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Large Data Sets
*  Complex Mathematics

*  Complex Models

* RealTime

* Interaction and Confrontation

* Large Scale Visualization

* High Resolution

* High Performance and Capacity

* VR Needs

e BigData and Deep Learning

Al

COLLABORATION




Big Problems, Smart Solutions

Applications

Platforms

Infrastructure

High Performance
(Computing) Knowledge




Challenges

Infrastructure Platform Applications

E] Post Moore Era Architectures E] Programmability

* Parallel Balancing, 1/O, Memory Challenges

E] IA and Deep Learning

* New Languages and Compilers

E] Dark Sillico E] Computing Efficiency E] Algorithms Implementation

Exascale Data Movement and Processing (In Situy, In

; Use of Interpretators (as Python)
* Computer Efficiency (Processing/Energy Consumption) TranSItl WOI’kﬂOWS) D P Y

E] Hybrid Platforms (CISC+RISC+Others) E] HPC as a Service

|:| Community versions
* TPUs, ARM...

« Science Gateways, Containers
E] Data Management E] Viz as a Service (In Situ) |:| Open Algorithms, Open Data
E] Advanced Networks E] Protocols I:' Utra Scale Applicatons

E] Fog/Edge E] IA and Deep Learning Frameworks I:l ...and more!

E] HPC@Pocket E] Quantum Computing

E] ... Quantum Computing



About Parallelism

Concurrency is a property of systems in
which several computations are
executing simultaneously, and
potentially interacting with each other.

Implicit parallelism is a characteristic of
a programming language that allows a
compiler or interpreter to automatically
exploit the parallelism inherent to the
computations expressed by some of the
language's constructs.

Explicit parallelism is the representation
of concurrent computations by means of
primitives in the form of special-purpose
directives or function calls.

We need two (mixed) approach in
Architecture: Applications and Hardware
(system).



Elements of Parallelism

Computing Problems
Numerical (Intensive Computing, Large Data Sets)
Logical (Al Problems)
Parallel Algorithms and Data Structures
Special Algorithms (Numerical, Symbolic)
Data Structures (Dependency Analysis)
Interdisciplinary Action (Due to the Computing Proble:
System Software Support
High Level Languages (HLL)
Assemblers, Linkers, Loaders
Models Programming
Portable Parallel Programming Directives and Librarie
User Interfaces and Tools
Compiler Support
Implicit Parallelism Approach
Parallelizing Compiler
Source Codes
Explicit parallelism Approach
Programmer Explicitly
Sequential Compilers, Low Level Libraries
Concurrent Compilers (HLL)
Concurrency Preserving Compiler
Parallel Hardware Architecture
Processors
Memory
Network and 1/0

Storage

Computing Problems

Algorithm and Data
Structures

Programming

High-level
Languages

Mapping

Binding

Application
Software

Operating
System

Hardware
Architecture

Performance
Evaluation




Pervasive and Thinking Parallelism

It is not a question of « Parallel Universes » (Almost)
Data Sources

Processing and Treatment

Resources (Available and Desire)

Energy Consumption

Natural “thinking” (Natural Compute?)




Thinking in Parallel (computing) — The Typical
Visions

Traditional Sequential Processing
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Concurrent: 2 queues, 1 vending machine
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Parallel: 2 queues, 2 vending machines




Thinking in Parallel (computing) —an OPL hierarchy
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Structural Computational Applications
Patterns Patterns
Algorithm Strategy Patterns Parallel Algorithm

Structures

Implementation Strategy Patterns 4| Parallel Program Structure

Parallel Execution Patterns




T Parallel Computing Architectures

Shared Memory Distributed Memory

T

Shared Memeny (NTMA)

, Heterogeneous Architecture
Homogeneous Architecture

===




Flynn’s Taxonomy*
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* Proposed by M. Flynn in 1966
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CONCURRENCY | PARALLELISM
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From J. Armstrong Notes: http://joearms.github.io/2013/04/05/concurrent-and-parallel-programming.html

Any Parallel System is concurrent: Simulatenous Processing, Parallel but limited ressources.


http://joearms.github.io/2013/04/05/concurrent-and-parallel-programming.html

Serial vs Concurrent/Parallel Approach

problem instructions

problem
l instructions
— e
—
e e
N t3 2 t1
N 13 t2 t1

Reduction in Execution Time (However, overhead problem)
Instructions to Multithreading (To exploit Parallelism)
Syncrhonization (with all derivated concerns...)



