

System on Chip (SoC)

Design

Moore’s Law and Technology Scaling

…the performance of an IC, including the number components on it, doubles
every 18-24 months with the same chip price ... - Gordon Moore - 1960

The Productivity Gap

� 100M logic gates in 90nm = Logic of 1000 ARM7’s
� Current 0.13u SoC’s: 10M$ ~100M$ design cost

ITRS Roadmap

H.P. – high performance microprocessor, µP – microprocessors
H.H. – hand-hold products, SoC – system-on-chip

Silicon technology roadmap

low power SoC high performance MPU/
SoC

2001 2004 2010 2001 2004 2010
 gate length (nm) 130 90 45 90 53 25
 supply voltage 1.2 1 0.6 1.1 1 0.6
 transistor count (M) 3.3 8.3 40 276 553 2212
 chip size (mm2) 100 120 144 310 310 310
 clock frequency (GHz) 0.15 0.3 0.6 1.7 2.4 4.7
 wiring levels 6 7 9 7 8 10
 max power (W) 0.1 0.1 0.1 130 160 218

•  intrinsic capability of ICs (transistor count / gate delay)
grows with ~ 50% per year (Moore’s Law)
•  power limits the performance

Introduction - History

•  First generation chips contained a few transistors.

•  Today, silicon technology allows us to build chips consisting of
hundreds of millions of transistors (Intel Pentium IV: 0.09
micron). This technology has enabled new levels of system
integration onto a single chip.

•  Mobile phones, portable computers and Internet appliances will
be built using a single chip.

•  The demand for more powerful products and the huge capacity
of today’ s silicon technology have moved System-on-Chip
(SoC) designs from leading edge to mainstream design practice.

•  “System on Chip” (SoC) technology will put the maximum
amount of technology into the smallest possible space.

Electronic systems

Systems on chip are everywhere

Technology advances enable increasingly more complex designs

Central Question: how to exploit deep-
submicron technologies efficiently?

Main Challenges of Wireless Sensor Network

q  Energy dissipation
 Reduce radiated power
 More power efficient radio

 Energy efficient protocols and routing algorithms
 Better trade-off between communication and local computing

q  Size
 Higher integration (System-on-Chip or SoC)

q  Cost
 Standard Digital CMOS Technology

Evolution of Microelectronics: the SoC Paradigm

Silicon Process Technology
• � 0.13µm CMOS
• � ~100 millions of devices, 3 GHz internal Clock

Paradigm Shift in SoC Design

System on a board

System on a Chip

Evolutionary Problems

� Key Challenges
– Improve productivity
– HW/SW codesign
– Integration of analog & RF IPs
– Improved DFT

 Emerging new technologies:
– Greater complexity
– Increased performance
– Higher density
– Lower power dissipation

� Evolutionary techniques:
- IP (Intellectual Property) based design
- Platform-based design

Migration from ASICs to SoCs

ASICs are logic chips designed by end customers to
perform a specific function for a desired application.

ASIC vendors supply libraries for each technology
they provide. In most cases, these libraries contain
predesigned and preverified logic circuits.

ASIC technologies are:

v  gate array

v  standard cell

v  full custom

Migration from ASICs to SoCs

In the mid-1990s, ASIC technology evolved from a
chip-set philosophy to an embedded-cores-based
system-on-a-chip concept.

An SoC is an IC designed by stitching
together multiple stand-alone VLSI
designs to provide full functionality for
an application.

An SoC compose of predesigned
models of complex functions known
as cores (terms such as intellectual
property block, virtual components,
and macros) that serve a variety of
applications.

Three forms of SoC design

The scenario for SoC design is characterized by three forms:

1.  ASIC vendor design: This refers to the design in which all the
components in the chip are designed as well as fabricated by
an ASIC vendor.

2.  Integrated design: This refers to the design by an ASIC vendor
in which all components are not designed by that vendor. It
implies the use of cores obtained from some other source
such as a core/IP vendor or a foundry.

3.  Desktop design: This refers to the design by a fabless
company that uses cores which for the most part have been
obtained from other source such as IP companies, EDA
companies, design services companies, or a foundry.

SoC Design Challenges
Why does it take longer to design SOCs compared to
traditional ASICs?

