
+

Parallel and Scalable
Architectures -1
Carlos Jaime Barrios Hernandez

@carlosjaimebh

+
Parallel Computing Architectures

+
Machine Models

•  What is a machine model?

–  A abstraction describes the operation of a machine.

–  Allowing to associate a value (cost) to each machine operation.

•  Why do we need models?

–  Make it easy to reason algorithms

–  Hide the machine implementation details so that general results
that apply to a broad class of machines to be obtained.

–  Analyze the achievable complexity (time, space, etc) bounds

–  Analyze maximum parallelism

–  Models are directly related to algorithms.

+
Parallel Machine Model

The von Neumann computer

The multicomputer, an idealized parallel computer model. Each node
consists of a von Neumann machine

+
RAM and PRAM Models

+
RAM (Random Access Machine)
model

•  Memory consists of infinite array (memory
cells).

•  Each memory cell holds an infinitely large
number.

•  Instructions execute sequentially one at a time.

•  All instructions take unit time

–  Load/store

–  Arithmetic

–  Logic

•  Running time of an algorithm is the number of
instructions executed.

•  Memory requirement is the number of
memory cells used in the algorithm.

+
RAM (random access machine)
model
•  The RAM model is the base of algorithm analysis for

sequential algorithms although it is not perfect.

–  Memory not infinite

–  Not all memory access take the same time

–  Not all arithmetic operations take the same time

–  Instruction pipelining is not taken into consideration

•  The RAM model (with asymptotic analysis) often gives
relatively realistic results.

+PRAM	(Parallel	RAM)

•  A model developed for parallel
machines
•  An unbounded collection of processors

•  Each processor has an infinite number
of registers

•  An unbounded collection of shared
memory cells.

•  All processors can access all memory
cells in unit time (when there is no
memory conflict).

•  All processors execute PRAM
instructions synchronously

•  Somewhat like SIMD, except that
different processors can run different
instructions in the lock step.

•  Some processors may idle.

+PRAM	(Parallel	RAM)

n  A	model	developed	for	parallel	machines	
•  Each	PRAM	instruction	executes	in	3-phase	

cycles	
–  Read	from	a	share	memory	cell	(if	

needed)	
–  Computation	
–  Write	to	a	share	memory	cell	(if	needed)	

–  Example:		for	all	I,	do	A[i]	=	A[i-1]+1;	
n  Read	A[i-1],	compute	add	1,	write	A[i]	

–  The	only	way	processors	exchange	data	is	
through	the	shared	memory.	

+PRAM	(Parallel	RAM)

n  PRAM	Provides	an	ideal	model	of	a	parallel	machine	(computer)	for	analyzing	the	efficiency	of	
parallel	algorithms.	

n  PRAM	composed	of		
n  P	Unmodifiable	programs,	each	composed	of	optionally	labeled	instructions	
n  a	single	shared	memory	composed	of	a	sequence	of	words,	each	capable	of	containing	an	arbitary	integer	
n  P	accumulators,	one	associated	with	each	program	

n  A	read-only	input	tape	
n  A	write-only	output		tape	

Parallel	time	complexity:	the	number	of	synchronous	steps	in	the	algorithm	

Space	complexity:	the	number	of	share	memory	

Parallelism:	the	number	of	processors	used	

	

+
PRAM (A simple vision)

All	processors	can	do	things	in	a	synchronous	manner	
(with	infinite	shared	Memory	and	infinite	local	memory),	
how	many	steps	do	it	take	to	complete	the	task?	

+PRAM	–	further	refinement

n  PRAMs	are	further	classified	based	on	how	the	memory	conflicts	are	
resolved.	
n  Read	

n  Exclusive	Read	(ER)	–	all	processors	can	only	simultaneously	read	from	
distinct	memory	location	(but	not	the	same	location).	
n  What	if	two	processors	want	to	read	from	the	same	location?	

n  Concurrent	Read	(CR)	–	all	processors	can	simultaneously	read	from	all	
memory	locations.	