Concurrency
(Without

Parallelism

Parallelism)

Concurrency vs Concurreny/Parallelism Behavior
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Time

Non Shared Processing Ressources (However
the Memory...)

Switching
Parallel Threards (Multitasking, Multithreading)

Shared Processing Ressources

Switching

Non Parallel Threards (Non Multitasking, Yes
Multithreading)



Concurrency vs Concurreny/Parallelism Example

Single CPU

Thread 1I
Thread 21
*

Thread 3 l

Q
Thread 1
&

Thread 3

*

Time

Time

Dual CPU

Thread 1I I
Thread 1I

Thread 3

Thread 2

I
|

Thread 3

Single System

- Multiple Threads in Runtime

- AImost Synchronization Strategies
- Memory Allocation

Dual System

- Multiple Parallel Threads in Runtime

- Strategies to Paralellism following models
(PRAM, LogP, etc) addressed to exploit
memory and overhead reduction



+
Remember Computer

Archltecture Representation

N m Von Neumann Representation

m Von Neumann Computer Machines

ProCessSOor jeg——gms memory

|

input/output facilities

m Classical Computers
m Input

m Processor

Illustration of the Von Neumann Architecture. Both programs

and data can be stored in the same memory. [ | Memory

m Output

From https://eca.cs.purdue.edw/index.html



https://eca.cs.purdue.edu/index.html

+
Remember Computer

Architecture Representation

computer m Non- Von Newmann Representation
( " - m  Non Von Newmann Computer Machines
mr:tcr:]cot::n ®  Quantum Computers
processor m Harvard Architectures
[—— mf:;“ m  Hybrid Computers (or Post Moore Architectures)
i I m Processor

input/output facilities

m Data Memory

m Instruction Memory

Illustration of the Harvard Architecture that uses two memorics,
one to hold programs and another to store data. m Output

From https://eca.cs.purdue.edw/index.html



https://eca.cs.purdue.edu/index.html

T Machine Models

« What is a machine model?

— A abstraction describes the operation of a machine.

— Allowing to associate a value (cost) to each machine operation.

- Why do we need models?
— Make it easy to reason algorithms

— Hide the machine implementation details so that general results that
apply to a broad class of machines to be obtained.

- Analyze the achievable complexity (time, space, etc) bounds
— Analyze maximum parallelism

— Models are directly related to algorithms.



T Parallel Machine Model
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The multicomputer, an idealized parallel computer mé‘del.\ Each node
consists of a von Neumann machine



¥ RAM and PRAM Models

RAM. Random Access Machine

PRAM. Parallel Random Access Machine

P1 | P2||P3|| P4 Pn




model

N RAM (Random Access Machine) ‘I

set
of

Control

instructions

I

I'n

Memory .
(random- Infinite

ACCEeSS)

Registers

Memory consists of infinite array (memory
cells).

Each memory cell holds an infinitely large
number.

Instructions execute sequentially one at a time.

All instructions take unit time
- Load/store

— Arithmetic

- Logic

Running time of an algorithm is the number of
instructions executed.

Memory requirement is the number of memory
cells used in the algorithm.



+ :
RAM (random access machine)

model

- The RAM model is the base of algorithm analysis for
sequential algorithms although it is not perfect.

— Memory not infinite
— Not all memory access take the same time
— Not all arithmetic operations take the same time

— Instruction pipelining is not taken into consideration

- The RAM model (with asymptotic analysis) often gives
relatively realistic results.



+
PRAM (Parallel RAM) ‘I

» A model developed for parallel
machines

PRAM program

An unbounded collection of processors

Each processor has an infinite number of
registers

An unbounded collection of shared
memory cells.

All processors can access all memory cells
P in unit time (when there is no memory
n conflict).

,-:|5"U

All processors execute PRAM instructions
synchronously

shared memory . Somewhat like SIMD, except that
different processors can run different
instructions in the lock step.

Some processors may idle.



+
PRAM (Parallel RAM) ‘I

m A model developed for parallel machines

[ Processor 1 |e— . - Each PRAM instruction executes in 3-phase
cycles

Processor 2 |« - —

— Read from a share memory cell (if
needed)

Processor 3 |«—= Memory [*— Shared

Access Unit Memory

|
| (1os) — Computation

— Write to a share memory cell (if needed)
— Example: foralll, do A[i] = A[i-1]+1;
m Read A[i-1], compute add 1, write A[i]

Processor n |«

— The only way processors exchange data is
through the shared memory.



