### Abstractions, Trends and Performance @carlosjaimebh



Image from: <u>http://home.deib.polimi.it/mottola/</u>

### Designer/Architect of Computer Systems

- The task is a complex one: Determinate what attributes are important for a new computer:
  - MAXIMIZE PERFORMANCE
  - Energy Eficiency
  - Low Cost and Power
  - **オ** Availability

#### And the Role for a Systems Engineer? Take decisions, suggest to acquire or use new techology in accordance with the previous attributes and requirements.

7



### **Abstraction**



Abstraction by Alisa Burke

- Abstraction is a process by which concepts are derived from the usage and classification of literal ("real" or "concrete") concepts, first principles, or other methods.
- Abstractions may be formed by reducing the <u>information</u> content of a <u>concept</u> or an observable <u>phenomenon</u>, typically to retain only information which is relevant for a particular purpose.



### Levels of Abstraction

| Abstraction          | Implemented With                         |  |  |
|----------------------|------------------------------------------|--|--|
| Computer             | Circuit board(s)                         |  |  |
| <b>Circuit board</b> | Processor, memory, and bus adapter chips |  |  |
| Processor            | VLSI chip                                |  |  |
| VLSI chip            | Many gates                               |  |  |
| Gate                 | Many transistors                         |  |  |
| Transistor           | Semiconductor implemented in silicon     |  |  |

Figure 2.26 An example of levels of abstraction in digital logic. An item at one level is implemented using items at the next lower level.

#### Transistor Representation (Review)



Figure 2.1 The two types of transistors used in logic circuits. The type labeled (a) turns on when the gate voltage is positive; transistor labeled (b) turns on when the gate voltage is zero (or negative).

#### Logical Gates Representation (Review)



Figure 2.6 The symbols for commonly used gates. Inputs for each gate are shown on the left, and the output of the gate is shown on the right.

#### Binary Counters Representation (Review)



Figure 2.19 Illustration of (a) a binary counter, and (b) a sequence of input values and the corresponding outputs. The column labeled *decimal* gives the decimal equivalent of the outputs.

#### **Clocks and Sequences Representation**

#### Traditional Computer Sequence

- 1. Test the battery
- 2. Power on and test the memory
- 3. Start the disk spinning
- 4. Power up the screen
- 5. Read the boot sector from disk into memory
- 6. Start the CPU



Figure 2.21 An illustration of how a clock can be used to create a circuit that performs a sequence of six steps. Output lines from the counter connect directly to input lines of the decoder.

### **The Feedback Concept**



**Figure 2.22** A modification of the circuit in Figure 2.21 that includes feedback to stop processing after one pass through each output.

#### **Architectural Representation**





- Figure 4.1 Illustration of the Harvard Architecture that uses two memories, one to hold programs and another to store data.
- Figure 4.2 Illustration of the Von Neumann Architecture. Both programs and data can be stored in the same memory.

#### **Processors Representation**



Figure 4.3 An example of a CPU that includes multiple components. The large arrow in the center of the figure indicates a central interconnect mechanism that the components use to coordinate.

#### **Processor Structure Representation**

#### **Conceptual Units:**

- Controller
- Arithmetic Logic Unit (ALU)
- Local Data Storage (Registers)
- Internal Interconections
- External Interfaces (I/Os)



Figure 4.4 The five major units found in a conventional processor. The external interface connects to the rest of the computer system.

#### **Instruction Set Architecture (ISA)**

#### ° Co-ordination of *levels of abstraction*



° Under a set of rapidly changing Forces

#### Binary Weighted Positional Representation



Figure 3.2 The value associated with each of the first six bit positions when using a positional interpretation in base two.

#### **Processors Categories and Roles**

- Coprocessors
  - Accelerators
- Microcontrollers
- Embedded System Processors
- General-purpose Processors
- Specific-purpose Processors

# **Program Translation**



**Figure 4.6** The steps used to translate a source program to the binary object code representation used by a processor.

