

Chapter 7

Multicores, Multiprocessors, and Clusters

Introduction

- Goal: connecting multiple computers to get higher performance
 - Multiprocessors
 - Scalability, availability, power efficiency
- Job-level (process-level) parallelism
 - High throughput for independent jobs
- Parallel processing program
 - Single program run on multiple processors
- Multicore microprocessors
 - Chips with multiple processors (cores)

Hardware and Software

Hardware

- Serial: e.g., Pentium 4
- Parallel: e.g., quad-core Xeon e5345

Software

- Sequential: e.g., matrix multiplication
- Concurrent: e.g., operating system
- Sequential/concurrent software can run on serial/parallel hardware
 - Challenge: making effective use of parallel hardware

What We've Already Covered

- §2.11: Parallelism and Instructions
 - Synchronization
- §3.6: Parallelism and Computer Arithmetic
 - Associativity
- §4.10: Parallelism and Advanced Instruction-Level Parallelism
- §5.8: Parallelism and Memory Hierarchies
 - Cache Coherence
- §6.9: Parallelism and I/O:
 - Redundant Arrays of Inexpensive Disks

Chapter 7 — Multicores, Multiprocessors, and Clusters — 4

Parallel Programming

- Parallel software is the problem
- Need to get significant performance improvement
 - Otherwise, just use a faster uniprocessor, since it's easier!
- Difficulties
 - Partitioning
 - Coordination
 - Communications overhead

Amdahl's Law

Sequential part can limit speedup

Example: 100 processors, 90× speedup?

• Speedup =
$$\frac{1}{(1 - F_{\text{parallelizable}}) + F_{\text{parallelizable}}/100} = 90$$

Need sequential part to be 0.1% of original time

Scaling Example

- Workload: sum of 10 scalars, and 10 × 10 matrix sum
 - Speed up from 10 to 100 processors
- Single processor: Time = (10 + 100) × t_{add}
- 10 processors
 - Time = $10 \times t_{add} + 100/10 \times t_{add} = 20 \times t_{add}$
 - Speedup = 110/20 = 5.5 (55% of potential)
- 100 processors
 - Time = $10 \times t_{add} + 100/100 \times t_{add} = 11 \times t_{add}$
 - Speedup = 110/11 = 10 (10% of potential)
- Assumes load can be balanced across processors

Scaling Example (cont)

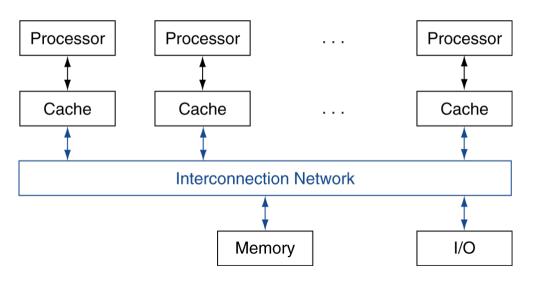
- What if matrix size is 100 × 100?
- Single processor: Time = (10 + 10000) × t_{add}
- 10 processors
 - Time = $10 \times t_{add} + 10000/10 \times t_{add} = 1010 \times t_{add}$
 - Speedup = 10010/1010 = 9.9 (99% of potential)
- 100 processors
 - Time = $10 \times t_{add} + 10000/100 \times t_{add} = 110 \times t_{add}$
 - Speedup = 10010/110 = 91 (91% of potential)
- Assuming load balanced

Strong vs Weak Scaling

- Strong scaling: problem size fixed
 - As in example
- Weak scaling: problem size proportional to number of processors
 - 10 processors, 10 × 10 matrix
 - Time = $20 \times t_{add}$
 - 100 processors, 32 × 32 matrix
 - Time = $10 \times t_{add} + 1000/100 \times t_{add} = 20 \times t_{add}$
 - Constant performance in this example

Shared Memory

- SMP: shared memory multiprocessor
 - Hardware provides single physical address space for all processors
 - Synchronize shared variables using locks
 - Memory access time
 - UMA (uniform) vs. NUMA (nonuniform)



