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Moore’s Law and Technology Scaling 

…the performance of an IC, including the number components on it, doubles 
every 18-24 months with the same chip price ... - Gordon Moore - 1960 



The Productivity Gap 

� 100M logic gates in 90nm = Logic of 1000 ARM7’s 
� Current 0.13u SoC’s: 10M$ ~100M$ design cost 



ITRS Roadmap 

H.P. – high performance microprocessor, µP – microprocessors 
H.H. – hand-hold products, SoC – system-on-chip 



Silicon technology roadmap 

low power SoC high performance MPU/
SoC 

2001 2004 2010 2001 2004 2010 
 gate length (nm) 130 90 45 90 53 25 
 supply voltage 1.2 1 0.6 1.1 1 0.6 
 transistor count (M) 3.3 8.3 40 276 553 2212 
 chip size (mm2) 100 120 144 310 310 310 
 clock frequency (GHz) 0.15 0.3 0.6 1.7 2.4 4.7 
 wiring levels 6 7 9 7 8 10 
 max power (W) 0.1 0.1 0.1 130 160 218 

•  intrinsic capability of ICs (transistor count / gate delay) 
grows with ~ 50% per year (Moore’s Law) 
•  power limits the performance  



Introduction - History 

•  First generation chips contained a few transistors.  

•  Today, silicon technology allows us to build chips consisting of 
hundreds of millions of transistors (Intel Pentium IV: 0.09 
micron). This technology has enabled new levels of system 
integration onto a single chip. 

•  Mobile phones, portable computers and Internet appliances will 
be built using a single chip. 

•  The demand for more powerful products and the huge capacity 
of today’ s silicon technology have moved System-on-Chip 
(SoC) designs from leading edge to mainstream design practice. 

•  “System on Chip” (SoC) technology will put the maximum 
amount of technology into the smallest possible space. 



Electronic systems 

Systems on chip are everywhere 

Technology advances enable increasingly more complex designs 

Central Question: how to exploit deep-
submicron technologies efficiently? 



Main Challenges of Wireless Sensor Network 

q  Energy dissipation 
    Reduce radiated power 
     More power efficient radio 

 Energy efficient protocols and routing algorithms 
 Better trade-off between communication and local computing 

q  Size 
 Higher integration (System-on-Chip or SoC) 

q  Cost 
 Standard Digital CMOS Technology 



Evolution of Microelectronics: the SoC Paradigm 

Silicon Process Technology 
• � 0.13µm CMOS 
• � ~100 millions of devices, 3 GHz internal Clock 



Paradigm Shift in SoC Design 

System on a board 

System on a Chip 



Evolutionary Problems 

� Key Challenges 
– Improve productivity 
– HW/SW codesign 
– Integration of analog & RF IPs 
– Improved DFT 

   Emerging new technologies: 
– Greater complexity 
– Increased performance 
– Higher density 
– Lower power dissipation 

� Evolutionary techniques: 
- IP (Intellectual Property) based design 
- Platform-based design 



Migration from ASICs to SoCs 

ASICs are logic chips designed by end customers to 
perform a specific function for a desired application.  

ASIC vendors supply libraries for each technology 
they provide. In most cases, these libraries contain 
predesigned and preverified logic circuits. 

ASIC technologies are: 

v  gate array  

v  standard cell  

v  full custom  



Migration from ASICs to SoCs 

In the mid-1990s, ASIC technology evolved from a 
chip-set philosophy to an embedded-cores-based 
system-on-a-chip concept.   

An SoC is an IC designed by stitching 
together multiple stand-alone VLSI 
designs to provide full functionality for 
an application.  

An SoC compose of predesigned 
models of complex functions known 
as cores (terms such as intellectual 
property block, virtual components, 
and macros) that serve a variety of 
applications.   



Three forms of SoC design 

The scenario for SoC design is characterized by three forms: 

1.  ASIC vendor design: This refers to the design in which all the 
components in the chip are designed as well as fabricated by 
an ASIC vendor. 

2.  Integrated design: This refers to the design by an ASIC vendor 
in which all components are not designed by that vendor. It 
implies the use of cores obtained from some other source 
such as a core/IP vendor or a foundry. 

3.  Desktop design: This refers to the design by a fabless 
company that uses cores which for the most part have been 
obtained from other source such as IP companies, EDA 
companies, design services companies, or a foundry.  



SoC Design Challenges 
Why does it take longer to design SOCs compared to 
traditional ASICs? 