# **ISA Levels**



http://www.cise.ufl.edu/~mssz/CompOrg/CDAintro.html

### **Review: Levels of Representation**



v[k] = v[k+1];v[k+1] = temp;

1010

0101

1010

1111 0101 1000 0000 1001

1000

0110

1111

### **80X86 Architecture**

X86 denotes a family of ISAs based on the Intel® 8086CPU.





@ www.cpu-world.com



# **MIPS** Architecture

Microprocessor without Interlocked Pipeline Stages is a RISC\_ISA computer developed by MIPS Technologies, formerly used in Embedded Systems or video game consoles (Sony® PlayStation®).





# Some Aspects of ISA

- 1. Class of ISA
- 2. Memory Addressing
- 3. Addresing Modes
- 4. Types of Sizes of Operands
- 5. Operations
- 6. Control Flow Instructions
- 7. Encoding and ISA

# 1. Class of ISA

- All ISA are classified as general-purpose register architecture (Operands are either registers or memory locations)
  - 80x86 has a 16 general-purpose registers (16 floatingpoint data)
  - MIPS has 32 general-purpose registers (32 floating-point reigisters)
- **Two Popular versions:** 
  - Register Memory ISAs (80x86)
  - Load Store ISAs (ARM, MIPS)

### 1. Class of ISA: An Example

#### MIPS registers and usage conventions

| Name                                       | Register Number | Usage                             | Preserved on call |
|--------------------------------------------|-----------------|-----------------------------------|-------------------|
| \$zero                                     | 0               | the constant value 0              | n.a.              |
| \$at                                       | 1               | reserved for the assembler        | n.a.              |
| $v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v$ | 2-3             | value for results and expressions | no                |
| \$a0-\$a3                                  | 4-7             | arguments (procedures/functions)  | yes               |
| \$t0-\$t7                                  | 8-15            | temporaries                       | no                |
| \$s0-\$s7                                  | 16-23           | saved                             | yes               |
| \$t8-\$t9                                  | 24-25           | more temporaries                  | no                |
| \$k0-\$k1                                  | 26-27           | reserved for the operating system | n.a.              |
| \$gp                                       | 28              | global pointer                    | yes               |
| \$sp                                       | 29              | stack pointer                     | yes               |
| \$fp                                       | 30              | frame pointer                     | yes               |
| \$ra                                       | 31              | return address                    | yes               |

# 2. Memory Addressing

- All desktop and servers computers use byte addressing to access memory operands.
  - Some architectures (ARMS, MIPS) require that objects must be aligned.
  - 80x86 does not require alignement, but accesses are generally faster if operands are aligned

#### 2. Memory Addressing Aligned and Missalinged examples



Aligned Request

Unaligned (misaligned) Request

# **3. Addressing Modes**

- Addressing Modes specify the address of a memory object, registers and constant operands.
  - MIPS: Register, Immediate (Constants), Displacement.
  - 80x86: Support the previous three + three variations of displacement:
    - no register (absolute)
    - two registers (based indexed with displacement)
    - two registers (based with scaled index and displacement)
  - ARM: The three MIPS registers + PC-Relative addressing, the sum of two registers and the sum of two registers multiplied by the size of the operand in bytes.

#### 3. Addressing Modes: An Example

#### 8086 ADDRESS MODES



ASSUME: BX = 0300H; SI = 0200H; ARRAY = 1000H; DS = 1000H.

# 4. Types and Sizes of Operands

- 8-bit (ASCII character)
- 16-bit (Unicode Character or half word)
- **32-bit (Integer or word)**
- 7 64-bit (Double word or long integer)
- IEE 754 Floating Point in 32-bit (Single Precision) and 64-bit (Double precision)
- 80-bit Floating Point (Extended Double Precision Only for 80x86)

# 5. Operations

- **オ** Data Transfer
  - Moves data between registers and memory, or between the integer and special registers.
- Arithmetic Logical
  - Operations on Integer or Logical data in GPRs (General Purpose Registers)
- Control
  - Conditional branches and jumps
- - Floating Point Operations on Double Precision and Single Precisions Formats

