
An Introduction to HPC and Advanced
Computing

In 105 Slides - Part 3
Carlos Jaime Barrios Hernández, PhD

@carlosjaimebh

An Example of Software Stack:
The NVIDIA Software Ecosystem

www.nvidia.com

http://www.nvidia.com/

The Software/Applications Approach

About High Performance Computing

 HPC is useful to being faster, more precise overall, to solve large problems and to
treat, intrinsically, parallelism in essence.

 However allows

 Technological Advantage

 Technological Independency

 Competitively

 Energy Savings

 But, HPC is expensive

What & Why

• What is high performance computing (HPC) from Parallel
Programming Approach?
• The use of the most efficient algorithms on computers capable of the highest

performance to solve the most demanding problems.

• Why HPC?
• Large problems – spatially/temporally

• 10,000 x 10,000 x 10,000 grid → 10^12 grid points → 4x10^12 double variables →
32x10^12 bytes = 32 Tera-Bytes.

• Usually need to simulate tens of millions of time steps.
• On-demand/urgent computing; real-time computing;

• Weather forecasting; protein folding; turbulence simulations/CFD; aerospace
structures; Full-body simulation/ Digital human …

• And Remember the slides 2 and 3…

HPC Application Examples

Earthquake simulation

Surface velocity 75 sec after earthquake

Flu pandemic simulation

300 million people tracked

Density of infected population, 45 days

after breakout

HPC Examples: Blood Flow in Human
Vascular Network

• Cardiovascular disease accounts for about 50% of
deaths in western world;

• Formation of arterial disease strongly correlated to
blood flow patterns;

Computational challenges: Enormous

problem size

In one minute, the heart pumps the entire blood

supply of 5 quarts through 60,000 miles of vessels,

that is a quarter of the distance between the moon

and the earth

Blood flow involves multiple scales

HPC Example: Homogeneous Turbulence

Direct Numerical Simulation of Homogeneous Turbulence: 4096^3

Zoom-in

Zoom-in

Vorticity iso-

surface

How HPC fits into Scientific Computing

Physical Processes

Mathematical Models

Numerical Solutions

Data Visualization,

Validation,

Physical insight

Air flow around

an airplane

Navier-stokes

equations

Algorithms, BCs, solvers,

Application codes,

supercomputers

Viz software

HPC

Advantages of Parallelization

• Cheaper, in terms of Price/Performance Ratio

• Faster than equivalently expensive uniprocessor machines

• Handle bigger problems

• More scalable: the performance of a particular program may be
improved by execution on a large machine

• More reliable: In theory if processors fail we can simply use
others

How to Parallelize?: Traditional Way

Designing and Building Parallel Programs, by Ian Foster in http://www.mcs.anl.gov/~itf/dbpp/

However this is not a traditional course…

Actually applied for current well-known
applications with sequential implementations.

Addressed (mainly) for distributed memory
applications

It’s good as first approach of scientific computing
algorithm for (alone) scientists programmers.

http://www.mcs.anl.gov/~itf/dbpp/

Design Spaces of Parallel Programming*

•Patterns for Parallel Programming, Timoty Mattson, Beverly A. Sanders and Berna L. Massingill,
Software Pattern Series, Addison-Wesley 2004

FC
• Finding Concurrency (Structuring Problem to expose

exploitable concurrency)

AS

• Algorithm Structure (Structure Algorithm to take
advantage of Concurrency)

SS

• Supporting Structures (Interfaces between Algorithms
and Environments)

IM

• Implementation Mechanisms (Define Programming
Environments)

Concurrent Programming General Steps

1. Analysis
⚫ Identify Possible Concurrency

⚫ Hotspot: Any partition of the code that has a significant amount of activity
⚫ Time spent, Independence of the code…

2. Design and Implementation
⚫ Threading the algorithm

3. Tests of Correctness
⚫ Detecting and Fixing Threading Errors

4. Tune of Performance
⚫ Removing Performance Bottlenecks

⚫ Logical errors, contention, synchronization errors, imbalance, excessive overhead
⚫ Tuning Performance Problems in the code (tuning cycles)

• From: Patterns for Parallel Programming., by T. Mattson., B.
Sanders and B. MassinGill (Ed. Addison Weslley, 2009) Web
Site: http://www.cise.ufl.edu/research/ParallelPatterns/

http://www.cise.ufl.edu/research/ParallelPatterns/

Distributed Vs. Shared Memory Programming
(Remember Architecture Features)

Common Features

 Redundant Work

 Dividing Work

 Sharing Data (Different Methods)

 Dynamic / Static Allocation of Work
 Depending of the nature of serial algorithm,

resulting concurrent version, number of threads /
processors

Only to Shared Memory

 Local Declarations and Thread-Local Storage

 Memory Effects:
 False Sharing

 Communication in Memory

 Mutual Exclusion

 Producer / Consumer Model

 Reader / Writer Locks (In Distributed Memory is
Boss / Worker)

Decomposition

Tasks Decomposition : Task Parallelism
Data Decomposition: Data Parallelism /Geometric Parallelism

Task Parallelism : What are the tasks and how are
defined?