We must examine factors influencing the degree of difficulty and 
Turn Around Time (TAT) (the time taken from gate-level netlist to 
metal mask-ready stage) for designing ASICs and SOCs. 

For an ASIC, the following factors influence TAT: 
•  Frequency of the design 
•  Number of clock domains 
•  Number of gates 
•  Density 
•  Number of blocks and sub-blocks 

The key factor that influences TAT for SOCs is system 
integration (integrating different silicon IPs on the same IC).  



SoC Design Challenges 

Levarage Internal Bandwidth vs External Bandwidth 



SoCs vs. ASICs 

q  SoC methodology is an incremental step over ASIC 
methodology  

q  SoC design is significantly more complex 
v  Need cross-domain optimizations 

v  IP reuse and Platform-based design increase 
productivity, but not enough 

v  Even with extensive IP reuse, many of the ASICs 
design problems remain, plus many more ... 

v  Productivity increase far from closing design gap 

q  SoC is not just a large ASIC 
v  Architectural approach involving significant design reuse 
v  Addresses the cost and time-to-market problems 



From ASICs to SoCs 



Technology vs. Productivity vs. Complexity 



System on Chip benefits 
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IP cores 

Typical : $10 

Up to now : collection of chips 

Now : collection of cores 

Typical : $70 

Typical approach : 

Define requirements 

Design with off-the shelf chips 

  - at 0.5 year mark : first prototypes 

  - 1 year : ship with low margins/loss 

  start ASIC integration 

  - 2 years : ASIC-based prototypes 

  - 2.5 years : ship, make profits (with 
competition) 

With SoC 

Define requirements 

Design with off-the shelf cores 

  - at 0.5 year mark : first prototypes 

  - 1 year : ship with high margin and 
market share 



Typical applications of SoC 
An SoC is a system on an IC that integrates software and hardware 
Intellectual Property (IP) using more than one design methodology for the 
purpose of defining the funcionality and behavior of the proposed system.  

The designed system  
is application specific. 

Typical applications of SoC: 
v  consumer devicecs,  
v  networking,  
v  communications, and  
v  other segments of the electronics industry. 

microprocessor, media processor, 
GPS controllers, cellular phones, 
GSM phones, smart pager ASICs, 
digital television, video games,          

 PC-on-a-chip 



A common set of problems facing everyone who is 
designing complex chips 

•  Time-to-market pressures demand rapid development. 
•  Quality of results (performance, area, power) - key to market success. 
•  Increasing chip complexity makes verification more difficult. 
•  Deep submicron issues make timing closure more difficult. 
•  The development team has different levels and areas of expertise, and 
is often scattered throughout the world. 
•  Design team members may have worked on similar designs in the past, 
but cannot reuse these designs because the design flow, tools, and 
guidelines have changed. 
•  SoC designs include embedded processor cores, and thus a significant 
software component, which leads to additional methodology, process, 
and organizational challenges. 

Reusing macros (called “cores”, or IP) that have already been 
designed and verified helps to address all of the problems above. 



Design for Reuse 

 To overcome the design gap, design reuse - the use of pre-
designed and pre-verified cores, or reuse of the existing designs 
becomes a vital concept in design methodology. 
 An effective block-based design methodology requires an 
extensive library of reusable blocks, or macros, and it is based 
on the following principles: 

v  The macro must be extremely easy to integrate into the 
overall chip design. 
v  The macro must be so robust that the integrator has to 
perform essentially no functional verification of internals of the 
macro. 

The challenge for designers is not whether to 
adopt reuse, but how to employ it effectively. 



Design for Reuse 

 To be fully reusable, the hardware macro must be: 

•  Designed to solve a general problem – easily configurable to fit 
different applications. 

•  Designed for use in multiple technologies – For soft macros, this 
mean that the synthesis scripts must produce satisfactory quality of results with a 
variety of libraries. For hard macros, this means having an effective porting strategy 
for mapping the macro onto new technologies. 

•  Designed for simulation with a variety of simulators – Good 
design reuse practices dictate that both a Verilog and VHDL version of each model 
and verification testbench should be available, and they should work with all the 
major commercial simulators. 

•  Designed with standards-based interfaces – Unique or custom 
interfaces should be used only if no standards-based interface exists. 



Design for Reuse – cont. 

    To be fully reusable, the hardware macro must be: 

•  Verified independently of the chip in which it will be used – 
Often, macros are designed and only partially tested before being integrated into 
a chip for verification. Reusable designs must have full, stand-alone testbenches 
and verification suites that afford very high levels of test coverage. 