#### **5. Operations:** Subset of the Instructions in MIPS64

| Instruction type/opcode              | Instruction meaning                                                                                                                                                   |  |  |  |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Data transfers                       | Move data between registers and memory, or between the integer and FP or special<br>registers; only memory address mode is 16-bit displacement + contents of a GPR    |  |  |  |
| LB,LBU,SB                            | Load byte, load byte unsigned, store byte (to/from integer registers)                                                                                                 |  |  |  |
| LH,LHU,SH                            | Load half word, load half word unsigned, store half word (to/from integer registers)                                                                                  |  |  |  |
| LW, LWU, SN                          | Load word, load word unsigned, store word (to/from integer registers)                                                                                                 |  |  |  |
| LD,SD                                | Load double word, store double word (to/from integer registers)                                                                                                       |  |  |  |
| L.S.L.D.S.S.S.D                      | Load SP float, load DP float, store SP float, store DP float                                                                                                          |  |  |  |
| MFCO_MTCO                            | Copy from/to GPR to/from a special register                                                                                                                           |  |  |  |
| MOV.S.MOV.D                          | Copy one SP or DP FP register to another FP register                                                                                                                  |  |  |  |
| MFC1,MTC1                            | Copy 32 bits to/from FP registers from/to integer registers                                                                                                           |  |  |  |
| Arithmetic/logical                   | Operations on integer or logical data in GPRs; signed arithmetic trap on overflow                                                                                     |  |  |  |
| DADD, DADDI, DADDU, DADDIU           | Add, add immediate (all immediates are 16 bits); signed and unsigned                                                                                                  |  |  |  |
| DSUB, DSUBU                          | Subtract; signed and unsigned                                                                                                                                         |  |  |  |
| DMUL, DMULU, DDIV,<br>DDIVU, MADD    | Multiply and divide, signed and unsigned; multiply-add; all operations take and yield 64-<br>bit values                                                               |  |  |  |
| AND, ANDI                            | And, and immediate                                                                                                                                                    |  |  |  |
| OR, ORI, XOR, XORI                   | Or, or immediate, exclusive or, exclusive or immediate                                                                                                                |  |  |  |
| LUI                                  | Load upper immediate; loads bits 32 to 47 of register with immediate, then sign-extends                                                                               |  |  |  |
| DSLL,DSRL,DSRA,DSLLV,<br>DSRLV,DSRAV | Shifts: both immediate (DS_) and variable form (DS_V); shifts are shift left logical,<br>right logical, right arithmetic                                              |  |  |  |
| SLT, SLTI, SLTU, SLTIU               | Set less than, set less than immediate; signed and unsigned                                                                                                           |  |  |  |
| Control                              | Conditional branches and jumps; PC-relative or through register                                                                                                       |  |  |  |
| BEQZ, BNEZ                           | Branch GPRs equal/not equal to zero; 16-bit offset from PC + 4                                                                                                        |  |  |  |
| BEQ.BNE                              | Branch GPR equal/not equal; 16-bit offset from PC + 4                                                                                                                 |  |  |  |
| BC1T,BC1F                            | Test comparison bit in the FP status register and branch; 16-bit offset from PC + 4                                                                                   |  |  |  |
| MOVN, MOVZ                           | Copy GPR to another GPR if third GPR is negative, zero                                                                                                                |  |  |  |
| J.JR                                 | Jumps: 26-bit offset from PC + 4 (J) or target in register (JR)                                                                                                       |  |  |  |
| JAL, JALR                            | Jump and link: save PC + 4 in R31, target is PC-relative (JAL) or a register (JALR)                                                                                   |  |  |  |
| TRAP                                 | Transfer to operating system at a vectored address                                                                                                                    |  |  |  |
| ERET                                 | Return to user code from an exception; restore user mode                                                                                                              |  |  |  |
| Floating point                       | FP operations on DP and SP formats                                                                                                                                    |  |  |  |
| ADD.D,ADD.S,ADD.PS                   | Add DP, SP numbers, and pairs of SP numbers                                                                                                                           |  |  |  |
| SUB.D,SUB.S,SUB.PS                   | Subtract DP, SP numbers, and pairs of SP numbers                                                                                                                      |  |  |  |
| MUL.D.MUL.S.MUL.PS                   | Multiply DP, SP floating point, and pairs of SP numbers                                                                                                               |  |  |  |
| MADD.D,MADD.S,MADD.PS                | Multiply-add DP, SP numbers, and pairs of SP numbers                                                                                                                  |  |  |  |
| DIV.D,DIV.S,DIV.PS                   | Divide DP, SP floating point, and pairs of SP numbers                                                                                                                 |  |  |  |
| сүт                                  | Convert instructions: CVT.x.y converts from type x to type y, where x and y are L<br>(64-bit integer), W (32-bit integer), D (DP), or S (SP). Both operands are FPRs. |  |  |  |
| CD.CS                                | DP and SP compares: " " = LT, GT, LE, GE, EO, NE: sets bit in FP status register                                                                                      |  |  |  |





