Python
(Quick Review)

Carlos Jaime Barrios Hernandez, PhD

@carlosjaimebh

-

REMONABLE

RABILIA

* "There's nothing wrong with you that an expensive
operation can't prolong."

* Based on Teach your Kids to Code Material by Bryson
Payne, A practical introduction to Python by Lewys
Brace, Learn Python in 3 hours by Matt Huenerfauth,
Introduction to Python by Luis Alejandro Torres and
SC-CAMP material (by Robinson Rivas, Xavier
Besseron and Joseph Emeras).

Brief History of Python

Invented in the Netherlands, the early
90s by Guido van Rossum

Named after Monty Python

Open sourced from the beginning

Considered a scripting language
* Interpreter

 Scalable, “object-oriented” and
functional from the beginning

* Increasingly popular

e Community and docs in:
https://www.python.org/

Guido Van Rossum

https://www.python.org/

Interpretive vs compiled languages

* Python is an interpretive “language”.

* This means that your code is not directly run by the hardware. It is
instead passed to a virtual machine, which is just another program
that reads and interprets your code. If your code used the ‘+’
operation, this would be recognized by the interpreter at run time,
which would then call its own internal function ‘add(a,b)’, which would

then execute the machine code ‘AD[’.

* This is in contrast to compiled languages, where your code is
translated into native machine instructions, which are then directly

executed by the hardware. Here, the ‘+’ in your code would be
translated directly in the ‘ADD’ machine code.

Advantages of Python?

Because Python is an interpretive
language, it has a number of
advantages:

* Automatic memory management.

* Expressivity and syntax that is ‘English’.

* Ease of programming.
* Minimises development time.

* Python also has a focus on importing
modules, a feature that makes it
useful for scientific computing.

/

T LEARNED IT LAST
NIGHT! EVERYTHING
1S SO SIMPLE !

/

HELLO WORLD 1S JUsT
print "Hello, world!"

I DUNNO...
DYNAMIC TYPING?
WHITEGFACE?

COME JOIN V5!
PROGRAMMING
IS FUN AGAIN!
IT'S A WHOLE
NEW WORLD
N UP HERE!

BUT HOW ARE
YOU FLYING?

I JusT TYPED
import ontigravity

THATS 1T? [

... L ALSO SAMPLED
EVERYTHING IN THE
MEDICINE CABINET
FOR COMPARISON.
(

RUT I THINK THIS

|S THE PYTHON.

Disadvantages

* Interpreted languages are slower
than compiled languages.

* The modules that you import are
developed in a decentralized
manner; this can cause issues
based upon individual
assumptions.

* Multi-threading is hard in
Python _ (To see in detail after)

| code | | data | | files |
<«—thread

single-threaded process

Sub-
process 1

Memory
Space
(Copy 1)

Sub-
process 2

Memory
Space
(Copy 2)

code		data		files		
rea.			rea.			req..
stack			stack			stack

&

multithreaded process

Main
Process

Memory
Space

process 4

Memory

Space
(Copy 4)

registers

thread

Which language is the best

* No one language is —_
better than all others. VRN \

low-level language

s high-level language
* The ‘best’ language

depends on the task

you are using it forand eestpossive

performance
your personal o a snifant s
p refe rence development \
' effort

/ / Development time

Development effort until first runnable
code that solves the problem

Versions of Python

* There are currently two versions of Python in use; Python 2 and
Python 3.

* Python 3 is not backward compatible with Python 2.

* A lot of the imported modules were only available in Python 2 for
quite some time, leading to a slow adoption of Python 3. However,
this not really an issue anymore.

e Support for Python 2 will end in 2020.
* Today’s versions are 3.10.XX

The Python Interpreter

* Typical Python implementations offer both an interpreter and
compiler

MacBook-Pro-de-Carlos-J:ch01 procarlosjaimebh$ python3.10

Python 3.10.5 (v3.10.5:f377153967, Jun 6 2022, 12:36:10) [Clang 13.0.0 (clang-1300.0.29.30)] on
darwin

Type "help”, "copyright", "credits" or "license" for more information.
>>>

1 import os

2
3 firstName =
4 lastName =

10 (firstName)
1l (lastName)

12 (os.uname())
13
14 printHelloWorld()

15 1

-- INSERT --

Installing

e Python is pre-installed on most Unix systems, including

Linux and MAC OS X

* The pre-installed version may not be the most recent

Download from http://python.org

* Python comes with a large library of standard modules

* There are several options for an IDE

e |IDLE — works well with Windows

* Emacs with python-mode or your favorite text
editor

* Eclipse with Pydev (http://pydev.sourceforge.net/)
* And others of your preference

http://python.org/
http://pydev.sourceforge.net/

IDLE Development Environment

* IDLE is an Integrated DevelLopment Environ-ment for Python, typically
used on Windows

* Multi-window text editor with syntax highlighting, auto-completion,
smart indent and other.

* Python shell with syntax hlghllghtlng

hhhhhhhhh mEE
. Eile Edlt Shell Debug Options MWindows Help
I | e ra e e l l er Python 2.3.4 (#53, May 25 2004, 21:17:02) [MSC v.1200 32 bit (Intel)] on win32 =y
Type "copyright”, "credits" or "license ()" for more information.
**
WI In r I - Personal firewall software may warn about the connection IDLE
’ makes to its subprocess using this computer 's internal loopback
interface. This connection is not wisible on any external
t t I r k i ts **
[(531
. [
-
and call stack visi :
1
4
o e
9
I 16
S>> i [x**2 %X in range q
[range ([start,] [1)
Ln: 20|Col: 34

Running Interactively on UNIX

On Unix...
% python
>>> 343

0
e Python prompts with >>>’,
* To exit Python (not Idle):

* In Unix, type CONTROL-D

* In Windows, type CONTROL-Z + <Enter>
 Evaluate exit()

Running Programs on UNIX
 Call python program via the python interpreter

O

% python fact.py

* Make a python file directly executable by

* Adding the appropriate path to your python
interpreter as the first line of your file

#!/usr/bin/python
* Making the file executable

O

% chmod a+x fact.py
* Invoking file from Unix command line

©)

5 fact.py

Python Scripts

* When you call a python program from the command line the
interpreter evaluates each expression in the file

* Familiar mechanisms are used to provide command line arguments
and/or redirect input and output

* Python also has mechanisms to allow a python program to act both
as a script and as a module to be imported and used by another
python program

The Typical Hello world

This program prints Hello, world!

print('Hello, world!’)