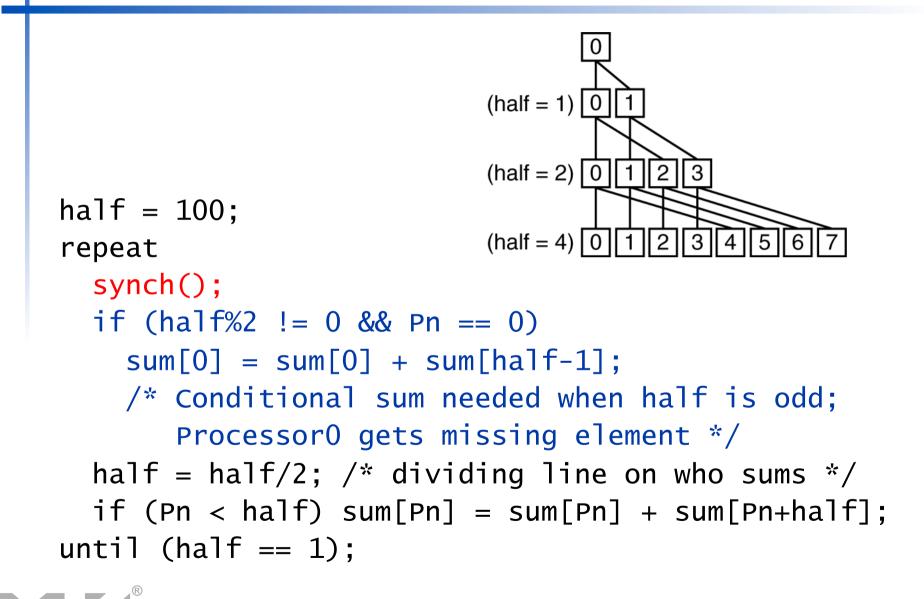
Chapter 7 — Multicores, Multiprocessors, and Clusters — 10

Example: Sum Reduction

- Sum 100,000 numbers on 100 processor UMA
 - Each processor has ID: $0 \le Pn \le 99$
 - Partition 1000 numbers per processor
 - Initial summation on each processor

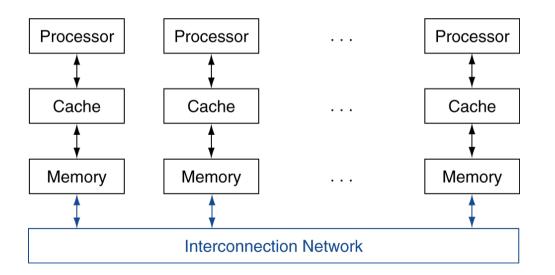
- Now need to add these partial sums
 - Reduction: divide and conquer
 - Half the processors add pairs, then quarter, ...
 - Need to synchronize between reduction steps

Example: Sum Reduction



Message Passing

- Each processor has private physical address space
- Hardware sends/receives messages
 between processors



Loosely Coupled Clusters

- Network of independent computers
 - Each has private memory and OS
 - Connected using I/O system
 - E.g., Ethernet/switch, Internet
- Suitable for applications with independent tasks
 - Web servers, databases, simulations, …
- High availability, scalable, affordable
- Problems
 - Administration cost (prefer virtual machines)
 - Low interconnect bandwidth
 - c.f. processor/memory bandwidth on an SMP

Sum Reduction (Again)

- Sum 100,000 on 100 processors
- First distribute 100 numbers to each
 - The do partial sums

sum = 0; for (i = 0; i<1000; i = i + 1) sum = sum + AN[i];

- Reduction
 - Half the processors send, other half receive and add
 - The quarter send, quarter receive and add, ...

