
DISTRIBUTED MEMORY
PROGRAMMING WITH MPI

Carlos Jaime Barrios Hernández, PhD.

Remember Special Features of Architecture

• Remember “concurrency”: it exploits better the resources
(shared) within a computer.

• Exploit SIMD and MIMD Architectures

CUCU

PP PP PP PP

Input Data Input DataInput DataInput Data

Output
Data

Output
Data

Output
Data

Output
Data

SIMD

Instructions

MIMD

CUCU

PP

Input Data

Output
Data

Instructions

CUCU

PP

Input Data

Output
Data

Instructions

CUCU

PP

Input Data

Output
Data

Instructions

Interconnect Network

Cluster Computing Architecture

3

Sequential Applications Parallel Programming Environment

 Middleware

(Single System Image and Availability Infrastructure)

 Interconnection Network/Switch

PC/Workstation
/Node

Network Interface
Hardware

Communications

Software

PC/Workstation
/Node

Network Interface
Hardware

Communications

Software

PC/Workstation
/Node

Network Interface
Hardware

Communications

Software

PC/Workstation
/Node

Network Interface
Hardware

Communications

Software

Sequential Applications

Parallel Applications

Sequential Applications
Sequential Applications

Parallel Applications

Operating System Operating System Operating System Operating System

Distributed Computing Paradigms
• Communication Models:

• Message Passing
• Shared Memory

• Computation Models:
• Functional Parallel
• Data Parallel

Message Passing
• A process is a program counter and address space.

• Message passing is used for communication among
processes.

• Inter-process communication:
• Type:

Synchronous / Asynchronous
• Movement of data from one process’s address space to

another’s

Synchronous Vs. Asynchronous

• A synchronous communication is not complete until the
message has been received.

• An asynchronous communication completes as soon as
the message is on the way.

Synchronous Vs. Asynchronous
(cont.)

What is message passing?
• Data transfer.

• Requires cooperation of sender and receiver

• Cooperation not always apparent in code

MPI – Message Passing
Interface

• MPI in a nutshell
– It is a library specification
– Works natively with C and Fortran
– Not a specific implementation or product
– Scalable

– Must handle multiple machines
– Portable

– Sockets API change from one OS to
another

– Handles Big-endian/little-endian
architectures

– Efficient
– Optimized communication algorithms
– Allow communication and computation

overlap

MPI – Message Passing
Interface

• MPI References
– Books

– Using MPI: Portable Parallel Programming with the
Message Passing Interface, by Gropp, Lusk, and
Skejellum, MIT Press, 1994.

– MPI: The Complete Reference, by Snir, Otto, Huss-
Lederman, Walker, and Dongarra, MIT Press, 1996.

– Parallel Programming with MPI, by Peter Pacheco,
Morgan Kaufmann, 1997.

– The standard:
– at http://www.mpi-forum.org

http://www.mpi-forum.org/

MPI History
• 1990 PVM: Parallel Virtual Machine (Oak Ridge Nat’l Lab)

• Message-passing routines
• Execution environment (spawn + control parallel processes)
• No an industry standard

• 1992 meetings (Workshop, Supercomputing’92)
• 1993 MPI draft
• 1994 MPI Forum (debates)
• 1994 MPI-1.0 release (C & Fortran bindings) + standardization
• 1995 MPI-1.1 release
• 1997 MPI-1.2 release (errata) + MPI-2 release (new features, C++ &

Fortran 90 bindings)
• ???? MPI-3 release (new: FT, hybrid, p2p, RMA, …)
• 2000 MPI (ch), Madeline, V4….
• 2005 OpenMPI…

MPI
Programming

• MPI
– Use of a single program, on multiple data
– What does it do?

– way of identifying process
– Independent of low-level API
– Optimized communication
– Allow communication and computation overlap

– What does it do not?
– gain performance of application for free
– application must be adapted

Features of MPI
• General

• Communications combine context and group for message security.

• Thread safety can’t be assumed for MPI programs.

Features that are NOT part of MPI
• Process Management

• Remote memory transfer

• Threads

• Virtual shared memory

Why to use MPI?
• MPI provides a powerful, efficient, and portable way
to express parallel programs.

• MPI was explicitly designed to enable libraries which
may eliminate the need for many users to learn
(much of) MPI.

• Portable !!!!!!!!!!!!!!!!!!!!!!!!!!