Save as hello.py
Run with Spython hello.py

Hello, world!

Example of a Script
#! /usr/bin/python

""" reads text from standard input and outputs any email
addresses it finds, one to a line.

import re
from sys import stdin

a regular expression ~ for a valid email address
pat = re.compile(r'[-\w][- \w]* @[-\w][-\w.]+[a-zA-Z}{2,4})

for line in stdin.readlines():
for address in pat.findall(line):
print address

results

python> python email0.py <email.txt
bill@msft.com
gates@microsoft.com

steve @apple.com

bill@msft.com

python>

Variables

* Variables in python can contain alphanumerical characters and some
special characters.

* By convention, it is common to have variable names that start with
lower case letters and have class names beginning with a capital
letter; but you can do whatever you want.

* Some keywords are reserved and cannot be used as variable names
due to them serving an in-built Python function; i.e. and, continue, break.
Your IDE will let you know if you try to use one of these.

* Python is dynamically typed; the type of the variable is derived from
the value it is assigned.

Variable types

| . : . : . _ L
+ Integer (int) A variable is assighed using the = operator; i.e:
* Float (float) " e 3.2 =
. tringVv = "Food"” 5
e String (str) e 3.2
print(intVar) Food
* Boolean (bool) print(floatvar)
print(stringVar)

e Complex (complex)

The print() function is used to print something
* [.] to the screen.

* User defined (classes) * Create an integer, float, and string variable.
* Print these to the screen.

* Play around using different variable names,
etc.

* You can always check the type of a variable using the type() function.

In: variable = 100 Out: e
print(type(variable)) <class "int’>

* Check the type of one of your variables.

* Variables can be cast to a different type.

In:

share_of_rent = 295.58/2.0 I]ut 1: 147.75
print(“1:", share_of_rent) " <class 'float'>
print(type(share_of_rent)) .

rounded_share = int(share_of_rent) 2: 147 e
print(“2:", rounded_share <class 'int’>
print(type(rounded_share)g

Arithmetic operators

The arithmetic operators: » Write a couple of operations
e Addition: + using the arithmetic operators,
. Subtract: - and print the results to the
o screen.

* Multiplication:
e Division: / In: print(5+5) Nut: 1n [11]:

* %k 1b698/.s
* Power: ¢ = 2 10

y = 10 9.2

print(x/y)

A quick note on the increment operator
shorthand

* Python has a common idiom that is not necessary, but which is used frequently
and is therefore worth noting:

X += |
Is the same as:
X=X+]|

* This also works for other operators:

X+=y # adds y to the value of x
X = # multiplies x by the value y
X-=Yy # subtracts y from x

X/=Yy # divides x by y

Boolean operators

* Boolean operators are useful when making conditional statements,
we will cover these in-depth later.

e and
 0r
* ot

Comparison operators

e Greater than: > * Write a couple of operations using
e Lesser than: < comparison operators; i.e.
|n_ intvar = 5
* Greater than or equal to: >= + floatvar = 3.2
stringVar = "Food
* Lesser than or equal to: <= if intvVar > floatVar:

print(“Yes")
* |s equal to: ==
if intVar ==
print("A match!"™)

[Iut In [9]: run

1b690/.spyd
Yes
A match!

Working with strings

|n: greeting = 'Hello, Lew!’
print('1:", greeting)
print('2:", len(greeting))
print('3:", greeting[@])
print(’'4:", greeting[-1])

greeting = greeting.replace("Lew"”, "class”

print(’'5:", greeting)
stringl = "Hello”

string2 = "world”

print("1:", stringl, string2)
cost = flocat(35.28)
print(“"Bar tab = £%f" %cost)

* Create a string variable.
* Work out the length of the string.

(ut:

1: Hello, Lew!

2: 11

3: H

4: !

5: Hello, class!
1: Hello world

Bar tab = £35.280000

Dictionaries

* Dictionaries are lists of key-valued pairs.

In: prices = {"Eggs": 2.30,
"Steak”: 13.50,
"Bacon”: 2.30,
"Beer”: 14.95}
print("1:", prices)
print(”2:", type(prices))
print("The price of bacon is:", prices["Bacon”])

Jut:1: {'Eggs’': 2.3, 'Steak': 13.5, 'Bacon’: 2.3, 'Beer':
14.95}
2: <class 'dict’'>
The price of bacon is: 2.3

Indexing

* Indexing in Python is 0-based, meaning that the first element in a
string, list, array, etc, has an index of 0. The second element then has
an index of 1, and so on.

||-| test_string = "Dogs are better than cats” I:Iut First element: D

" print('First element:', test_string[@]) Second element: o
print('Second element:’', test string[1])|

* You can cycle backwards through a list, string, array, etc, by placing a
minus symbol in front of the index location.

||"|: print(’'Last element:’, test_string[-1]) . Last element: s

test_string = "Dogs are better than cats” D
| print(’'Second to last element:', test string[-2])| Second to last element: t

. test_string = "Dogs are better than cats” I] _ .
|n. print(’'Last element:', test_string[4:]) ||f: Last element: are better than cats

Fr‘int('Second to last element:’, test_string[:4]) Second to last element: Dogs

|n. test_string = "Dogs are better than cats” I]th: are b
"print(test_string[5:1@])

* Create a string that is 10 characters in length.
* Print the second character to the screen.

* Print the third to last character to the screen.
* Print all characters after the fourth character.
* Print characters 2-8.

Tuples

* Tuples are containers that are immutable; i.e. their contents cannot
be altered once created.