We must examine factors influencing the degree of difficulty and
Turn Around Time (TAT) (the time taken from gate-level netlist to
metal mask-ready stage) for designing ASICs and SOCs.

For an ASIC, the following factors influence TAT:
•  Frequency of the design
•  Number of clock domains
•  Number of gates
•  Density
•  Number of blocks and sub-blocks

The key factor that influences TAT for SOCs is system
integration (integrating different silicon IPs on the same IC).

SoC Design Challenges

Levarage Internal Bandwidth vs External Bandwidth

SoCs vs. ASICs

q  SoC methodology is an incremental step over ASIC
methodology

q  SoC design is significantly more complex
v  Need cross-domain optimizations

v  IP reuse and Platform-based design increase
productivity, but not enough

v  Even with extensive IP reuse, many of the ASICs
design problems remain, plus many more ...

v  Productivity increase far from closing design gap

q  SoC is not just a large ASIC
v  Architectural approach involving significant design reuse
v  Addresses the cost and time-to-market problems

From ASICs to SoCs

Technology vs. Productivity vs. Complexity

System on Chip benefits

CPU

DSP

Ip-
Sec

mem

X

USB
hub

mem

CPU DSP USB
hub

Ip-
Sec X

Proc

Co-
Proc

IP cores

Typical : $10

Up to now : collection of chips

Now : collection of cores

Typical : $70

Typical approach :

Define requirements

Design with off-the shelf chips

 - at 0.5 year mark : first prototypes

 - 1 year : ship with low margins/loss

 start ASIC integration

 - 2 years : ASIC-based prototypes

 - 2.5 years : ship, make profits (with
competition)

With SoC

Define requirements

Design with off-the shelf cores

 - at 0.5 year mark : first prototypes

 - 1 year : ship with high margin and
market share

Typical applications of SoC
An SoC is a system on an IC that integrates software and hardware
Intellectual Property (IP) using more than one design methodology for the
purpose of defining the funcionality and behavior of the proposed system.

The designed system
is application specific.

Typical applications of SoC:
v  consumer devicecs,
v  networking,
v  communications, and
v  other segments of the electronics industry.

microprocessor, media processor,
GPS controllers, cellular phones,
GSM phones, smart pager ASICs,
digital television, video games,

 PC-on-a-chip

A common set of problems facing everyone who is
designing complex chips

•  Time-to-market pressures demand rapid development.
•  Quality of results (performance, area, power) - key to market success.
•  Increasing chip complexity makes verification more difficult.
•  Deep submicron issues make timing closure more difficult.
•  The development team has different levels and areas of expertise, and
is often scattered throughout the world.
•  Design team members may have worked on similar designs in the past,
but cannot reuse these designs because the design flow, tools, and
guidelines have changed.
•  SoC designs include embedded processor cores, and thus a significant
software component, which leads to additional methodology, process,
and organizational challenges.

Reusing macros (called “cores”, or IP) that have already been
designed and verified helps to address all of the problems above.

Design for Reuse

 To overcome the design gap, design reuse - the use of pre-
designed and pre-verified cores, or reuse of the existing designs
becomes a vital concept in design methodology.
 An effective block-based design methodology requires an
extensive library of reusable blocks, or macros, and it is based
on the following principles:

v  The macro must be extremely easy to integrate into the
overall chip design.
v  The macro must be so robust that the integrator has to
perform essentially no functional verification of internals of the
macro.

The challenge for designers is not whether to
adopt reuse, but how to employ it effectively.

Design for Reuse

 To be fully reusable, the hardware macro must be:

•  Designed to solve a general problem – easily configurable to fit
different applications.

•  Designed for use in multiple technologies – For soft macros, this
mean that the synthesis scripts must produce satisfactory quality of results with a
variety of libraries. For hard macros, this means having an effective porting strategy
for mapping the macro onto new technologies.

•  Designed for simulation with a variety of simulators – Good
design reuse practices dictate that both a Verilog and VHDL version of each model
and verification testbench should be available, and they should work with all the
major commercial simulators.

•  Designed with standards-based interfaces – Unique or custom
interfaces should be used only if no standards-based interface exists.

Design for Reuse – cont.

 To be fully reusable, the hardware macro must be:

•  Verified independently of the chip in which it will be used –
Often, macros are designed and only partially tested before being integrated into
a chip for verification. Reusable designs must have full, stand-alone testbenches
and verification suites that afford very high levels of test coverage.

