3)

2D Mesh

Fully connected

Chapter 7 — Multicores, Multiprocessors, and Clusters — 33

Multistage Networks

P +—1—
| B] I N I Ny
A L A A A A A A
P N
Nhakakalakalakaka "
hakakalakalakaka : —YX
it tirleelely] 1R -
EENCAlalalalabalakale —’: — X
pkalakalalalalats —{Pel g
Spalalakalakatakaks r’— -]
Mrnlakakakalalalala
L6l
Arnlalakalalalalala
L7
a. Crossbar b. Omega network
A
A
A ?‘?‘—‘ Cc
B \dhd D

c. Omega network switch box

Chapter 7 — Multicores, Multiprocessors, and Clusters — 34

Network Characteristics

Performance
Latency per message (unloaded network)

Throughput
Link bandwidth
Total network bandwidth
Bisection bandwidth

Congestion delays (depending on traffic)
Cost
Power
Routabillity in silicon

Chapter 7 — Multicores, Multiprocessors, and Clusters — 35

Parallel Benchmarks

Linpack: matrix linear algebra
SPECrate: parallel run of SPEC CPU programs

Job-level parallelism
SPLASH: Stanford Parallel Applications for
Shared Memory

Mix of kernels and applications, strong scaling

NAS (NASA Advanced Supercomputing) suite
computational fluid dynamics kernels
PARSEC (Princeton Application Repository for

Shared Memory Computers) suite

Multithreaded applications using Pthreads and
OpenMP

Chapter 7 — Multicores, Multiprocessors, and Clusters — 36

Code or Applications?

Traditional benchmarks
Fixed code and data sets

Parallel programming is evolving

Should algorithms, programming languages,
and tools be part of the system?

Compare systems, provided they implement a
given application

E.g., Linpack, Berkeley Design Patterns

Would foster innovation in approaches to
parallelism

Chapter 7 — Multicores, Multiprocessors, and Clusters — 37

Modeling Performance

Assume performance metric of interest is
achievable GFLOPs/sec

Measured using computational kernels from
Berkeley Design Patterns

Arithmetic intensity of a kernel
FLOPs per byte of memory accessed
For a given computer, determine

Peak GFLOPS (from data sheet)

Peak memory bytes/sec (using Stream
benchmark)

Chapter 7 — Multicores, Multiprocessors, and Clusters — 38

Roofline Diagram

64.0

32.0
© . .

eak floating-point performance

S 16.0 P g-point p
S :
R
n</_J 8.0
s 8
-
G
P 4.0
QO
©
= H :
g 20 i Kernel 1 i Kernel 2
< : (Memory : (Computation

1.0 ! Bandwidth ! limited)

{ limited) :

o
o
Y

Vg Uy Yy 1 2 4 8 16
Arithmetic Intensity: FLOPs/Byte Ratio

Attainable GPLOPs/sec
= Max (Peak Memory BW x Arithmetic Intensity, Peak FP Performance)

Chapter 7 — Multicores, Multiprocessors, and Clusters — 39

Comparing Systems

Example: Opteron X2 vs. Opteron X4

2-core vs. 4-core, 2x FP performance/core, 2.2GHz
vs. 2.3GHz

Same memory system

128.0 A Opteron X4 (Ba@na) _
o l To get higher performance
© 320 on X4 than X2
(Al
S 160 Need high arithmetic intensity
E 8.0 \/ Or working set must fit in X4's
£ 40| Opteron X2 2MB L-3 cache
g 20t
1.0
0.5