In: tuplel = (5, 1@) Jut:1: (5, 18)
print('1:", tuplel) 2: <class 'tuple'>
print(”2:", type(tuplel)) S

|ﬂ: tuplel[l] = 6 I]l_lt: TypeError: 'tuple' object does not support item assignment

Lists

* Lists are essentially containers numbers = [1, 2, 3]

. |n: print("List 1:", numbers)
Ofarbltrary type print("Type of list 1:", type(numbers))
: arbitrary_list = [1, numbers, "Hello"]
) They are prObably the container print("Arbitrary list:", arbitrary_list)
that you will use most print(“Type of arbitrary list:", type(arbitrary_list))
frequently.
* The elements of a list can be of .
different types. Out: L3st 1: [1, 2, 3] e
. Type of list 1: <class 'list’>
* The difference between tuples Arbitrary list: [1, [1, 2, 3], 'Hello']
and lists is in performance; it is Type of arbitrary list: <class 'list'>

much faster to ‘grab’ an
element stored in a tuple, but _ -
lists are much more versatile. * Create a list and populate it with

* Note that lists are denoted by |[] some elements.
and not the () used by tuples.

Adding elements to a list

* Lists are mutable; i.e. their contents can be changed. This can be
done in a number of ways.

* With the use of an index to replace a current element with a new
one.

|ﬂ: numbers = [1, 2, 3] I]ut: List 1: [1, 2, 3]
print(“List 1:", numbers) Amended list 1: [1, 5, 3]
numbers[1l] = 5
print("Amended list 1:", numbers)

* Replace the second element in your string with the integer 2.

e You can use the insert() function in order to add an element to a list at
a specific indexed location, without overwriting any of the original
elements.

|ﬂ' numbers = [1, 2, 3]

print(“"List 1:", numbers) DUt:Ljst 1: [1, 2, 3]
numbers.insert(2, 'Surprise!’) Amended list 1: [1, 2, 'Surprise!’', 3]
print(“Amended list 1:", numbers)

 Use insert() to put the integer 3 after the 2 that you just added to your
string.

* You can add an element to the end of a list using the append() function.

In; numbers = [1, 2, 3] Jut: List 1: [1, 2, 3]

print("List 1:", numbers) Amended list 1: [1, 2, 3, 4]
numbers.append(4)

print(“Amended list 1:", numbers)

 Use append() to add the string “end” as the last element in your list.

Removing elements from a list

* You can remove an element from a list based upon the element value.

* Remember: If there is more than one element with this value, only
the first occurrence will be removed.

|ﬂ: numbers = [1, 2, 3, 3] I]LItZ List 1: [1, 2, 3, 5] |

print(“"List 1:", numbers) Amended list 1: [1, 2, 3]
numbers.remove(3)

print(“Amended list 1:", numbers)

* It is better practice to remove elements by their index using the del
function.

|I-|: nu[raber‘f ?-[1., ?:, 3, 4] I]ut- List 1: [1, 2, 3, 4]
gginﬁﬁmgé:z[ij > number‘S) AmendEd liSt 1: [1) 3) 4]
Amended list 2: [1, 3]

print("Amended list 1:", numbers)
del numbers[-1]
print("Amended list 2:", numbers)

 Use del to remove the 3 that you added to the list earlier.

For loops

* The for loop is used to iterate over elements in a sequence, and is
often used when you have a piece of code that you want to repeat a
number of times.

* For loops essentially say:

“For all elements in a sequence, do something”

An example

* We have a list of species:

1 1

species = ['dog', 'cat', 'shark', 'falcon', 'deer', 'tyrannosaurus rex']
for 1 in species:

print(i)

* The command underneath the list then cycles through each entry in the species list
and prints the animal’s name to the screen. Note: The i is quite arbitrary. You could
just as easily replace it with ‘animal’, ‘t’, or anything else.

In [1]: runfile('//i:
dog

cat

shark

falcon

deer

tyrannosaurus rex

Another example

* We can also use for loops for operations other than printing to a
screen. For example:
numbers = [1, 20, 18, 5, 15, 160]
total = ©
for value in numbers:

total = total + value
print(total)

In [4]: runfile(',
219

e Using the list you made a moment ago, use a for loop to print each
element of the list to the screen in turn.

The range() function

 The range() function generates a list of numbers, which is generally used to iterate
over within for loops.

 The range() function has two sets of parameters to follow:

range([start), stop[, step])

start: Starting number of the sequence.

stop: Generate numbers up to, but not including this number.
step: Difference between each number in the sequence

range(stap)

stop: Number of integers
(whole numbers) to generate,
starting from zero. i.e:

.. l.e.:
for 1 in range(5):
print (i) for i in range(3,6): for i in range(4, 10, 2):
print(1i) print(i)
In [6]: runfile(’, .
e In [7]: runfile('/ In [8]: runfile
1 B 4
2 4 6
3 5 3
a4

Note:

* All parameters must be integers.

* Parameters can be positive or negative.

* The range() function (and Python in general) is 0-index based, meaning list indexes start at 0, not 1. eg. The syntax to
access the first element of a list is mylist[0]. Therefore the last integer generated by range() is up to, but not including,
stop.

* Create an empty list.

new list = []

e Use the range() and append() functions to add the integers 1-20 to
the empty list.

for i in range(1, 21):
new list.append(1i)

* Print the list to the screen, what do you have?

print(new_list)

[I|_|’[|j|_|’[- [1, 2, 3, 4, 5, 6, 7, 8, 9, 1@, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

The break() function

* To terminate a loop, you can use the break() function.

* The break() statement breaks out of the innermost enclosing for or while
loop.

for 1 in range(l, 10):
if 1 ==
break
print(1i)

In [9]: runfile('//isz
1
2

The continue () function

 The continue() statement is used to tell Python to skip the rest of the
statements in the current loop block, and then to continue to the next
iteration of the loop.

for 1 in range(l, 10):
if 1 == 3:
continue
print(1i)

In [10]: runfile('//isa
1
2

W 00~ oW

While loops

* The while loop tells the computer to do something as long as a
specific condition is met.

* It essentially says:

“while this is true, do this.”

* When working with while loops, its important to remember the
nature of various operators.

* While loops use the break() and continue() functions in the same way as a
for loop does.