Sum Reduction (Again)

Given send() and receive() operations

- Send/receive also provide synchronization
- Assumes send/receive take similar time to addition

Grid Computing

- Separate computers interconnected by long-haul networks
 - E.g., Internet connections
 - Work units farmed out, results sent back
- Can make use of idle time on PCs
 - E.g., SETI@home, World Community Grid

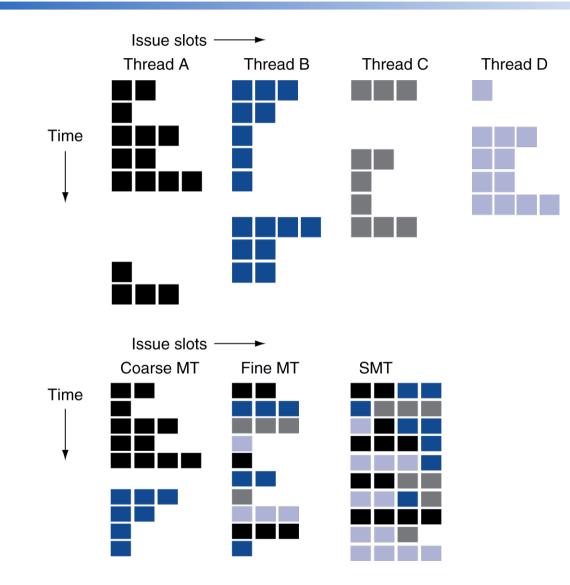
Multithreading

- Performing multiple threads of execution in parallel
 - Replicate registers, PC, etc.
 - Fast switching between threads
- Fine-grain multithreading
 - Switch threads after each cycle
 - Interleave instruction execution
 - If one thread stalls, others are executed
- Coarse-grain multithreading
 - Only switch on long stall (e.g., L2-cache miss)
 - Simplifies hardware, but doesn't hide short stalls (eg, data hazards)

Simultaneous Multithreading

- In multiple-issue dynamically scheduled processor
 - Schedule instructions from multiple threads
 - Instructions from independent threads execute when function units are available
 - Within threads, dependencies handled by scheduling and register renaming
- Example: Intel Pentium-4 HT
 - Two threads: duplicated registers, shared function units and caches

Multithreading Example



Chapter 7 — Multicores, Multiprocessors, and Clusters — 20

Future of Multithreading

- Will it survive? In what form?
- Power considerations ⇒ simplified microarchitectures
 - Simpler forms of multithreading
- Tolerating cache-miss latency
 - Thread switch may be most effective
- Multiple simple cores might share resources more effectively

Instruction and Data Streams

An alternate classification

		Data Streams	
		Single	Multiple
Instruction Streams	Single	SISD: Intel Pentium 4	SIMD : SSE instructions of x86
	Multiple	MISD : No examples today	MIMD: Intel Xeon e5345

SPMD: Single Program Multiple Data

- A parallel program on a MIMD computer
- Conditional code for different processors

SIMD

- Operate elementwise on vectors of data
 - E.g., MMX and SSE instructions in x86
 - Multiple data elements in 128-bit wide registers
- All processors execute the same instruction at the same time
 - Each with different data address, etc.
- Simplifies synchronization
- Reduced instruction control hardware
- Works best for highly data-parallel applications

Vector Processors

- Highly pipelined function units
- Stream data from/to vector registers to units
 - Data collected from memory into registers
 - Results stored from registers to memory
- Example: Vector extension to MIPS
 - 32 × 64-element registers (64-bit elements)
 - Vector instructions
 - Iv, sv: load/store vector
 - addv.d: add vectors of double
 - addvs.d: add scalar to each element of vector of double
- Significantly reduces instruction-fetch bandwidth

Example: DAXPY (Y = a × X + Y)

Conventional MIPS code \$f0,a(\$sp) 1.d ;load scalar a addiu r4,\$s0,#512 ;upper bound of what to load :load x(i) loop: l.d \$f2,0(\$s0) mul.d \$f2,\$f2,\$f0 $;a \times x(i)$ \$f4.0(\$s1) 1.d ;load y(i) add.d \$f4 \$f4 \$f2 $;a \times x(i) + y(i)$ s.d (\$f4,0(\$s1) ;store into y(i) addiu \$s0,\$s0,#8 ; increment index to x addiu \$s1,\$s1,#8 ;increment index to y subu \$t0,r4,\$s0 ;compute bound \$t0,\$zero,loop ;check if done bne Vector MIPS code \$f0,a(\$sp) ;load scalar a **1**.d 1v \$v1,0(\$s0) ;load vector x mulvs.d \$v2,\$v1,\$f0 ;vector-scalar multiply \$v3,0(\$s1) ;load vector y 1v addv.d \$v4,\$v2,\$v3 ;add y to product \$v4,0(\$s1) ;store the result SV