g Yy Wy 1 2 4 8 16
Actual FLOPbyte ratio

Chapter 7 — Multicores, Multiprocessors, and Clusters — 40

Optimizing Performance

AMD Opteron

Optimize FP performance «|
Balance adds & multiplies |
Improve superscalar ILP

@ peak floating-point performance
o

-
o
o

S
N 1. FI. Pt. imbalance

©
S)
S

Attainable GFLOPs/second
S
o
&
Q

and use of SIMD
Instructions ¢

o1 2 4 8 16
Arithmetic Intensity: FLOPs/Byte Ratio

Optimize memory usage

Software prefetch
Avoid load stalls
Memory affinity

Avoid non-local data
accesses s

Attainable GFLOPs/
N
=}

123 1 2 4 8 16
Arithmetic Intensity: FLOPs/Byte Ratio

Chapter 7 — Multicores, Multiprocessors, and Clusters — 41

Optimizing Performance

Attainable GFLOPs/second

Choice of optimization depends on
arithmetic intensity of code

64.0

32.0

16.0

8.0

4.0

2.0

1.0

0.5

A

Arithmetic intensity is
not always fixed

May scale with
problem size

Caching reduces
memory accesses

Kernel 1 Kernel 2

1/8

Yy Yo 1 2 4 8 16

Increases arithmetic
Intensity

Arithmetic Intensity: FLOPs/Byte Ratio

Chapter 7 — Multicores, Multiprocessors, and Clusters — 42

Four Example Systems

Core | Core | | Core | Core Core | Core | | Core | Core
2 x quad-core
Intel Xeon €5345

10.66 GB/S 10 66 GB/s (Clovertown)

Chlpset (4x64 b controIIers)

21.33 GB/s(read) [T1T 44y 10.66 GB/s(write)

667 MHz FBDIMMs

(each direction)

4 GB/s

HyperTransport
HyperTransport

SRl/crossbar

2 x quad-core
o SRl/crossbar

7 X AMD Opteron X4 2356
2x64 b memory controllers I | 2x64 b memory controllers (B arce I ona)

10.66 GB/s v i 10.66 GB/s

667 MHz DDR2 DIMMs 667 MHz DDR2 DIMMs

Chapter 7 — Multicores, Multiprocessors, and Clusters — 43

Four Example Systems

Crossbar Switch (16 Byte reads 8 Byte writes § Crossbar Switch (16 Byte reads 8 Byte writes
L5 -
90 GB/s (writethru) 179 GB/s (fill) g IS 179 GB/s (fill) t 90 GB/s (writethru) 2 x OCt CO re
v 2
ok Sun UltraSPARC
4 Coherency Hubs (2 banks éach) 4 Co:herency Hufbs (2 banks éach) .
| : | : T2 5140 (Niagara 2)
2x128 b memory controllers (4 banks each) 2x128 b memory controllers (4 banks each)
/W
21.33 GB/s (read) y y 10.66 GB/s (write) 10.66 GB/s (write) 21.33 GB/s (read)
667 MHz FBDIMMs 667 MHz FBDIMMs
SPE | SPE | SPE | SPE VMT VMT SPE | SPE | SPE | SPE
PPE PPE
256 K|256 K|256 K|256 K 256 K|256 K|256 K|256 K
MFC | MFC | MFC | MFC MFC | MFC | MFC | MFC
I SANSARS AN 1y Iy 1y

EIB (Ring Network)

Ay 4y Ay Av 4y by
MFC | MFC | MFC | MFC

256 K |256 K |256 K|256 K
SPE | SPE | SPE | SPE

[EIB (Ring Network)

TV Iy Iy Fv §§ 1§ 2 X oct-core

MFC | MFC | MFC | MFC

256 K|256 K (256 K|256 K IBM Ce” QSZO

SPE | SPE | SPE | SPE

<20 GB/s
(each direction)

BIF »| BIF

4x64b
controllers

4x64b
controllers

=E
ES:

25.6 GB/s 25.6 GB/s

<32 GB 800 MHz DDR2 DIMMs <382 GB 800 MHz DDR2 DIMMs

Chapter 7 — Multicores, Multiprocessors, and Clusters — 44

And Their Rooflines

Kernels

SpMV (left)

LBHMD (right)
Some optimizations

change arithmetic
iIntensity

x86 systems have
higher peak GFLOPs

But harder to achieve,
given memory
bandwidth

Chapter 7 — Multicores, Multiprocessors, and Clusters — 45

A
128.0 Peak DP
64.0

mul/add imbé
32.0

16.0

8.0
w/out ILP

4.0
2.0

Attainable GFLOP/s

Vo Y, M, 12 4 8 16
Actual FLOPbyte ratio

a. Intel Xeon 5345 (Clovertown)