An example

* We have a list of species:

1 1

species = ['dog', 'cat', 'shark', 'falcon', 'deer', 'tyrannosaurus rex']
for 1 in species:

print(i)

* The command underneath the list then cycles through each entry in the species list
and prints the animal’s name to the screen. Note: The i is quite arbitrary. You could
just as easily replace it with ‘animal’, ‘t’, or anything else.

In [1]: runfile('//i:
dog

cat

shark

falcon

deer

tyrannosaurus rex

Another example

* We can also use for loops for operations other than printing to a
screen. For example:
numbers = [1, 20, 18, 5, 15, 160]
total = ©
for value in numbers:

total = total + value
print(total)

In [4]: runfile(',
219

e Using the list you made a moment ago, use a for loop to print each
element of the list to the screen in turn.

The range() function

 The range() function generates a list of numbers, which is generally used to iterate
over within for loops.

 The range() function has two sets of parameters to follow:

range([start), stop[, step])

start: Starting number of the sequence.

stop: Generate numbers up to, but not including this number.
step: Difference between each number in the sequence

range(stap)

stop: Number of integers
(whole numbers) to generate,
starting from zero. i.e:

.. l.e.:
for 1 in range(5):
print (i) for i in range(3,6): for i in range(4, 10, 2):
print(1i) print(i)
In [6]: runfile(’, .
e In [7]: runfile('/ In [8]: runfile
1 B 4
2 4 6
3 5 3
a4

Note:

* All parameters must be integers.

* Parameters can be positive or negative.

* The range() function (and Python in general) is 0-index based, meaning list indexes start at 0, not 1. eg. The syntax to
access the first element of a list is mylist[0]. Therefore the last integer generated by range() is up to, but not including,
stop.

* Create an empty list.

new list = []

e Use the range() and append() functions to add the integers 1-20 to
the empty list.

for i in range(1, 21):
new list.append(1i)

* Print the list to the screen, what do you have?

print(new_list)

[I|_|’[|j|_|’[- [1, 2, 3, 4, 5, 6, 7, 8, 9, 1@, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

The break() function

* To terminate a loop, you can use the break() function.

* The break() statement breaks out of the innermost enclosing for or while
loop.

for 1 in range(l, 10):
if 1 ==
break
print(1i)

In [9]: runfile('//isz
1
2

The continue () function

 The continue() statement is used to tell Python to skip the rest of the
statements in the current loop block, and then to continue to the next
iteration of the loop.

for 1 in range(l, 10):
if 1 == 3:
continue
print(1i)

In [10]: runfile('//isa
1
2

W 00~ oW

While loops

* The while loop tells the computer to do something as long as a
specific condition is met.

* It essentially says:

“while this is true, do this.”

* When working with while loops, its important to remember the
nature of various operators.

* While loops use the break() and continue() functions in the same way as a
for loop does.

An example

1 1

species = ['dog', ‘'cat', 'shark', 'falcon', 'deer', 'tyrannosaurus rex']
i=290
while 1 < 3:

print(species[i])

1=1+1

In [11]: runfile('//1i:
dog

cat

shark

A bad example

counter = @

while counter <= 100:
print(counter)
counter + 99

* Create a variable and set it to zero.

* Write a while loop that states that, while the variable is less than 250,
add 1 to the variable and print the variable to the screen.

|n: counter = @ [I|_|t 246

while counter < 250: . 247
counter += 1

print(co:nter) 2438

249

250

* Replace the < with <=, what happens?

249
250
251

For loop vs. while loop

* You will use for loops more often than while loops.

* The for loop is the natural choice for cycling through a list, characters
in a string, etc; basically, anything of determinate size.

* The while loop is the natural choice if you are cycling through
something, such as a sequence of numbers, an indeterminate number
of times until some condition is met.

Nested loops

* In some situations, you may want a loop within a loop; this is known
as a nested loop.

* What will the code on the right In- ¢ (|
" for x in range(1, 11):

prOdUCG? for y in range(1, 11):
 Recreate this code and run it, what do print(‘%d * %d = %d" %(X, ¥, X*y))
you get?

. In [16]: runfile('//i:

Jut: T [a61: -

1 *2=2

1*3 =3

1*4=4

1 *5=05

1 *6 =26

1*7 =7

Conditionals

* There are three main conditional statements in Python; if, else, elif.
* We have already used if when looking at while loops.

||"|: school night = True I]ut: No beer

if school _night == True:
print(“"No beer™)

else:
print("You may have beer™)

|ﬂ: school_night = False
if school night == True:
print("No beer™)
else:
print(“"You may have beer")

Jut: You may have beer

An example of elit

. Lew 1s tired = False _
In: Lew_is_ Nut No food for Lew
Lew _is _hungry = True '

if Lew is tired is True:
print(“Lew has to teach”)

elif Lew_is hungry is True:
print("Nc food for Lew")

else:
print(“"Go on, have a biscuit”)

Functions

* A function is a block of code which p; def practice function(a, b):
only runs when it is called. return answer
* They are really useful if you have I
operations that need to be done calculated - practice function(x, y)
prin cailculatce

repeatedly; i.e. calculations.

 The function must be defined
before it is called. In other words, (ut: 1 [10]: runl
the block of code that makesup ~ 1b6o@)/ . spyder-
the function must come before the 20
block of code that makes use of
the function.

Create a function that takes two inputs, multiplies them, and then returns the result. It should
look some like:

def function_name(a, b):

def multiply function(a, b):
result = a * b

do somethin
| return result

return something

Create two different lists of integers.

Using your function, write a nested for loop that cycles through each entries in the first list and

multiples it by each of the entries in the second list, and prints the result to the screen.

