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Remember Special Features of Architecture

• Remember “concurrency”: it exploits better the resources 
(shared) within a computer.

• Exploit SIMD and MIMD Architectures
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Cluster Computing Architecture
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Distributed Computing Paradigms
• Communication Models:

• Message Passing
• Shared Memory

• Computation Models:
• Functional Parallel
• Data Parallel



Message Passing
• A process is a program counter and address space.

• Message passing is used for communication among 
processes.

• Inter-process communication:
• Type: 

Synchronous  / Asynchronous 
• Movement of data from one process’s address space to 

another’s



Synchronous Vs. Asynchronous

• A synchronous communication is not complete until the 
message has been received.

• An asynchronous communication completes as soon as 
the message is on the way.



Synchronous Vs. Asynchronous
( cont. )



What is message passing?
• Data transfer.

• Requires cooperation of sender and receiver

• Cooperation not always apparent in code



MPI – Message Passing 
Interface

• MPI in a nutshell
–  It is a library specification
–  Works natively with C and Fortran
–  Not a specific implementation or product
– Scalable

–  Must handle multiple machines 
– Portable

–  Sockets API change from one OS to 
another

–  Handles Big-endian/little-endian 
architectures

–  Efficient
–  Optimized communication algorithms
–  Allow communication and computation 

overlap



MPI – Message Passing 
Interface

• MPI References
–  Books

–  Using MPI: Portable Parallel Programming with the 
Message Passing Interface, by Gropp, Lusk, and 
Skejellum, MIT Press, 1994.

–  MPI: The Complete Reference, by Snir, Otto, Huss-
Lederman, Walker, and Dongarra, MIT Press, 1996.

–  Parallel Programming with MPI, by Peter Pacheco, 
Morgan Kaufmann, 1997. 

–  The standard:
–  at http://www.mpi-forum.org

http://www.mpi-forum.org/


MPI History
• 1990 PVM: Parallel Virtual Machine (Oak Ridge Nat’l Lab)

• Message-passing routines
• Execution environment (spawn + control parallel processes)
• No an industry standard

• 1992 meetings (Workshop, Supercomputing’92)
• 1993 MPI draft
• 1994 MPI Forum (debates)
• 1994 MPI-1.0 release (C & Fortran bindings) + standardization
• 1995 MPI-1.1 release
• 1997 MPI-1.2 release (errata) + MPI-2 release (new features, C++ & 

Fortran 90 bindings)
• ???? MPI-3 release (new: FT, hybrid, p2p, RMA, …)
• 2000 MPI (ch), Madeline, V4….
• 2005 OpenMPI…



MPI
Programming

• MPI
–  Use of a single program, on multiple data
–  What does it do?

–  way of identifying process
–  Independent of low-level API
–  Optimized communication
–  Allow communication and computation overlap

–  What does it do not? 
–  gain performance of application for free
–  application must be adapted



Features of MPI
• General 

• Communications combine context and group for message security.

• Thread safety can’t be assumed for MPI programs. 



Features that are NOT part of MPI
• Process Management

• Remote memory transfer

• Threads

• Virtual shared memory



Why to use MPI?
• MPI provides a powerful, efficient, and portable way 
to express parallel programs. 

• MPI was explicitly designed to enable libraries which 
may eliminate the need for many users to learn 
(much of) MPI.

• Portable !!!!!!!!!!!!!!!!!!!!!!!!!!

• Good way to learn about subtle issues in parallel 
computing



How big is the MPI library?

• Huge ( 125 Functions ).

• Basic ( 6 Functions ).



Group and Context

This image is captured from:
Writing Message Passing Parallel Programs with MPI
A Two Day Course on MPI Usage
Course Notes
Edinburgh Parallel Computing Centre
The University of Edinburgh



Group and Context (cont.)
• Are two important and indivisible concepts of MPI.
• Group: is the set of processes that communicate with 
one another.

• Context: it is somehow similar to the frequency in 
radio communications.

• Communicator: is the central object for 
communication in MPI. Each communicator is 
associated with a group and a context.



Communication Modes

• Based on the type of send:
• Synchronous: Completes once the 

acknowledgement is received by the sender.
• Buffered send: completes immediately, unless 

if an error occurs.
• Standard send: completes once the message 

has been sent, which may or may not imply 
that the message has arrived at its destination.

• Ready send: completes immediately, if the 
receiver is ready for the message it will get it, 
otherwise the message is dropped silently.



Blocking vs. Non-Blocking
• Blocking, means the program will not continue until the 

communication is completed.

• Non-Blocking, means the program will continue, without 
waiting for the communication to be completed.