A
128.0
64.0

32.0
Peak DP

25% issued = FP

16.0

8.0
4.0

Attainable GFLOP/s

2.0
1.0

0'5111 >
lg 1, 1, 1 2 4 8 16

Actual FLOPbyte ratio
¢. Sun UltraSPARC T2 5140 (Niagara 2)

A
128.0 Peak DP
64.0

32.0

16.0
8.0

4.0

Attainable GFLOP/s

2.0
1.0

05 “At— .
ly Y, Y, 1 2 4 8 16

Actual FLOPbyte ratio
b. AMD Opteron X4 2356 (Barcelona)

A
128.0
64.0
Peak DP
(2]
2 32.0
(e} w/out FMA
= 16.0
0] w/out SIMD
o 8.0 J
2 ‘ /
,E 40 :[J w/out ILP
e /
I 200,
[
1.0 |t
[
0.5 >

Yo Y, Y, 12 4 8 16
Actual FLOPbyte ratio
d. IBM Cell QS20

Performance on SpMV

Sparse matrix/vector multiply
Irregular memory accesses, memory bound

Arithmetic intensity
0.166 before memory optimization, 0.25 after

Xeon vs. Opteron

601 S~ Similar peak FLOPS
. vz Xeon limited by shared FSBs
. \ o masmaro s | and chipset
° o UltraSPARC/Cell vs. x86
20 — 30 vs. 75 peak GFLOPs

O'01' 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 More cores and memOry
Cores .
bandwidth

Chapter 7 — Multicores, Multiprocessors, and Clusters — 46

Performance on LBMHD

Fluid dynamics: structured grid over time steps

Each point: 75 FP read/write, 1300 FP ops

Arithmetic intensity

18.0

, 1201 \ / | limited by memory bandwidth

10.0 -

GFLOPs/se

0.0

0.70 before optimization, 1.07 after
Opteron vs. UltraSPARC

8.0 1
6.0 1
4.0
2.0

More powerful cores, not

Opteron X4 2356 Cell QS20

Xeon vs. others

Still suffers from memory
bottlenecks

UltraSPARC T2

...............
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Cores

Chapter 7 — Multicores, Multiprocessors, and Clusters — 47

Achieving Performance

Compare naive vs. optimized code

If naive code performs well, it's easier to write
high performance code for the system

System Kernel Naive Optimized Naive as % of
GFLOPs/sec | GFLOPs/sec optimized
Intel Xeon SpMV 1.0 1.5 64%
LBMHD 4.6 5.6 82%
AMD SpMV 1.4 3.6 38%
Opteron X4 LBMHD 7.1 14.1 50%
Sun UltraSPARC SpMV 3.5 4.1 86%
T2 LBMHD 9.7 10.5 93%
IBM Cell QS20 SpMV Naive code 6.4
LBMHD not feasible 16.7

Chapter 7 — Multicores, Multiprocessors, and Clusters — 48

Fallacies

Amdahl’'s Law doesn’t apply to parallel
computers

Since we can achieve linear speedup

But only on applications with weak scaling
Peak performance tracks observed
performance

Marketers like this approach!

But compare Xeon with others in example

Need to be aware of bottlenecks

Chapter 7 — Multicores, Multiprocessors, and Clusters — 49

Pitfalls

Not developing the software to take
account of a multiprocessor architecture

Example: using a single lock for a shared
composite resource

Serializes accesses, even if they could be done in
parallel

Use finer-granularity locking

Chapter 7 — Multicores, Multiprocessors, and Clusters — 50

Concluding Remarks

Goal: higher performance by using multiple
processors

Difficulties
Developing parallel software
Devising appropriate architectures

Many reasons for optimism
Changing software and application environment

Chip-level multiprocessors with lower latency,
higher bandwidth interconnect

An ongoing challenge for computer architects!

Chapter 7 — Multicores, Multiprocessors, and Clusters — 51