+
PRAM (Parallel RAM) ‘I

m PRAM Provides an ideal model of a parallel machine (computer) for analyzing the efficiency of
parallel algorithms.

m PRAM composed of
m P Unmodifiable programs, each composed of optionally labeled instructions
m asingle shared memory composed of a sequence of words, each capable of containing an arbitary integer
m P accumulators, one associated with each program
m A read-only input tape
m A write-only output tape

Parallel time complexity: the number of synchronous steps in the algorithm
Space complexity: the number of share memory

Parallelism: the number of processors used



" PRAM (A simple vision)

PO Pl PZ ........................................... PN

A 4 h 4 h 4 h 4

Shared Memory Cells

All processors can do things in a synchronous manner
(with infinite shared Memory and infinite local memory),
how many steps do it take to complete the task?



T PRAM model variations

m EREW, CREW, CRCW (common), CRCW (random), CRCW
(Priority)

m Which model is closer to the practical SMP or multicore
machines?

m Model A is computationally stronger than model B if and only
if any algorithm written in B will run unchange in A.

m EREW <= CREW <= CRCW (common) <= CRCW (random)pr

m And there are other models as BSP, LogP... (To Explore)



+
PRAM algorithm example

m SUM: Add N numbers in memory MI[O0, 1, ..., N-1]

m Sequential SUM algorithm (O(N) complexity)

for (i=0; i<N; i++) sum = sum + M[i];

m PRAM SUM algorithm?



N PRAM SUM algorithm

@ ﬁf@

_*_Pz: Step 2

Which PRAM model?

Time complexity?

Space complexity?

Parallelism?

Speedup (.vs. sequential code)?




¥ Parallel Adition

m Time complexity: log(n) steps
m Parallelism: n/2 processors

m Speed-up (vs sequential algorithm): n/log(n)



+
PRAM strengths

Natural extension of RAM

It is simple and easy to understand
-~ Communication and synchronization issues are hided.

Can be used as a benchmark

— If an algorithm performs badly in the PRAM model, it will perform
badly in reality.

— A good PRAM program may not be practical though.

It is useful to reason threaded algorithms for SMP/multicore
machines.



T PRAM weaknesses

- Model inaccuracies
— Unbounded local memory (register)
— All operations take unit time

— Processors run in lock steps

- Unaccounted costs
— Non-local memory access
— Latency
— Bandwidth

— Memory access contention



T PRAM summary

- The RAM model is widely used.

- PRAM is simple and easy to understand
— This model never reachs beyond the algorithm community.

— It is getting more important as threaded programming becomes
more popular.

- The BSP (bulk synchronous parallel) model is another try
after PRAM.

— Asynchronously progress
— Model latency and limited bandwidth



Remember...Computing
Elements

® I ® I ® o I Applications

I I I

S S S

W Programming paradigms
Threads Interfac|e

Operating System
O O O O (p) (p) Hardware

1DProcessor 2 Thread Process
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Multi Processor Computing
Framework

/Programmlng\< >/ Runtime '.
\ Models / Optlmlzatlon/‘

N

Tools \
\Debug/Proflmg/




=F .
MPC Execution Model
(An Example)



http://calcul.math.cnrs.fr/IMG/pdf/Ecole_hybride.pdf

T MPC Execution Model

(An example of 4 Tasks and 4 threads)

2 MPI tasks + OpenMP parallel region w/ 4 threads (on 2 cores)

http://calcul.math.cnrs.fr/IMG/pdf/Ecole hybride.pdf



http://calcul.math.cnrs.fr/IMG/pdf/Ecole_hybride.pdf

T MPC Execution Model

(An Example with GPUs)
Thread Core
\%‘ Executed by > +

Thread Block

Kernel Grid Complete GPU Unit

Streaming Multiprocessor
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=F . .
Parallel Communication




4 L.
A General Communication —

processing Model

sender receiver
s_ent sent lime
sent(high) ! 4 delivered (high)  {ow) e
upper upper sender | |

level level
sent (low) ! T received
base base
level level receiver

I

received delivered




¥ In Parallel. .




