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An Example of  Software Stack: 
The NVIDIA Software Ecosystem

www.nvidia.com

http://www.nvidia.com/


The Software/Applications Approach



About High Performance Computing

 HPC is useful to being faster, more precise overall, to solve large problems and to 
treat, intrinsically, parallelism in essence.

 However allows

 Technological Advantage

 Technological Independency

 Competitively

 Energy Savings

 But, HPC is expensive



What & Why

• What is high performance computing (HPC) from Parallel 
Programming Approach?
• The use of the most efficient algorithms on computers capable of the highest 

performance to solve the most demanding problems.

• Why HPC?
• Large problems – spatially/temporally

• 10,000 x 10,000 x 10,000 grid → 10^12 grid points → 4x10^12 double variables →
32x10^12 bytes = 32 Tera-Bytes.

• Usually need to simulate tens of millions of time steps.
• On-demand/urgent computing; real-time computing;

• Weather forecasting; protein folding; turbulence simulations/CFD; aerospace 
structures; Full-body simulation/ Digital human …

• And Remember the slides 2 and 3…



HPC Application Examples

Earthquake simulation

Surface velocity 75 sec after earthquake

Flu pandemic simulation

300 million people tracked

Density of infected population, 45 days 

after breakout



HPC Examples: Blood Flow in Human 
Vascular Network

• Cardiovascular disease accounts for about 50% of 
deaths in western world;

• Formation of arterial disease strongly correlated to 
blood flow patterns;

Computational challenges: Enormous 

problem size

In one minute, the heart pumps the entire blood 

supply of 5 quarts through 60,000 miles of vessels, 

that is a quarter of the distance between the moon 

and the earth

Blood flow involves multiple scales



HPC Example: Homogeneous Turbulence

Direct Numerical Simulation of Homogeneous Turbulence: 4096^3

Zoom-in

Zoom-in

Vorticity iso-

surface



How HPC fits into Scientific Computing

Physical Processes

Mathematical Models

Numerical Solutions

Data Visualization,

Validation, 

Physical insight

Air flow around

an airplane

Navier-stokes 

equations

Algorithms, BCs, solvers,

Application codes, 

supercomputers

Viz software

HPC



Advantages of Parallelization

• Cheaper, in terms of Price/Performance Ratio

• Faster than equivalently expensive uniprocessor machines 

• Handle bigger problems

• More scalable: the performance of a particular program may be 
improved by execution on a large machine 

• More reliable: In theory if processors fail we can simply use 
others 



How to Parallelize?: Traditional Way

Designing and Building Parallel Programs, by Ian Foster in http://www.mcs.anl.gov/~itf/dbpp/

However this is not a traditional course…

Actually applied for current well-known 
applications with sequential implementations.

Addressed (mainly) for distributed memory 
applications

It’s good as first approach of scientific computing 
algorithm for (alone) scientists programmers.

http://www.mcs.anl.gov/~itf/dbpp/


Design Spaces of Parallel Programming*

•Patterns for Parallel Programming, Timoty Mattson, Beverly A. Sanders and Berna L. Massingill, 
Software Pattern Series, Addison-Wesley 2004

FC
• Finding Concurrency (Structuring Problem to expose 

exploitable concurrency)

AS

• Algorithm Structure (Structure Algorithm to take 
advantage of Concurrency)

SS

• Supporting Structures (Interfaces between Algorithms 
and Environments)

IM

• Implementation Mechanisms (Define Programming 
Environments)



Concurrent Programming General Steps

1. Analysis
⚫ Identify Possible Concurrency

⚫ Hotspot: Any partition of the code that has a significant amount of activity
⚫ Time spent, Independence of the code…

2. Design and Implementation
⚫ Threading the algorithm 

3. Tests of Correctness
⚫ Detecting and Fixing Threading Errors

4. Tune of Performance
⚫ Removing Performance Bottlenecks 

⚫ Logical errors, contention, synchronization errors, imbalance, excessive overhead
⚫ Tuning Performance Problems in the code (tuning cycles)  

• From: Patterns for Parallel Programming., by T. Mattson., B. 
Sanders and B. MassinGill (Ed. Addison Weslley, 2009) Web 
Site: http://www.cise.ufl.edu/research/ParallelPatterns/

http://www.cise.ufl.edu/research/ParallelPatterns/


Distributed Vs. Shared Memory Programming 
(Remember Architecture Features)

Common Features

 Redundant Work

 Dividing Work

 Sharing Data (Different Methods)

 Dynamic / Static Allocation of Work 
 Depending of the nature of serial algorithm, 

resulting concurrent version, number of threads / 
processors 

Only to Shared Memory

 Local Declarations and Thread-Local Storage

 Memory Effects:
 False Sharing

 Communication in Memory

 Mutual Exclusion

 Producer / Consumer Model

 Reader / Writer Locks (In Distributed Memory is 
Boss / Worker) 



Decomposition

Tasks Decomposition : Task Parallelism
Data Decomposition: Data Parallelism /Geometric Parallelism



Task Parallelism : What are the tasks and how are 
defined?

