
ì Abstractions, Trends and Performance
@carlosjaimebh

Computer Architecture View

Image from: http://home.deib.polimi.it/mottola/

Designer/Architect of Computer
Systems

ì  The task is a complex one: Determinate
what attributes are important for a new
computer:
ì  MAXIMIZE PERFORMANCE
ì  Energy Eficiency
ì  Low Cost and Power
ì  Availability

And the Role for a Systems
Engineer?

ì  Take decisions, suggest to acquire or use new techology in
accordance with the previous attributes and requirements.

Abstraction
ì  Abstraction is a process by which

concepts are derived from the usage
and classification of literal ("real" or
"concrete") concepts, first principles,
or other methods.

ì  Abstractions may be formed by
reducing the information content of
a concept or an observable
phenomenon, typically to retain only
information which is relevant for a
particular purpose.

Abstraction by Alisa Burke

Levels of Abstraction

From https://eca.cs.purdue.edu/index.html

Transistor Representation
(Review)

From https://eca.cs.purdue.edu/index.html

Logical Gates Representation
(Review)

From https://eca.cs.purdue.edu/index.html

Binary Counters Representation
(Review)

From https://eca.cs.purdue.edu/index.html

Clocks and Sequences Representation

From https://eca.cs.purdue.edu/index.html

Traditional Computer
Sequence
1.  Test the battery
2.  Power on and test

the memory
3.  Start the disk

spinning
4.  Power up the

screen
5.  Read the boot

sector from disk
into memory

6.  Start the CPU

The Feedback Concept

CLOCK and (not F)

From https://eca.cs.purdue.edu/index.html

Architectural Representation

From https://eca.cs.purdue.edu/index.html

Processors Representation

From https://eca.cs.purdue.edu/index.html

Processor Structure Representation

From https://eca.cs.purdue.edu/index.html

Conceptual Units:
•  Controller
•  Arithmetic Logic Unit

(ALU)
•  Local Data Storage

(Registers)
•  Internal Interconections
•  External Interfaces (I/Os)

Instruction Set Architecture (ISA)

° Co-ordination of levels of abstraction

I/O system Instr. Set Proc.

Compiler
Operating

System

Application

Digital Design
Circuit Design

° Under a set of rapidly changing Forces

Instruction Set
 Architecture

From https://eca.cs.purdue.edu/index.html

Binary Weighted Positional
Representation

From https://eca.cs.purdue.edu/index.html

Processors Categories and Roles

ì  Coprocessors
ì  Accelerators

ì  Microcontrollers

ì  Embedded System Processors

ì  General-purpose Processors

ì  Specific-purpose Processors

Program Translation

From https://eca.cs.purdue.edu/index.html

ISA Levels

http://www.cise.ufl.edu/~mssz/CompOrg/CDAintro.html

Review: Levels of Representation

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signal
Specification

Compiler

Assembler

Machine Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

80X86 Architecture

ì  X86 denotes a family
of ISAs based on the
Intel® 8086CPU.

MIPS Architecture

ì  Microprocessor without Interlocked Pipeline
Stages is a RISC_ISA computer developed by
MIPS Technologies, formerly used in Embedded
Systems or video game consoles (Sony®
PlayStation®) .

Some Aspects of ISA

1.  Class of ISA

2.  Memory Addressing

3.  Addresing Modes

4.  Types of Sizes of Operands

5.  Operations

6.  Control Flow Instructions

7.  Encoding and ISA

1. Class of ISA

ì  All ISA are classified as general-purpose register
architecture (Operands are either registers or memory
locations)
ì  80x86 has a 16 general-purpose registers (16 floating-

point data)
ì  MIPS has 32 general-purpose registers (32 floating-point

reigisters)

ì  Two Popular versions:
ì  Register Memory ISAs (80x86)
ì  Load Store ISAs (ARM, MIPS)

1. Class of ISA: An Example
MIPS registers and usage conventions

2. Memory Addressing

ì  All desktop and servers computers use
byte addressing to access memory
operands.
ì  Some architectures (ARMS, MIPS) require

that objects must be aligned.
ì  80x86 does not require alignement, but

accesses are generally faster if operands
are aligned

2. Memory Addressing
Aligned and Missalinged examples

3. Addressing Modes
ì  Addressing Modes specify the address of a memory

object, registers and constant operands.
ì  MIPS: Register, Immediate (Constants),

Displacement.
ì  80x86: Support the previous three + three

variations of displacement:
ì  no register (absolute)
ì  two registers (based indexed with displacement)
ì  two registers (based with scaled index and

displacement)
ì  ARM: The three MIPS registers + PC-Relative

addressing, the sum of two registers and the sum
of two registers multiplied by the size of the
operand in bytes.

