Parallel and Scalable
Architectures -1

Carlos Jaime Barrios Hernandez
@carlosjaimebh

+Para11e1 Computing Architectures

Shared Memory Distributed Memory

| Bus Interconnect |
NIMA)

Shored Memon (

, Heterogeneous Architecture
Homogeneous Architecture

===

T Machine Models

- What is a machine model?
- A abstraction describes the operation of a machine.
- Allowing to associate a value (cost) to each machine operation.

- Why do we need models?
- Make it easy to reason algorithms

- Hide the machine implementation details so that general results
that apply to a broad class of machines to be obtained.

- Analyze the achievable complexity (time, space, etc) bounds
- Analyze maximum parallelism
- Models are directly related to algorithms.

T Parallel Machine Model

E John
3.5

= 26

o (1T

Memory
The von Neumann computer

INTERCONNECT
00 o0 pd pdd pd pOip0: E
e U Memory

The multicomputer, an idealized parallel computer rﬁodgl. Each node
consists of a von Neumann machine \

2
’
J’g

TRAM and PRAM Models

RAM. Random Access Machine

PRAM. Parallel Random Access Machine

M

P1| P2| P3| | P4 Pn

TRAM (Random Access Machine)

model

RAMs
Memory .
(random- Infinite
ACCEeSS)
Control
I
set I Registers
of -
instructions
I'n

Memory consists of infinite array (memory
cells).

Each memory cell holds an infinitely large
number.

Instructions execute sequentially one at a time.

All instructions take unit time
- Load/store

- Arithmetic

- Logic

Running time of an algorithm is the number of
instructions executed.

Memory requirement is the number of
memory cells used in the algorithm.

TRAM (random access machine)

model

- The RAM model is the base of algorithm analysis for
sequential algorithms although it is not perfect.

- Memory not infinite

- Not all memory access take the same time

- Not all arithmetic operations take the same time
- Instruction pipelining is not taken into consideration

- The RAM model (with asymptotic analysis) often gives
relatively realistic results.

+
PRAM (Parallel RAM) ‘I

A model developed for parallel
machines

An unbounded collection of processors

Each processor has an infinite number
of registers

An unbounded collection of shared
memory cells.

All processors can access all memory
P cells in unit time (when there is no

n memory conflict).
All processors execute PRAM
instructions synchronously

shared memory . Somewhat like SIMD, except that
different processors can run different
instructions in the lock step.

Some processors may idle.

PRAM program

;—Ts"U

+
PRAM (Parallel RAM) ‘I

m A model developed for parallel machines

[Processor 1 |e— | . - Each PRAM instruction executes in 3-phase
cycles

Processor 2 |«—o —

— Read from a share memory cell (if

Processor 3 |[«——= Memory [~ Shared
Access Unit Memory needed)
: (MAU) _
| — Computation

— Write to a share memory cell (if needed)
— Example: forall |, do A[i] = A[i-1]+1;
m Read AJi-1], compute add 1, write A[i]

Processorn |«—»

— The only way processors exchange data is
through the shared memory.

+
PRAM (Parallel RAM) ‘I

m PRAM Provides an ideal model of a parallel machine (computer) for analyzing the efficiency of
parallel algorithms.

m PRAM composed of
m P Unmodifiable programs, each composed of optionally labeled instructions
m asingle shared memory composed of a sequence of words, each capable of containing an arbitary integer
m P accumulators, one associated with each program
m A read-only input tape
m A write-only output tape

Parallel time complexity: the number of synchronous steps in the algorithm
Space complexity: the number of share memory

Parallelism: the number of processors used

+PRA1VI (A simple vision)

PO Pl PZ ... PN

A 4 h 4 h 4 h 4

Shared Memory Cells

All processors can do things in a synchronous manner
(with infinite shared Memory and infinite local memory),
how many steps do it take to complete the task?

