
Parallel Computing
Introduction

Carlos Jaime Barrios Hernández, PhD

@carlosjaimebh

Science and Advanced Technology for All

Experts- Scientists
(Biologists, Architects, Pysiciens)

Experts Scientists – Computer and Informatics
Informatic, Math Applied

Decision Takers

Citizens, All

Data

Technology - Infrastructure

• Large Data Sets
• Complex Mathematics
• Complex Models
• Real Time
• Interaction and Confrontation
• Large Scale Visualization
• High Resolution
• High Performance and Capacity

• VR Needs
• Big Data and Deep Learning

Why?

COLLABORATIO
N

Big Problems, Smart Solutions

High Performance
(Computing) Knowledge

Infrastructure

Platforms

Applications

Challenges
Infrastructure

Post Moore Era Architectures
• Parallel Balancing, I/O, Memory Challenges

Dark Sillico

Exascale
• Computer Efficiency (Processing/Energy Consumption)

Hybrid Platforms (CISC+RISC+Others)
• TPUs, ARM…

Data Management

Advanced Networks

Fog/Edge

HPC@Pocket

… Quantum Computing

Platform

Programmability
• New Languages and Compilers

Computing Efficiency

Data Movement and Processing (In Situ, In
Transit, Workflows)

HPC as a Service
• Science Gateways, Containers

Viz as a Service (In Situ)

Protocols

IA and Deep Learning Frameworks

Quantum Computing

Applications

IA and Deep Learning

Algorithms Implementation

Use of Interpretators (as Python)

Community versions

Open Algorithms, Open Data

Utra Scale Applicatons

…and more!

About Parallelism
§ Implicit parallelism is a characteristic of a

programming language that allows a compiler
or interpreter to automatically exploit the
parallelism inherent to the computations
expressed by some of the language's
constructs.

§ Explicit parallelism is the representation of
concurrent computations by means of
primitives in the form of special-purpose
directives or function calls. § Concurrency is a property of systems in

which several computations are executing
simultaneously, and potentially interacting
with each other.

Elements of Parallelism
1. Computing Problems

• Numerical (Intensive Computing, Large Data Sets)
• Logical (AI Problems)

2. Parallel Algorithms and Data Structures
§ Special Algorithms (Numerical, Symbolic)
§ Data Structures (Dependency Analysis)
§ Interdisciplinary Action (Due to the Computing Problems)

3. System Software Support
§ High Level Languages (HLL)

§ Assemblers, Linkers, Loaders
§ Models Programming
§ Portable Parallel Programming Directives and Libraries
§ User Interfaces and Tools

4. Compiler Support
§ Implicit Parallelism Approach

§ Parallelizing Compiler
§ Source Codes

§ Explicit parallelism Approach
§ Programmer Explicitly

§ Sequential Compilers, Low Level Libraries
§ Concurrent Compilers (HLL)

§ Concurrency Preserving Compiler

5. Parallel Hardware Architecture
§ Processors

Pervasive and
Thinking

Parallelism

§ It is not a question of « Parallel Universes » (Almost)

§ Data Sources

§ Processing and Treatment

§ Resources (Available and Desire)

§ Energy Consumption

§ Natural “thinking” (Natural Compute?)

Thinking in
Parallel

(computing) – The
Typical Visions

The Moore Evolution

Gordon Moore (In
the 60’s)

The (Post) Moore Era

After 120
years… The

Moore’s Law is
Dead

Jack Dongarra

Parallel Computing Everywhere

It is more than a publicity!

Parallel Computing Evolution
(Fromthe LLNL Vision by Rob Neely)

Rob Neely

About High
Performance
Computing

§ HPC is useful to being faster, more precise overall, to
solve large problems and to treat, intrinsically,
parallelism in essence.

§ However allows

§ Technological Advantage

§ Technological Independency

§ Competitively

§ Energy Savings

§ But, HPC is expensive

What & Why

§ What is high performance computing (HPC)?

§ The use of the most efficient algorithms on computers capable of
the highest performance to solve the most demanding problems.

§ Why HPC?

§ Large problems – spatially/temporally

§ 10,000 x 10,000 x 10,000 grid � 10^12 grid points � 4x10^12
double variables � 32x10^12 bytes = 32 Tera-Bytes.

