
gcc Essentials

• Based in the Tutorial of
• Serguei A. Mokhov, mokhov@cs.concordia.ca
•

1



2

Contents

• Intro
• Options
• Examples



How a Program 
Works (cont’d.)

• Program must be copied from 
secondary (e.g. HDD) memory to 
main memory (RAM) each time CPU 
executes it

• CPU executes program in cycle:

– Fetch: read the next instruction 
from memory into CPU

– Decode: CPU decodes fetched 
instruction to determine which 
operation to perform

– Execute: perform the operation

Figure 1-17 The fetch-decode-execute cycle



Computer Languages

• Impractical for people to write in 
machine language

• Assembly language: uses short 
words (mnemonics) for 
instructions instead of binary 
numbers

• Easier for programmers to 
work with

• Assembler: translates 
assembly language to 
machine language for 
execution by CPU

• Low-level language: close in 
nature to machine language

• Example: assembly language

• High-Level language: allows 
simple creation of powerful and 
complex programs

• No need to know how CPU 
works or write large number 
of instructions

• More intuitive to understand



Compilers and Interpreters
• Source code: statements written by programmer

– Syntax error: prevents code from being translated

• Programs written in high-level languages must be translated into machine language to be 
executed

– Compiler: translates high-level language program into separate machine language program
• Machine language program can be executed at any time

– Interpreter: translates and executes instructions in high-level language program
• Used by Python language, Interprets one instruction at a time, No separate machine language program

Executing a high-level program with an interpreter



6

Compiling and interpreting
• Many languages require you to compile (translate) your program into a form that the 

machine understands.

• Python is instead directly interpreted into machine instructions.

compile (i.e javac OR gcj) execute (i.e. java)
outputsource code

Hello.java
byte code
Hello.class

interpret (python)

outputsource code
Hello.py



7

What is gcc?
• gcc

– GNU C/C++ Compiler

– Console-based compiler for 
Unix/Linux based platforms and 
others; can cross-compile code 
for various architectures

– gcc for C; g++ for C++

– gcc performs all of these:
• preprocessing
• compilation
• assembly and 
• linking

• As always: there is $ man gcc



Dynamic linking within Linux

Web: Anatomy of 
Linux dynamic 
libraries

https://www.ibm.com/developerworks/linux/library/l-dynamic-libraries/
https://www.ibm.com/developerworks/linux/library/l-dynamic-libraries/
https://www.ibm.com/developerworks/linux/library/l-dynamic-libraries/


9

gcc Options
• There are zillions of them, but there are some the most 

often used ones:
– To compile: -c

– Specify output filename: -o <filename>

– Include debugging symbols: -g

– GDB friendly output: -ggdb

– Show all (most) warnings: -Wall

– Be stubborn about standards: -ansi and -pedantic

– Optimizations: -O, -O*



10

Options: -c
• gcc –c : 

– performs compilation and assembly of the source 
file without linking.

• The output are usually object code files, *.o; 
– they can later be linked and form the desired 

executables.

• Generates one object file per source file keeping 
the same prefix ( before . ) of the filename.



11

Options: -o <filename>
• gcc –o : 

– Places resulting file into the filename specified instead of the 
default one; what is the name of this default ? J

• Can be used with any generated files 
– object, executables, assembly, etc.

• If you have the file called source.c; the defaults are:
– source.o if -c was specified

– a.out if executable

• These can be overridden with the -o option.



12

Options: -g

• gcc –g : 

– Includes debugging info in the generated object 
code. This info can later be used in gdb.

• gcc allows to use -g with the optimization 
turned on (-O) in case there is a need to debug 
or trace the optimized code.



13

Options: -ggdb

• gcc –ggdb : 

– In addition to -g produces the most GDB-
friendly output if enabled.



14

Options: -Wall
• gcc –Wall : 

– Shows most of the warnings related to possibly incorrect code.

• -Wall is a combination of a large common set of the -W
options together. These typically include:
– unused variables
– possibly uninitialized variables when in use for the first time
– defaulting return types
– missing braces and parentheses in certain context that make it ambiguous

• Always a recommended option to save you from some “hidden” 
bugs.

• Try always using it and avoid having those warnings J



15

Options: -ansi and -pedantic
• For those who are picky about standard compliance.
• -ansi ensures that the code complies with ANSI C 

standard; 
• -pedantic makes it even more strict.

• These options can be quite annoying for those who 
don’t know C well since gcc will refuse to compile any 
code that does not follow the ANSI C standard, which 
otherwise it has no problems with.



16

Options:
-O, -O1, -O2, -O3, -O0, -Os

• Various levels of optimization of the code
• -O1 to -O3 are various degrees of optimization 

targeted for speed (performance)
• If -O is added, then the code size is considered
• -O0 means “no optimization”
• -Os targets generated code size 

– forces not to use optimizations resulting in bigger code.



17

Options: -I
• Tells gcc where to look for include files (.h).

• Can be any number of these.
• Usually needed when including headers from 

various-depth directories in non-standard places 
without necessity specifying these directories 
within the .c files themselves,

• e.g.:
#include “myheader.h” vs. 
#include “../foo/bar/myheader.h”



18

For Your Assignments

• For your assignments, I’d strongly suggest to 
always include -Wall and -g.

• Optionally, you can try to use -ansi and
–pedantic, which is a bonus thing towards 
your grade.

• Do not use any optimization options.
• You won’t need probably the rest as well.



Quiz Time

• Observe the assigned quiz in the site.

19