• Good way to learn about subtle issues in parallel
computing

How big is the MPI library?

• Huge (125 Functions).

• Basic (6 Functions).

Group and Context

This image is captured from:
Writing Message Passing Parallel Programs with MPI
A Two Day Course on MPI Usage
Course Notes
Edinburgh Parallel Computing Centre
The University of Edinburgh

Group and Context (cont.)
• Are two important and indivisible concepts of MPI.
• Group: is the set of processes that communicate with
one another.

• Context: it is somehow similar to the frequency in
radio communications.

• Communicator: is the central object for
communication in MPI. Each communicator is
associated with a group and a context.

Communication Modes

• Based on the type of send:
• Synchronous: Completes once the

acknowledgement is received by the sender.
• Buffered send: completes immediately, unless

if an error occurs.
• Standard send: completes once the message

has been sent, which may or may not imply
that the message has arrived at its destination.

• Ready send: completes immediately, if the
receiver is ready for the message it will get it,
otherwise the message is dropped silently.

Blocking vs. Non-Blocking
• Blocking, means the program will not continue until the

communication is completed.

• Non-Blocking, means the program will continue, without
waiting for the communication to be completed.

MPI Programming

• Possible Programming Workflow

• A Few Parallel Strategies

• Master/Slave

• Pipeline

• Branch and Bound

Start from Working
Sequential Version

Choose a Parallel
Strategy

Implement It with
The Help of MPI

Split the Application
In Tasks

Parallel Strategies

• Master/Slave

• Master is one process that centrilizes all tasks

• Slaves starve for work

MasterSlave 1 Slave 2

Request Request
Task 1 Task 2

Result 2
Finish

Result 1
Finish

Parallel Strategies

• Master/Slave

• Master is often the bottleneck

• Scalability is limited due to centralization

• Possible to use replication to improve performance

• It is adatable to heterogenous platforms

Parallel Strategies

• Pipeline

• Each process plays a specific role, pipeline stages

• Data follows in a single direction

• Parallelism is achieved when the pipeline is full

T
im

e

Task 1
Task 2

Task 3
Task 4

Parallel Strategies

• Pipeline

• Scalabillity is limited by the number of stages

• Synchronization may lead to bubbles

• Slow sender

• Fast receiver

• Difficult to use on heterogenous platforms

Parallel Strategies

• Divide and Conquer

• Recursevely partion task on roughly equal sized tasks

• Or process the taks if it is small

Work(60)

Work(40)

Work(20)Work(20)

Work(20)

Result(20)Result(20)

Result(40)

Result(20)

Result(60)

Parallel Strategies

• Divide and Conquer

• More scalable

• Possible to use replicated branches

• In practice is difficult to split tasks

• Suitable for branch and bound
algorithms

MPI
Programming

• Installing
– Some common MPI implementations, all free:

– OpenMPI

http://www.open-mpi.org/

– MPICH-2
http://www.mcs.anl.gov/research/projects/mpich2/

– LAM/MPI

http://www.lam-mpi.org/

MPI
Programming

• Installing
– I’m using MPICH-2
– Installed in Ubuntu 10.04 Lucid Lynx with

$ sudo apt-get install mpich2

– Should work for most Debian based distributions
– Must create a local configuration file

$ echo “MPD_SECRET_WORD=ChangeMe” > ~/.mpd.conf

MPI
Programming

#include <mpi.h>
#include <stdio.h>

int main(int argc, char **argv){

/* Initialize MPI */
MPI_Init(&argc, &argv);

printf(“Test Program\n”);

/* Finalize MPI */
return MPI_Finalize();
}

• Test program

Skeleton MPI Program

#include <mpi.h>

main(int argc, char** argv)
{
 MPI_Init(&argc, &argv);

 /* main part of the program */

/*
 Use MPI function call depend on your data
partitioning and the parallelization
architecture
*/

 MPI_Finalize();
}

A minimal MPI program(c)

#include “mpi.h”

#include <stdio.h>
int main(int argc, char *argv[])
{
MPI_Init(&argc, &argv);
printf(“Hello, world!\n”);
MPI_Finalize();
Return 0;

}

MPI
Programming

• Compiling

– Compiled with gcc, but a mpicc script is provided to invoke
gcc with specific MPI options enabled

$ mpicc mpi_program.c –o my_mpi_executable

– Executed with a specital script

$ mpirun –np 1 my_mpi_executable

$ mpirun –np 2 my_mpi_executable

$ mpirun –np 3 my_mpi_executable

MPI
Programming

• Running
– Compiled with gcc, but a mpicc script is provided to invoke

gcc with specific mpi functions

$ mpicc mpi_program.c –o my_mpi_executable

– For a complete list of parameters try

$ man mpicc

– Executed with a specital scrip

$ mpirun –np 2 my_mpi_executable

A minimal MPI program(c)
(cont.)
• #include “mpi.h” provides basic MPI definitions and types.