+PRAM	–	further	refinement

n Write	
n  Exclusive	Write	(EW)	–	all	processors	can	only	
simultaneously	write	to	distinct	memory	location	(but	not	
the	same	location).	

n Concurrent	Write	(CW)	–	all	processors	can	simultaneously	
write	to	all	memory	locations.	
n  Common	CW:	only	allow	same	value	to	be	written	to	the	same	
location	simultaneously.	

n  Random	CW:	randomly	pick	a	value	
n  Priority	CW:	processors	have	priority,	the	value	in	the	highest	
priority	processor	wins.	

+PRAM	model	variations

n  EREW,	CREW,	CRCW	(common),	CRCW	(random),	CRCW	
(Priority)	
n  	Which	model	is	closer	to	the	practical	SMP	or	multicore	
machines?	

n Model	A	is	computationally	stronger	than	model	B	if	and	only	
if	any	algorithm	written	in	B	will	run	unchange	in	A.	
n  EREW	<=	CREW	<=	CRCW	(common)	<=	CRCW	(random)pr	

n  And	there	are	other	models	as	BSP,	LogP…	(To	see	later)	

+PRAM	algorithm	example

n  SUM:	Add	N	numbers	in	memory	M[0,	1,	…,	N-1]	

n  Sequential	SUM	algorithm	(O(N)	complexity)	
		for	(i=0;	i<N;	i++)	sum	=	sum	+	M[i];	

n  PRAM	SUM	algorithm?	

+PRAM	SUM	algorithm

n Which	mo	Which	PRAM	model?	
Time	complexity?	
Space	complexity?	
Parallelism?	
Speedup	(.vs.	sequential	code)?	

+
Parallel Adition

n  Time	complexity:	log(n)	steps	

n  Parallelism:	n/2	processors	

n  Speed-up	(vs	sequential	algorithm):	n/log(n)	

+Broadcast	in	PRAM

n  EREW	
n  	double	the	number	of	processors	that	have	the	value	in	each	steps	
n  Log(P)	steps	

n  CREW	
n  Broadcaster	sends	value	to	shared	memory	
n  All	processors	read	from	shared	memory	
n  O(1)	steps	

+Parallel	search	algorithm

•  P processors PRAM with unsorted N numbers (P<=N)

•  Does x exist in the N numbers?

•  p_0 has x initially, p_0 must know the answer at the end.

•  PRAM Algorithm:

–  Step 1: Inform everyone what x is

–  Step 2: every processor checks N/P numbers and sets a flag

–  Step 3: Check if any flag is set to 1.

+Parallel	search	algorithm

n  PRAM	Algorithm:	
n  Step	1:	Inform	everyone	what	x	is	

n  Step	2:	every	processor	checks	N/P	numbers	and	sets	a	flag	
n  Step	3:	Check	if	any	flag	is	set	to	1.	

n  EREW:	O(log(p))	step	1,	O(N/P)	step	2,	and	O(log(p))	step	3.	

n CREW:	O(1)	step	1,	O(N/P)	step	2,	and	O(log(p))	step	3.	

n CRCW	(common):	O(1)	step	1,	O(N/P)	step	2,	and	O(1)	step	3.	

+Find	Max	of	N	items

n  CRCW	algorithm	with	O(1)	time	using	N^2	processors	
n  Processor	(r,	1)	do	A[s]	=	1	
n  Process	(r,s)	do	if	(X[r]	<	X[s])	A[r]	=	0;	
n  Process	(r,	1)	do:	If	A[r]	=	1,	max	=	X[r];		

+PRAM	matrix-vector	product

n Given	an		n	x	n	matrix	A	and	a	column	vector	X	=	(x[0],	x[1],	
…,	x[n-1]),	B	=	A	X		

n Sequential	code:		
For(i=0;	i<n;	i++)	for	(j=0;	j<n;	j++)	B[i]	+=	A[i][j]	*	X[j];	

n CREW	PRAM	algorithm	
n Time	to	compute	the	product?		
n Time	to	compute	the	sum?	
n Number	of	processors	needed?	
n Why	CREW	instead	of	EREW?	