In:

def multiply function(a, b):

result = a * b [Iut

return result

numbers_list = [1, 2, 3]
-multiplier list = [2, 4]
for n in numbers_list:
print(” ")
for m in multiplier list:
current_answer = multiply function(n, m)
print(“"The answer to %d * %d is: " %(n, m), current_answer)

The
The

answer
answer

to
to

The
The

answer
answer

to
to

The
The

answer
answer

to
to

[

NN

L

is:
is:

is:
is:

is:
is:

Multiple returns

* You can have a function return multiple outputs.

|r]: def multiply function(a, b): []l]t: The answer to 1 * 2 is: 2
result = a * b The result of this squared is:
result2 = result * result The answer to 1 * 4 is: 4
return result, result2 The result of this squared is:

The answer to 2 * 2 is: 4

numbers_list = [1, 2, 3] The result of this squared is:

multiplier_list = [2, 4] The answer to 2 * 4 is: 8
for n in numbers_list: The result of this squared is:
print(” ")
for m in multiplier list: The answer to 3 * 2 is: 6
current_answer, current_answer2 = multiply function(n, m) The result of this squared is:
print("The answer to %d * %d is: " %(n, m), current_answer) The answer to 3 * 4 is: 12

print("The result of this squared is: ", current_answer2) The result of this squared is:

Reading and writing to files in Python: The file
object

* File handling in Python can easily be done with the built-in object file.

* The file object provides all of the basic functions necessary in order to
manipulate files.

e Open up notepad or notepad++. Write some text and save the file
to a location and with a name you’ll remember.

The open() function

* Before you can work with a file, you first have to open it using Python’s in-built
open() function.

* The open() function takes two arguments; the name of the file that you wish to use
and the mode for which we would like to open the file

practiceFile = open('Practice file for IOC.txt', 'r")

By default, the open() function opens a file in ‘read mode’; this is what the ™ above
signifies.

* There are a number of different file opening modes. The most common are: ‘r’=
read, ‘w’=write, ‘r+'=both reading and writing, ‘a’=appending.

* Use the open() function to read the file in.

The close() function

. :c_ikewise, once you’re done working with a file, you can close it with the close()
unction.

* Using this function will free up any system resources that are being used up by
having the file open.

practiceFile.close()

Reading in a file and printing to screen
example

Using what you have now learned about for loops, it is possible to open
a file for reading and then print each line in the file to the screen using
a for loop.

* Use a for loop and the variable name that you assigned the open file to in
order to print each of the lines in your file to the screen.
‘) []ut:gzeg4§]: runfile('//isad.isadroot..

/Desktop’)
The first line of text

|n. practiceFile = open('practice_file.txt’,
* for line in practiceFile:
print(line)

The second line of text
The third line of text
The fourth line of text

I'm bored now, you get the idea

The read() function

* However, you don’t need to use any loops to access file contents.
Python has three in-built file reading commands:

1. <file>.read() = Returns the entire contents of the file as a single string:

practiceFile = open(‘'practice file.txt', 'r") In [44];runfile('»ﬂf'isad-isadfco:-e
. . . User/Desktop'’
print(practiceFile.read()) The first line of text

The second line of text
The third line of text
The fourth line of text
I'm bored now, you get the idea

2. <file>.readline() = Returns one line at a time:

practiceFile = open('practice file.txt', 'r') 1n [51]: runfile('//isad.i

: : : : User/Desktop’
print(practiceFile.readline()) e Firet lgni I

3. <file>.readlines() = Returns a list of lines:

In [52]: runfile('//isad.isadroot.ex.ac.uk/UOE/User/Desktop/IOC_test.py’,

praCticeFile = open('pPaCtice_file'tXt'J 'P') wdir="'//isad.isadroot.ex.ac.uk/UOE/User/Desktop’)

3 - M M ['The first line of text\n', 'The second line of text\n', 'The third line of
prlnt(praCtlceFlle' readllneS()) text\n', 'The fourth line of text\n', "I'm bored now, you get the idea\n"]

The write() function

* Likewise, there are two similar in-built functions for getting Python to
write to a file:

1. <file>.write() = Writes a specified sequence of characters to a file:

| Practice_file_for_IOC.txt - Notepad .

File Edit Format View Help
L am adding this string

practiceFile = open('Practice_file for_IOC.txt', 'w')
practiceFile.write('I am adding this string')

2. <file>.writelines() = Writes a list of strings to a file:

testList = ['Lewys is the best teacher at the IOC\n', 'Lewys could potentially be the best teacher ever\n']
practiceFile = open('Practice_file for_IOC.txt', 'w')
practiceFile.writelines(testList)

File Edit Format View Help

Lewys is the best teacher at the IOC
Lewys could potentially be the best teacher ever

* Important: Using the write() or writelines() function will overwrite anything
contained within a file, if a file of the same name already exists in the working

directory.

Practice — writing to a file in Python

Part 1:
* Open the file you created in the last practice and ready it for being written to.
e Write a string to that file. Note: this will overwrite the old contents.

« Remember to close the file once you are done.

Part 2:

* Create a list of strings.

* Use the open() function to create a new .txt file and write your list of strings to
this file.

« Remember to close the file once you are done.

The append() function

* If you do not want to overwrite a file’s contents, you can use the append() function.
* To append to an existing file, simply put ‘a’ instead of ‘r’ or ‘w’ in the open() when opening a file.

practiceFile = open('Practice_file_for_IOC.txt', 'a')
testLine = '\nI told you I was the best’
practiceFile.write(testLine)

.
£ ractice_file_for_IOC.txt - Notepa
P file_for_IOC. Notepad

File Edit Format View Help

fThe first line of text
The second Tine of text
The third 1ine of text
The fourth 1ine of text
I'm bored now, you get the ideaI told you I was the best

.
| Practice_file_for IOC.txt - Notepad
P

File Edit Format View Help

The first line of text

The second Tine of text

The third 1ine of text

The fourth Tine of text

|I'm bored now, you get the idea
|I told you I was the best|

Practice — appending to a file in Python

* Open the text file you created in part two of the writing to a file practice, and ready it
for appending.

* Define a string object.
* Appending this new string object to the file.

e Remember to close the file once you are done.

A word on import

* To use a package in your code, you must first make it accessible.
* This is one of the features of Python that make it so popular.

|rr import datetime
current_time = datetime.datetime.now()
print(current_time)

* There are pre-built Python packages for pretty much everything.

|ﬂ:impcrt antigravity

Plotting in Python

* Before creating an plots, it is worth spending sometime familiarising
ourselves with the matplotlib module. It will save a lot of time later on.