§ Usually need to simulate tens of millions of time steps.

§ On-demand/urgent computing; real-time computing;

§ Weather forecasting; protein folding; turbulence
simulations/CFD; aerospace structures; Full-body simulation/
Digital human …

Concurrency vs Concurreny/Parallelism
Behavior

Shared Processing Ressources
Switching
Non Parallel Threards (Non Multitasking, Yes
Multithreading)

Non Shared Processing Ressources (However
the Memory...)
Switching
Parallel Threards (Multitasking, Multithreading)

Concurrency vs Concurreny/Parallelism Example

Dual System
- Multiple Paralle Threads in Runtime
- Strategies to Paralellism following models
(PRAM, LogP, etc) addressed to exploit
memory and overhead reduction

Single System
- Multiple Threads in Runtime
- Almost Synchronization Strategies
- Memory Allocation

Sequential
Processing

§ All of the algorithms we’ve seen so far are
sequential:

§ They have one “thread” of execution

§ One step follows another in sequence

§ One processor is all that is needed to run
the algorithm

Concurrent
Systems § A system in which:

§ Multiple tasks can be executed at the same time

§ The tasks may be duplicates of each other, or
distinct tasks

§ The overall time to perform the series of tasks is
reduced

Advantages of Concurrency

§ Concurrent processes can reduce duplication in code.

§ The overall runtime of the algorithm can be
significantly reduced.

§ More real-world problems can be solved than with
sequential algorithms alone.

§ Redundancy can make systems more reliable.

Disadvantages of Concurrency

§Runtime is not always reduced, so careful
planning is required

§Concurrent algorithms can be more complex
than sequential algorithms

§Shared data can be corrupted

§Communications between tasks is needed

Concurrent Programming General Steps

§ Analysis

§ Identify Possible Concurrency

§ Hotspot: Any partition of the code that has a significant amount of activity

§ Time spent, Independence of the code…

§ Design and Implementation
§ Threading the algorithm

§ Tests of Correctness

§ Detecting and Fixing Threading Errors

§ Tune of Performance

§ Removing Performance Bottlenecks
§ Logical errors, contention, synchronization errors, imbalance, excessive overhead

§ Tuning Performance Problems in the code (tuning cycles)

Parallel Computing
l Parallel Computing exploit

Concurrency
l In “system” terms, concurrency exists

when a problem can be decomposed in
sub problems that can safely executed
at same time (in other words,
concurrently)

https://ignorelist.files.wordpress.com/2012/01/the-art-of-
concurrency.pdf

https://ignorelist.files.wordpress.com/2012/01/the-art-of-concurrency.pdf

TraditionalWay

Designing and Building Parallel Programs, by Ian Foster in http://www.mcs.anl.gov/~itf/dbpp/

http://www.mcs.anl.gov/~itf/dbpp/

Shared,	Distributed and	HybridMemoryArchitectures
l Memory Exploitation involves Memory

Hierarchy
l Models as PRAM, BSP, etc..

l All modern architectures to HPC allows
different memory models
l Shared Memory (Inside Nodes)
l Distributed Memory (Among Nodes)
l Hybrid Memory

l Using Accelerators (GPUs, MICs)
l Interaction Nodes/Processors

Flynn’s Taxonomy*

* Proposed by M. Flynn in 1966

Descomposition

Tasks Decomposition : Task Parallelism
Data Decomposition: Data Parallelism /Geometric
Parallelism

Task Granularity

Core 0

overhead

task

overhead

task

overhead

task

Core 1 Core 2 Core 0

overhead

task

Core 1 Core 3

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

Fine-grained decomposition Coarse-grained decomposition

Higher Performance
Lower Accuracy
(Using Nodes)

Coarse grid

Lower Performance
Higher Accuracy

(Using Processors)

Fine grid Dynamic grid

Target performance where
accuracy is required
(Using Processors and

Nodes)

Granularity in Implementations

Tasks must be assigned to threads for
execution

TaskDecomposition
Considerations

• What are the tasks and how are defined?
• What are the dependencies between task

and how can they be satisfied?
• How are the task assigned to threads?