MPI Programming

• Possible Programming Workflow

• A Few Parallel Strategies

•  Master/Slave

•  Pipeline

•  Branch and Bound

Start from Working 
Sequential Version

Choose a Parallel
Strategy

Implement It with 
The Help of MPI

Split the Application
In Tasks



Parallel Strategies

• Master/Slave

•  Master is one process that centrilizes all tasks

• Slaves starve for work

MasterSlave 1 Slave 2

Request Request
Task 1 Task 2

Result 2
Finish

Result 1
Finish



Parallel Strategies

• Master/Slave

•  Master is often the bottleneck

•  Scalability is limited due to centralization

•  Possible to use replication to improve performance

•  It is adatable to heterogenous platforms



Parallel Strategies

• Pipeline

•  Each process plays a specific role, pipeline stages

•  Data follows in a single direction

•  Parallelism is achieved when the pipeline is full

T
im

e

Task 1
Task 2

Task 3
Task 4



Parallel Strategies

• Pipeline

•  Scalabillity is limited by the number of stages

•  Synchronization may lead to bubbles

•  Slow sender

•  Fast receiver 

•  Difficult to use on heterogenous platforms



Parallel Strategies

• Divide and Conquer

•  Recursevely partion task on roughly equal sized tasks

•  Or process the taks if it is small

Work(60)

Work(40)

Work(20)Work(20)

Work(20)

Result(20)Result(20)

Result(40)

Result(20)

Result(60)



Parallel Strategies

• Divide and Conquer

•  More scalable

•  Possible to use replicated branches

•  In practice is difficult to split tasks

•  Suitable for branch and bound 
algorithms



MPI
Programming

• Installing
–  Some common MPI implementations, all free:

–  OpenMPI 

http://www.open-mpi.org/

–  MPICH-2 
http://www.mcs.anl.gov/research/projects/mpich2/

–  LAM/MPI

http://www.lam-mpi.org/ 



MPI
Programming

• Installing
–  I’m using MPICH-2
–  Installed in Ubuntu 10.04 Lucid Lynx with

$ sudo apt-get install mpich2 

 
–  Should work for most Debian based distributions
–  Must create a local configuration file

$ echo “MPD_SECRET_WORD=ChangeMe” > ~/.mpd.conf 



MPI
Programming

#include <mpi.h>
#include <stdio.h>

int main(int argc, char **argv){  

/* Initialize MPI */
MPI_Init(&argc, &argv);

printf(“Test Program\n”);

/* Finalize MPI */
return MPI_Finalize();
}

• Test program



Skeleton MPI Program

#include <mpi.h>

main( int argc, char** argv ) 
{
    MPI_Init( &argc, &argv );

    /* main part of the program */

/*
  Use MPI function call depend on your data 
partitioning and the parallelization 
architecture
*/

    MPI_Finalize();
}



A minimal MPI program(c)

#include “mpi.h”

#include <stdio.h>
int main(int argc, char *argv[])
{
MPI_Init(&argc, &argv);
printf(“Hello, world!\n”);
MPI_Finalize();
Return 0;

}



MPI
Programming

• Compiling

–  Compiled with gcc, but a mpicc script is provided to invoke 
gcc with specific MPI options enabled

$ mpicc mpi_program.c –o my_mpi_executable

–  Executed with a specital script 

$ mpirun –np 1 my_mpi_executable

$ mpirun –np 2 my_mpi_executable

$ mpirun –np 3 my_mpi_executable



MPI
Programming

• Running
–  Compiled with gcc, but a mpicc script is provided to invoke 

gcc with specific mpi functions

$ mpicc mpi_program.c –o my_mpi_executable

–  For a complete list of parameters try

$ man mpicc

–  Executed with a specital scrip 

$ mpirun –np 2 my_mpi_executable



A minimal MPI program(c)
(cont.)
• #include “mpi.h” provides basic MPI definitions and types.

• MPI_Init starts MPI

• MPI_Finalize exits MPI

• Note that all non-MPI routines are local; thus “printf” run on each 
process

• Note: MPI functions return error codes or MPI_SUCCESS



Error handling
• By default, an error causes all processes to abort.

• The user can have his/her own error handling 
routines.

• Some custom error handlers are available for 
downloading from the net.



Improved Hello (c)

#include <mpi.h>
#include <stdio.h>
int main(int argc, char *argv[])
{
int rank, size; 
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("I am %d of %d\n", rank, size);
MPI_Finalize();
return 0;

}



MPI
Programming

• How many processing units are available?

int MPI_Comm_size(MPI_Comm comm, int *psize)
–  comm

–  Group of process to communicate
–  Default Communicator: For grouping all process use 
MPI_COMM_WORLD

–  psize
–  Passed as reference will return the total amoung of 

proccess in this communicator



Data Types

• The data message which is sent or received is 
described by a triple (address, count, datatype).