+
PRAM — further refinement

m PRAMs are further classified based on how the memory conflicts are
resolved.

m Read

m Exclusive Read (ER) — all processors can only simultaneously read from
distinct memory location (but not the same location).

m What if two processors want to read from the same location?

m Concurrent Read (CR) — all processors can simultaneously read from all
memory locations.

PRAM — further refinement

m \Write

m Exclusive Write (EW) — all processors can only
simultaneously write to distinct memory location (but not
the same location).

m Concurrent Write (CW) — all processors can simultaneously
write to all memory locations.

m Common CW: only allow same value to be written to the same
location simultaneously.

m Random CW: randomly pick a value

m Priority CW: processors have priority, the value in the highest
priority processor wins.

+
PRAM model variations

m EREW, CREW, CRCW (common), CRCW (random), CRCW
(Priority)

m Which model is closer to the practical SMP or multicore
machines?

m Model A is computationally stronger than model B if and only
if any algorithm written in B will run unchange in A.

m EREW <= CREW <= CRCW (common) <= CRCW (random)pr

m And there are other models as BSP, LogP... (To see later)

PRAM algorithm example

m SUM: Add N numbers in memory MJ[O, 1, ..., N-1]

m Sequential SUM algorithm (O(N) complexity)

for (i=0; i<N; i++) sum = sum + M[i];

m PRAM SUM algorithm?

+
PRAM SUM algorithm

@ ﬁf@

_*_Pz: Step 2

Which PRAM model?

Time complexity?

Space complexity?

Parallelism?

Speedup (.vs. sequential code)?

T parallel Adition

m Time complexity: log(n) steps
m Parallelism: n/2 processors

m Speed-up (vs sequential algorithm): n/log(n)

+
Broadcast in PRAM

m EREW
m double the number of processors that have the value in each steps

m Log(P) steps

m CREW
m Broadcaster sends value to shared memory
m All processors read from shared memory

m O(1) steps

+
Parallel search algorithm

- P processors PRAM with unsorted N numbers (P<=N)
- Does x exist in the N numbers?
- p_0 has x initially, p_0 must know the answer at the end.

- PRAM Algorithm:

- Step 1l: Inform everyone what x is
~ Step 2: every processor checks N/P numbers and sets a flag

- Step 3: Check if any flag is set to 1.

+
Parallel search algorithm

m PRAM Algorithm:
m Step 1: Inform everyone what x is
m Step 2: every processor checks N/P numbers and sets a flag

m Step 3: Check if any flag is set to 1.
m EREW: O(log(p)) step 1, O(N/P) step 2, and O(log(p)) step 3.
m CREW: O(1) step 1, O(N/P) step 2, and O(log(p)) step 3.

m CRCW (common): O(1) step 1, O(N/P) step 2, and O(1) step 3.

Find Max of N items

m CRCW algorithm with O(1) time using N2 processors
m Processor (r, 1) do A[s] =1
m Process (r,s) do if (X[r] < X[s]) A[r] = O;
m Process (r, 1) do: If A[r] =1, max = X]r];

PRAM matrix-vector product

m Given an n x n matrix A and a column vector X = (x[0], x[1],
..., X[n-1]), B=AX

m Sequential code:
For(i=0; i<n; i++) for (j=0; j<n; j++) B[i] += A[il[j] * X[j];

m CREW PRAM algorithm
mTime to compute the product?
mTime to compute the sum?
mNumber of processors needed?
mWhy CREW instead of EREW?

PRAM matrix multiplication

m CREW PRAM algorithm?
m Time to compute the product?
m Time to compute the sum?
@ Number of processors needed?

+
PRAM strengths

- Natural extension of RAM

- It is simple and easy to understand
- Communication and synchronization issues are hided.

. Can be used as a benchmark

— If an algorithm performs badly in the PRAM model, it will
perform badly in reality.

- A good PRAM program may not be practical though.

- It is useful to reason threaded algorithms for SMP/
multicore machines.

