
+

Parallel and Scalable
Architectures
Carlos Jaime Barrios Hernandez
@carlosjaimebh

• Large Data Sets
• Complex Mathematics
• Complex Models
• Real Time
• Interaction and Confrontation
• Large Scale Visualization
• High Resolution
• High Performance and Capacity

• VR Needs
• Big Data and Deep Learning

Why?

COLLABORATION

Big Problems, Smart Solutions

High Performance
(Computing) Knowledge

Infrastructure

Platforms

Applications

Challenges

Infrastructure

Post Moore Era Architectures
• Parallel Balancing, I/O, Memory Challenges

Dark Sillico

Exascale
• Computer Efficiency (Processing/Energy Consumption)

Hybrid Platforms (CISC+RISC+Others)
• TPUs, ARM…

Data Management

Advanced Networks

Fog/Edge

HPC@Pocket

… Quantum Computing

Platform

Programmability
• New Languages and Compilers

Computing Efficiency

Data Movement and Processing (In Situ, In
Transit, Workflows)

HPC as a Service
• Science Gateways, Containers

Viz as a Service (In Situ)

Protocols

IA and Deep Learning Frameworks

Quantum Computing

Applications

IA and Deep Learning

Algorithms Implementation

Use of Interpretators (as Python)

Community versions

Open Algorithms, Open Data

Utra Scale Applicatons

…and more!

About Parallelism
Ê Implicit parallelism is a characteristic of

a programming language that allows a
compiler or interpreter to automatically
exploit the parallelism inherent to the
computations expressed by some of the
language's constructs.

Ê Explicit parallelism is the representation
of concurrent computations by means of
primitives in the form of special-purpose
directives or function calls.

Ê We need two (mixed) approach in
Architecture: Applications and Hardware
(system).

Ê Concurrency is a property of systems in
which several computations are
executing simultaneously, and
potentially interacting with each other.

Elements of Parallelism
1. Computing Problems

• Numerical (Intensive Computing, Large Data Sets)
• Logical (AI Problems)

2. Parallel Algorithms and Data Structures
Ê Special Algorithms (Numerical, Symbolic)
Ê Data Structures (Dependency Analysis)
Ê Interdisciplinary Action (Due to the Computing Problems)

3. System Software Support
Ê High Level Languages (HLL)
Ê Assemblers, Linkers, Loaders
Ê Models Programming
Ê Portable Parallel Programming Directives and Libraries
Ê User Interfaces and Tools

4. Compiler Support
Ê Implicit Parallelism Approach

Ê Parallelizing Compiler
Ê Source Codes

Ê Explicit parallelism Approach
Ê Programmer Explicitly

Ê Sequential Compilers, Low Level Libraries
Ê Concurrent Compilers (HLL)

Ê Concurrency Preserving Compiler
5. Parallel Hardware Architecture

Ê Processors
Ê Memory
Ê Network and I/O
Ê Storage

Pervasive and Thinking Parallelism

Ê It is not a question of « Parallel Universes » (Almost)

Ê Data Sources

Ê Processing and Treatment

Ê Resources (Available and Desire)

Ê Energy Consumption

Ê Natural “thinking” (Natural Compute?)

Thinking in Parallel (computing) – The Typical
Visions

Thinking in Parallel (computing) – an OPL hierarchy

Structural
Patterns

Computational
Patterns

Applications

Algorithm Strategy Patterns Parallel Algorithm
Structures

Parallel Machine and Execution
Models

Performance Analysis and
Optimization

Implementation Strategy Patterns Parallel Program Structures

Parallel Execution Patterns

+Parallel Computing Architectures

Flynn’s Taxonomy*

* Proposed by M. Flynn in 1966

From J. Armstrong Notes: http://joearms.github.io/2013/04/05/concurrent-and-parallel-programming.html

Any Parallel System is concurrent: Simulatenous Processing, Parallel but limited ressources.

http://joearms.github.io/2013/04/05/concurrent-and-parallel-programming.html

Serial vs Concurrent/Parallel Approach

Reduction in Execution Time (However, overhead problem)
Instructions to Multithreading (To exploit Parallelism)
Syncrhonization (with all derivated concerns...)