• The following data types are supported by MPI:
• Predefined data types that are corresponding to data 

types from the programming language.
• Arrays.
• Sub blocks of a matrix
• User defined data structure.
• A set of predefined data types



Basic MPI types

MPI datatype C datatype

MPI_CHAR signed char
MPI_SIGNED_CHAR signed char
MPI_UNSIGNED_CHAR unsigned char
MPI_SHORT signed short
MPI_UNSIGNED_SHORT unsigned short
MPI_INT signed int
MPI_UNSIGNED unsigned int
MPI_LONG signed long
MPI_UNSIGNED_LONG unsigned long
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double



MPI
Programming

• Exercise 1 – Hello World

•  Create program that prints hello world and the total 
number of available process on the screen

•  Use –np with a variable number to verify that your 
program is working



MPI
Programming

• Exercise 2 – Who am I

• If I am process 0

•  Prints: “hello world”

•  else

•  Prints: “I’m process <ID>”

•  Replacing <ID> by the process rank



Why defining the data types during the send of a 
message?

   Because communications take place between 
heterogeneous machines. Which may have different data 
representation and length in the memory.



MPI blocking send

MPI_SEND(void *start, int 
count,MPI_DATATYPE datatype, int dest, 
int tag, MPI_COMM comm)

• The message buffer is described by (start, count, 
datatype).

• dest is the rank of the target process in the defined 
communicator.

• tag is the message identification number.



MPI blocking receive

  MPI_RECV(void *start, int count, 
MPI_DATATYPE datatype, int source, int tag, 
MPI_COMM comm, MPI_STATUS *status)

• Source is the rank of the sender in the communicator.

• The receiver can specify a wildcard value for souce (MPI_ANY_SOURCE) and/or 
a wildcard value for tag (MPI_ANY_TAG), indicating that any source and/or tag are 
acceptable

• Status is used for exrtra information about the received message if a wildcard 
receive mode is used.

• If the count of the message received is less than or equal to that described by the 
MPI receive command, then the message is successfully received. Else it is 
considered as a buffer overflow error.



MPI_STATUS

•Status is a data structure
• In C: 
int recvd_tag, recvd_from, recvd_count; 
MPI_Status status; 
MPI_Recv(…, MPI_ANY_SOURCE, MPI_ANY_TAG, …, 
&status)

recvd_tag = status.MPI_TAG;
recvd_from = status.MPI_SOURCE; 
MPI_Get_count(&status, datatype, &recvd_count);



More info
• A receive operation may accept messages from an 

arbitrary sender, but a send operation must specify a 
unique receiver. 

• Source equals destination is allowed, that is, a process 
can send a message to itself.



Why MPI is simple?
• Many parallel programs can be written using just these six 

functions, only two of which are non-trivial;
• MPI_INIT
• MPI_FINALIZE
• MPI_COMM_SIZE
• MPI_COMM_RANK
• MPI_SEND
• MPI_RECV



Collective Communications
• Point-to-point communications involve pairs of processes.
• Many message passing systems provide operations which 

allow larger numbers of processes to participate



Types of Collective Transfers

• Barrier
• Synchronizes processors
• No data is exchanged but the barrier blocks until all 

processes have called the barrier routine
• Broadcast (sometimes multicast)

• A broadcast is a one-to-many communication
• One processor sends one message to several 

destinations
• Reduction

• Often useful in a many-to-one communication
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Broadcast and Multicast

P0

P1

P2

P3

Broadcast

Message

P0

P1

P2

P3

Message

Multicast



All-to-All
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Reduction

sum  0
for i  1 to p do
    sum  sum + A[i]
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Introduction to Collective Operations in MPI

• Collective ops  are called by all processes in a 
communicator.
• No tags
• Blocking

• MPI_BCAST distributes data from one process (the root) to 
all others in a communicator.

• MPI_REDUCE/ALLREDUCE combines data from all 
processes in communicator and returns it to one process.

• In many numerical algorithms, SEND/RECEIVE can be 
replaced by BCAST/REDUCE, improving both simplicity and 
efficiency.

• Others:
• MPI_[ALL]SCATTER[V]/[ALL]GATHER[V]



Collectives at Work
• BCAST:

• Scatter/Gather:

• Allgather/All-to-all



Collectives at Work (2)
• Reduce: • Predefined Ops (assocociative & 

commutative) / user ops (assoc.)