•  Verified to a high level of confidence – This usually means very 
rigorous verification as well as building a physical prototype that is tested in an 
actual system running real software. 

•  Fully documented in terms of appropriate applications and 
restrictions – In particular, valid configurations and parameter values must be 
documented. Any restrictions on configurations or parameter values must be 
clearly stated. Interfacing requirements and restrictions on how the macro can be 
used must be documented. 



Intellectual Property 

Utilizing the predesigned modules 
enables:  
v  to avoid reinventing the wheel for 
every new product,  
v  to accelerate the development of 
new products,  
v  to assemble various blocks of a 
large ASIC/SoC quite rapidly, 
v  to reduce the possibility of failure 
based on design and verification of a 
block for the first time. 

These predesigned modules are commonly called 
Intellectual Property (IP) cores or Virtual Components (VC).  

Resources vs. Number of Uses 

$, Time

Multiple Uses

With Design Reuse

Without Design Reuse



Intellectual Property Categories 
IP cores are classified into three distinct categories: 

Hard IP cores consist of hard layouts using particular physical design 
libraries and are deliverid in masked-level designed blocks (GDSII 
format). The integration of hard IP cores is quite simple, but hard cores 
are technology dependent and provide minimum flexibility and portability 
in reconfiguration and integration. 

Soft IP cores are delivered as RTL VHDL/Verilog code to provide 
functional descriptions of IPs. These cores offer maximum flexibility and 
reconfigurability to match the requirements of a specific design 
application, but they must be synthesized, optimized, and verified by their 
user before integration into designs. 

Firm IP cores bring the best of both worlds and balance the high 
performance and optimization properties of hard IPs with the flexibility of 
soft IPs.These cores are delivered in form of targeted netlists to specific 
physical libraries after going through synthesis without performing the 
physical layout.  



Trade-offs among soft, firm, and hard cores 

Resusability  
portability 
flexibility 

Predictability, performance, time to market 

Soft 
core 

Firm 
core 

Hard 
core 



Comparison of Different IP Formats 

IP Format Representation Optimization Technology Reusability 

Hard GDSII Very High Technology 
Dependent 

Low 

Soft RTL Low Technology 
Independent 

Very High 

Firm Target Netlist High Technology 
Generic 

High 



Examples of IPs 



IP Reuse and IP-Based SoC Design 



What is MPSoC 

MPSoC is a system-on-chip that contains multiple 
instruction-set processors (CPUs). 

The typical MPSoC is a heterogeneous multiprocessor: 
there may be several different types of processing elements (PEs), 
the memory system may be heterogeneously distributed around the 
machine, and the interconnection network between the PEs and 
the memory may also be heterogeneous.  

MPSoCs often require large amounts of memory. The device may 
have embedded memory on-chip as well as relying on off-chip 
commodity memory. 



The design process of SoCs  

SoC designs are made possible by deep submicron technology. This 
technology presents a whole set of design challenges including:  

v  interconnect delays,  
v  clock and power distribution, and  
v  the placement and routing of millions of gates.  

These physical design problems can have a significant impact on 
the functional design of SoCs and on the design process itself.  

The first step in system design is specifying the required functionality.  
The second step is to transform the system funcionality into an 
architecture which define the system implementation by specifying the 
number and types of components and connections between them. 



Define Hardware-Software Codesign 

Hardware-Software Codesign is the concurrent and co-operative 
design of hardware and software components of a system. 

The SoC design process is a hardware-software codesign in 
which design productivity is achived by design reuse.  

The design process is the set of design tasks that transform 
an abstract specification model into an architectural model. 



SoC Co-design Flow 



Design Proces 

A canonical or 
generic form of 
an SoC design 

These chips have:  
•  one (several) processors 
•  large amounts of memory  
•  bus-based architectures  
•  peripherals  
•  coprocessors 
•  and I/O channels  



Waterfall vs. 
Spiral Design Flow 

The traditional model for 
ASIC development is often 
called a waterfall model.  
 
The project transitions 
from phase to phase in a 
step function, never 
returning to the activities 
of the previous phase. 



Waterfall vs. Spiral Design Flow 

As complexity increases, geometry shrinks, and time-to-market 
pressures continue to escalate, chip designers are moving from 
the old waterfall model to the newer spiral development model.  
In the spiral model, the design team works on multiple aspects of 
the design simultaneously, incrementally improving in each area 
as the design converges on completion. 