Concurrency vs Concurreny/Parallelism Behavior

Shared Processing Ressources
Switching
Non Parallel Threards (Non Multitasking, Yes
Multithreading)

Non Shared Processing Ressources (However
the Memory...)
Switching
Parallel Threards (Multitasking, Multithreading)

Concurrency vs Concurreny/Parallelism Example

Dual System
- Multiple Parallel Threads in Runtime
- Strategies to Paralellism following models
(PRAM, LogP, etc) addressed to exploit
memory and overhead reduction

Single System
- Multiple Threads in Runtime
- Almost Synchronization Strategies
- Memory Allocation

+ Remember Computer
Architecture Representation
(1/2) n Von Neumann Representation

n Von Neumann Computer Machines

n Classical Computers

n Input

n Processor

n Memory

n Output
From https://eca.cs.purdue.edu/index.html

https://eca.cs.purdue.edu/index.html

+ Remember Computer
Architecture Representation
(2/2) n Non- Von Newmann Representation

n Non Von Newmann Computer Machines

n Quantum Computers

n Harvard Architectures
n Hybrid Computers (or Post Moore Architectures)

n Processor

n Data Memory

n Instruction Memory

n Output

From https://eca.cs.purdue.edu/index.html

https://eca.cs.purdue.edu/index.html

+ Machine Models
• What is a machine model?

– A abstraction describes the operation of a machine.

– Allowing to associate a value (cost) to each machine operation.

• Why do we need models?
– Make it easy to reason algorithms

– Hide the machine implementation details so that general results that
apply to a broad class of machines to be obtained.

– Analyze the achievable complexity (time, space, etc) bounds

– Analyze maximum parallelism

– Models are directly related to algorithms.

+ Parallel Machine Model

The von Neumann computer

The multicomputer, an idealized parallel computer model. Each node
consists of a von Neumann machine

+ RAM and PRAM Models

+ RAM (Random Access Machine)
model

• Memory consists of infinite array (memory
cells).

• Each memory cell holds an infinitely large
number.

• Instructions execute sequentially one at a time.

• All instructions take unit time
– Load/store
– Arithmetic
– Logic

• Running time of an algorithm is the number of
instructions executed.

• Memory requirement is the number of memory
cells used in the algorithm.

+ RAM (random access machine)
model
• The RAM model is the base of algorithm analysis for

sequential algorithms although it is not perfect.
– Memory not infinite

– Not all memory access take the same time

– Not all arithmetic operations take the same time

– Instruction pipelining is not taken into consideration

• The RAM model (with asymptotic analysis) often gives
relatively realistic results.

+ PRAM (Parallel RAM)

• A model developed for parallel
machines
• An unbounded collection of processors
• Each processor has an infinite number of

registers
• An unbounded collection of shared

memory cells.
• All processors can access all memory cells

in unit time (when there is no memory
conflict).

• All processors execute PRAM instructions
synchronously
• Somewhat like SIMD, except that

different processors can run different
instructions in the lock step.

• Some processors may idle.

+ PRAM (Parallel RAM)

n A model developed for parallel machines
• Each PRAM instruction executes in 3-phase

cycles

– Read from a share memory cell (if
needed)

– Computation

– Write to a share memory cell (if needed)
– Example: for all I, do A[i] = A[i-1]+1;

n Read A[i-1], compute add 1, write A[i]

– The only way processors exchange data is
through the shared memory.

+ PRAM (Parallel RAM)

n PRAM Provides an ideal model of a parallel machine (computer) for analyzing the efficiency of
parallel algorithms.

n PRAM composed of
n P Unmodifiable programs, each composed of optionally labeled instructions
n a single shared memory composed of a sequence of words, each capable of containing an arbitary integer
n P accumulators, one associated with each program

n A read-only input tape
n A write-only output tape

Parallel time complexity: the number of synchronous steps in the algorithm

Space complexity: the number of share memory

Parallelism: the number of processors used

+ PRAM (A simple vision)

All processors can do things in a synchronous manner
(with infinite shared Memory and infinite local memory),
how many steps do it take to complete the task?

+ PRAM model variations

n EREW, CREW, CRCW (common), CRCW (random), CRCW
(Priority)
n Which model is closer to the practical SMP or multicore

machines?

n Model A is computationally stronger than model B if and only
if any algorithm written in B will run unchange in A.
n EREW <= CREW <= CRCW (common) <= CRCW (random)pr

n And there are other models as BSP, LogP… (To Explore)

+ PRAM algorithm example

n SUM: Add N numbers in memory M[0, 1, …, N-1]

n Sequential SUM algorithm (O(N) complexity)
 for (i=0; i<N; i++) sum = sum + M[i];

n PRAM SUM algorithm?