• MPI_Init starts MPI

• MPI_Finalize exits MPI

• Note that all non-MPI routines are local; thus “printf” run on each
process

• Note: MPI functions return error codes or MPI_SUCCESS

Error handling
• By default, an error causes all processes to abort.

• The user can have his/her own error handling
routines.

• Some custom error handlers are available for
downloading from the net.

Improved Hello (c)

#include <mpi.h>
#include <stdio.h>
int main(int argc, char *argv[])
{
int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("I am %d of %d\n", rank, size);
MPI_Finalize();
return 0;

}

MPI
Programming

• How many processing units are available?

int MPI_Comm_size(MPI_Comm comm, int *psize)
– comm

– Group of process to communicate
– Default Communicator: For grouping all process use
MPI_COMM_WORLD

– psize
– Passed as reference will return the total amoung of

proccess in this communicator

Data Types

• The data message which is sent or received is
described by a triple (address, count, datatype).

• The following data types are supported by MPI:
• Predefined data types that are corresponding to data

types from the programming language.
• Arrays.
• Sub blocks of a matrix
• User defined data structure.
• A set of predefined data types

Basic MPI types

MPI datatype C datatype

MPI_CHAR signed char
MPI_SIGNED_CHAR signed char
MPI_UNSIGNED_CHAR unsigned char
MPI_SHORT signed short
MPI_UNSIGNED_SHORT unsigned short
MPI_INT signed int
MPI_UNSIGNED unsigned int
MPI_LONG signed long
MPI_UNSIGNED_LONG unsigned long
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double

MPI
Programming

• Exercise 1 – Hello World

• Create program that prints hello world and the total
number of available process on the screen

• Use –np with a variable number to verify that your
program is working

MPI
Programming

• Exercise 2 – Who am I

• If I am process 0

• Prints: “hello world”

• else

• Prints: “I’m process <ID>”

• Replacing <ID> by the process rank

Why defining the data types during the send of a
message?

 Because communications take place between
heterogeneous machines. Which may have different data
representation and length in the memory.

MPI blocking send

MPI_SEND(void *start, int
count,MPI_DATATYPE datatype, int dest,
int tag, MPI_COMM comm)

• The message buffer is described by (start, count,
datatype).

• dest is the rank of the target process in the defined
communicator.

• tag is the message identification number.

MPI blocking receive

 MPI_RECV(void *start, int count,
MPI_DATATYPE datatype, int source, int tag,
MPI_COMM comm, MPI_STATUS *status)

• Source is the rank of the sender in the communicator.

• The receiver can specify a wildcard value for souce (MPI_ANY_SOURCE) and/or
a wildcard value for tag (MPI_ANY_TAG), indicating that any source and/or tag are
acceptable

• Status is used for exrtra information about the received message if a wildcard
receive mode is used.

• If the count of the message received is less than or equal to that described by the
MPI receive command, then the message is successfully received. Else it is
considered as a buffer overflow error.

MPI_STATUS

•Status is a data structure
• In C:
int recvd_tag, recvd_from, recvd_count;
MPI_Status status;
MPI_Recv(…, MPI_ANY_SOURCE, MPI_ANY_TAG, …,
&status)

recvd_tag = status.MPI_TAG;
recvd_from = status.MPI_SOURCE;
MPI_Get_count(&status, datatype, &recvd_count);

More info
• A receive operation may accept messages from an

arbitrary sender, but a send operation must specify a
unique receiver.

• Source equals destination is allowed, that is, a process
can send a message to itself.

