
Analysis of
Algorithms:
Terminology and
Concepts

Carlos J. Barrios H. PhD

@carlosjaimebh

What and how?

Running Time

• Most algorithms transform input objects
into output objects.
• The running time of an algorithm typically

grows with the input size.
• Average case time is often difficult to

determine.
• We focus on the worst case running time.

• Easier to analyze
• Crucial to applications such as games, finance

and robotics 0

20

40

60

80

100

120

R
un

ni
ng

 T
im

e

1000 2000 3000 4000
Input Size

best case
average case
worst case

4

Experimental Studies

• Write a program implementing the
algorithm
• Run the program with inputs of varying

size and composition
• Use a method like

System.currentTimeMillis() to get an
accurate measure of the actual
running time
• Plot the results

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100
Input Size

Ti
m

e
(m

s)

Limitations of Experiments
• It is necessary to implement the algorithm, which may be difficult
• Results may not be indicative of the running time on other inputs not

included in the experiment.
• In order to compare two algorithms, the same hardware and software

environments must be used

Analysis of Algorithms 6

Theoretical Analysis

• Uses a high-level description of the
algorithm instead of an implementation
• Characterizes running time as a function

of the input size, n.
• Takes into account all possible inputs
• Allows us to evaluate the speed of an

algorithm independent of the
hardware/software environment

Analysis of Algorithms 7

Remember the Pseudocode

• High-level description of
an algorithm
• More structured than

English prose
• Less detailed than a

program
• Preferred notation for

describing algorithms
• Hides program design

issues

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax¬ A[0]
for i¬ 1 to n - 1 do
if A[i] > currentMax then
currentMax¬ A[i]

return currentMax

Example: find max element
of an array

Analysis of Algorithms

Pseudocode Details (from the first class)

• Control flow
• if … then … [else …]
• while … do …
• repeat … until …
• for … do …
• Indentation replaces braces

• Method declaration
Algorithm method (arg [, arg…])

Input …
Output …

• Method call
var.method (arg [, arg…])

• Return value
return expression

• Expressions
¬Assignment

(like = in Java)
= Equality testing

(like == in Java)
n2Superscripts and other

mathematical formatting
allowed

An Introduction to Machine Models
• What is a machine model?
– A abstraction describes the operation of a

machine.
– Allowing to associate a value (cost) to

each machine operation.
• Why do we need models?
–Make it easy to reason algorithms
– Hide the machine implementation details

so that general results that apply to a
broad class of machines to be obtained.
– Analyze the achievable complexity (time,

space, etc) bounds
– Analyze maximum parallelism (to see

later)
–Models are directly related to algorithms.

A Turing machine is a mathematical model of
computation that defines an abstract machine[1] that
manipulates symbols on a strip of tape according to a
table of rules.[2] Despite the model's simplicity, given
any computer algorithm, a Turing machine capable of
simulating that algorithm's logic can be constructed.

More in: https://plato.stanford.edu/entries/turing-machine/

https://en.wikipedia.org/wiki/Mathematical_model_of_computation
https://en.wikipedia.org/wiki/Abstract_machine
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Computer_algorithm
https://plato.stanford.edu/entries/turing-machine/

(A Parenthesis about Computer Architecture)
• Von Neumann Architecture
• Von Neumann architecture was

first published by John von Neumann
in 1945.
• His computer architecture design

consists of a Control Unit, Arithmetic
and Logic Unit (ALU), Memory
Unit, Registers and Inputs/Outputs.
• Von Neumann architecture is based

on the stored-program computer
concept, where instruction data and
program data are stored in the same
memory. This design is still used in
most computers produced today.

More in: https://www.computerscience.gcse.guru/theory/von-neumann-architecture

(Remember this for later)

https://www.computerscience.gcse.guru/glossary/arithmetic-logic-unit
https://www.computerscience.gcse.guru/glossary/arithmetic-logic-unit
https://www.computerscience.gcse.guru/glossary/register
https://www.computerscience.gcse.guru/theory/von-neumann-architecture

Analysis of Algorithms 11

The Random Access Memory (RAM) Model
• A CPU

• An potentially unbounded
bank of memory cells, each of
which can hold an arbitrary
number or character

0
1
2

Memory cells are numbered and accessing
any cell in memory takes unit time.

RAM (Random Access Machine) model in
detail

• Memory consists of infinite array
(memory cells).

• Each memory cell holds an infinitely large
number.

• Instructions execute sequentially one at a
time.

• All instructions take unit time
– Load/store
– Arithmetic
– Logic

• Running time of an algorithm is the
number of instructions executed.

• Memory requirement is the number of
memory cells used in the algorithm.

Important points of RAM (random access
machine) model
• The RAM model is the base of algorithm analysis for sequential

algorithms although it is not perfect.
–Memory not infinite
– Not all memory access take the same time
– Not all arithmetic operations take the same time
– Instruction pipelining is not taken into consideration

• The RAM model (with asymptotic analysis) often gives relatively
realistic results.