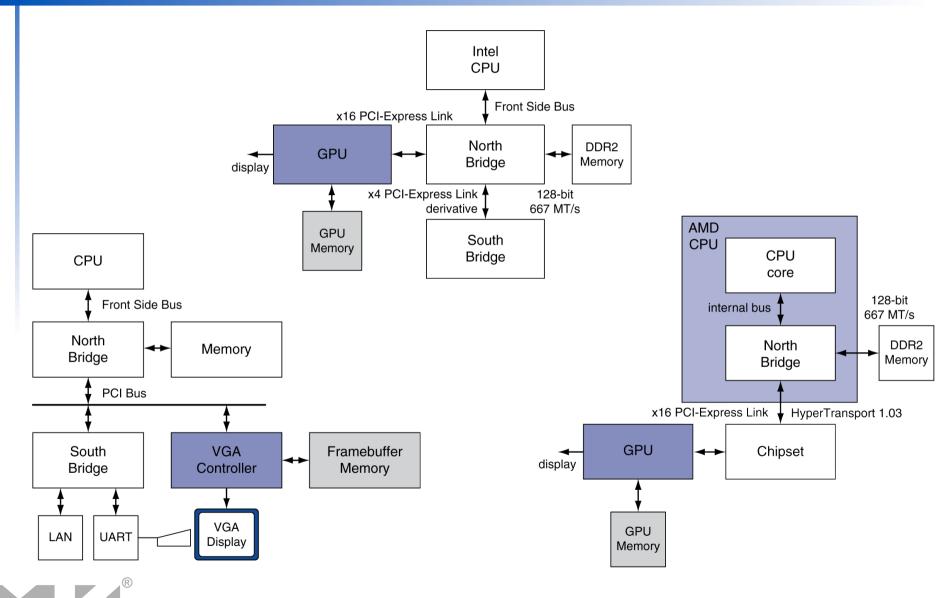
Vector vs. Scalar

- Vector architectures and compilers
 - Simplify data-parallel programming
 - Explicit statement of absence of loop-carried dependences
 - Reduced checking in hardware
 - Regular access patterns benefit from interleaved and burst memory
 - Avoid control hazards by avoiding loops
- More general than ad-hoc media extensions (such as MMX, SSE)
 - Better match with compiler technology

History of GPUs

- Early video cards
 - Frame buffer memory with address generation for video output
- 3D graphics processing
 - Originally high-end computers (e.g., SGI)
 - Moore's Law \Rightarrow lower cost, higher density
 - 3D graphics cards for PCs and game consoles
- Graphics Processing Units
 - Processors oriented to 3D graphics tasks
 - Vertex/pixel processing, shading, texture mapping, rasterization