3. Addressing Modes: An Example

4. Types and Sizes of Operands

ì  8-bit (ASCII character)

ì  16-bit (Unicode Character or half word)

ì  32-bit (Integer or word)

ì  64-bit (Double word or long integer)

ì  IEE 754 Floating Point in 32-bit (Single Precision)
and 64-bit (Double precision)

ì  80-bit Floating Point (Extended Double Precision
Only for 80x86)

5. Operations
ì  Data Transfer

ì  Moves data between registers and memory, or
between the integer and special registers.

ì  Arithmetic Logical
ì  Operations on Integer or Logical data in GPRs

(General Purpose Registers)

ì  Control
ì  Conditional branches and jumps

ì  Floating Point
ì  Floating Point Operations on Double Precision and

Single Precisions Formats

5. Operations:
Subset of the Instructions in MIPS64

6. Control Flow Instructions

ì  Conditional Branches

ì  Unconditional Jumps

ì  Procedure Calls

ì  Returns

7. Encoding an ISA
ì  Fixed Length

ì  ARM and MIPS (32-bits long)

ì  Variable Length
ì  80x86 (Ranking from 1 to 18 bytes)

•  I.E. MIPS instruction encoding formats:
–  R-type (6-bit opcode, 5-bit rs, 5-bit rt, 5-bit rd, 5-bit shamt, 6-bit function code)

–  I-type (6-bit opcode, 5-bit rs, 5-bit rt, 16-bit immediate)

–  J-type (6-bit opcode, 26-bit pseudo-direct address)

Designing and Organization

ì  Implementation of a computer has two
components: organization and hardware.
ì  Organization: High level aspects (memory

system, memory interconection, design of the
CPU)
ì  Microarchitecture

ì  Example: two processors with the same ISA but
different organization are AMD Opteron adn Intel
Core i7.

ì  Hardware: Specifics of a Computer (Detailed
logic design and the packaging technology of the
computer)

Summary of Some Functional
Requerimients an Architect Faces

From Hennesy and Patterson

Trends in Technology

ì  Integrated Circuit Logic Technology
ì  Transistor density increases by about 35%/

year, quadrupling somewhat over four years
(Moore’s Law)

ì  Semiconductor DRAM

Trends in Technology
ì  Semiconductor Flash

ì  Electrically erasable programmable read-only memory (Flash Memory)

ì  Magnetic Disk Technology
ì  Disks are 15 to 25 times cheaper per bit than flash.

ì  Network Technology
ì  Network performance depends both on the performance of switches and on the performance of the transmission

system.

ì  Organization Trends
ì  RISC Technology (ARM, RISC-V)

ì  Tensor and Accelerated Unit Processors (GPUs, TPUs)

ì  New Materials

ì  Graphene

ì  DNA and BioMaterials

ì  Optics and Quantum Materials

Performance Trends:
Bandwidth over Latency

Trends Following Moore’s Law

Performance Trends
Power and Energy

Programming Environment

 Middleware

 Interconnection Network / Devices

PC/Workstation/Cluster/Devices/Sensors

 Network Interface Hardware

Communications

Software

 Applications

5% 25% N/A 50% 1%

S. O.

 Applications
 Applications

Storage

Vizualisation
Processing RAM

Essential Hardware

FANS,
COOLERS

Sound Cards

Lighting

Webcams

The distribution of the energy consumed in the processor
components.

From Nikolaos Kroupis , Dimitrios Soudris, FILESPPA: Fast Instruction Level Embedded System Power and Performance
Analyzer

Microprocessors and Microsystems Volume 35, Issue 3 2011 329 - 342

Performance Trends
Power and Energy

Performance Trends
Power and Energy:

Techniques to improve energy efficiency

1.  Do nothing well: Turn off the clock of
inactive modules to save energy and
dynamic power.

2.  Dynamic Voltage-Frequency Scaling (DVFS)

3.  Design for Typical Case (Scheduling of
Activity)

4.  Overclocking (Turbo Mode)

Trends in Cost
ì  Impact of Time, Volume and Commoditization

ì  Learning Curve

ì  Manufacturing Costs
ì  Transport

ì  Market (Cost vs Price)
ì  Operation Costs
ì  Dependability

ì  Service Level Agreements (Infrastructure)

ì  Service Level Objects (Networking, Power)

Performance

ì  A Computer System exists to IMPROVE
PERFORMANCE
ì  High Speed

ì  Data Treatment
ì  Availability
ì  Capacity

ì  Low Latency
ì  High Bandwdith

Measuring Performance

ì  In order to compare how fast computers can
process data, we have to measure their
performance.

ì  There are a number of measurements of
performance.

ì  Clock speed, MIPS, FLOPS & Benchmark
tests are all used. Some are a better
measure than others.

Metrics of Computer Performance

Compiler

Programming
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units
Cycles per second (clock rate).

Megabytes per second.

Execution time: Target workload,
SPEC95, etc.

Each metric has a purpose, and each can be misused.