+ PRAM SUM algorithm

n Which moWhich PRAM model?
Time complexity?
Space complexity?
Parallelism?
Speedup (.vs. sequential code)?

+ Parallel Adition

n Time complexity: log(n) steps

n Parallelism: n/2 processors

n Speed-up (vs sequential algorithm): n/log(n)

+ PRAM strengths

• Natural extension of RAM

• It is simple and easy to understand
– Communication and synchronization issues are hided.

• Can be used as a benchmark
– If an algorithm performs badly in the PRAM model, it will perform

badly in reality.
– A good PRAM program may not be practical though.

• It is useful to reason threaded algorithms for SMP/multicore
machines.

+ PRAM weaknesses

• Model inaccuracies
– Unbounded local memory (register)

– All operations take unit time

– Processors run in lock steps

• Unaccounted costs
– Non-local memory access

– Latency

– Bandwidth

– Memory access contention

+ PRAM summary

• The RAM model is widely used.

• PRAM is simple and easy to understand
– This model never reachs beyond the algorithm community.
– It is getting more important as threaded programming becomes

more popular.

• The BSP (bulk synchronous parallel) model is another try
after PRAM.
– Asynchronously progress
– Model latency and limited bandwidth

+

P PP P P P..

Microkernel

Multi-Processor Computing System

Threads Interface

Hardware

Operating System

ProcessProcessor ThreadP

Applications

Remember…Computing
Elements

Programming paradigms

+ Multi Processor Computing
Framework

+ MPC Execution Model
(An Example)

http://calcul.math.cnrs.fr/IMG/pdf/Ecole_hybride.pdf

http://calcul.math.cnrs.fr/IMG/pdf/Ecole_hybride.pdf

+ MPC Execution Model
(An example of 4 Tasks and 4 threads)

http://calcul.math.cnrs.fr/IMG/pdf/Ecole_hybride.pdf

http://calcul.math.cnrs.fr/IMG/pdf/Ecole_hybride.pdf

+ MPC Execution Model
(An Example with GPUs)

+ Parallel Communication

+ A General Communication –
processing Model

+ In Parallel…

Po

P1

P3

P2

P4

c1 c2 c3

+ Interconnection Networks Topologies

a) Static
b) Dynamic

+ Flynn’s Taxonomy

* Proposed by M. Flynn in 1966

+ Some Glosary
n Any scalable system is a distributed system.

n Parallel computing uses Scalable Systems
n Many instructions are carried out simultaneously-concurrently.
n High Performance Computing (HPC) implies Parallel Computing

n Scalable Systems may be describe in terms of Scalable Architectures.

n Scalable Architectures (hardware point of view) have the
characteristics of Scalable Systems.
n Concurrency, Distribution

n Scalable Architectures support Parallel Computing.

n Of course, Parallel Computing implies parallelism.

n Obviously, Parallel Computing demads Parallel Machines.

+Evolution of Configurable
Architecture

Dual
Cores

(Symmetric
Multithreading)

MultiCore
Arrays

Scalar +
Many Cores
(Highly threaded

workloads)

Manycore
arrays

Large Scale Cores
(High Single Thread

Performance)

+
n Multiprocessing is the use of two or more central

processing units (CPUs) within a single computer
system.

n In a multiprocessing system, all CPUs may be equal, or
some may be reserved for special purposes. A
combination of hardware and operating system
software design considerations determine the
symmetry (or lack thereof) in a given system.
n Symmetric multiprocessing (SMP).
n Asymmetric multiprocessing (ASMP).

n Uniform memory access (UMA) processing.

n Non-uniform memory access (NUMA) processing.
n Clustered multiprocessing.

n Tightly coupled multiprocessor system
n CPUs may have access to a central shared memory (Muticore

processors).

n Loosely coupled multiprocessor system
n Based on multiple standalone single or dual processor

commodity computers interconnected via a high speed
communication system (As Beowulf Clusters)

MultiProcessing

From https://sebastianraschka.com/Articles/2014_multiprocessing.html

https://sebastianraschka.com/Articles/2014_multiprocessing.html

+
n A multi-core processor is a single computing

component with two or more independent
processing units called cores, which read and
execute program instructions.

n The technical motivation behind multicore is based
on the observation that, for a given semiconductor
process technology, power dissipation of modern
CPUs is proportional to the third power of clock
frequency fc (actually it is linear in fc and quadratic
in supply voltage Vcc , but a decrease in fc allows
for a proportional decrease inVcc)

n A multi-core processor implements multiprocessing
in a single physical package.

n The improvement in performance gained by the use
of a multi-core processor depends very much on the
software algorithms used and their implementation.