 There should be at least as many tasks as there will be threads (or cores)

 It is almost always better to have (many) more tasks than threads.

 Granularity must be large enough to offset the overhead that will be 
needed to manage the tasks and threads

 More computation: higher granularity (coarse-grained)

 Less Computation: lower granularity (fine-grained)

Granularity is the amount of computation done before synchronization is 
needed



Task Granularity
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overhead
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Fine-grained decomposition Coarse-grained decomposition



Higher Performance

Lower Accuracy

(Using Nodes)

Coarse grid

Lower Performance

Higher Accuracy

(Using Processors)

Fine grid Dynamic grid

Target performance where 

accuracy is required

(Using Processors and 

Nodes)

Granularity in Implementations



Tasks must be assigned to threads for 
execution

Task Decomposition 
Considerations

• What are the tasks and how are defined?
• What are the dependencies between task 

and how can they be satisfied?
• How are the task assigned to threads?

Tas

k

Tas

k

Jo

b



Task Dependencies

Order Dependency Data Dependency

Enchantingly Parallel Code: Code without dependencies 

Process 1

Process 2

Out

in In 1 In 2

Process 1

Process 3

Process 2

Out 1 Out 2

Process 3

Out



Data Decomposition 
Considerations
(Geometric Decomposition) 

Data Structures must be (commonly) divided in arrays or logical 
structures.

- How should you divide the data into 
chunks?
- How should you ensure that the tasks for 
each chunk have access to all data 
required for update?
- How are the data chunks assigned to 
threads?



How are the data chunks (and tasks) 
assigned to threads?

 Data Chunks are associated with tasks and are assigned to threads statically or 
dynamically

 Via Scheduling

 Static: when the amount of computations within tasks is uniform and predictable

 Dynamic: to achieve a good balance due to variability in the computation needed by 
chunk

 Require many (more) tasks than threads.



How should you divide data into chunks?

By individual elements By rows

By groups of columns By blocks



• Data Decomposition have an additional dimension.
• It determines what the neighboring chunks are and how any 

exchange of data will be handled during the course of the chunk 
computations.

2 Shared Borders

• Regular shapes : Common Regular data organizations.
• Irregular shapes: may be necessary due to the irregular 

organizations of the data.

5 Shared Borders

The Shape of the Chunk



How should you ensure that the tasks for each chunk have 
access to all data required for update?

• Using Ghost Cells
⚫ Using ghost cells to hold copied data from a neighboring chunk.

Original split with ghost cells

Copying data into ghost cells



Data Sharing Pattern

 Data decomposition might define some data that must be shared among the tasks.

 Data dependencies can also occur when one task needs access to some portions of 
the another task’s local data.

 Read Only

 Effectively Local (Accessed by one of the tasks)

 Read Write

 Accumulative

 Multiple read / Single Write



Tasks and Domain Decomposition 
Patterns

• Task Decomposition Patterns
⚫ Understand the computationally intensive parts of the problem.
⚫ Finding Tasks (as much…)

⚫ Actions that are carried out to solve the problem
⚫ Actions are distinct and relatively independent.

• Data Decomposition Patterns
⚫ Data decomposition implied by tasks.
⚫ Finding Domains:

⚫ Most computationally intensive part of the problem is organized around the manipulation of large 
data structure.

⚫ Similar operators are being applied to different parts of the data structure.

⚫ In shared memory programming environments, data decomposition will be implied by task 
decomposition (To see in detail in the OpenMP session).



Concurrent Computation from Serial 
Codes

Sequential Consistency 
Property: Getting the 
same answer as the serial 
code on the same input 
data set, comparing 
sequence of execution in 
concurrent solutions of 
the concurrent 
algorithms.

in P out

in P out

P

P

Sequential Version

Parallel / Concurrent  Version



Not Parallelizable Jobs, Tasks and Algorithms

• Algorithms with state
• Recurrences
• Induction Variables
• Reductions
• Loop-carried Dependencies

The Mythical Man-Month: Essays on Software Engineering.  By Fred Brooks. Ed 
Addison-Wesley Professional, 1995 



Concurrent Design Models Features

 Efficiency

 Concurrent applications must run quickly and make good use of processing resources.

 Simplicity

 Easier to understand, develop, debug, verify and maintain.

 Portability

 In terms of threading portability.

 Scalability

 It should be effective on a wide range of number of threads and cores, and sizes of data 
sets.