Some history....

« Matplotlib was originally developed by a neurobiologist in order to
emulate aspects of the MATLAB software.

* The pythonic concept of importing is not utilised by MATLAB, and this
is why something called Pylab exists.

e Pylab is a module within the Matplotlib library that was built to mimic
the MATLAB style. It only exists in order to bring aspects of NumPy and
Matplotlib into the namespace, thus making for an easier transition for

ex-MATLAB users, because they only had to do one import in order to
access the necessary functions:

from pylab import *|

* However, using the above command is now considered bad practice,
and Matplotlib actually advises against using it due to the way in which it
creates many opportunities for conflicted name bugs.

Getting started

« Without Pylab, we can normally get away with just one canonical
import; the top line from the example below.

* We are also going to import NumPy, which we are going to use to
generate random data for our examples.

import matplotlib.pyplot as plt
impert numpy as np

Different graph types

A simple line graph can be plotted with plot().
* A histogram can be created with hist().

* A bar chart can be created with bar().

* A pie chart can be created with pig().

* A scatter plot can be created with scatter().

* The table() function adds a text table to an axes.
* Plus many more....

Our first plot

import matplotlib.pyplot as plt
import numpy as np
plt.plot([1,2,3,4])

plt.ylabel('some numbers’)
plt.xlabel(A meaningless axis"')
plt.show()

You may be wondering why the x-axis ranges from
0-3 and the y-axis from 1-4.

If you provide a single list or array to the plot()
command, Matplotlib assumes it is a sequence of
y values, and automatically generates the x values
for you.

Since python ranges start with 0, the default x
vector has the same length as y but starts with O.
Hence the x data are [0,1,2,3].

some numbers

4.0 A1

35 1

3.0 -

25 1

20 4

0.0

0.5

10 15 20
A meaningless axis

25

3.0

The plot() function

* The plot() argument is quite versatile,
and will take any arbitrary collection
of numbers. For example, if we add an 401

extra entry to the x axis, and replace g 10 |
the last entry in the Y axis and add 2
another entry: 5 "]

import matplotlib.pyplot as plt e

import numpy as np

plt.plot([1, 2, 3, 4, 5], [1, 4, 9, 50, 2])
plt.ylabel(' some numbers’)

plt.xlabel('A meaningless axis"')

plt.show()

10 15 20 25 30 35 40 45 50
A meaningless axis

The plot() function

* The plot() function has an optional third argument that specifies the
appearance of the data points.

e The default is b-, which is the blue solid line seen in the last two
examples. The full list of styles can be found in the documentation for the
nlot() on the Matplotlib page

plt.plot([1, 2, 3, 4, 5], [1, 4, 9, 5@, 2], 'go') plt.plot([1, 2, 3, 4, 5], [1, 4, 9, 50, 2], 'r+’)
50‘ ® 50- +
40 40 -
2 3 2 3
= =
2 2
Q [0}
E 20‘ § 20.
10 o 10 1 N
+
0{ ® i * 0{ * "
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50

A meaningless axis A meaningless axis

The plot() function

* You can quite easily alter the properties of the line with the plot() function.

} import matplotlib.pyplot as plt 31:.mport matplotlib.pyplot as plt
) import numpy as np } import numpy as np
) plt.plot([1, 2, 3, 4, 5], [1, 4, 9, 5@, 2], '-', linewidth=2.0) }plt.plot([1, 2, 3, 4, 5], [1, 4, 9, 5@, 2], '-', linewidth=5.9)
| plt.axis([e, 10, @, 60]) | plt.axis([e, 1@, @, 68])
! plt.show() ! plt.show()
60 60
50 - 50 A
40 A 40
30 30
20 - 20 -
10 - 10 -
0 T T T T 0 T T Ll T

Altering tick labels

import matplotlib.pyplot as plt

* The pltxticks() and plt.yticks() TRt 2 o 4 sl L % o 2l tiezie)
plt.axis([e, 1@, @, 6@])
allows you to manually 1t xticks([o, 5, 1))
. plt.yticks([@, 25, 5@, 68])
alter the ticks on the x- plt. show()
axis and y-axis &
respectively. N

 Note that the tick values
have to be contained
within a list object.

25 1

Practice - Basic line graph

Let’s write a Python program to draw a line graph with suitable labels
for the x-axis and y-axis. Include a title.

import matplotlib.pyplot as plt
Draw a line. X = r‘ange(l, 59)
| | | Y = [value * 3 for value in X]
140} 1 print("Values of X:")
print(range(1,50))
print("values of Y (thrice of X):")
100} 1 print(Y)

80 |

160

120 +

y - axis

plt.plot(X, Y)

60 |
plt.xlabel('x - axis')

40 +

plt.ylabel('y - axis')

20|

0 l . . , plt.title('Draw a line.')

X - axis

plt.show()

The setp() function

* The setF_() allows you to set multiple properties for a list of lines, if you want
all the lines to be matching.

. import numpy as np

! import matplotlib.pyplot as plt 100 1

tt = np.arange(@., 5., 2.2) 80 -

i lines = blt.plot(t, t, 'b-", t, t**2, 'r-', t, t**3, 'g-', linewidth=2.0) 60 -

'plt.setp(lines, color="r", linewidth=2.9)

: 40 -

I plt.setp(lines, 'color’, 'r', 'linewidth', 2.0)

I plt.show() 201
0<

 You can use the setp() function along with either the line or lines function in order to get
a list of settable line properties.