+PRAM	matrix	multiplication

n  CREW	PRAM	algorithm?	
n  Time	to	compute	the	product?		
n  Time	to	compute	the	sum?	
n  Number	of	processors	needed?	

+PRAM	strengths

•  Natural extension of RAM

•  It is simple and easy to understand

–  Communication and synchronization issues are hided.

•  Can be used as a benchmark

–  If an algorithm performs badly in the PRAM model, it will
perform badly in reality.

–  A good PRAM program may not be practical though.

•  It is useful to reason threaded algorithms for SMP/
multicore machines.

+PRAM	weaknesses

•  Model inaccuracies

–  Unbounded local memory (register)

–  All operations take unit time

–  Processors run in lock steps

•  Unaccounted costs

–  Non-local memory access

–  Latency

–  Bandwidth

–  Memory access contention

+PRAM	variations

n  Bounded	memory	PRAM,	PRAM(m)	
n  In	a	given	step,	only	m	memory	accesses	can	be	serviced.	
n  Lemma:	Assume	m'<m.	Any	problem	that	can	be	solved	on	a	p-
processor	and	m-cell	PRAM	in	t	steps	can	be	solved	on	a	max(p,m')-
processor	m'-cell	PRAM	in	O(tm/m')	steps.		

n  Bounded	number	of	processors	PRAM	
n  Lemma:	Any	problem	that	can	be	solved	by	a	p	processor	PRAM	in	t	
steps	can	be	solved	by	a	p’	processor	PRAM	in	t	=	O(tp/p’)	steps.	
–  E.g.	Matrix	multiplication	PRAM	algorithm	with	time	complexity	O(log(N))	on	

N^3	processorsà	on	P	processors,	the	problem	can	be	solved	in	O(log(N)N^3/P).	

n  LPRAM	
n  L	units	to	access	global	memory	
n  Lemma:	Any	algorithm	that	runs	in	a	p	processor	PRAM	can	run	in	
LPRAM	with	a	loss	of	a	factor	of	L.	

+PRAM	summary

•  The RAM model is widely used.

•  PRAM is simple and easy to understand

–  This model never reachs beyond the algorithm community.

–  It is getting more important as threaded programming
becomes more popular.

•  The BSP (bulk synchronous parallel) model is another
try after PRAM.

–  Asynchronously progress

–  Model latency and limited bandwidth

+

P P P P P P ..

Microkernel

Multi-Processor Computing
System

Threads Interface

Hardware

Operating System

Process Processor Thread P

Applications

Remember…Computing
Elements

Programming paradigms

+
Multi Processor Computing
Framework

+
MPC Execution Model
(An Example)

http://calcul.math.cnrs.fr/IMG/pdf/Ecole_hybride.pdf

+
MPC Execution Model
(An example of 4 Tasks and 4 threads)

http://calcul.math.cnrs.fr/IMG/pdf/Ecole_hybride.pdf

+
MPC Execution Model
(An Example with GPUs)

+
Parallel Communication

+
A General Communication –
processing Model

+
In Parallel…

Po

P1

P3

P2

P4

c1 c2 c3

+Interconnection Networks Topologies

a)  Static
b)  Dynamic

+ Flynn’s Taxonomy

* Proposed by M. Flynn in 1966

+
Some Glosary
n  Any scalable system is a distributed system.

n  Parallel computing uses Scalable Systems

n  Many instructions are carried out simultaneously-concurrently.

n  High Performance Computing (HPC) implies Parallel Computing

n  Scalable Systems may be describe in terms of Scalable Architectures.

n  Scalable Architectures (hardware point of view) have the characteristics
of Scalable Systems.

n  Concurrency, Distribution

n  Scalable Architectures support Parallel Computing.

n  Of course, Parallel Computing implies parallelism.

n  Obviously, Parallel Computing demads Parallel Machines.

+
Conclusions

n  Abstractions of Parallel Architectures are addressed to
understand execution models (to see in detail after for
parallel programing execution models).

n  Related with Algoritms

n  Related with Implementation Mechanisms

n  Scalability is a condition to understand in some aspects

n  Hardware

n  Data

n  Processing

+
Thank you!
@SC3UIS