Graphics in the System

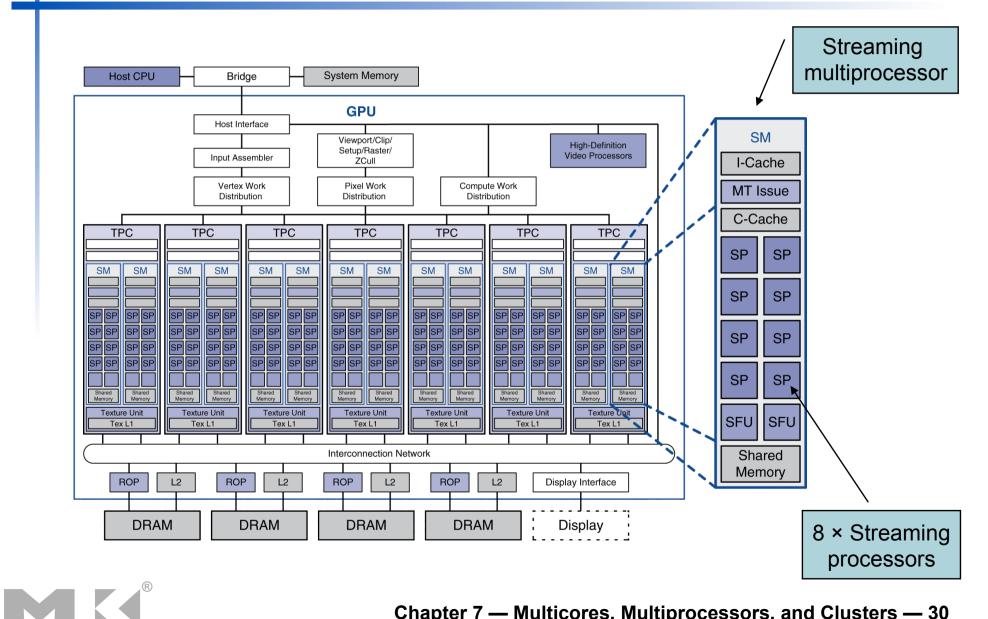


Chapter 7 — Multicores, Multiprocessors, and Clusters — 28

GPU Architectures

- Processing is highly data-parallel
 - GPUs are highly multithreaded
 - Use thread switching to hide memory latency
 Less reliance on multi-level caches
 - Graphics memory is wide and high-bandwidth
- Trend toward general purpose GPUs
 - Heterogeneous CPU/GPU systems
 - CPU for sequential code, GPU for parallel code
- Programming languages/APIs
 - DirectX, OpenGL
 - C for Graphics (Cg), High Level Shader Language (HLSL)
 - Compute Unified Device Architecture (CUDA)

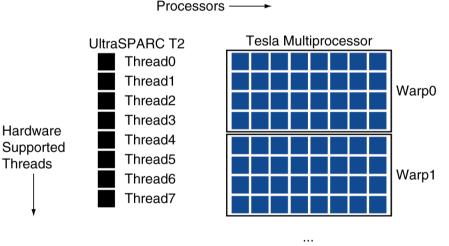
Example: NVIDIA Tesla

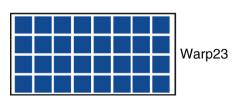


Chapter 7 — Multicores, Multiprocessors, and Clusters — 30

Example: NVIDIA Tesla

- Streaming Processors
 - Single-precision FP and integer units
 - Each SP is fine-grained multithreaded
- Warp: group of 32 threads
 - Executed in parallel, SIMD style
 - 8 SPs
 - × 4 clock cycles
 - Hardware contexts for 24 warps
 - Registers, PCs, …





Classifying GPUs

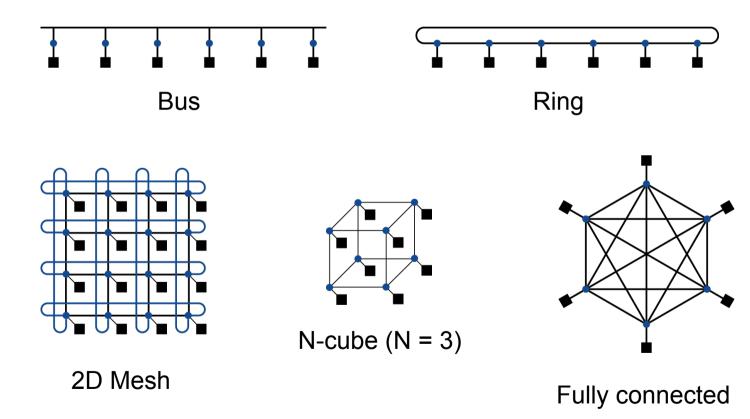
Don't fit nicely into SIMD/MIMD model

- Conditional execution in a thread allows an illusion of MIMD
 - But with performance degredation
 - Need to write general purpose code with care

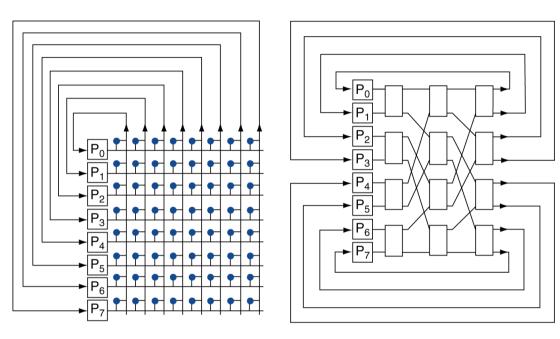
	Static: Discovered at Compile Time	Dynamic: Discovered at Runtime
Instruction-Level Parallelism	VLIW	Superscalar
Data-Level Parallelism	SIMD or Vector	Tesla Multiprocessor