In [72]: runfile('//isad.isadroot.ex.ac.uk/UOE/User/Desktop/IoC_plottin
Desktop')
agg_filter: a filter function, which takes a (m, n, 3) float array an
- - : ' - - - - alpha: float (2.9 transparent through 1.9 opaque)
lines = plt.plot(t, t, 'b-", t, t**2, 'r-', t, t**3, 'g-’, linewidth=2.0)] = [irii.d: bool
plt.setp(lines) antialiased or aa: bool
clip box: a "~ .Bbox™ instance
clip _on: bool
clip path: [("~matplotlib.path.Path®, "~ .Transform’) | ~.Patch® | None
color or c: any matplotlib color
contains: a callable function

The axis() function

 The axis() function allows us to specify the range of the axis.
* |t requires a list that contains the following:

[The min x-axis value, the max x-axis value, the min y-axis, the max y-axis value]

60

import matplotlib.pyplot as plt

import numpy as np

plt.plot([1, 2, 3, 4, 5], [1, 4, 9, 5@, 2], 'bo")
plt.axis([e, 1@, @, 68]) 40 1
plt.show()

50 - L]

30 R

20 1

10 - °

Matplotlib and NumPy arrays

* Normally when working with numerical data, you’ll be using NumPy
arrays.

* This is still straight forward to do in Matplotlib; in fact all sequences are
converted into NumPy arrays internally anyway.

100 A
import numpy as np

import matplotlib.pyplot as plt 80 A ¢
@
.t = np.arange(@., 5., 8.2)] 60 - ®
@
plt.plot(t, t, 'rx', t, t**2, 'b*', t, t**3, 'go’) 0. o
plt.show() .0
20 (e} ****

0 1 2 3 4 5

Working with text

* There are a number of different ways in which to
add text to your graph:

- title() = Adds a title to your graph,
takes a string as an argument

import numpy as np
import matplotlib.pyplot as plt

t = np.arange(@., 5., ©8.2)

lines = plt.plot(t, t, 'b-", t, t**2, 'r-', t, t**3, 'g-', linewidth=2.8)
- xlabel() = Add a title to the x-axis, also Pt iabcl(Dy duta forxy 2%
takes a string as an argument Pt Yiete(An orvpie grahl)
plt.text(1l, 80, 'Lew is good at graphs')
- ylabel() = Same as xlabel() oty S [
- text() = Can be used to add text to an An example graph
arbitrary location on your graph. o
Requires the following arguments: |
text(x-axis location, y-axis |ocation, the string ;% o aasennE
of text to be added) §
E
* Matplotlib uses TeX equation expressions. So, as an £
example, if you wanted to put «:=15 in one of the 20
text blocks, you would write plt.title(r'§\sigma i=[3}"). N
0 1 2 3 B 5

Dummy data for x

Annotating data points

* The annotate() function allows you to easily annotate data points or
specific area on a graph.

An example graph

t = np.arange(¥., 5., ¥.2)
lines = plt.plot(t, t, 'b-", t, t**2, 'r-', t, t**3, 'g-', linewidth=2.0) 100 -
plt.setp(lines, color="r", linewidth=2.0)
plt.xlabel('Dummay data for x")
plt.ylabel('Dummy data for y') ~ 80 -
plt.title('An example graph') k=
plt.annotate('Divergance point], xy=(1.4, 3), xytext=(3, 1.5), p
arrowprops=dict(facecolor="black', shrink=8.05), w 60
) >
plt.setp(lines, 'color’, 'r', 'linewidth', 2.8) 3
plt.show() £ 40 A
-
O
20
0 -

T T

0 1 2 3 4
Dummy data for x

Legends

* The location of a legend is specified by
the loc command. There are a number
of in-built locations that can be altered
by replacing the number. The
Matplotlib website has a list of all
locations in the documentation page

for location().

* You can then use the bbox to anchor()

function to manual
or when used with
alterations to the p

y place the legend,
oc, to make slight
acement.

import numpy as np
import matplotlib.pyplot as plt

t = np.arange(@., 5., 2.2)

lines = plt.plot(t, t, 'b-', linewidth=2.8, label='Thing 1’
lines = plt.plot(t, t**2, 'r-', linewidth=2.8, label="Thing 2'
lines = plt.plot(t, t**3, 'g-', linewidth=2.@, label='Thing 3’
plt.xlabel('Dummy data for x")

plt.ylabel('Dummy data for y')

plt.title('An example graph')

plt.legend(bbox_to_anchor=(1.85, 1), loc=2, borderaxespad=2.)|

plt.show()

An example graph

100 +

& 8 8

Dummy data fory

N
o
i

(=]
i

Dummy data for x

= Thing 1
= Thing 2
= Thing 3

Saving a figure as a file

* The plt.savefi?() allows you to
save your plot as a file.

* |t takes a string as an
argument, which will be the
name of the file. You must
remember to state which
file type you want the figure
saved as; i.e. png or jpeg.

* Make sure you put the
nlt.savefig() before the
pIt.shuw([)] function.

Otherwise, the file will be a
blank file.

T =

np.arange(@., 5., 9.2)

lines = plt.plot(t, t,

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

setp(lines, color='r
xlabel('Dummy data for x

ylabel('Dummy data for y

text(1, 8@, '
setp(lines,

savefig(' test.pr

show()

Ly
(e

")
)

title('An example graph')
S 200 d

'b-", t, t**2, 'r-', t, t**3, 'g
', linewidth=2.0)

6-

', linewidth=2.0)

Scatter plot exercise

Let’s write a Python program to plot quantities which have an xand y
position; a scatter graph.

import numpy as np

import pylab as pl 60 1
x1i = |2, 15, 5, 20, 5, 39, 26, 68} 50 4
yl = [1, 5, 10, 18, 20, 25, 26, 27] 40 -
x2 = [3, 20, 6, 15, 9, 30, 50, 62] 30 -
y2 = [2, 6, 11, 20, 22, 26, 25, 30] 20! «® o .
pl.axis([@, 65, @, 65]) 104
&* [e
pl.plot(xl, y1,'b*', x2, y2, 'ro’) 01 ' ' ' ' '
0 10 20 30 40 50

pl.show()

Debugging

. Debugging is in fundamental aspect of coding, and you will probably spend more
time debugging than actually writing code.

 EVERYONE has to debug, it is nothing to be ashamed of.

* In fact, you should be particularly concerned if you do write a programme that
d?eﬁ not display any obvious errors, as it likely means that you are just unaware
of them.

* There are a number of debugging programmes available to coders. However,
debugging the most common issues that you’ll encounter when developing
programmes can be done by following a few key principles.