Multi-core Processor

AMD QuadCore

+
MultiCore Processor

Intel QuickPath Architecture

+ Single-Core Vs MultiCore

+ MultiCore Processor Cache
Groups

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard Wellein,

+ MultiCore Processor Memory

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard Wellein,

+A Simple view of Multithreading (Before a Formal
Description)

+Multithread Processors

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard Wellein,

+Vector Processors

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard Wellein,

Seymour Cray

+Programming Vector Architectures

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard Wellein,

A vector CPU can issue a single instruction for a whole array if it is shorter than the vector length:

Here, V1, V2, and V3 denote vector registers. The distribution of vector indices across the pipeline tracks is automatic. If the array
length is larger than the vector length, the loop must be stripmined, i.e., the original arrays are traversed in chunks of the vector
length:

This is done automatically by the compiler.

+Pipeline Utilization Timeline

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard Wellein,

Pipeline utilization timeline for execution of the vector Triad on the vector
processor shown in Figure 1.21. Light gray boxes denote unused arithmetic units.

+Mask Registers and Vectorization

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard Wellein,

Loop with if/else branch can be
vectorized using Mask Registers:

Conditional false:

+Vectorization with Gather/Scatter Method

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard Wellein,

Massive Parallel Processing
(MPP)

n Computer system with many
independent arithmetic units
or entire microprocessors,
that run in parallel

n MPPA is a MIMD (Multiple
Instruction streams, Multiple
Data) architecture, with
distributed memory
accessed locally, not shared
globally

+Parallel Massive Processors (Manycores)

From https://www.parallella.org/

https://www.parallella.org/

+Remember Architectural Flynn’s Taxonomy

SIMD: All processors units
are executing the same

instructions in any instant.

SPMD: Parallel Processing Units
execute the same program on

multiple parts of data

CU

P P P P

Input Data Input DataInput DataInput Data

Output
Data

Output
Data

Output
Data

Output
Data

SIMD

Instructions

Data

Program Program

Program

Program

Processor

+Comparing CPU (Multicore) and GPU
(Manycore/massive Multiprocessing)

• Manycore processors are distinct from multi-core processors in that they are optimised
from the outset for a higher degree of explicit parallelism, and for higher throughput (or
lower power consumption) at the expense of latency and lower single thread
performance.

• Manycore processors are specialist multi-core processors designed for a high degree of
parallel processing, containing a large number of simpler, independent processor cores.

• Manycore processors are used extensively in embedded computers and high-
performance computing.

+Parallel Massive Processors Motivation

From https://www.nvidia.com

https://www.nvidia.com

+ NVIDIA TESLA® Architecture

+Memory Hierarchy (Quickly View)

• Programming Models
and Paradigms observe
Hierarchy of Memory

• Memory Hierarchy is an
active problem in
research and
development.
• Model costs of processing

and memory use.
• Energy Models.
• Model costs of both

interprocessor
communication and
memory hierarchy traffic

+Cache Mapping (Direct Mapped)

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard
Wellein,

do i=1, N, CACHE_SIZE_IN_BYTES/8
A(i)= B(i)+C(i)*D(i)

enddo

+Cache Mapping (Different Cache Ways)

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard
Wellein,

+Latency Penalties in Memory

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard
Wellein,

+Prefetch

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard
Wellein,

+ Cluster Computing Architecture

Sequential Applications Parallel Programming Environment

Middleware
(Single System Image and Availability Infrastructure)