### 6. Control Flow Instructions

- Conditional Branches
- Unconditional Jumps
- Procedure Calls
- オ Returns



# 7. Encoding an ISA

- **才** Fixed Length
  - ARM and MIPS (32-bits long)
- オ Variable Length
  - 80x86 (Ranking from 1 to 18 bytes)
  - I.E. MIPS instruction encoding formats:

- R-type (6-bit opcode, 5-bit rs, 5-bit rt, 5-bit rd, 5-bit shamt, 6-bit function code)

| 31-26  | 25-21 | 20-16 | 15-11 | 10-6  | 5-0      |
|--------|-------|-------|-------|-------|----------|
| opcode | rs    | rt    | rd    | shamt | function |

- I-type (6-bit opcode, 5-bit rs, 5-bit rt, 16-bit immediate)

| 31-26  | 25-21 | 20-16 | 15-0 |
|--------|-------|-------|------|
| opcode | rs    | rt    | imm  |

J-type (6-bit opcode, 26-bit pseudo-direct address)

| 31-26  | 25-0                      |
|--------|---------------------------|
| opcode | pseudodirect jump address |

# Designing and Organization

- Implementation of a computer has two components: organization and hardware.
  - Organization: High level aspects (memory system, memory interconection, design of the CPU)
    - Microarchitecture
      - Example: two processors with the same ISA but different organization are AMD Opteron adn Intel Core i7.
  - Hardware: Specifics of a Computer (Detailed logic design and the packaging technology of the computer)