Task

Task

Job

TaskDependencies

Order Dependency Data Dependency

Enchantingly Parallel Code: Code without dependencies

Process 1

Process 2

Out

in In 1 In 2

Process 1

Process 3

Process 2

Out 1 Out 2

Process 3

Out

Data	Decomposition	
Considerations
(Geometric	Decomposition)	

Data Structures must be (commonly) divided in arrays or logical
structures.

- How should you divide the data into
chunks?
- How should you ensure that the tasks for
each chunk have access to all data
required for update?
- How are the data chunks assigned to
threads?

How	should	you	divide	data	into	chunks?

By individual elements By rows

By groups of columns By blocks

• Data Decomposition have an additional dimension.
• It determines what the neighboring chunks are and how any

exchange of data will be handled during the course of the chunk
computations.

2 Shared Borders

• Regular shapes : Common Regular data organizations.
• Irregular shapes: may be necessary due to the irregular

organizations of the data.

5 Shared Borders

The	Shape	of	the	Chunk

Howshouldyouensure that the tasks foreach
chunkhaveaccess to	alldata	required forupdate?

• Using Ghost Cells
l Using ghost cells to hold copied data from a neighboring chunk.

Original split with ghost cells

Copying data into ghost cells

Tasks and	DomainDecomposition
Patterns
• Task Decomposition Pattern
l Understand the computationally intensive parts of the problem.
l Finding Tasks (as much…)

l Actions that are carried out to solve the problem
l Actions are distinct and relatively independent.

• Data Decomposition Pattern
l Data decomposition implied by tasks.
l Finding Domains:

l Most computationally intensive part of the problem is organized around the manipulation of large
data structure.

l Similar operators are being applied to different parts of the data structure.
l In shared memory programming environments, data decomposition will be implied by task

decomposition.

NotParallelizable Jobs,	Tasks and	
Algorithms

• Algorithms with state
• Recurrences
• Induction Variables
• Reductions
• Loop-carried Dependencies

The Mythical Man-Month: Essays on Software Engineering. By Fred Brooks. Ed
Addison-Wesley Professional, 1995

38

HPC Examples

Earthquake simulation

Surface velocity 75 sec after earthquake

Flu pandemic simulation
300 million people tracked

Density of infected population, 45 days
after breakout

39

HPC Examples: Blood Flow in Human Vascular
Network

• Cardiovascular disease accounts for about 50% of
deaths in western world;

• Formation of arterial disease strongly correlated to
blood flow patterns;

Computational challenges: Enormous
problem size

In one minute, the heart pumps the entire blood
supply of 5 quarts through 60,000 miles of vessels,
that is a quarter of the distance between the moon
and the earth

Blood flow involves multiple scales

40

HPC Example: Homogeneous Turbulence

Direct Numerical Simulation of Homogeneous Turbulence: 4096^3

Zoom-in

Zoom-in

Vorticity iso-
surface

41

How HPC fits into Scientific Computing

Physical Processes

Mathematical Models

Numerical Solutions

Data Visualization,
Validation,

Physical insight

Air flow around
an airplane

Navier-stokes
equations

Algorithms, BCs, solvers,
Application codes,
supercomputers

Viz software

HPC

Advantages of
Parallelization

§ Cheaper, in terms of Price/Performance Ratio

§ Faster than equivalently expensive
uniprocessor machines

§ Handle bigger problems

§ More scalable: the performance of a particular
program may be improved by execution on a
large machine

§ More reliable: In theory if processors fail we
can simply use others

Now, a Little of Advanced Computing Architecture

PC/Workstation/
Node

Cluster Computing Architecture

Sequential Applications Parallel Programming Environment

Middleware
(Single System Image and Availability Infrastructure)

PC/Workstation/
Node

Network Interface Hardware

Communications
Software

PC/Workstation/
Node

Network Interface Hardware

Communications
Software

Network Interface Hardware

Communications
Software

PC/Workstation/
Node

Network Interface Hardware

Communications
Software

Sequential Applications

Parallel Applications

Sequential Applications
Sequential Applications

Parallel Applications

Operating System Operating System Operating System Operating System

Interconnection Network/Switch

The Spain Exemple: BSC-CNS Marenostrum
www.bsc.es

• 11.15 Petaflops
• 384.75 TB Memory
• 3.465 Computing Nodes

• 2x Intel Xeon Plantium
8160 24C /2.1Ghz

• 216 Nodes with
12x32GB DDR4 2667
DIMMS (8GB Cores)