(millions) of Instructions per second – MIPS
(millions) of (F.P.) operations per second – MFLOP/s

Computer Performance

ì  Response Time (elapsed time, latency):

ì  how long does it take for my job to run?

ì  how long does it take to execute (start to

 finish) my job?

ì  how long must I wait for the database query?

ì  Throughput:

ì  how many jobs can the machine run at once?

ì  what is the average execution rate?

ì  how much work is getting done?

ì  If we upgrade a machine with a new processor what do we increase?

ì  If we add a new machine to the lab what do we increase?

Individual user
concerns…

Systems manager
concerns…

Execution Time
ì  Elapsed Time

ì  counts everything (disk and memory accesses, waiting for I/O, running other programs, etc.)
from start to finish

ì  a useful number, but often not good for comparison purposes

 elapsed time = CPU time + wait time (I/O, other programs, etc.)

ì  CPU time
ì  doesn't count waiting for I/O or time spent running other programs
ì  can be divided into user CPU time and system CPU time (OS calls)

 CPU time = user CPU time + system CPU time

 ⇒ elapsed time = user CPU time + system CPU time + wait time

ì  Our focus: user CPU time (CPU execution time or, simply, execution time)
ì  time spent executing the lines of code that are in our program

Definition of Performance

ì  For some program running on machine X:

 PerformanceX = 1 / Execution timeX

ì  X is n times faster than Y means:

 PerformanceX / PerformanceY = n

Clock Cycles
ì  Instead of reporting execution time in seconds, we often use cycles. In modern

computers hardware events progress cycle by cycle: in other words, each event,
e.g., multiplication, addition, etc., is a sequence of cycles

ì  Clock ticks indicate start and end of cycles:

ì  cycle time = time between ticks = seconds per cycle

ì  clock rate (frequency) = cycles per second (1 Hz. = 1 cycle/sec, 1 MHz. = 106
cycles/sec)

ì  Example: A 200 Mhz. clock has a cycle time

time

seconds
program

=
cycles
program

×
seconds
cycle

1

200 ×106
×109 = 5 nanoseconds

cycle
tic

k

tic
k

Clock Speed

ì  The clock signal is carried by one of the lines on the
control bus.

ì  One single pulse is called a ‘clock cycle’.

ì  Measured in Megahertz (MHz) & Gigahertz (GHz).
1 MHz = 1 million pulses per second. 1 GHZ =
1000 MHz.

Processor Clock Speed

ì  CPU clock speeds are compared at
http://www.cpubenchmark.net/
common_cpus.html

Performance Equation I

ì  So, to improve performance one can either:
ì  reduce the number of cycles for a program, or

ì  reduce the clock cycle time, or, equivalently,

ì  increase the clock rate

seconds
program

=
cycles
program

×
seconds
cycle

CPU execution time CPU clock cycles Clock cycle time
for a program for a program = ×

equivalently

How many cycles are required for a
program?

ì  Could assume that # of cycles = # of instructions

time 1s
t i

ns
tru

ct
io

n

2n
d

in
st

ru
ct

io
n

3r
d

in
st

ru
ct

io
n

4t
h

5t
h

6t
h ...

n  This assumption is incorrect! Because:
n  Different instructions take different amounts of time (cycles)
n  Why…?

How many cycles are required for a program?

ì  Multiplication takes more time than addition

ì  Floating point operations take longer than integer ones

ì  Accessing memory takes more time than accessing registers

ì  Important point: changing the cycle time often changes the
number of cycles required for various instructions because it
means changing the hardware design. More later…

time

Example

ì  Our favorite program runs in 10 seconds on computer A,
which has a 400Mhz. clock.

ì  We are trying to help a computer designer build a new
machine B, that will run this program in 6 seconds. The
designer can use new (or perhaps more expensive) technology
to substantially increase the clock rate, but has informed us
that this increase will affect the rest of the CPU design,
causing machine B to require 1.2 times as many clock cycles
as machine A for the same program.

ì  What clock rate should we tell the designer to target?

Terminology
ì  A given program will require:

ì  some number of instructions (machine instructions)

ì  some number of cycles

ì  some number of seconds

ì  We have a vocabulary that relates these quantities:

ì  cycle time (seconds per cycle)

ì  clock rate (cycles per second)

ì  (average) CPI (cycles per instruction)

ì  a floating point intensive application might have a higher average CPI

ì  MIPS (millions of instructions per second)

ì  this would be higher for a program using simple instructions

Performance Measure
ì  Performance is determined by execution time

ì  Do any of these other variables equal performance?
ì  # of cycles to execute program?
ì  # of instructions in program?

ì  # of cycles per second?
ì  average # of cycles per instruction?

ì  average # of instructions per second?

ì  Common pitfall : thinking one of the variables is indicative of
performance when it really isn’t

Performance Equation II

CPU execution time Instruction count average CPI Clock
cycle time

for a program for a program

ì  Derive the above equation from Performance Equation I

= × ×

Questions?

@carlosjaimebh