 There should be at least as many tasks as there will be threads (or cores)

 It is almost always better to have (many) more tasks than threads.

 Granularity must be large enough to offset the overhead that will be
needed to manage the tasks and threads

 More computation: higher granularity (coarse-grained)

 Less Computation: lower granularity (fine-grained)

Granularity is the amount of computation done before synchronization is
needed

Task Granularity

Core 0

overhead

task

overhead

task

overhead

task

Core 1 Core 2 Core 0

overhead

task

Core 1 Core 3

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

Fine-grained decomposition Coarse-grained decomposition

Higher Performance

Lower Accuracy

(Using Nodes)

Coarse grid

Lower Performance

Higher Accuracy

(Using Processors)

Fine grid Dynamic grid

Target performance where

accuracy is required

(Using Processors and

Nodes)

Granularity in Implementations

Tasks must be assigned to threads for
execution

Task Decomposition
Considerations

• What are the tasks and how are defined?
• What are the dependencies between task

and how can they be satisfied?
• How are the task assigned to threads?

Tas

k

Tas

k

Jo

b

Task Dependencies

Order Dependency Data Dependency

Enchantingly Parallel Code: Code without dependencies

Process 1

Process 2

Out

in In 1 In 2

Process 1

Process 3

Process 2

Out 1 Out 2

Process 3

Out

Data Decomposition
Considerations
(Geometric Decomposition)

Data Structures must be (commonly) divided in arrays or logical
structures.

- How should you divide the data into
chunks?
- How should you ensure that the tasks for
each chunk have access to all data
required for update?
- How are the data chunks assigned to
threads?

How are the data chunks (and tasks)
assigned to threads?

 Data Chunks are associated with tasks and are assigned to threads statically or
dynamically

 Via Scheduling

 Static: when the amount of computations within tasks is uniform and predictable

 Dynamic: to achieve a good balance due to variability in the computation needed by
chunk

 Require many (more) tasks than threads.

How should you divide data into chunks?

By individual elements By rows

By groups of columns By blocks

• Data Decomposition have an additional dimension.
• It determines what the neighboring chunks are and how any

exchange of data will be handled during the course of the chunk
computations.

2 Shared Borders

• Regular shapes : Common Regular data organizations.
• Irregular shapes: may be necessary due to the irregular

organizations of the data.

5 Shared Borders

The Shape of the Chunk

How should you ensure that the tasks for each chunk have
access to all data required for update?

• Using Ghost Cells
⚫ Using ghost cells to hold copied data from a neighboring chunk.

Original split with ghost cells

Copying data into ghost cells

Data Sharing Pattern

 Data decomposition might define some data that must be shared among the tasks.

 Data dependencies can also occur when one task needs access to some portions of
the another task’s local data.

 Read Only

 Effectively Local (Accessed by one of the tasks)

 Read Write

 Accumulative

 Multiple read / Single Write

Tasks and Domain Decomposition
Patterns

• Task Decomposition Patterns
⚫ Understand the computationally intensive parts of the problem.
⚫ Finding Tasks (as much…)

⚫ Actions that are carried out to solve the problem
⚫ Actions are distinct and relatively independent.

• Data Decomposition Patterns
⚫ Data decomposition implied by tasks.
⚫ Finding Domains:

⚫ Most computationally intensive part of the problem is organized around the manipulation of large
data structure.

⚫ Similar operators are being applied to different parts of the data structure.

⚫ In shared memory programming environments, data decomposition will be implied by task
decomposition (To see in detail in the OpenMP session).

Concurrent Computation from Serial
Codes

Sequential Consistency
Property: Getting the
same answer as the serial
code on the same input
data set, comparing
sequence of execution in
concurrent solutions of
the concurrent
algorithms.

in P out

in P out

P

P

Sequential Version

Parallel / Concurrent Version

Not Parallelizable Jobs, Tasks and Algorithms

• Algorithms with state
• Recurrences
• Induction Variables
• Reductions
• Loop-carried Dependencies

The Mythical Man-Month: Essays on Software Engineering. By Fred Brooks. Ed
Addison-Wesley Professional, 1995

Concurrent Design Models Features

 Efficiency

 Concurrent applications must run quickly and make good use of processing resources.

 Simplicity

 Easier to understand, develop, debug, verify and maintain.

 Portability

 In terms of threading portability.

 Scalability

 It should be effective on a wide range of number of threads and cores, and sizes of data
sets.