The spiral SoC design flow is characterized by: 
v Parallel, concurrent development of hardware and software 
v Parallel verification and synthesis of modules 
v Floorplanning and place-and-route included in the synthesis  

process 
v Modules developed only if a pre-designed hard or soft macro 

is not available 
v Planned iteration throughout 



Waterfall vs. 
Spiral Design 

Flow 

Spiral SoC Design Flow 

 

Goal: Maintain parallel 
interacting design flow 



Top-Down vs. Bottom-Up 

The classic top-down design process can be viewed as a recursive routine 
that begins with specification and decomposition, and ends with integration 
and verification: 

v  Write complete specifications for the system or subsystem being designed. 
v  Refine its architecture and algorithms, including software design and 
hardware/software cosimulation if necessary. 
v  Decompose the architecture into well-defined macros. 
v  Design or select macros; this is where the recursion occurs. 
v  Integrate macros into the top level; verify functionality and timing. 
v  Deliver the subsystem/system to the next higher level of integration; at the 
top level, this is tapeout. 
v  Verify all aspects of the design (functionality, timing, etc.). 



Top-Down vs. Bottom-Up 

A top-down methodology assumes that the lowest level 
blocks specified can, in fact, be designed and built. If it turns 
out that a block is not feasible to design, the whole 
specification process has to be repeated.  
For this reason, real world design teams usually use a 
mixture of top-down and bottom-up methodologies, building 
critical low-level blocks while they refine the system and 
block specifications.  
Libraries of reusable hard and soft macros clearly facilitate 
this process by providing a source of pre-verified blocks, 
proving that at least some parts of the design can be 
designed and fabricated in the target technology and perform 
to specification. 



Design processes in flow diagrams 
The first part of the design process consists of recursively developing, 
verifying, and refining a set of specifications until they are detailed 
enough to allow RTL coding to begin.  

The specifications must completely describe all the interfaces between 
the design and its environment, including: 
v  Hardware – Functionality; External interfaces to other hardware (pins, 
buses, and how to use them); Interface to SW (register definitions); Timing; 
Performance; Physical design issues such as area and power 
v  Software – Functionality; Timing; Performance; Interface to HW SW 
structure, kernel 

   Type of  of specifications: 
v  Formal specifications – the desired characteristics of the design are 
defined independently of any implementation. 
v  Executable specifications – are typically an abstract model for the 
hardware and/or software being specified, and currently more useful for 
describing functional behavior in most design situations. 



The System Design 
Process 

Determining the optimal architecture 
(cost and performance) involves a 
set of complex decisions, such as: 
•  What goes in software and what 
goes in hardware 
•  What processor(s) to use, and how 
many 
•  What bus architecture is required 
to achieve the required system 
performance 
•  What memory architecture to use 
to reach an appropriate balance 
between power, area, and speed. 

Solution: modeling of several 
alternative architectures 



ASIC Typical Design Steps 

Top Level Design 

Unit Block Design 

Integration and Synthesis 
Trial Netlists 

System Level Verification 

Timing Convergence 
& Verification 

Fabrication 

DVT 

DVT Prep 

6   12   12   4
 
  

14  ?? 5 8 Time in Weeks 

Time to Mask order 48 
61 

Unit Block Verification 

Typical ASIC 
design can take 
up to two years 
to complete 



SoC Typical Design Steps 

Top Level Design 
Unit Block Design 

Integration and Synthesis 
Trial Netlists 

System Level Verification 

Timing Convergence 
& Verification 

Fabrication 

DVT 

DVT Prep 

4   14   5 4 

Time in Weeks 
Time to Mask order 24 
33 

Unit Block Verification 

4   2 

•  With increasing Complexity 
of IC’s and decreasing 
Geometry, IC Vendor steps 
of Placement, Layout and 
Fabrication are unlikely to be 
greatly reduced. 

•  In fact there is a greater 
risk that Timing 
Convergence steps will 
involve more iteration. 

•  Need to reduce time before 
Vendor Steps.  

•  Need to consider Layout 
issues up-front. 



SoC Typical Design Steps 

Top Level Design 
Unit Block Design 

Integration and Synthesis 
Trial Netlists 

System Level Verification 

Timing Convergence 
& Verification 

Fabrication 

DVT 

DVT Prep 

4   14   5 4 

Time in Weeks 
Time to Mask order 24 

Unit Block Verification 

4   2 

•  SoC Architecture already defined.  
Flexible to scale in frequency and  
complexity. 
Allows new IP cores, new technology 
to be integrated. 
 
•  Separate the design of the reusable 
IP from the design of the SoC. 
Build the SoC from library of tested IP. 