Analysis of Algorithms 14

Primitive Operations
• Basic computations performed

by an algorithm
• Identifiable in pseudocode
• Largely independent from the

programming language
• Exact definition not important

(we will see why later)
• Assumed to take a constant

amount of time in the RAM
model

• Examples:
• Evaluating an

expression
• Assigning a value to a

variable
• Indexing into an array
• Calling a method
• Returning from a

method

Analysis of Algorithms 15

Counting Primitive Operations

• By inspecting the pseudocode, we can determine the
maximum number of primitive operations executed by an
algorithm, as a function of the input size

Algorithm arrayMax(A, n) # operations
currentMax¬ A[0] 2
for i¬ 1 to n - 1 do 2n

if A[i] > currentMax then 2(n - 1)
currentMax¬ A[i] 2(n - 1)

{ increment counter i } 2(n - 1)
return currentMax 1

Total 8n - 2

Analysis of Algorithms 16

Estimating Running Time

• Algorithm arrayMax executes 8n - 2 primitive
operations in the worst case. Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

• Let T(n) be worst-case time of arrayMax. Then
a (8n - 2) £ T(n) £ b(8n - 2)

• Hence, the running time T(n) is bounded by two linear
functions

Analysis of Algorithms 17

Growth Rate of Running Time

• Changing the hardware/ software environment
• Affects T(n) by a constant factor, but
• Does not alter the growth rate of T(n)

• The linear growth rate of the running time T(n) is
an intrinsic property of algorithm arrayMax

Remember the Best, Worst, and Average
Case Complexity

Worst Case
Complexity

Average Case
Complexity

Best Case
Complexity

Number
of steps

N
(input size)

• Worst Case Complexity:
• the function defined by the maximum

number of steps taken on any instance of
size n

• Average Case Complexity:
• the function defined by the average

number of steps taken on any instance of
size n

• Best Case Complexity:
• the function defined by the minimum

number of steps taken on any instance of
size n

Algorithm Complexity

• Worst Case Complexity:
• the function defined by the maximum number of steps taken on any instance

of size n

• Best Case Complexity:
• the function defined by the minimum number of steps taken on any instance

of size n

• Average Case Complexity:
• the function defined by the average number of steps taken on any instance of

size n

Principles
• Ignore Machine-Dependent Constants:

It will not be concerned how fast an
individual processor executes a machine
instruction.
• Look at growth of T(n) as n à♾ (where

T(n) is the running time of an algorithm
operating on a data ser of size n): Even
an inefficient algorithm will often finish
its work in an acceptable time when
operating on a small data set.
• Growth Rate: Taking a function as n gets

large, it will ignore constant factors when
expressing asymptotic analysis.

From : https://www.researchgate.net/publication/265962317_Algorithms_Sequential_Parallel_A_Unified_Approach

https://www.researchgate.net/publication/265962317_Algorithms_Sequential_Parallel_A_Unified_Approach

Asymptotic Notation (1/3)
• The goal is to express the asymptotic behavior of a function.
• Suppose f and g are positive functions

of n. Then
f (n) = Q(g(n)) (read “f of n is theta of g
of n”) if and only if there exist positive
constants c1, c2, and n0 such that c1g(n) £ f
(n) £ c2 g(n) whenever n ³ n0 (See Figure
1.2)

From : https://www.researchgate.net/publication/265962317_Algorithms_Sequential_Parallel_A_Unified_Approach

https://www.researchgate.net/publication/265962317_Algorithms_Sequential_Parallel_A_Unified_Approach

Asymptotic Notation (2/3)

From : https://www.researchgate.net/publication/265962317_Algorithms_Sequential_Parallel_A_Unified_Approach

• f(n) = O(g(n)) (read “f of n is oh of g of
n”) if and only if there exist positive
constants c and n0such that f (n) £ cg(n)
whenever n ³ n0. (See Figure 1.3).

• f (n) = W(g(n)) (read “f of n is omega of g of
n”) if and only if there exist positive
constants c and n0 such that cg(n) £ f (n)
whenever n ³ n0. (See Figure 1.4).

https://www.researchgate.net/publication/265962317_Algorithms_Sequential_Parallel_A_Unified_Approach

Asymptotic Notation (3/3)

From : https://www.researchgate.net/publication/265962317_Algorithms_Sequential_Parallel_A_Unified_Approach

• f(n) = o(g(n)) (read “f of n is little oh of g
of n”) if and only if for every positive
constant C there is a positive integer n0

such that f (n) < Cg(n) whenever n ³ n0.
(See Figure 1.5).

• f(n) = w(g(n)) (read “f of n is little omega of
g of n”) if and only if for every positive
constant C there is a positive integer n0such
that f (n) > Cg(n) whenever n ³ n0. (See
Figure 1.6).

https://www.researchgate.net/publication/265962317_Algorithms_Sequential_Parallel_A_Unified_Approach

Asymptotic Notation for Asymptotic Analysis

• Q, O, W, o and w are set-valued functions, in practice used to compare two
function sizes.
• The notations describe different rate-of-growth relations between the defining

function and the defined set of functions.
• Asymptotic growth rate, asymptotic order, or order of functions

• Comparing and classifying functions that ignores
• constant factors and
• small inputs.