Why MPI is simple?
• Many parallel programs can be written using just these six

functions, only two of which are non-trivial;
• MPI_INIT
• MPI_FINALIZE
• MPI_COMM_SIZE
• MPI_COMM_RANK
• MPI_SEND
• MPI_RECV

Collective Communications
• Point-to-point communications involve pairs of processes.
• Many message passing systems provide operations which

allow larger numbers of processes to participate

Types of Collective Transfers

• Barrier
• Synchronizes processors
• No data is exchanged but the barrier blocks until all

processes have called the barrier routine
• Broadcast (sometimes multicast)

• A broadcast is a one-to-many communication
• One processor sends one message to several

destinations
• Reduction

• Often useful in a many-to-one communication

Barrier

Compute

Barrier

Compute

Compute
Compute

Compute Compute Compute Compute

Broadcast and Multicast

P0

P1

P2

P3

Broadcast

Message

P0

P1

P2

P3

Message

Multicast

All-to-All

P0

P1

P2

P3

Message

Message Message

Message

Reduction

sum  0
for i  1 to p do
 sum  sum + A[i]

P0

P1

P2

P3

A[1]

A[2]

A[3]

P0

P1

P2

P3

A[1]

A[2] + A[3]

A[3]

A[0]

A[1]

A[2]

A[3]

A[0] + A[1]

A[2] + A[3]

A[0] + A[1] + A[2] + A[3]

Introduction to Collective Operations in MPI

• Collective ops are called by all processes in a
communicator.
• No tags
• Blocking

• MPI_BCAST distributes data from one process (the root) to
all others in a communicator.

• MPI_REDUCE/ALLREDUCE combines data from all
processes in communicator and returns it to one process.

• In many numerical algorithms, SEND/RECEIVE can be
replaced by BCAST/REDUCE, improving both simplicity and
efficiency.

• Others:
• MPI_[ALL]SCATTER[V]/[ALL]GATHER[V]

Collectives at Work
• BCAST:

• Scatter/Gather:

• Allgather/All-to-all

Collectives at Work (2)
• Reduce: • Predefined Ops (assocociative &

commutative) / user ops (assoc.)

Collectives at Work (3)
• Allreduce:

Simple full example

#include <stdio.h>
#include <mpi.h>

int main(int argc, char *argv[])
{
 const int tag = 42; /* Message tag */
 int id, ntasks, source_id, dest_id, err, i;
 MPI_Status status;
 int msg[2]; /* Message array */

 err = MPI_Init(&argc, &argv); /* Initialize MPI */
 if (err != MPI_SUCCESS) {
 printf("MPI initialization failed!\n");
 exit(1);
 }
 err = MPI_Comm_size(MPI_COMM_WORLD, &ntasks); /* Get nr of tasks */
 err = MPI_Comm_rank(MPI_COMM_WORLD, &id); /* Get id of this process */
 if (ntasks < 2) {
 printf("You have to use at least 2 processors to run this program\n");
 MPI_Finalize(); /* Quit if there is only one processor */
 exit(0);
 }

Simple full example (Cont.)

if (id == 0) { /* Process 0 (the receiver) does this */
 for (i=1; i<ntasks; i++) {
 err = MPI_Recv(msg, 2, MPI_INT, MPI_ANY_SOURCE, tag, MPI_COMM_WORLD, \
 &status); /* Receive a message */
 source_id = status.MPI_SOURCE; /* Get id of sender */
 printf("Received message %d %d from process %d\n", msg[0], msg[1], \
 source_id);
 }
 }
 else { /* Processes 1 to N-1 (the senders) do this */
 msg[0] = id; /* Put own identifier in the message */
 msg[1] = ntasks; /* and total number of processes */
 dest_id = 0; /* Destination address */
 err = MPI_Send(msg, 2, MPI_INT, dest_id, tag, MPI_COMM_WORLD);
 }

 err = MPI_Finalize(); /* Terminate MPI */
 if (id==0) printf("Ready\n");
 exit(0);
 return 0;
}

MPI
One-to-one
Communication

• Assynchronous/Non-Blocking
– Process signs it is waiting for a message
– Continue working meanwhile

Proc 1 Proc 2

iRecv

T
im

e

iSend(2)

MPI
Collective Communication

• Proccess master wants to send a message to everybody
– First solution, process master send N-1 messages
– Optimized collective communication send in parallel

T
im

e

Send(1)

Send(2)

Send(3)

T
im

e

Send(1)