+
PRAM weaknesses

- Model inaccuracies
- Unbounded local memory (register)
- All operations take unit time
- Processors run in lock steps

- Unaccounted costs
- Non-local memory access
- Latency
- Bandwidth
- Memory access contention

=5

PRAM variations

m Bounded memory PRAM, PRAM(m)
® |n a given step, only m memory accesses can be serviced.

m Lemma: Assume m'<sm. ARX problem that can be solved ona p- |
processor and m-cell PRAM in t steps can be solved on a max?p,m)-
processor m'-cell PRAM in O(tm/m’) steps.

m Bounded number of processors PRAM

m Lemma: Any problem that,can be solved bx a p processor PRAM in t
steps can be solved byap processor PRAMint=0(tp/p) steps.

—~ E.g. Matrix multiplication PRAM algorithm with time complexity O(Iog(l\l{?)) on
N”3 processors—> on P processors, the problem can be solved in O(log(N)N~3/P)

m LPRAM

m L units to access global memory

m Lemma: Any algorithm that runs in a p processor PRAM can run in
LPRAM with a loss of a factor of L.

+
PRAM summary

- The RAM model is widely used.

- PRAM is simple and easy to understand
- This model never reachs beyond the algorithm community.

- It is getting more important as threaded programming
becomes more popular.

- The BSP (bulk synchronous parallel) model is another
try after PRAM.

- Asynchronously progress
- Model latency and limited bandwidth

Remember...Computing
Elements

Applications

|
W Programming paradigms

Threads Interfac

Operating System

Hardware

PJProcessor 2 Thread Process

Multi Processor Computing
Framework

/Programm|ng\< >/ Runtime \
\ Models / Optimization /

\ /
\ / Tools \ /
\Debug/Profnng/

+MPC Execution Model
(An Example)

+MPC Execution Model

(An example of 4 Tasks and 4 threads)
2 MPI tasks + OpenMP parallel region w/ 4 threads (on 2 cores)

http://calcul.math.cnrs.fr/IMG/pdf/Ecole hvybride.pdf

+MPC Execution Model

(An Example with GPUs)
Thread Core
\% Executed by \ +
Thread Block Streaming Multiprocessor

Kernel Grid Complete GPU Unit

+[+] - [+

\S\"\J

=
c
%\F

“0fu
“oy
Ty
AT

<

T Parallel Communication

Serial Communication

aF . .
A General Communication -
processing Model

sender receiver

' t

sent(high) I I
e ol sender

level level
sent (low) ! T received
base base
evel i receiver

I

received delivered

sent sent

delivered (high) (low) time

T In Parallel .

Interconnection Networks Topologies

a) Static
b) Dynamic

MINs (MVultistage Interconnection Network)

(b)

+ Flynn’s Taxonomy

SISD | Instruction Pool | MISD | Instruction Pool
E 2
2 —|pU = PU PU
= [
a (]
SIMD Instruction Pool MIMD Instruction Pool
—|PU [—|PU|+ —|PU|—
l—°1 o
| [PY S|—|PU|+ =|PU|H
< jam
= PU 3
Al <« <
A |—|PU|—+ —|PU|+
—|PU |«
—|PU|+~ "—|PU|+

* Proposed by M. Flynn in 1966

* Some Glosary

Any scalable system is a distributed system.

Parallel computing uses Scalable Systems
m Many instructions are carried out simultaneously-concurrently.
m High Performance Computing (HPC) implies Parallel Computing

Scalable Systems may be describe in terms of Scalable Architectures.

Scalable Architectures (hardware point of view) have the characteristics
of Scalable Systems.

m Concurrency, Distribution
Scalable Architectures support Parallel Computing.
Of course, Parallel Computing implies parallelism.

Obviously, Parallel Computing demads Parallel Machines.

P .
Conclusions

m Abstractions of Parallel Architectures are addressed to
understand execution models (to see in detail after for
parallel programing execution models).

m Related with Algoritms
m Related with Implementation Mechanisms

m Scalability is a condition to understand in some aspects
m Hardware
m Data
m Processing

-5
-

o -
IXXXXXXXXXXXXXXIZ

g >
> .