Interconnection Networks

- Network topologies
 - Arrangements of processors, switches, and links

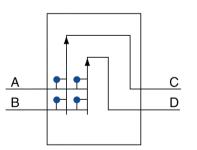


Multistage Networks



a. Crossbar

b. Omega network



c. Omega network switch box

Chapter 7 — Multicores, Multiprocessors, and Clusters — 34

Network Characteristics

Performance

- Latency per message (unloaded network)
- Throughput
 - Link bandwidth
 - Total network bandwidth
 - Bisection bandwidth
- Congestion delays (depending on traffic)
- Cost
- Power
- Routability in silicon

Parallel Benchmarks

- Linpack: matrix linear algebra
- SPECrate: parallel run of SPEC CPU programs
 - Job-level parallelism
- SPLASH: Stanford Parallel Applications for Shared Memory
 - Mix of kernels and applications, strong scaling
- NAS (NASA Advanced Supercomputing) suite
 - computational fluid dynamics kernels
- PARSEC (Princeton Application Repository for Shared Memory Computers) suite
 - Multithreaded applications using Pthreads and OpenMP

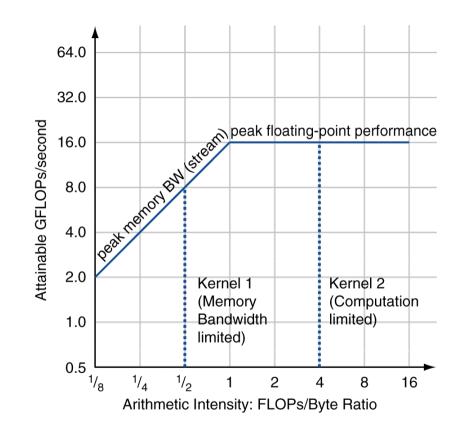
Code or Applications?

- Traditional benchmarks
 - Fixed code and data sets
- Parallel programming is evolving
 - Should algorithms, programming languages, and tools be part of the system?
 - Compare systems, provided they implement a given application
 - E.g., Linpack, Berkeley Design Patterns
- Would foster innovation in approaches to parallelism

Modeling Performance

- Assume performance metric of interest is achievable GFLOPs/sec
 - Measured using computational kernels from Berkeley Design Patterns
- Arithmetic intensity of a kernel
 - FLOPs per byte of memory accessed
- For a given computer, determine
 - Peak GFLOPS (from data sheet)
 - Peak memory bytes/sec (using Stream benchmark)

Roofline Diagram



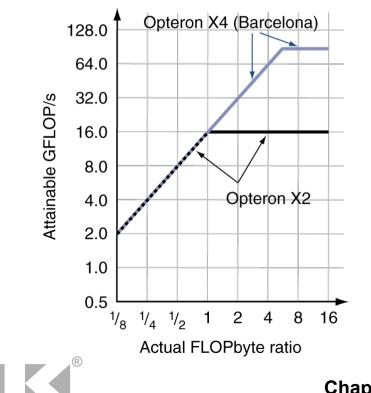
Attainable GPLOPs/sec

= Max (Peak Memory BW × Arithmetic Intensity, Peak FP Performance)

Comparing Systems

Example: Opteron X2 vs. Opteron X4

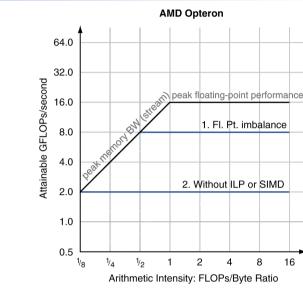
- 2-core vs. 4-core, 2× FP performance/core, 2.2GHz vs. 2.3GHz
- Same memory system