• 3240 Nodes with
12x8GB DDR4-2667
DIMMS (2GB Cores)

• Network
• 100Gb Intel Omni-Path

Full Fat Tree
• 100Gb Ethernet

• Operating System
• Suse Linux Enterprise

Server 12SP2

http://www.bsc.es/

Grid Computing
§ Grid Computing implies technology, technics and

methodology to support Parallel*/Distributed Computing.

§ Grid Computing needs Grid Computing Infrastructure and
dedicated and high disponibility networks or interconexion.

§ Different Types or Possibilities:

§ Experimental Testbeds

§ Production Grids

§ Lightweigth Grids

§ Desktop Grid Computing (May be Lightweigth too)

§ Grid Computing is in the back of Cloud Computing
Systems (from Infrastructure Point of View)

Grid Computing Feautures

§ Grid Computing Features:

§ Infrastructure
§ High Availability

§ High Performance

§ Heterogeneity

§ Pervasive

§ Scalability

§ Methodology
§ Different User Levels

§ Multi Administration

§ Politics
§ Security

§ Use

§ Privacy
http://www.grid5000.fr

http://www.grid5000.fr/

Grid Computing Architecture
(Typical Diagram)

[*]From http://gridcafe.web.cern.ch

http://gridcafe.web.cern.ch/

Grid Computing Architecture
(Remember the Cluster Architecture)

Sequential Applications Parallel Programming Environment

Middleware
(Single System Image and Availability Infrastructure)

Interconnection Network/Switch

PC/Workstation/
Cluster/Devices/

Sensors

Network Interface Hardware

Communications
Software

PC/Workstation/
Cluster/Devices/

Sensors

Network Interface Hardware

Communications
Software

PC/Workstation/
Cluster/Devices/

Sensors

Network Interface Hardware

Communications
Software

PC/Workstation/
Cluster/Devices/

Sensors

Network Interface Hardware

Communications
Software

Sequential Applications

Parallel Applications

Sequential Applications
Sequential Applications

Parallel Applications

An Example: The French Aladdin Grid5000 (G5K)
n G5K has 5000 processors distributed in 9 sites

France wide, for research in Grid Computing,
eScience and Cyber-infrastructures

n G5K project aims at building a highly
reconfigurable, controlable and monitorable
experimental Grid platform

n All clusters will be connected to Renater with a
10Gb/s link (or at least 1 Gb/s, when 10Gb/s is
not available yet).

– IntraCluster

n Myrinet

n GigaEthernet / Infiniband

– Grid

n Giga Ethernet (Best case 10GB/s, Nate
case: 1GB/s)

– Inter-Grid

n Ethernet (~1GB/s)www.grid5000.org

http://www.grid5000.org/

Volunteer Computing

§ Volunteer computing is a type of distributed
computing in which computer owners donate their
computing resources (such as processing power and
storage) to one or more "projects”.
§ BOINC (Seti@home)
§Xgrid
§GridMP

§ Associated with P2P
§ Can be associated with High Throughput Computing
(HTC) or High Performance Computing (HCP)

An Example: The BOINC Architecture

https://boinc.berkeley.edu/

https://boinc.berkeley.edu/

Internet-based computing,
whereby shared resources,
software, and information

are provided to computers
and other devices on

demand.