Design Evaluation Pattern

Production of analysis and decomposition:
 Task decomposition to identify concurrency

 Data decomposition to indentify data local to each task

 Group of task and order of groups to satisfy temporal constraints

 Dependencies among tasks

Design Evaluation

 Suitability for the target platform

 Design Quality

 Preparation for the next phase of the design 



Algorithm Structures

 Organizing by Tasks

 Task Parallelism

 Divide and Conquer

 Organizing by Data Decomposition

 Geometric Decomposition

 Recursive Data

 Organizing by Flow of Data

 Pipeline

 Event-Based Coordination



Algorithm Structure Decision Tree 
(Major Organizing Principle)

Start

Organize By Tasks

Linear

Task 
Parallelism

Recursive

Divide and Conquer

Organize By Data Decomposition

Linear

Geometric 
Decomposition

Recursive

Recursive Data

Organize By Flow of Data

Linear

Pipeline

Recursive

Event-Based 
Coordination



Divide and Conquer Strategy

Problem

Subproblem Subproblem Subproblem Subproblem

Subsolution Subsolution Subsolution Subsolution

Subproblem Subproblem

Subsolution Subsolution

Solution

split

split split

Solve Solve Solve Solve

Merge

MergeMerge



Divide and Conquer Parallel  Strategy

split

base-
case 
solve

base-
case 
solve

merge

split

base-
case 
solve

base-
case 
solve

merge

split

merge

Each dashed-line box represents a task



Recursive Data Strategy

 Involves an operation on a recursive data 
structure that appears to require sequential 
processing:
 Lists

 Trees

 Graphs

 Recursive Data structure is completely 
decomposed into individual elements.

 Structure in the form of a loop (top-level 
structure)

 Simultaneously updating all elements of 
the data structure (Synchronization)

 Examples:
 Partial sums of a linked list.

 Uses:
 Widely used on SIMD platforms (HPF77)

 Combinatorial optimization Problems.

 Partial sums 

 List ranking

 Euler tours and ear decomposition

 Finding roots of trees in a forest of rooted 
directed trees.



Pipeline Strategy

 Involves performing a calculation on 
many sets of data, where the calculation 
can be viewed in terms of data flowing 
through a sequence of stages

 Instruction pipeline in modern CPUs

 Vector Processing (Loop-level 
pipelining)

 Algorithm-level Pipelining

 Signal Processing

 Graphics

 Shell Programs in Unix



Event-Based Coordination Strategy

 Application decomposed into groups 
of semi-independent tasks 
interacting in an irregular fashion.

 Interaction determined by a flow of 
data between the groups, implying 
ordering constraints between the 
tasks

1

2

3



Some Conclusions

 High Performance Computing allows science and mathematics dreams and implementations… i.e. Artificial 
Intelligence Implementation, data analytics, blockchain and more…

 Computer systems involve different technologies and hybrid architectures, demanding sustainability, dynamicity 
and they need support changes in the scale of data and processing…. And all processing in parallel.

 Of course, observing requirements of the applications and large scale behavior (i.e. IoT platforms)

 Power consumption, energy aware and computational efficiency reach sustainability. It is proposed from the design 
of the architecture and it must be dynamic.

 Exascale challenges : Co-Design 

 Big and little (embedded) HPC Architectures with the same challenges (memory contention, stable speed – up, 
parallel coherence) follows same kind of solutions, but with different scale of treatment observing the data level.

 Involving Software Engineering, Computer Architecture, Data Analytics and Performance Evaluation.

 HPC is expensive (but It is more expensive to not have HPC Knowledge and Resources)

 Parallel Computing is not a tendency. (From 2015 is mandatory in all universities and colleges in USA parallel 
computing, scientific computing and advanced computing courses in science and engineering programs 
(programming computing is mandatory also in high school from 2009).



Recommended Lectures

• The Art of Concurrency “A thread Monkey’s Guide to Writing Parallel Applications”, by 
Clay Breshears (Ed. O Reilly, 2009)

• Writing Concurrent Systems. Part 1., by David Chisnall (InformIT Author’s Blog: 
http://www.informit.com/articles/article.aspx?p=1626979 )

• Patterns for Parallel Programming., by T. Mattson., B. Sanders and B. MassinGill (Ed. 
Addison Weslley, 2009) Web Site: http://www.cise.ufl.edu/research/ParallelPatterns/

• Designing and Building Parallel Programs, by Ian Foster in 
http://www.mcs.anl.gov/~itf/dbpp/

• Lectures in the site: www.sc-camp.org

http://www.informit.com/articles/article.aspx?p=1626979
http://www.cise.ufl.edu/research/ParallelPatterns/
http://www.mcs.anl.gov/~itf/dbpp/
http://www.sc-camp.org/


Class  work

• Revision of Chapter 2 of Designing and Building Parallel 
Programs, by Ian Foster in http://www.mcs.anl.gov/~itf/dbpp/

• Solve in the Exercises  Section the 1 and 2 numerals.
• Imagine a solution for a real-world high complex problem to 

solve in the campus (conceptually)
• Read 

http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_a
mdahl_multicore.pdf

http://www.mcs.anl.gov/~itf/dbpp/
http://www.linkedin.com/redirect?url=http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf&urlhash=kMoM&_t=tracking_disc


Questions?

Follow us: @SC3UIS 

Or visit: www.sc3.uis.edu.co

http://www.sc-camp.org/