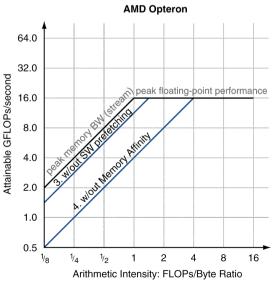


- To get higher performance on X4 than X2
 - Need high arithmetic intensity
 - Or working set must fit in X4's 2MB L-3 cache

Optimizing Performance

- Optimize FP performance
 - Balance adds & multiplies
 - Improve superscalar ILP and use of SIMD instructions
- Optimize memory usage
 - Software prefetch
 - Avoid load stalls
 - Memory affinity
 - Avoid non-local data accesses

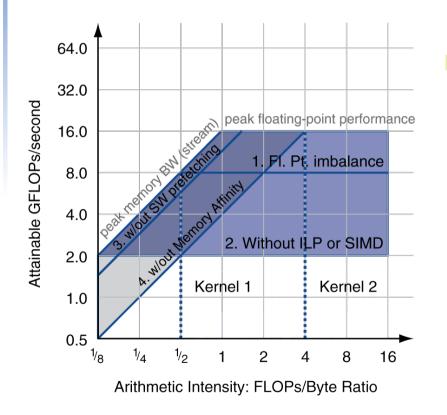




Chapter 7 — Multicores, Multiprocessors, and Clusters — 41

Optimizing Performance

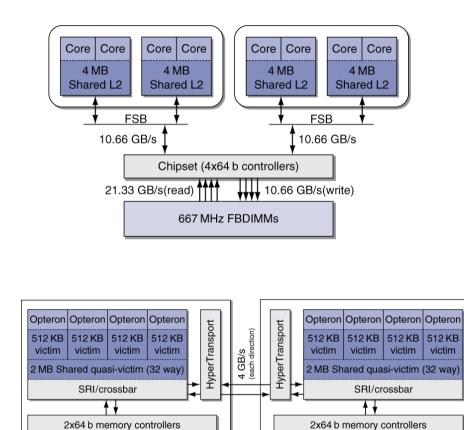
Choice of optimization depends on arithmetic intensity of code



Arithmetic intensity is not always fixed

- May scale with problem size
- Caching reduces memory accesses
 - Increases arithmetic intensity

Four Example Systems



10.66 GB/s

667 MHz DDR2 DIMMs

2 × quad-core AMD Opteron X4 2356 (Barcelona)

10.66 GB/s

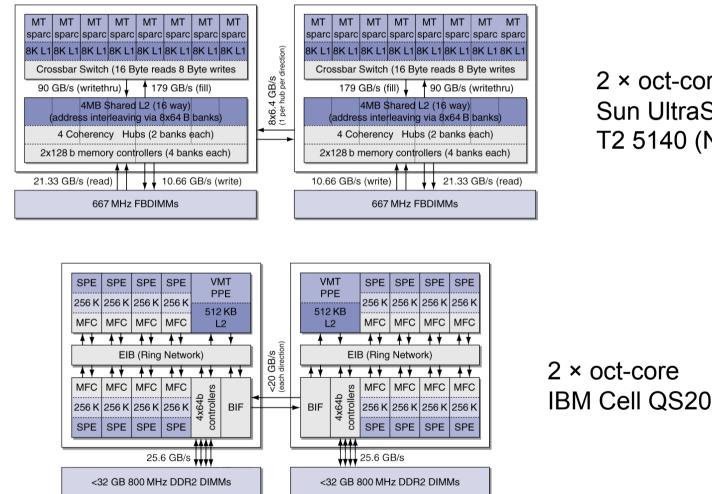
667 MHz DDR2 DIMMs

2 × quad-core

(Clovertown)