PC/Workstation/
Node

Network Interface Hardware

Communications
Software

PC/Workstation/
Node

Network Interface Hardware

Communications
Software

PC/Workstation/
Node

Network Interface Hardware

Communications
Software

PC/Workstation/
Node

Network Interface Hardware

Communications
Software

Sequential Applications

Parallel Applications

Sequential ApplicationsSequential Applications Parallel Applications

Operating System Operating System Operating System Operating System

Interconnection Network/Switch

+ GUANE-1

• Supercomputing Platform
based on GPGPU 128 TESLA
FERMI NVIDIA GPUs

• Peak 205 Tflops (Double)
• 16 Nodes (Hybrid Platform)
• Since 2012 (Obsolete but it

still the most powerful
machine in Colombia)

• … however, it exits some
different HPC and
HPC@Pocket platforms…

+ HPC Hybrid Systems
(HPC@Pocket)

n High Performance Capabilities
n Multiple Cores (i.e. more than 192 cores in Jetson)

n Co-Design Architecture
n Allowing multiple networks and protocols
n Software Implementation Mechanisms (Now, very

known, i.e. CUDA, OpenCL… same Python)
n Low Power

n Low Cost
n Depending of the device… (≈1 € per core)

n However, Integration/interaction demands
efficiency

nVidia® Jetson TK1/TX1

+ Grid Computing Architecture
(Remember the Cluster
Architecture)

7
3

Sequential Applications Parallel Programming Environment

Middleware
(Single System Image and Availability Infrastructure)

PC/Workstation/
Cluster/Devices/

Sensors

Network Interface Hardware

Communications
Software

PC/Workstation/
Cluster/Devices/

Sensors

Network Interface Hardware

Communications
Software

PC/Workstation/
Cluster/Devices/

Sensors

Network Interface Hardware

Communications
Software

PC/Workstation/
Cluster/Devices/

Sensors

Network Interface Hardware

Communications
Software

Sequential Applications

Parallel Applications

Sequential ApplicationsSequential Applications Parallel Applications

Interconnection Network/Switch

+ Grid Computing Architecture and
the Middleware

7
4

Sequential Applications Parallel Programming Environment

Middleware
(Single System Image and Availability Infrastructure)

PC/Workstation/
Cluster/Devices/

Sensors

Network Interface Hardware

Communications
Software

PC/Workstation/
Cluster/Devices/

Sensors

Network Interface Hardware

Communications
Software

Interconnection Network/Switch

PC/Workstation/
Cluster/Devices/

Sensors

Network Interface Hardware

Communications
Software

PC/Workstation/
Cluster/Devices/

Sensors

Network Interface Hardware

Communications
Software

Sequential Applications

Parallel Applications

Sequential ApplicationsSequential Applications Parallel Applications

[*]Frome http://gridcafe.web.cern.ch

http://gridcafe.web.cern.ch/

+ Grid Computing Architecture
(Typical Diagram)

[*]From http://gridcafe.web.cern.ch

http://gridcafe.web.cern.ch/

Grid Computing Architecture Views

APPLICATION PORTALS * FRAMEWORKS
WEB GRID SERVICES

APPLICATIONS AND UTILITIES
LANGUAGE SPECIFIC APIs

GRID COLLECTIVE SERVICES
GRID COMMON SERVICES

COMMUNICATION SERVICES
SECURITY SERVICES

RESOURCES MANAGERS
PHYSICAL RESOURCES

[*]From: Grid Computing: Making The Global Infrastructure a Reality

+ HPC as A Service Model

Advanced Networking

Monitoring

Processing
Ressources

Storage
Capacity

Acceleratio
n

Virtual Ressources

Deployment Images

Secure Access

Frameworks Data Repositories

Application
Repositories

AppsContainer
s

Embeebed Resources Clusters

Science Gateways

Customized Applications

Infrastructure
Oriented
Services

Developer
Oriented
Services

User/Scientist
Oriented
Services

Kadeploy, OpenNebula,
KVM

SSH

Web Services,
Appliances, Viz as

a Service

Access Apps

* Red Components are (most) concerned at Viz As A Service

+ A Grid Exemple: Grid5000
(G5K) n G5K has 5000

processors
distributed in 11
sites France wide, for
research in Grid
Computing, eScience
and Cyber-
infrastructures

n G5K project aims at
building a highly
reconfigurable,
controlable and
monitorable
experimental Grid
platform

www.grid5000.org

http://www.grid5000.org/

Volunteer Computing

• Volunteer computing is a type of distributed
computing in which computer owners donate their
computing resources (such as processing power and
storage) to one or more "projects”.