#### Summary of Some Functional Requerimients an Architect Faces

| Functional requirements               | Typical features required or supported                                                                                                                                                              |  |  |  |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Application area                      | Target of computer                                                                                                                                                                                  |  |  |  |  |
| Personal mobile device                | Real-time performance for a range of tasks, including interactive performance for graphics, video, and audio; energy efficiency (Ch. 2, 3, 4, 5; App. A)                                            |  |  |  |  |
| General-purpose desktop               | Balanced performance for a range of tasks, including interactive performance for graphics, video, and audio (Ch. 2, 3, 4, 5; App. A)                                                                |  |  |  |  |
| Servers                               | Support for databases and transaction processing; enhancements for reliability and availability; support for scalability (Ch. 2, 5; App. A, D, F)                                                   |  |  |  |  |
| Clusters/warehouse-scale<br>computers | Throughput performance for many independent tasks; error correction for memory; energy proportionality (Ch 2, 6; App. F)                                                                            |  |  |  |  |
| Embedded computing                    | Often requires special support for graphics or video (or other application-specific extension); power limitations and power control may be required; real-time constraints (Ch. 2, 3, 5; App. A, E) |  |  |  |  |
| Level of software compatibility       | Determines amount of existing software for computer                                                                                                                                                 |  |  |  |  |
| At programming language               | Most flexible for designer; need new compiler (Ch. 3, 5; App. A)                                                                                                                                    |  |  |  |  |
| Object code or binary<br>compatible   | Instruction set architecture is completely defined—little flexibility—but no<br>investment needed in software or porting programs (App. A)                                                          |  |  |  |  |
| Operating system requirements         | Necessary features to support chosen OS (Ch. 2; App. B)                                                                                                                                             |  |  |  |  |
| Size of address space                 | Very important feature (Ch. 2); may limit applications                                                                                                                                              |  |  |  |  |
| Memory management                     | Required for modern OS; may be paged or segmented (Ch. 2)                                                                                                                                           |  |  |  |  |
| Protection                            | Different OS and application needs: page vs. segment; virtual machines (Ch. 2)                                                                                                                      |  |  |  |  |
| Standards                             | Certain standards may be required by marketplace                                                                                                                                                    |  |  |  |  |
| Floating point                        | Format and arithmetic: IEEE 754 standard (App. J), special arithmetic for graphics<br>or signal processing                                                                                          |  |  |  |  |
| I/O interfaces                        | For I/O devices: Serial ATA, Serial Attached SCSI, PCI Express (App. D, F)                                                                                                                          |  |  |  |  |
| Operating systems                     | UNIX, Windows, Linux, CISCO IOS                                                                                                                                                                     |  |  |  |  |
| Networks                              | Support required for different networks: Ethernet, Infiniband (App. F)                                                                                                                              |  |  |  |  |
| Programming languages                 | Languages (ANSI C, C++, Java, Fortran) affect instruction set (App. A)                                                                                                                              |  |  |  |  |

#### From Hennesy and Patterson

### Trends in Technology

#### Integrated Circuit Logic Technology Transistor density increases by about 35%/ year, quadrupling somewhat over four years (Moore's Law)

| CA:AQA Edition | Year | DRAM growth<br>rate | Characterization of impact<br>on DRAM capacity |
|----------------|------|---------------------|------------------------------------------------|
| 1              | 1990 | 60%/year            | Quadrupling every 3 years                      |
| 2              | 1996 | 60%/year            | Quadrupling every 3 years                      |
| 3              | 2003 | 40%-60%/year        | Quadrupling every 3 to 4 years                 |
| 4              | 2007 | 40%/year            | Doubling every 2 years                         |
| 5              | 2011 | 25%-40%/year        | Doubling every 2 to 3 years                    |

# Trends in Technology

- Semiconductor Flash
  - **7** Electrically erasable programmable read-only memory (Flash Memory)
- Magnetic Disk Technology
  - Disks are 15 to 25 times cheaper per bit than flash.
- Network Technology
  - Network performance depends both on the performance of switches and on the performance of the transmission system.
- Organization Trends
  - RISC Technology (ARM, RISC-V)
  - **7** Tensor and Accelerated Unit Processors (GPUs, TPUs)
- New Materials
  - Graphene
  - DNA and BioMaterials
  - Optics and Quantum Materials