Cloud computing describes
a new supplement,

consumption, and delivery
model for IT services based

on the Internet, and it
typically involves over the-

Internet-provision of
dynamically scalable and

often virtualized resources

Cloud Computing

Logical-Services Cloud View

Cloud
Computing

Visibility

§ Visit: http://prezi.com/i0sretldeyk7/computacion-en-la-
nube-y-sus-implicaciones-para-la-industria-del-software-
en-colombia/

http://prezi.com/i0sretldeyk7/computacion-en-la-nube-y-sus-implicaciones-para-la-industria-del-software-en-colombia/

How Exploit HPC Architectures with Cloud Visibility Models?
HPC as A Service Model

Advanced Networking

Monitoring

Processing Ressources Storage Capacity Acceleration

Virtual Ressources

Deployment Images

Secure Access

Frameworks Data Repositories

Application Repositories AppsContainers

Embeebed Resources Clusters

Science Gateways

Customized Applications

Infrastructure
Oriented
Services

Developer
Oriented
Services

User/Scientist
Oriented
Services

Kadeploy, OpenNebula, KVM

SSH

Web Services,
Appliances, Viz as a

Service

Access Apps

* Red Components are (most) concerned at Viz As A Service

And… Quantum computing?
(Advanced Computing Point of view)

§ A quantum computer is a machine that performs calculations based on the
laws of quantum mechanics, which is the behavior of particles at the sub-
atomic level.

Representation of Data - Qubits
A bit of data is represented by a single atom that is in one of two states
denoted by |0> and |1>. A single bit of this form is known as a qubit

A physical implementation of a qubit could use the two energy levels of
an atom. An excited state representing |1> and a ground state
representing |0>.

Excited
State

Ground
State

Nucleus

Light pulse of
frequency l for
time interval t

Electro
nState |0> State |1>

Representation of Data - Superposition
Light pulse of

frequency l for
time interval t/2

State |0> State |0> +
|1>

§Consider a 3 bit qubit register. An equally weighted superposition
of all possible states would be denoted by:

|y> = |000> + |001> + . . . + |111>1
√8

1
√8

1
√8

§Due to the nature of quantum physics, the destruction of information in
a gate will cause heat to be evolved which can destroy the
superposition of qubits.

Operations on Qubits - Reversible Logic

A B C

0 0 0

0 1 0

1 0 0

1 1 1

Input Output

A

B
C

In these 3 cases,
information is
being destroyed

Ex.

The AND Gate

§This type of gate cannot be used. We must use Quantum Gates.

Quantum Computers Today

§ Enterprises produce Quantum Computing Laboratory
Infrastructure (Non for production)

§ (Real) Quantum Computing (D-Wave, IBM)

§ Quantum Computing Simulators (Atos)

About Q… Algorithms and Code…

• Consortiums propose
Quantum Frameworks
– IBM, Microsoft, ATOS
– Quantum Computing

Community…
• However without a good use fo real

Quantum mathematical
abstraction.

Q# Interface

Quantum Computing Theory for Quantum
Computing Applications

G. Diaz PhD. Thesis about Classica Resources Consumption in Quantum Computing
Simulators (Co-Advising with L. A. Steffenel)

The term quantum algorithm is generally
used for those algorithms that incorporate
some essential feature of quantum
computing, such as superposition or
entanglement. By using this special
features, we can speed up significantly the
calculation, that is called quantum
parallelism.

The Challenges in Detail: Post Moore
Era Architectures

Sustainable-Hybrid Technology
• RISC/CISC

• GPUs, Hybrid ARM/FPGAs, Accelerators, CPUS….
• I/O’s and Memory Management

The “Data Treatment” Goal
• Large Scale Data Sets (Supported by the Architecture
• However scale capabilities changes
• In-Situ and In-Transit Problem

Very Known Schedulers, O.S. and Package Management
• However, it is important to observe the architecture

Exascale constrains
• Computer Efficiency (Energy Consumption / Energy Aware)

A post-moore architecture schema

Taking the Software Approach

www.nvidia.com

http://www.nvidia.com/

Concurrent
Design Models

Features

§ Efficiency

§ Concurrent applications must run quickly and
make good use of processing resources.

§ Simplicity

§ Easier to understand, develop, debug, verify and
maintain.

§ Portability

§ In terms of threading portability.

§ Scalability

§ It should be effective on a wide range of number
of threads and cores, and sizes of data sets.