•  Verified to a high level of confidence – This usually means very
rigorous verification as well as building a physical prototype that is tested in an
actual system running real software.

•  Fully documented in terms of appropriate applications and
restrictions – In particular, valid configurations and parameter values must be
documented. Any restrictions on configurations or parameter values must be
clearly stated. Interfacing requirements and restrictions on how the macro can be
used must be documented.

Intellectual Property

Utilizing the predesigned modules
enables:
v  to avoid reinventing the wheel for
every new product,
v  to accelerate the development of
new products,
v  to assemble various blocks of a
large ASIC/SoC quite rapidly,
v  to reduce the possibility of failure
based on design and verification of a
block for the first time.

These predesigned modules are commonly called
Intellectual Property (IP) cores or Virtual Components (VC).

Resources vs. Number of Uses

$, Time

Multiple Uses

With Design Reuse

Without Design Reuse

Intellectual Property Categories
IP cores are classified into three distinct categories:

Hard IP cores consist of hard layouts using particular physical design
libraries and are deliverid in masked-level designed blocks (GDSII
format). The integration of hard IP cores is quite simple, but hard cores
are technology dependent and provide minimum flexibility and portability
in reconfiguration and integration.

Soft IP cores are delivered as RTL VHDL/Verilog code to provide
functional descriptions of IPs. These cores offer maximum flexibility and
reconfigurability to match the requirements of a specific design
application, but they must be synthesized, optimized, and verified by their
user before integration into designs.

Firm IP cores bring the best of both worlds and balance the high
performance and optimization properties of hard IPs with the flexibility of
soft IPs.These cores are delivered in form of targeted netlists to specific
physical libraries after going through synthesis without performing the
physical layout.

Trade-offs among soft, firm, and hard cores

Resusability
portability
flexibility

Predictability, performance, time to market

Soft
core

Firm
core

Hard
core

Comparison of Different IP Formats

IP Format Representation Optimization Technology Reusability

Hard GDSII Very High Technology
Dependent

Low

Soft RTL Low Technology
Independent

Very High

Firm Target Netlist High Technology
Generic

High

Examples of IPs

IP Reuse and IP-Based SoC Design

What is MPSoC

MPSoC is a system-on-chip that contains multiple
instruction-set processors (CPUs).

The typical MPSoC is a heterogeneous multiprocessor:
there may be several different types of processing elements (PEs),
the memory system may be heterogeneously distributed around the
machine, and the interconnection network between the PEs and
the memory may also be heterogeneous.

MPSoCs often require large amounts of memory. The device may
have embedded memory on-chip as well as relying on off-chip
commodity memory.

The design process of SoCs

SoC designs are made possible by deep submicron technology. This
technology presents a whole set of design challenges including:

v  interconnect delays,
v  clock and power distribution, and
v  the placement and routing of millions of gates.

These physical design problems can have a significant impact on
the functional design of SoCs and on the design process itself.

The first step in system design is specifying the required functionality.
The second step is to transform the system funcionality into an
architecture which define the system implementation by specifying the
number and types of components and connections between them.

Define Hardware-Software Codesign

Hardware-Software Codesign is the concurrent and co-operative
design of hardware and software components of a system.

The SoC design process is a hardware-software codesign in
which design productivity is achived by design reuse.

The design process is the set of design tasks that transform
an abstract specification model into an architectural model.

SoC Co-design Flow

Design Proces

A canonical or
generic form of
an SoC design

These chips have:
•  one (several) processors
•  large amounts of memory
•  bus-based architectures
•  peripherals
•  coprocessors
•  and I/O channels

Waterfall vs.
Spiral Design Flow

The traditional model for
ASIC development is often
called a waterfall model.

The project transitions
from phase to phase in a
step function, never
returning to the activities
of the previous phase.

Waterfall vs. Spiral Design Flow

As complexity increases, geometry shrinks, and time-to-market
pressures continue to escalate, chip designers are moving from
the old waterfall model to the newer spiral development model.
In the spiral model, the design team works on multiple aspects of
the design simultaneously, incrementally improving in each area
as the design converges on completion.