•BOINC (Seti@home)
•Xgrid
•GridMP

• Associated with P2P
• Can be associated with High Throughput
Computing (HTC) or High Performance Computing
(HCP)

+ BOINC Architecture

+
Cloud Computing
(Architecture) Model Visibility

+ UltraScale Systems

Extends Cloud computing and
services to the edge of the

network

Mesh network of micro data
centers that process or store

critical data locally
« Ultrascale systems are envisioned as large-scale complex systems joining
parallel and distributed computing systems that will be two to three orders of
magnitude larger that today’s systems » (Carretero et al.)

+
Tensor Processing Units (TPUs)

https://cloud.google.com/tpu/

https://cloud.google.com/tpu/

+Volta Tensor Core GPU by NVIDIA®

From www.nvidia.com

http://www.nvidia.com

+TENSOR CORE
Mixed Precision Matrix Math 4x4 matrices

D = AB +
C

D
=

FP16 or
FP32

FP16 FP16 FP16 or
FP32

A0,0 A0,1 A0,2 A0,3

A1,0 A1,1 A1,2 A1,3

A2,0 A2,1 A2,2 A2,3

A3,0 A3,1 A3,2 A3,3

B0,0 B0,1 B0,2 B0,3

B1,0 B1,1 B1,2 B1,3

B2,0 B2,1 B2,2 B2,3

B3,0 B3,1 B3,2 B3,3

C0,0 C0,1 C0,2 C0,3

C1,0 C1,1 C1,2 C1,3

C2,0 C2,1 C2,2 C2,3

C3,0 C3,1 C3,2 C3,3

+

5

*full GV100 chip contains 84 SMs

21B
transistors
815 mm2

80 SM
5120 CUDA

Cores
640 Tensor

Cores

16 GB HBM2
900 GB/s
HBM2

300 GB/s
NVLink

TESLA V100

INSIDE A TESLA V100

+

4

INTRODUCING TESLA V100

The Fastest and Most Productive GPU for Deep Learning and
HPC

Volta Architecture

Most Productive GPU

Tensor Core

120 Programmable
TFLOPS Deep Learning

Improved SIMT Model

New Algorithms

Volta MPS

Inference Utilization

Improved NVLink &
HBM2

Efficient Bandwidth

+

8

VOLTA NVLINK

300GB/sec

50% more links

28% faster
signaling

+

31

VOLTA: INDEPENDENT THREAD SCHEDULING
Communicating Algorithms

Volta: Starvation Free
AlgorithmsPascal: Lock-Free

Algorithms

Threads cannot wait for
messages

Threads may wait for
messages

Quantum Unit Processing

n Quantum computing is computing using quantum-
mechanical phenomena, such as superposition
and entanglement

n A quantum computer is a device that performs
quantum computing

n A quantum computer with a given number of
qubits is fundamentally different from a classical
computer composed of the same number of
classical bits. For example, representing the state
of an n-qubit system on a classical computer
requires the storage of 2n complex coefficients,
while to characterize the state of a classical n-bit
system it is sufficient to provide the values of the n
bits, that is, only n numbers

Quantum Computing Hardware and
Simulators

https://www.dwavesys.com/tutorials/background-
reading-series/introduction-d-wave-quantum-
hardware

https://atos.net/en/insights-and-innovation/quantum-
computing/atos-quantum

https://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-quantum-hardware
https://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-quantum-hardware
https://atos.net/en/insights-and-innovation/quantum-computing/atos-quantum
https://atos.net/en/insights-and-innovation/quantum-computing/atos-quantum

Quantum Computing Architecture

From https://www.nextbigfuture.com/2018/04/improved-quantum-
error-correction-could-enable-universal-quantum-computing.html

However, the mathematical
aspect is very important!

https://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-quantum-hardware
https://www.nextbigfuture.com/2018/04/improved-quantum-error-correction-could-enable-universal-quantum-computing.html
https://www.nextbigfuture.com/2018/04/improved-quantum-error-correction-could-enable-universal-quantum-computing.html

+ Conclusions

n Abstractions of Parallel Architectures are addressed to
understand execution models (to see in detail after for parallel
programming execution models).
n Related with Algorithms
n Related to Implementation Mechanisms

n Scalability is a condition to understand in some aspects:
n Hardware
n Data
n Processing

n Future Directions in Computer Architecture is Parallel
Computing Architecture!

Questions? (Yes & No)

+Thank you!
@SC3UIS