Design
Evaluation

Pattern

§ Production of analysis and decomposition:

§ Task decomposition to identify concurrency

§ Data decomposition to indentify data local to
each task

§ Group of task and order of groups to satisfy
temporal constraints

§ Dependencies among tasks

§ Design Evaluation

§ Suitability for the target platform

§ Design Quality

§ Preparation for the next phase of the design

Algorithm Structures

Organizing by Tasks

Task Parallelism
Divide and Conquer

Organizing by Data
Decomposition

Geometric Decomposition
Recursive Data

Organizing by Flow of Data

Pipeline
Event-Based Coordination

Start

Organize By Tasks

Linear

Task
Parallelism

Recursive

Divide and Conquer

Organize By Data Decomposition

Linear

Geometric
Decomposition

Recursive

Recursive Data

Organize By Flow of Data

Linear

Pipeline

Recursive

Event-Based
Coordination

Algorithm Structure Decision Tree
(Major Organizing Principle)

What is SC3UIS?

R+D+i
National
Strategic

Areas

.com
and .org

.gov
and .co

International
R+D+i .edu

Application
Deployment

Scientific Software
Development

SCI- IT
Management and

Support

Strategic Mediation
and Training

Research and
Innovation

SC3UIS at UIS (@UIS) and Guatiguara Technology
Park

(@PTGuatiguara)

• Founded in 2012 After the Advanced Technology Project for Sciences and
Engineering

• 2 Main Sites (CENTIC and PTG EDI)
• Next Step: SC3UIS becomes Colombia Advanced Computing Center
• In bioinformatics, we are experience (laureate) for genomics using Parallel

Computing and Deep Learning.

R+D+i Axes
(@PTGuatiguara)

Oil and
Gas

(Some with ICP-Ecopetrol)
Energ

y

Biotechnology
and

AgroIndustry

(Some with PYMES and
Consortium, as Cacao

Association)

Environment
and Water

Materia
ls

(Some with Gouvernment and
Industrials Entities, i.e.
Colciencias)

Advance
d TI

2017 Important Numbers

4 Patents
5 Spin Off in Incubation Process
(Potentially for 2018 more than 10)
3 Big International Collaborations
(more than 5M USD)

2018 New Axes:
Healthcare
New Generation of Automotive
Motors
Human and Social Development

Parnertship

Some Conclusions
§ High Performance Computing allows science and mathematics dreams and implementations… i.e. Artificial

Intelligence Implementation, data analytics, blockchain and more…

§ Computer systems involve different technologies and hybrid architectures, demanding sustainability, dynamicity
and they need support changes in the scale of data and processing…. And all processing in parallel.

§ Power consumption, energy aware and computational efficiency reach sustainability. It is proposed from the design
of the architecture and it must be dynamic.

§ Big and little (embedded) HPC Architectures with the same challenges (memory contention, stable speed – up,
parallel coherence) follows same kind of solutions, but with different scale of treatment observing the data level.

§ HPC is expensive (but It is more expensive to not have HPC Knowledge and Resources)

§ Parallel Computing is not a tendency. (From 2015 is mandatory in all universities and colleges in USA parallel
computing, scientific computing and advanced computing courses in science and engineering programs
(programming computing is mandatory also in high school from 2009).

Class work (in
groups)

§ Revision of Chapter 2 of Designing and Building
Parallel Programs, by Ian Foster in
http://www.mcs.anl.gov/~itf/dbpp/

§ Solve in the Exercises Section the 1 and 2 numerals.

§ Imagine a solution for your final Project (conceptually)

http://www.mcs.anl.gov/~itf/dbpp/

Recommended Lectures

• The Art of Concurrency “A thread Monkey’s Guide to Writing
Parallel Applications”, by Clay Breshears (Ed. O Reilly, 2009)

• Writing Concurrent Systems. Part 1., by David Chisnall (InformIT
Author’s Blog:
http://www.informit.com/articles/article.aspx?p=1626979)

• Patterns for Parallel Programming., by T. Mattson., B. Sanders and
B. MassinGill (Ed. Addison Weslley, 2009) Web Site:
http://www.cise.ufl.edu/research/ParallelPatterns/

• Designing and Building Parallel Programs, by Ian Foster in
http://www.mcs.anl.gov/~itf/dbpp/

http://www.informit.com/articles/article.aspx?p=1626979
http://www.cise.ufl.edu/research/ParallelPatterns/
http://www.mcs.anl.gov/~itf/dbpp/

Questions?

From: www.bsc.es

@carlosjaimebh

http://www.bsc.es/