Collectives at Work (3)
• Allreduce:



Simple full example

#include <stdio.h>
#include <mpi.h>

int main(int argc, char *argv[])
{
  const int tag = 42;        /* Message tag */
  int id, ntasks, source_id, dest_id, err, i;
  MPI_Status status;
  int msg[2]; /* Message array */
  
  err = MPI_Init(&argc, &argv); /* Initialize MPI */
  if (err != MPI_SUCCESS) {
    printf("MPI initialization failed!\n");
    exit(1);
  }
  err = MPI_Comm_size(MPI_COMM_WORLD, &ntasks); /* Get nr of tasks */
  err = MPI_Comm_rank(MPI_COMM_WORLD, &id);  /* Get id of this process */
  if (ntasks < 2) {
    printf("You have to use at least 2 processors to run this program\n");
    MPI_Finalize();   /* Quit if there is only one processor */
    exit(0);
  }



Simple full example (Cont.)

if (id == 0) {  /* Process 0 (the receiver) does this */
    for (i=1; i<ntasks; i++) {
      err = MPI_Recv(msg, 2, MPI_INT, MPI_ANY_SOURCE, tag, MPI_COMM_WORLD, \
                     &status);          /* Receive a message */
      source_id = status.MPI_SOURCE; /* Get id of sender */
      printf("Received message %d %d from process %d\n", msg[0], msg[1], \
             source_id);
    }
  }
  else {    /* Processes 1 to N-1 (the senders) do this */
    msg[0] = id; /* Put own identifier in the message */
    msg[1] = ntasks;        /* and total number of processes */
    dest_id = 0; /* Destination address */
    err = MPI_Send(msg, 2, MPI_INT, dest_id, tag, MPI_COMM_WORLD);
  }
  
  err = MPI_Finalize();         /* Terminate MPI */
  if (id==0) printf("Ready\n");
  exit(0);
  return 0;
}



MPI
One-to-one
Communication

• Assynchronous/Non-Blocking
–  Process signs it is waiting for a message
–  Continue working meanwhile

Proc 1 Proc 2

iRecv

T
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iSend(2)



MPI
Collective Communication

• Proccess master wants to send a message to everybody
–  First solution, process master send N-1 messages
–  Optimized collective communication send in parallel

T
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Send(1)

Send(2)

Send(3)
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Send(1)

Send(2) Send(3)
Constant 
time to 
send a 
message

Broadcast 
completed 
in 3 slices 
of time

Finishes in 
2 slices of
time

Master Proc 1 Proc 2 Proc 3
Master Proc 1 Proc 2 Proc 3



Work@class

• Teniendo en cuenta la forma trapezoidal para 
integrar la formula :  



Example: Compute PI  (1)
#include “mpi.h”
#include <math.h>

int main(int argc, char *argv[])
{
int done = 0, n, myid, numprocs, I, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI_INIT(&argc, &argv);
MPI_COMM_SIZE(MPI_COMM_WORLD, &numprocs);
MPI_COMM_RANK(MPI_COMM_WORLD, &myid);
while (!done)
{

if (myid == 0)
{
printf(“Enter the number of intervals: (0 quits) “);

scanf(“%d”, &n);
}
MPI_BCAST(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
if (n == 0) 

}



Example: Compute PI  (2)

h = 1.0 / (double)n;
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs)
{

x = h * ((double)i – 0.5);
sum += 4.0 / (1.0 + x * x);

}
mypi = h * sum; 
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 

MPI_COMM_WORLD);

if (myid == 0) printf(“pi is approximately %.16f, Error is 
%.16f\n”, pi, fabs(pi – PI25DT));

MPI_Finalize();
return 0; 

}



Profiling Support: PMPI
• Profiling layer of MPI
• Implemented via additional API in MPI library

• Different name: PMPI_Init()
• Same functionality as MPI_Init()

• Allows user to:
• define own MPI_Init()
• Need to call PMPI_Init():

• User may choose subset of MPI routines to be profiled
• Useful for building performance analysis tools

• Vampir: Timeline of MPI traffic (Etnus, Inc.)
• Paradyn: Performance analysis (U. Wisconsin)
• mpiP: J. Vetter (LLNL)
• ScalaTrace: F. Mueller et al. (NCSU)

MPI_Init(…) {

  collect pre stats;

  PMPI_Init(…);

  collect post stats;

}



When to use MPI
• Portability and Performance
• Irregular data structure
• Building tools for others
• Need to manage memory on a per processor basis
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Summary
• The parallel computing community has cooperated on the 

development of a standard for message-passing libraries.

• There are many implementations, on nearly all platforms.

• MPI subsets are easy to learn and use.

• Lots of MPI material is available.



Para Observar y Ejecutar
• http://people.sc.fsu.edu/~jburkardt/cpp_src/mpi/mpi.html 

https://computing.llnl.gov/tutorials/mpi/ 

http://people.sc.fsu.edu/~jburkardt/cpp_src/mpi/mpi.html
https://computing.llnl.gov/tutorials/mpi/
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