Design Evaluation Pattern

Production of analysis and decomposition:
 Task decomposition to identify concurrency

 Data decomposition to indentify data local to each task

 Group of task and order of groups to satisfy temporal constraints

 Dependencies among tasks

Design Evaluation

 Suitability for the target platform

 Design Quality

 Preparation for the next phase of the design

Algorithm Structures

 Organizing by Tasks

 Task Parallelism

 Divide and Conquer

 Organizing by Data Decomposition

 Geometric Decomposition

 Recursive Data

 Organizing by Flow of Data

 Pipeline

 Event-Based Coordination

Algorithm Structure Decision Tree
(Major Organizing Principle)

Start

Organize By Tasks

Linear

Task
Parallelism

Recursive

Divide and Conquer

Organize By Data Decomposition

Linear

Geometric
Decomposition

Recursive

Recursive Data

Organize By Flow of Data

Linear

Pipeline

Recursive

Event-Based
Coordination

Divide and Conquer Strategy

Problem

Subproblem Subproblem Subproblem Subproblem

Subsolution Subsolution Subsolution Subsolution

Subproblem Subproblem

Subsolution Subsolution

Solution

split

split split

Solve Solve Solve Solve

Merge

MergeMerge

Divide and Conquer Parallel Strategy

split

base-
case
solve

base-
case
solve

merge

split

base-
case
solve

base-
case
solve

merge

split

merge

Each dashed-line box represents a task

Recursive Data Strategy

 Involves an operation on a recursive data
structure that appears to require sequential
processing:
 Lists

 Trees

 Graphs

 Recursive Data structure is completely
decomposed into individual elements.

 Structure in the form of a loop (top-level
structure)

 Simultaneously updating all elements of
the data structure (Synchronization)

 Examples:
 Partial sums of a linked list.

 Uses:
 Widely used on SIMD platforms (HPF77)

 Combinatorial optimization Problems.

 Partial sums

 List ranking

 Euler tours and ear decomposition

 Finding roots of trees in a forest of rooted
directed trees.

Pipeline Strategy

 Involves performing a calculation on
many sets of data, where the calculation
can be viewed in terms of data flowing
through a sequence of stages

 Instruction pipeline in modern CPUs

 Vector Processing (Loop-level
pipelining)

 Algorithm-level Pipelining

 Signal Processing

 Graphics

 Shell Programs in Unix

Event-Based Coordination Strategy

 Application decomposed into groups
of semi-independent tasks
interacting in an irregular fashion.

 Interaction determined by a flow of
data between the groups, implying
ordering constraints between the
tasks

1

2

3

Some Conclusions

 High Performance Computing allows science and mathematics dreams and implementations… i.e. Artificial
Intelligence Implementation, data analytics, blockchain and more…

 Computer systems involve different technologies and hybrid architectures, demanding sustainability, dynamicity
and they need support changes in the scale of data and processing…. And all processing in parallel.

 Of course, observing requirements of the applications and large scale behavior (i.e. IoT platforms)

 Power consumption, energy aware and computational efficiency reach sustainability. It is proposed from the design
of the architecture and it must be dynamic.

 Exascale challenges : Co-Design

 Big and little (embedded) HPC Architectures with the same challenges (memory contention, stable speed – up,
parallel coherence) follows same kind of solutions, but with different scale of treatment observing the data level.

 Involving Software Engineering, Computer Architecture, Data Analytics and Performance Evaluation.

 HPC is expensive (but It is more expensive to not have HPC Knowledge and Resources)

 Parallel Computing is not a tendency. (From 2015 is mandatory in all universities and colleges in USA parallel
computing, scientific computing and advanced computing courses in science and engineering programs
(programming computing is mandatory also in high school from 2009).

Recommended Lectures

• The Art of Concurrency “A thread Monkey’s Guide to Writing Parallel Applications”, by
Clay Breshears (Ed. O Reilly, 2009)

• Writing Concurrent Systems. Part 1., by David Chisnall (InformIT Author’s Blog:
http://www.informit.com/articles/article.aspx?p=1626979)

• Patterns for Parallel Programming., by T. Mattson., B. Sanders and B. MassinGill (Ed.
Addison Weslley, 2009) Web Site: http://www.cise.ufl.edu/research/ParallelPatterns/

• Designing and Building Parallel Programs, by Ian Foster in
http://www.mcs.anl.gov/~itf/dbpp/

• Lectures in the site: www.sc-camp.org

http://www.informit.com/articles/article.aspx?p=1626979
http://www.cise.ufl.edu/research/ParallelPatterns/
http://www.mcs.anl.gov/~itf/dbpp/
http://www.sc-camp.org/

Class work

• Revision of Chapter 2 of Designing and Building Parallel
Programs, by Ian Foster in http://www.mcs.anl.gov/~itf/dbpp/

• Solve in the Exercises Section the 1 and 2 numerals.
• Imagine a solution for a real-world high complex problem to

solve in the campus (conceptually)
• Read

http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_a
mdahl_multicore.pdf

http://www.mcs.anl.gov/~itf/dbpp/
http://www.linkedin.com/redirect?url=http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf&urlhash=kMoM&_t=tracking_disc

Questions?

Follow us: @SC3UIS

Or visit: www.sc3.uis.edu.co

http://www.sc-camp.org/