#### Performance Trends: Bandwidth over Latency

| Microprocessor              | 16-bit<br>address/<br>bus,<br>microcoded | 32-bit<br>address/<br>bus,<br>microcoded | 5-stage<br>pipeline,<br>on-chip I & D<br>caches, FPU | 2-way<br>superscalar,<br>64-bit bus | Out-of-order<br>3-way<br>superscalar | Out-of-order<br>superpipelined,<br>on-chip L2<br>cache | Multicore<br>OOO 4-way<br>on chip L3<br>cache, Turbo |
|-----------------------------|------------------------------------------|------------------------------------------|------------------------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------------------------|------------------------------------------------------|
| Product                     | Intel 80286                              | Intel 80386                              | Intel 80486                                          | Intel Pentium                       | Intel Pentium Pro                    | Intel Pentium 4                                        | Intel Core i7                                        |
| Year                        | 1982                                     | 1985                                     | 1989                                                 | 1993                                | 1997                                 | 2001                                                   | 2010                                                 |
| Die size (mm <sup>2</sup> ) | 47                                       | 43                                       | 81                                                   | 90                                  | 308                                  | 217                                                    | 240                                                  |
| Transistors                 | 134,000                                  | 275,000                                  | 1,200,000                                            | 3,100,000                           | 5,500,000                            | 42,000,000                                             | 1,170,000,000                                        |
| Processors/chip             | 1                                        | 1                                        | 1                                                    | 1                                   | 1                                    | 1                                                      | 4                                                    |
| Pins                        | 68                                       | 132                                      | 168                                                  | 273                                 | 387                                  | 423                                                    | 1366                                                 |
| Latency (clocks)            | 6                                        | 5                                        | 5                                                    | 5                                   | 10                                   | 22                                                     | 14                                                   |
| Bus width (bits)            | 16                                       | 32                                       | 32                                                   | 64                                  | 64                                   | 64                                                     | 196                                                  |
| Clock rate (MHz)            | 12.5                                     | 16                                       | 25                                                   | 66                                  | 200                                  | 1500                                                   | 3333                                                 |
| Bandwidth (MIPS)            | 2                                        | 6                                        | 25                                                   | 132                                 | 600                                  | 4500                                                   | 50,000                                               |
| Latency (ns)                | 320                                      | 313                                      | 200                                                  | 76                                  | 50                                   | 15                                                     | 4                                                    |
| Memory module               | DRAM                                     | Page mode<br>DRAM                        | Fast page<br>mode DRAM                               | Fast page<br>mode DRAM              | Synchronous<br>DRAM                  | Double data<br>rate SDRAM                              | DDR3<br>SDRAM                                        |
| Module width (bits)         | 16                                       | 16                                       | 32                                                   | 64                                  | 64                                   | 64                                                     | 64                                                   |
| Year                        | 1980                                     | 1983                                     | 1986                                                 | 1993                                | 1997                                 | 2000                                                   | 2010                                                 |
| Mbits/DRAM chip             | 0.06                                     | 0.25                                     | 1                                                    | 16                                  | 64                                   | 256                                                    | 2048                                                 |
| Die size (mm <sup>2</sup> ) | 35                                       | 45                                       | 70                                                   | 130                                 | 170                                  | 204                                                    | 50                                                   |
| Pins/DRAM chip              | 16                                       | 16                                       | 18                                                   | 20                                  | 54                                   | 66                                                     | 134                                                  |
| Bandwidth (MBytes/s)        | ) 13                                     | 40                                       | 160                                                  | 267                                 | 640                                  | 1600                                                   | 16,000                                               |
| Latency (ns)                | 225                                      | 170                                      | 125                                                  | 75                                  | 62                                   | 52                                                     | 37                                                   |
| Local area network          | Ethernet                                 | Fast<br>Ethernet                         | Gigabit<br>Ethernet                                  | 10 Gigabit<br>Ethernet              | 100 Gigabit<br>Ethernet              |                                                        |                                                      |
| IEEE standard               | 802.3                                    | 803.3u                                   | 802.3ab                                              | 802.3ac                             | 802.3ba                              |                                                        |                                                      |
| Year                        | 1978                                     | 1995                                     | 1999                                                 | 2003                                | 2010                                 |                                                        |                                                      |
| Bandwidth (Mbits/sec)       | 10                                       | 100                                      | 1000                                                 | 10,000                              | 100,000                              |                                                        |                                                      |
| Latency (µsec)              | 3000                                     | 500                                      | 340                                                  | 190                                 | 100                                  |                                                        |                                                      |
| Hard disk                   | 3600 RPM                                 | 5400 RPM                                 | 7200 RPM                                             | 10,000 RPM                          | 15,000 RPM                           | 15,000 RPM                                             |                                                      |
| Product                     | CDC WrenI<br>94145-36                    | Seagate<br>ST41600                       | Seagate<br>ST15150                                   | Seagate<br>ST39102                  | Seagate<br>ST373453                  | Seagate<br>ST3600057                                   |                                                      |
| Year                        | 1983                                     | 1990                                     | 1994                                                 | 1998                                | 2003                                 | 2010                                                   |                                                      |
| Capacity (GB)               | 0.03                                     | 1.4                                      | 4.3                                                  | 9.1                                 | 73.4                                 | 600                                                    |                                                      |
| Disk form factor            | 5.25 inch                                | 5.25 inch                                | 3.5 inch                                             | 3.5 inch                            | 3.5 inch                             | 3.5 inch                                               |                                                      |
| Media diameter              | 5.25 inch                                | 5.25 inch                                | 3.5 inch                                             | 3.0 inch                            | 2.5 inch                             | 2.5 inch                                               |                                                      |
| Interface                   | ST-412                                   | SCSI                                     | SCSI                                                 | SCSI                                | SCSI                                 | SAS                                                    |                                                      |
| Bandwidth (MBytes/s)        | 0.6                                      | 4                                        | 9                                                    | 24                                  | 86                                   | 204                                                    |                                                      |
| Latency (ms)                | 48.3                                     | 17.1                                     | 12.7                                                 | 8.8                                 | 5.7                                  | 3.6                                                    |                                                      |