•  Unit design consists only of any 
additional core features or wrapping 
new IP to enable integration. 

•  Reusable IP purchased from external 
sources, developed from in-house 
designs or designed as separate 
project off critical SoC development 
path. 



Design Methodology 
A Front-End ASIC Design Flow 



Design Methodology 
A Back-End Design Flow or Generic Physical Flow. 



ASIC Methodology 



SOC Methodology 



SOC Methodology Evolving ... 



How to Design an SOC 



How to Design an SOC 



How to Design an SOC 



How to Design an SOC 



How to Design an SOC 
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Main SOC testing challenges 
•  Core level test: Embedded cores are 
tested as a part of the system 

•  Test access: Due to absence of physical 
access to the core peripheries, electronic 
access mechanism required 

•  SOC level test: SOC test is a single 
composite test including individual core, 
and UDL test and test scheduling 

System on Chip - Testing 

Test data volume for core-based SOC designs is very high. 

•  New techniques are required to reduce testing time, test cost, and 
the memory requirements of the automatic test equipment (ATE) 

•  SOCs are complex designs combining logic, memory and 
mixed-signal circuits in a single IC 



Verification 

Today about 70% of design 
cost and effort is spent on 
verification.  

Verification teams are often 
almost twice as large as 
the RTL designers at 
companies developing ICs.  

Traditionally, chip design 
verification focuses on 
simulation.  

However, new verification 
techniques are emerging.  



Design for Integration 

OCB Speed Bandwidth Arbitration Example 

System High High Complex ARM AHB 

Peripheral Low Low Simple PCI Bus 

A key issue in SOC design is integration of silicon IPs (cores).  

Integration of IPs directly affects the complexity of SOC designs and also 
influences verification of the SOC.  

Verification is faster and easier if the SOC interconnect is simple and 
unified (use an on-chip communication system or intelligent on-chip bus).   

There is no standard for OCBs; they are chosen almost exclusively by the 
specific application for which they will be used and by the designer's preference.  

Two main types of OCBs (on-chip bus) and their characteristics 



A Typical Gateway SoC Architecture 
An example of typical gateway VoIP (Voice over Internet Protocol) 
system-on-a-chip diagram. 
A gateway VoIP SoC is a device used for functions such as vocoders, 
echo cancellation, data/fax modems, and VoIP protocols.  



A Traditional SOC Architecture (bus-based) 

In a typical SOC, there 
are complex data flows 
and multiple cores such 
as CPUs, DSPs, DMA, 
and peripherals.  
 
Therefore,  
resource sharing 
becomes an issue, 
communication between 
IPs becomes very 
complicated.  



Sonics’ SiliconBackplane Used in SOC Design Architecture 

The CPU, DMA, and the DSP engine all share the same bus (the CPU or 
the system bus). Also, there are dedicated data links, a lot of control wires 
between blocks, and peripheral buses between subsystems  

    ⇒ there is interdependency between blocks and a lot of wires in the chip.  
Therefore, verification, test, and physical design all become difficult to fulfill. 

A solution to this system integration is to use an intelligent, on-chip 
interconnect that unifies all the traffic into a single entity.  

An example of this is Sonics’ SMART Interconnect SiliconBackplane 
MicroNetwork. 

When compared to a traditional CPU bus, an on-chip interconnect such as 
Sonics SiliconBackplane has the following advantages: 
v  Higher efficiency 
v  Flexible configuration 
v  Guaranteed bandwidth and latency 
v  Integrated arbitration 



Sonics’ SiliconBackplane MicroNetwork Used in 
SOC Design Architecture 

A MicroNetwork is a heterogeneous, integrated network that 
unifies, decouples, and manages all of the communication 
between processors, memories, and input/output devices. 



The basic WiseNET SoC architecture 

The architecture  
includes: 
 
•  the ultralow-power dual-band radio transceiver 
(Tx and Rx),  
•  a sensor interface with a signal conditioner and 
two analog-to-digital converters (ANA_FE),  
•  a digital control unit based on a Cool-RISC 
microcontroller (µC) with on-chip low-leakage 
memory, several timebasis and digital interfaces,  
•  a power management block (POW) 



Networks on a chip 



SoC for DVB 



Network Processor 



Four vital areas of SoC: 
 
v  Higher levels of abstraction 

v  IP and platform re-use 

v  IP creation – ASIPs, 
interconnect and algorithm 

v  Earlier software development 
and integration 

•  An System on Chip (SoC) is an integrated circuit that implements 
most or all of the function of a complete electronic system. 

Conclusions 