The spiral SoC design flow is characterized by:
v Parallel, concurrent development of hardware and software
v Parallel verification and synthesis of modules
v Floorplanning and place-and-route included in the synthesis

process
v Modules developed only if a pre-designed hard or soft macro

is not available
v Planned iteration throughout

Waterfall vs.
Spiral Design

Flow

Spiral SoC Design Flow

Goal: Maintain parallel
interacting design flow

Top-Down vs. Bottom-Up

The classic top-down design process can be viewed as a recursive routine
that begins with specification and decomposition, and ends with integration
and verification:

v  Write complete specifications for the system or subsystem being designed.
v  Refine its architecture and algorithms, including software design and
hardware/software cosimulation if necessary.
v  Decompose the architecture into well-defined macros.
v  Design or select macros; this is where the recursion occurs.
v  Integrate macros into the top level; verify functionality and timing.
v  Deliver the subsystem/system to the next higher level of integration; at the
top level, this is tapeout.
v  Verify all aspects of the design (functionality, timing, etc.).

Top-Down vs. Bottom-Up

A top-down methodology assumes that the lowest level
blocks specified can, in fact, be designed and built. If it turns
out that a block is not feasible to design, the whole
specification process has to be repeated.
For this reason, real world design teams usually use a
mixture of top-down and bottom-up methodologies, building
critical low-level blocks while they refine the system and
block specifications.
Libraries of reusable hard and soft macros clearly facilitate
this process by providing a source of pre-verified blocks,
proving that at least some parts of the design can be
designed and fabricated in the target technology and perform
to specification.

Design processes in flow diagrams
The first part of the design process consists of recursively developing,
verifying, and refining a set of specifications until they are detailed
enough to allow RTL coding to begin.

The specifications must completely describe all the interfaces between
the design and its environment, including:
v  Hardware – Functionality; External interfaces to other hardware (pins,
buses, and how to use them); Interface to SW (register definitions); Timing;
Performance; Physical design issues such as area and power
v  Software – Functionality; Timing; Performance; Interface to HW SW
structure, kernel

 Type of of specifications:
v  Formal specifications – the desired characteristics of the design are
defined independently of any implementation.
v  Executable specifications – are typically an abstract model for the
hardware and/or software being specified, and currently more useful for
describing functional behavior in most design situations.

The System Design
Process

Determining the optimal architecture
(cost and performance) involves a
set of complex decisions, such as:
•  What goes in software and what
goes in hardware
•  What processor(s) to use, and how
many
•  What bus architecture is required
to achieve the required system
performance
•  What memory architecture to use
to reach an appropriate balance
between power, area, and speed.

Solution: modeling of several
alternative architectures

ASIC Typical Design Steps

Top Level Design

Unit Block Design

Integration and Synthesis
Trial Netlists

System Level Verification

Timing Convergence
& Verification

Fabrication

DVT

DVT Prep

6 12 12 4

14 ?? 5 8 Time in Weeks

Time to Mask order 48
61

Unit Block Verification

Typical ASIC
design can take
up to two years
to complete

SoC Typical Design Steps

Top Level Design
Unit Block Design

Integration and Synthesis
Trial Netlists

System Level Verification

Timing Convergence
& Verification

Fabrication

DVT

DVT Prep

4 14 5 4

Time in Weeks
Time to Mask order 24
33

Unit Block Verification

4 2

•  With increasing Complexity
of IC’s and decreasing
Geometry, IC Vendor steps
of Placement, Layout and
Fabrication are unlikely to be
greatly reduced.

•  In fact there is a greater
risk that Timing
Convergence steps will
involve more iteration.

•  Need to reduce time before
Vendor Steps.

•  Need to consider Layout
issues up-front.

SoC Typical Design Steps

Top Level Design
Unit Block Design

Integration and Synthesis
Trial Netlists

System Level Verification

Timing Convergence
& Verification

Fabrication

DVT

DVT Prep

4 14 5 4

Time in Weeks
Time to Mask order 24

Unit Block Verification

4 2

•  SoC Architecture already defined.
Flexible to scale in frequency and
complexity.
Allows new IP cores, new technology
to be integrated.

•  Separate the design of the reusable
IP from the design of the SoC.
Build the SoC from library of tested IP.

•  Unit design consists only of any
additional core features or wrapping
new IP to enable integration.

•  Reusable IP purchased from external
sources, developed from in-house
designs or designed as separate
project off critical SoC development
path.