#### **Trends Following Moore's Law**



Source : Ray Kurzweil, "The singularity is near: When humans transcend biology", p. 67. The Viking Press, 2006. Les données pour les années 2000 à 2012 sont des estimations du BCA.

#### Performance Trends Power and Energy





#### The distribution of the energy consumed in the processor components.

From Nikolaos Kroupis, Dimitrios Soudris, FILESPPA: Fast Instruction Level Embedded System Power and Performance Analyzer Microprocessors and Microsystems Volume 35, Issue 3 2011 329 - 342 Performance Trends Power and Energy: Techniques to improve energy efficiency

- 1. Do nothing well: Turn off the clock of inactive modules to save energy and dynamic power.
- 2. Dynamic Voltage-Frequency Scaling (DVFS)
- 3. Design for Typical Case (Scheduling of Activity)
- 4. Overclocking (Turbo Mode)

# **Trends in Cost**

- Impact of Time, Volume and Commoditization
  - オ Learning Curve
  - Manufacturing Costs
  - オ Transport
  - Market (Cost vs Price)
  - Operation Costs
  - Dependability
    - **Service Level Agreements (Infrastructure)**
    - Service Level Objects (Networking, Power)

### Performance

- A Computer System exists to IMPROVE PERFORMANCE
  - オ High Speed
  - Data Treatment
  - オ Availability
  - Capacity
  - **オ** Low Latency
  - High Bandwdith

# **Measuring Performance**

- In order to compare how fast computers can process data, we have to measure their performance.
- There are a number of measurements of performance.
- Clock speed, MIPS, FLOPS & Benchmark tests are all used. Some are a better measure than others.

#### **Metrics of Computer Performance**



Each metric has a purpose, and each can be misused.

### **Computer Performance**

#### **Response Time (elapsed time, latency):**

- how long does it take for my job to run?
- how long does it take to execute (start to finish) my job?
- how long must / wait for the database query?

#### **Throughput:**

- how many jobs can the machine run at once?
- what is the average execution rate?
- how much work is getting done?

*If we upgrade a machine with a new processor what do we increase?* 

*If we add a new machine to the lab what do we increase?* 

Individual user concerns...

Systems manager concerns...

# **Execution Time**

- - counts everything (disk and memory accesses, waiting for I/O, running other programs, etc.) from start to finish
  - a useful number, but often not good for comparison purposes

elapsed time = CPU time + wait time (I/O, other programs, etc.)