• The Sets big oh O(g), big theta Q(g), big omega W(g).
• O(g(n)), Big-Oh of g of n, the Asymptotic Upper Bound;

• Q(g(n)), Theta of g of n, the Asymptotic Tight Bound; and
• W(g(n)), Omega of g of n, the Asymptotic Lower Bound.

Doing the Analysis
• It’s hard to estimate the running time exactly

• Best case depends on the input
• Average case is difficult to compute
• So we usually focus on worst case analysis

• Easier to compute
• Usually close to the actual running time

• Strategy: find a function (an equation) that, for large n, is an upper
bound to the actual function (actual number of steps, memory usage,
etc.)

Upper bound

Lower bound
Actual function

Asymptotic Analysis and Limits
To determine the relationship between functions f and g, it is often useful to
examine

𝐥𝐢𝐦𝒏→#
𝒇(𝒏)
𝒈(𝒏)

= L
• The possible outcomes of this relationship, and their implications, follow:

• L = 0: This means that g(n) grows at a faster rate than f(n), and hence that f = O(g) (indeed, f
= o(g) and f≠ Q(g)).

• L = ∞: This means that f (n) grows at a faster rate than g(n), and hence that f = W(g)
(indeed, f = w(g) and f ≠ Q(g)).

• L ≠ 0 is finite: This means that f (n) and g(n) grow at the same rate, to within a constant
factor, and hence that f = Q(g), or equivalently, g = Q(f). Notice that this also means that f
= O(g), g = O(f), f = W(g), and g = W(f).

• There is no limit: In the case where 𝐥𝐢𝐦
𝒏→#

𝒇(𝒏)
𝒈(𝒏)

= L does not exist, this technique cannot
be used to determine the asymptotic relationship between f(n) and g(n).

From : https://www.researchgate.net/publication/265962317_Algorithms_Sequential_Parallel_A_Unified_Approach

https://www.researchgate.net/publication/265962317_Algorithms_Sequential_Parallel_A_Unified_Approach

Rules for Analysis of Algorithms (1/3)

• Fundamental operations execute in Q(1) time: Traditionally, it is
assumed that “fundamental” operations require a constant amount
of time (that is, a fixed number of computer “clock cycles”) to
execute. Actually, it assumes that the running time of a fundamental
operation is bounded by a constant, irrespective of the data being
processed.

From : https://www.researchgate.net/publication/265962317_Algorithms_Sequential_Parallel_A_Unified_Approach

https://www.researchgate.net/publication/265962317_Algorithms_Sequential_Parallel_A_Unified_Approach

Rules for Analysis of Algorithms (2/3)

• Arithmetic operations (+, , ×, /) as applied to a constant number
(typically two) of fixed-size operands.
• Comparison operators (<,≤ , > ,≥ , = ,≠) as applied to two fixed- size

operands.
• Logical operators (AND, OR, NOT, XOR) as applied to a constant

number of fixed-size operands.
• Bitwise operations, as applied to a constant number of fixed-size

operands.
• Conditional/branch operations.

From : https://www.researchgate.net/publication/265962317_Algorithms_Sequential_Parallel_A_Unified_Approach

https://www.researchgate.net/publication/265962317_Algorithms_Sequential_Parallel_A_Unified_Approach

Rules for Analysis of Algorithms (3/3)

• I/O operations that are used to read or write a constant number of
fixed-size data items. Note this does not include input from a
keyboard, mouse, or other human-operated device, because the
user’s response time is unpredictable.
• The evaluation of certain elementary functions. Notice that such

functions need to be considered carefully.
• For example, when the function sin Q is to be evaluated for “moderate-sized”

values of Q, it is reasonable to assume that Q(1) time is required for each
application of the function. However, for very large values of Q, a loop
dominating the calculation of sin Q might require a significant number of
operations before stabilizing at an accurate approximation. In this case, it
might not be reasonable to assume Q(1) time for this operation.

From : https://www.researchgate.net/publication/265962317_Algorithms_Sequential_Parallel_A_Unified_Approach

https://www.researchgate.net/publication/265962317_Algorithms_Sequential_Parallel_A_Unified_Approach

Summarizing Terminology

From : https://www.researchgate.net/publication/265962317_Algorithms_Sequential_Parallel_A_Unified_Approach

https://www.researchgate.net/publication/265962317_Algorithms_Sequential_Parallel_A_Unified_Approach

Workclass Exercises

1. Propose and example for
each one of the
complexity cases,
oberving the
terminology of Today’s
class.

2. The sum of an erroneous
compute of the first n
powers of 2 (starting
with zero) is given the by
formula:

P(n) = 2n-1
• (Not forget to propose pseudocode and flowchart)

Worst Case
Complexity

Average Case
Complexity

Best Case
Complexity

Number
of steps

N
(input size)

Questions?

@carlosjaimebh