Intel Xeon e5345

Four Example Systems



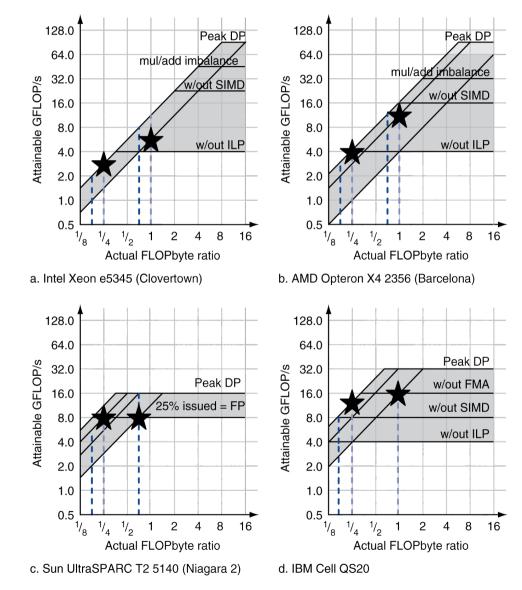
 $2 \times \text{oct-core}$ Sun UltraSPARC T2 5140 (Niagara 2)

Chapter 7 — Multicores, Multiprocessors, and Clusters — 44

And Their Rooflines

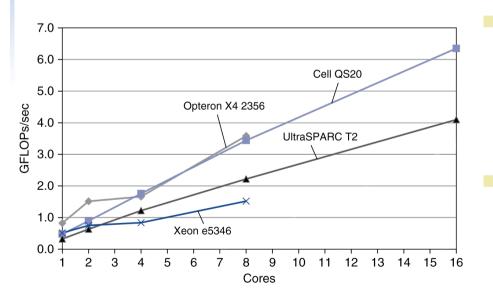
Kernels

- SpMV (left)
- LBHMD (right)
- Some optimizations change arithmetic intensity
- x86 systems have higher peak GFLOPs
 - But harder to achieve, given memory bandwidth



Performance on SpMV

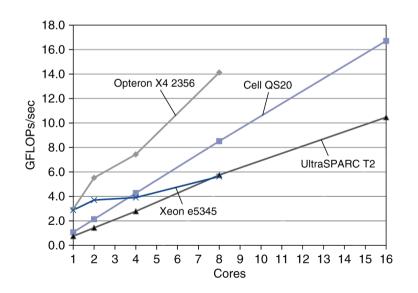
- Sparse matrix/vector multiply
 - Irregular memory accesses, memory bound
- Arithmetic intensity
 - 0.166 before memory optimization, 0.25 after



- Xeon vs. Opteron
 - Similar peak FLOPS
 - Xeon limited by shared FSBs and chipset
- UltraSPARC/Cell vs. x86
 - 20 30 vs. 75 peak GFLOPs
 - More cores and memory bandwidth

Performance on LBMHD

- Fluid dynamics: structured grid over time steps
 - Each point: 75 FP read/write, 1300 FP ops
- Arithmetic intensity
 - 0.70 before optimization, 1.07 after



- Opteron vs. UltraSPARC
 - More powerful cores, not limited by memory bandwidth
- Xeon vs. others
 - Still suffers from memory bottlenecks

Achieving Performance

- Compare naïve vs. optimized code
 - If naïve code performs well, it's easier to write high performance code for the system

System	Kernel	Naïve GFLOPs/sec	Optimized GFLOPs/sec	Naïve as % of optimized
Intel Xeon	SpMV	1.0	1.5	64%
	LBMHD	4.6	5.6	82%
AMD	SpMV	1.4	3.6	38%
Opteron X4	LBMHD	7.1	14.1	50%
Sun UltraSPARC	SpMV	3.5	4.1	86%
T2	LBMHD	9.7	10.5	93%
IBM Cell QS20	SpMV	Naïve code	6.4	0%
	LBMHD	not feasible	16.7	0%

Fallacies

- Amdahl's Law doesn't apply to parallel computers
 - Since we can achieve linear speedup
 - But only on applications with weak scaling
- Peak performance tracks observed performance
 - Marketers like this approach!
 - But compare Xeon with others in example
 - Need to be aware of bottlenecks

Pitfalls

- Not developing the software to take account of a multiprocessor architecture
 - Example: using a single lock for a shared composite resource
 - Serializes accesses, even if they could be done in parallel
 - Use finer-granularity locking

Concluding Remarks

- Goal: higher performance by using multiple processors
- Difficulties
 - Developing parallel software
 - Devising appropriate architectures
- Many reasons for optimism
 - Changing software and application environment
 - Chip-level multiprocessors with lower latency, higher bandwidth interconnect
- An ongoing challenge for computer architects!