#### **↗** CPU time

- doesn't count waiting for I/O or time spent running other programs
- can be divided into user CPU time and system CPU time (OS calls)

CPU time = user CPU time + system CPU time

 $\Rightarrow$  elapsed time = user CPU time + system CPU time + wait time

- **Our focus:** *user CPU time* (*CPU execution time* or, simply, *execution time*)
  - time spent executing the lines of code that are in our program

### **Definition of Performance**

For some program running on machine X:
 Performance<sub>X</sub> = 1 / Execution time<sub>X</sub>

X is n times faster than Y means:
Performance<sub>X</sub> / Performance<sub>Y</sub> = n

# **Clock Cycles**

cycle time

Instead of reporting execution time in seconds, we often use cycles. In modern 7 computers hardware events progress cycle by cycle: in other words, each event, e.g., multiplication, addition, etc., is a sequence of cycles

| seconds | cycles  | seconds |
|---------|---------|---------|
| program | program | cycle   |

*Clock ticks* indicate start and end of cycles: 7



- cycle time = time between ticks = seconds per cycle 7
- 7 clock rate (frequency) = cycles per second (1 Hz. = 1 cycle/sec, 1 MHz. = 10<sup>6</sup>)cycles/sec)  $\frac{1}{200 \times 10^6} \times 10^9 = 5 \text{ nanoseconds}$
- Example: A 200 Mhz. clock has a 7

# **Clock Speed**

- The clock signal is carried by one of the lines on the control bus.
- One single pulse is called a 'clock cycle'.
- Measured in Megahertz (MHz) & Gigahertz (GHz). 1 MHz = 1 million pulses per second. 1 GHZ = 1000 MHz.

### **Processor Clock Speed**

CPU clock speeds are compared at <u>http://www.cpubenchmark.net/</u> <u>common\_cpus.html</u>



### **Performance Equation I**

 $\frac{\text{seconds}}{\text{program}} = \frac{\text{cycles}}{\text{program}} \times \frac{\text{seconds}}{\text{cycle}}$ 

#### equivalently

| CPU execution time | _ | CPU clock cycles | × | Clock cycle time |
|--------------------|---|------------------|---|------------------|
| for a program      | _ | for a program    |   |                  |

- So, to improve performance one can either:
  - reduce the number of cycles for a program, or
  - reduce the clock cycle time, or, equivalently,
  - increase the clock rate

# How many cycles are required for a program?

- - This assumption is incorrect! Because:
    - Different instructions take different amounts of time (cycles)
    - Why...?

#### How many cycles are required for a program?



- Multiplication takes more time than addition
- Floating point operations take longer than integer ones
- Accessing memory takes more time than accessing registers
- Important point: changing the cycle time often changes the number of cycles required for various instructions because it means changing the hardware design. More later...

# Example

- Our favorite program runs in 10 seconds on computer A, which has a 400Mhz. clock.
- We are trying to help a computer designer build a new machine B, that will run this program in 6 seconds. The designer can use new (or perhaps more expensive) technology to substantially increase the clock rate, but has informed us that this increase will affect the rest of the CPU design, causing machine B to require 1.2 times as many clock cycles as machine A for the same program.

What clock rate should we tell the designer to target?

# Terminology

- A given program will require:
  - some number of instructions (machine instructions)
  - some number of cycles
  - some number of seconds
- We have a vocabulary that relates these quantities:
  - cycle time (seconds per cycle)
  - clock rate (cycles per second)
  - (average) CPI (cycles per instruction)
    - a floating point intensive application might have a higher average CPI
  - MIPS (millions of instructions per second)
    - **7** this would be higher for a program using simple instructions

### **Performance Measure**

Performance is determined by execution time

- Do any of these other variables equal performance?
  - # of cycles to execute program?
  - # of instructions in program?
  - # of cycles per second?
  - average # of cycles per instruction?
  - average # of instructions per second?
- Common pitfall : thinking one of the variables is indicative of performance when it really isn't

#### Performance Equation II

CPU execution time<br/>cycle timeInstruction count<br/>× average CPI<br/>× Clockfor a programfor a program

*Derive the above equation from Performance Equation I* 

#### **Questions?**



Figure 1. Experimental Diagram



Figure 2. Experimental Mess

@carlosjaimebh