* However, always remember that sometimes fixing a PROGRAMMING PROTIP
bug can create new bugs.

CODE JAVASCRIPT UNDERWATER!
SONOBODY COULD'SEE YOU CRYING|

im‘g'ﬁ:p‘.c'c

Print everything

* When debugging, the most important function at your disposal is the
print command. Every coder uses this as a debugging tool, regardless
of their amount of experience.

* You should have some sense as to what every line of code you have
written does. If not, print those lines out. You will then be able to see
how the values of variables are changing as the programme runs
through.

* Even if you think you know what each line does, it is still
recommended that you print out certain lines as often this can aid
you in realising errors that you may have overlooked.

Print examples

| want the value of variable to be 10 upon

Did this chunk of code run?
completion of the for loop. Did the for loop work

i=20
while i < 6° correctly?
string = :x; variable = 1
length = 1 * 3 for 1 in range(10):
for j in range(lgngth):ﬁ variable += 1
- szrlng = string + '~ print(“variable"”, variable)
1 —
print("Got here") No.
Yes, it did.

In [133]: runfile('/,

In [135]: runfile('//is variable: 11

Got here

Run your code when you make changes

* Do not sit down and code for a hour or so without running the code
you are writing. Chances are, you will never get to the bottom of all of
the errors that your programme reports when it runs.

* Instead, you should run your script every few minutes. It is not
possible to run your code too many times.

* Remember, the more code you write or edit between test runs, the
more places you are going to have to go back an investigate when
your code hits an error.

Read your error messages

* Do not be disheartened when you get an error message. More often
than not, you’ll realise what the error is as soon as you read the
message; i.e. the for loop doesn’t work on a list because the list is
empty.

* This is particularly the case with Python, which provides you with
error messages in ‘clear English’ compared to the cryptic messages
given by offered by other languages.

e At the very least, the error message will let you know which lines is
experiencing the error. However, this may not be the line causing the
error. Still, this offers a good starting point for your bug search.

Legitimate Desperate
search

|
Google the error message Go 5000000gle »

2 2% 3 86 71 .8 910 Next
* |f you cannot work out the cause of an error '—I——J o S er——
od help you what are you
message, google the error code and description. ts got o be L

here somewhere

* This can sometimes be a bit of a hit-or-miss, depending on the nature of the error.

* |f your error is fairly specific, then there will nearly always be a webpage where
someone has already asked for help with an error that is either identical or very
similar to the one you are experiencing; stackoverflow.com is the most common page
you’ll come across in this scenario.

. WHO WERE YOU,
* Do make sure that you read the description ﬁ%ﬁ;‘%@rﬂ%ﬁ DENVERCODER??
|
of the problem carefully to ensure that the AND YET SO HELPLESSY ALONE. | W47 L1 hpw SEE?
problem is the same as the one you are A6 WHEN TGOGLE AN ERRR A
dealing with. Then read the first two or b PERES Ok RESUT
ealngW|- . The ga e firs - 00 A ay
three replies to see if page contains a WITH THE SAME' PROBLEN
workable solution. ANDNO ANGLER
LAST ROSTED T IN 2003

Comment out code

* You can often comment out bits of code that are not related to the
chunk of code that contains the error.

* This will obviously make the code run faster and might make it easier
to isolate the error.

Binary searches

* This method draws upon a lot of the methods we have already
covered.

* Here, you want to break the code into chunks; normally two chunks,
hence this method’s name.

* You then isolate which chunk of code the error is in.

» After which, you take the chunk of code in question, and divide that
up, and work out which of these new chunks contains the error.

* So on until you’ve isolate the cause of the error.

Walk away

* If you have been trying to fix an error for a prolonged period of time,
30 minutes or so, get up and walk away from the screen and do
something else for a while.

* Often the answer to your issue will present itself upon your return to
the computer, as if by magic.

Phrase your problem as a question

* Many software developers have been
trained to phrase their problem as a
guestion.

* The idea here is that phrasing your issue in
this manner often helps you to realise the
cause of the problem.

e This often works!

Walter

Ask someone

* If all else fails, do not hesitate to ask a colleague or friend who is a
coder and maybe familiar with the language for help.

* They may not even need to be a specialist, sometimes a fresh pair of
eyes belonging to someone who is not invested in the project is more
efficient at helping you work out your issue than spending hours
trying to solve the issue on your own or getting lost the internet
trying to find a solution.

Useful resources

* There are two great online resources for learning this language through practical
examples. These are the Code Academy
(https://www.codecademy.com/catalog/subject/web-development)

* Data Camp
(https://www.datacamp.com/?utm source=adwords ppc&utm campaignid=805
&utm adgroupid=39268379982&utm device=c&utm keyword=data%20
camp&utm matchtype=e&utm network=g&utm adpostion=1t1&utm creative=
3641482&utm targetid=kwd-
298095775602&utm Toc interest ms=&utm loc physical ms=1006707&gclid=E
AlalQobChMI302iqtbV2wIVTKkPTCh2QRAIOEAAYASAAEgLZdPD BweE).

* SC-CAMP
(https://www.scamp.org)

* Python Site

* (https://www.python.org)

https://www.codecademy.com/catalog/subject/web-development
https://www.datacamp.com/?utm_source=adwords_ppc&utm_campaignid=805200711&utm_adgroupid=39268379982&utm_device=c&utm_keyword=data%20camp&utm_matchtype=e&utm_network=g&utm_adpostion=1t1&utm_creative=230953641482&utm_targetid=kwd-298095775602&utm_loc_interest_ms=&utm_loc_physical_ms=1006707&gclid=EAIaIQobChMI3o2iqtbV2wIVTkPTCh2QRA19EAAYASAAEgLZdPD_BwE
https://www.scamp.org/
https://www.python.org/

hy does Python
live on land?

Because it's
above C-level.

o

Thanks, and follow
us on Twitter:

@sc3Uls

&
st

> v oV
»
S saw \J

. a
ww

EXCOM

f
P
- '
¢
-
oy
NTHETASTELESSTR