Send(2) Send(3)
Constant
time to
send a
message

Broadcast
completed
in 3 slices
of time

Finishes in
2 slices of
time

Master Proc 1 Proc 2 Proc 3
Master Proc 1 Proc 2 Proc 3

Work@class

• Teniendo en cuenta la forma trapezoidal para
integrar la formula :

Example: Compute PI (1)
#include “mpi.h”
#include <math.h>

int main(int argc, char *argv[])
{
int done = 0, n, myid, numprocs, I, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI_INIT(&argc, &argv);
MPI_COMM_SIZE(MPI_COMM_WORLD, &numprocs);
MPI_COMM_RANK(MPI_COMM_WORLD, &myid);
while (!done)
{

if (myid == 0)
{
printf(“Enter the number of intervals: (0 quits) “);

scanf(“%d”, &n);
}
MPI_BCAST(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
if (n == 0)

}

Example: Compute PI (2)

h = 1.0 / (double)n;
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs)
{

x = h * ((double)i – 0.5);
sum += 4.0 / (1.0 + x * x);

}
mypi = h * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

if (myid == 0) printf(“pi is approximately %.16f, Error is
%.16f\n”, pi, fabs(pi – PI25DT));

MPI_Finalize();
return 0;

}

Profiling Support: PMPI
• Profiling layer of MPI
• Implemented via additional API in MPI library

• Different name: PMPI_Init()
• Same functionality as MPI_Init()

• Allows user to:
• define own MPI_Init()
• Need to call PMPI_Init():

• User may choose subset of MPI routines to be profiled
• Useful for building performance analysis tools

• Vampir: Timeline of MPI traffic (Etnus, Inc.)
• Paradyn: Performance analysis (U. Wisconsin)
• mpiP: J. Vetter (LLNL)
• ScalaTrace: F. Mueller et al. (NCSU)

MPI_Init(…) {

 collect pre stats;

 PMPI_Init(…);

 collect post stats;

}

When to use MPI
• Portability and Performance
• Irregular data structure
• Building tools for others
• Need to manage memory on a per processor basis

68

Summary
• The parallel computing community has cooperated on the

development of a standard for message-passing libraries.

• There are many implementations, on nearly all platforms.

• MPI subsets are easy to learn and use.

• Lots of MPI material is available.

Para Observar y Ejecutar
• http://people.sc.fsu.edu/~jburkardt/cpp_src/mpi/mpi.html

https://computing.llnl.gov/tutorials/mpi/

http://people.sc.fsu.edu/~jburkardt/cpp_src/mpi/mpi.html
https://computing.llnl.gov/tutorials/mpi/

	Diapositiva 1
	Remember Special Features of Architecture
	Cluster Computing Architecture
	Distributed Computing Paradigms
	Message Passing
	Synchronous Vs. Asynchronous
	Synchronous Vs. Asynchronous (cont.)
	What is message passing?
	MPI – Message Passing Interface
	MPI – Message Passing Interface
	MPI History
	MPI Programming
	Features of MPI
	Features that are NOT part of MPI
	Why to use MPI?
	How big is the MPI library?
	Group and Context
	Group and Context (cont.)
	Communication Modes
	Blocking vs. Non-Blocking
	MPI Programming
	Parallel Strategies
	Parallel Strategies
	Parallel Strategies
	Parallel Strategies
	Parallel Strategies
	Parallel Strategies
	MPI Programming
	MPI Programming
	MPI Programming
	Skeleton MPI Program
	A minimal MPI program(c)
	MPI Programming
	MPI Programming
	A minimal MPI program(c) (cont.)
	Error handling
	Improved Hello (c)
	MPI Programming
	Data Types
	Basic MPI types
	MPI Programming
	MPI Programming
	Why defining the data types during the send of a message?
	MPI blocking send
	MPI blocking receive
	MPI_STATUS
	More info
	Why MPI is simple?
	Collective Communications
	Types of Collective Transfers
	Barrier
	Broadcast and Multicast
	All-to-All
	Reduction
	Introduction to Collective Operations in MPI
	Collectives at Work
	Collectives at Work (2)
	Collectives at Work (3)
	Simple full example
	Simple full example (Cont.)
	MPI One-to-one Communication
	MPI Collective Communication
	Work@class
	Example: Compute PI (1)
	Example: Compute PI (2)
	Profiling Support: PMPI
	When to use MPI
	Summary
	Para Observar y Ejecutar