Design Methodology
A Front-End ASIC Design Flow

Design Methodology
A Back-End Design Flow or Generic Physical Flow.

ASIC Methodology

SOC Methodology

SOC Methodology Evolving ...

How to Design an SOC

How to Design an SOC

How to Design an SOC

How to Design an SOC

How to Design an SOC

I/O pads

I/O
pa
ds

I/O
pads

1149.1 TAP controller

U
se
r-
de
fin
ed
lo
gi
c

CPU
core

Self-test
control

Legacy
core

IP hard
core

DSP
core

Memory
array

Interface
control

Embedded
DRAM

Main SOC testing challenges
•  Core level test: Embedded cores are
tested as a part of the system

•  Test access: Due to absence of physical
access to the core peripheries, electronic
access mechanism required

•  SOC level test: SOC test is a single
composite test including individual core,
and UDL test and test scheduling

System on Chip - Testing

Test data volume for core-based SOC designs is very high.

•  New techniques are required to reduce testing time, test cost, and
the memory requirements of the automatic test equipment (ATE)

•  SOCs are complex designs combining logic, memory and
mixed-signal circuits in a single IC

Verification

Today about 70% of design
cost and effort is spent on
verification.

Verification teams are often
almost twice as large as
the RTL designers at
companies developing ICs.

Traditionally, chip design
verification focuses on
simulation.

However, new verification
techniques are emerging.

Design for Integration

OCB Speed Bandwidth Arbitration Example

System High High Complex ARM AHB

Peripheral Low Low Simple PCI Bus

A key issue in SOC design is integration of silicon IPs (cores).

Integration of IPs directly affects the complexity of SOC designs and also
influences verification of the SOC.

Verification is faster and easier if the SOC interconnect is simple and
unified (use an on-chip communication system or intelligent on-chip bus).

There is no standard for OCBs; they are chosen almost exclusively by the
specific application for which they will be used and by the designer's preference.

Two main types of OCBs (on-chip bus) and their characteristics

A Typical Gateway SoC Architecture
An example of typical gateway VoIP (Voice over Internet Protocol)
system-on-a-chip diagram.
A gateway VoIP SoC is a device used for functions such as vocoders,
echo cancellation, data/fax modems, and VoIP protocols.

A Traditional SOC Architecture (bus-based)

In a typical SOC, there
are complex data flows
and multiple cores such
as CPUs, DSPs, DMA,
and peripherals.

Therefore,
resource sharing
becomes an issue,
communication between
IPs becomes very
complicated.

Sonics’ SiliconBackplane Used in SOC Design Architecture

The CPU, DMA, and the DSP engine all share the same bus (the CPU or
the system bus). Also, there are dedicated data links, a lot of control wires
between blocks, and peripheral buses between subsystems

 ⇒ there is interdependency between blocks and a lot of wires in the chip.
Therefore, verification, test, and physical design all become difficult to fulfill.

A solution to this system integration is to use an intelligent, on-chip
interconnect that unifies all the traffic into a single entity.

An example of this is Sonics’ SMART Interconnect SiliconBackplane
MicroNetwork.

When compared to a traditional CPU bus, an on-chip interconnect such as
Sonics SiliconBackplane has the following advantages:
v  Higher efficiency
v  Flexible configuration
v  Guaranteed bandwidth and latency
v  Integrated arbitration

Sonics’ SiliconBackplane MicroNetwork Used in
SOC Design Architecture

A MicroNetwork is a heterogeneous, integrated network that
unifies, decouples, and manages all of the communication
between processors, memories, and input/output devices.

The basic WiseNET SoC architecture

The architecture
includes:

•  the ultralow-power dual-band radio transceiver
(Tx and Rx),
•  a sensor interface with a signal conditioner and
two analog-to-digital converters (ANA_FE),
•  a digital control unit based on a Cool-RISC
microcontroller (µC) with on-chip low-leakage
memory, several timebasis and digital interfaces,
•  a power management block (POW)

Networks on a chip

SoC for DVB

Network Processor

Four vital areas of SoC:

v  Higher levels of abstraction

v  IP and platform re-use

v  IP creation – ASIPs,
interconnect and algorithm

v  Earlier software development
and integration

•  An System on Chip (SoC) is an integrated circuit that implements
most or all of the function of a complete electronic system.

Conclusions