Interconnection Networks Topologies

CLOB AL MEMORY

Bus.-based Crossbar

a) Static
b) Dynamic

MINs (ZVultistage Interconnection Network)

(b)




+ Flynn’s Taxonomy

SISD [ Instruction Pool | MISD Instruction Pool
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* Proposed by M. Flynn in 1966
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Some Glosary

m Any scalable system is a distributed system.

m Parallel computing uses Scalable Systems
m Many instructions are carried out simultaneously-concurrently.
m High Performance Computing (HPC) implies Parallel Computing

m Scalable Systems may be describe in terms of Scalable Architectures.

m Scalable Architectures (hardware point of view) have the
characteristics of Scalable Systems.

m Concurrency, Distribution
m Scalable Architectures support Parallel Computing.
m Of course, Parallel Computing implies parallelism.

m Obviously, Parallel Computing demads Parallel Machines.



+ Evolution of Configurable
Architecture

W POWERED

Dual Scalar +
Cores Many Cores Manycore
(Symmetric (Highly threaded arrays
Multithreading) workloads)

‘intel) Processors

NVIDIA.




+ MultiProcessing

[parallel processing]

Quad-Core CPU

Core-1 Core-2 Core-3 Cove-4

[serial processing]

Quad-Core CPU

Core-1 Coxe-2 Core-] Core-4

< vy Vv | 4

['y2QfA’, 'POpgM’, 'SHIYV', 'PSNKD']

['yzQfA', 'POpgM’]

- -

tasd strisglé

N

['y2QfA’, 'PQpgM’, 'SHIYV')

['yzQfA', 'PQpgM’', 'SHIYV', 'PSNKD']

Multiprocessing is the use of two or
processing units (CPUs) within a singl
system.

In a multiprocessing system, all CPUs may be equal, or
some may be reserved for special purposes. A
combination of hardware and operating system
software design considerations determine the
symmetry (or lack thereof) in a given system.

m  Symmetric multiprocessing (SMP).

m  Asymmetric multiprocessing (ASMP).

m  Uniform memory access (UMA) processing.

m  Non-uniform memory access (NUMA) processing.
m  Clustered multiprocessing.

Tightly coupled multiprocessor system

m CPUs may have access to a central shared memory (Muticore
processors).

m Loosely coupled multiprocessor system

m Based on multiple standalone single or dual processor

From https://sebastianraschka.com/Articles/2014 multiprocessing. htgdmmodity computers interconnected via a high speed

communication system (As Beowulf Clusters)


https://sebastianraschka.com/Articles/2014_multiprocessing.html

+ Multi-core Processor

m A multi-core processor is a single com
component with two or more indep
processing units called cores, which rea
execute program instructions.

m The technical motivation behind multicore is based
on the observation that, for a given semiconductor
process technology, power dissipation of modern
CPUs is proportional to the third power of clock
frequency fc (actually it is linear in fc and quadratic
in supply voltage Vcc , but a decrease in fc allows
for a proportional decrease inVcc)

AMD QuadCore m A multi-core processor implements multiprocessing
in a single physical package.

m The improvement in performance gained by the use
of a multi-core processor depends very much on the
software algorithms used and their implementation.



MultiCore Processor

Memory Controller™

-
-
l B
T e
é

Intel QuickPath Architecture



" Single-Core Vs MultiCore

Core 1 Core 2 Core 3 Core 4
Single-core CPU chip
regite e —~ngsmﬁh ~— fegistar fik ugmulln
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J Muticore CPU chip




+ MultiCore Processor Cache

Figure 1.15: Dual-core processor chip with  Figure 1.16: Quad-core processor chip, con-
separate L1, L2, and L3 caches (Intel “Mon-  sisting of two dual-cores. Each dual-core

tecito™). Each core constitutes its own cache  has shared L2 and separate L1 caches (Intel
group on all levels. “Harpertown™). There are two dual-core L2

groups.

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard Wellein,



+ MultiCore Processor Memory

Figure 1.17: Hexa-core processor chip with
separate .1 caches, shared L2 caches for

pairs of cores and a shared L3 cache for all
cores (Intel “Dunmngton™). L2 groups are
dual-cores, and the L3 group is the whole
chip.

HT/QPI

————————————— ] ————————————— ]

Figure 1.18: Quad-core processor chip with
separate .1 and 1.2 and a shared L3 cache
(AMD “Shanghai” and Intel “Nehalem™).
There are four single-core L2 groups, and the
L3 group 1s the whole chip. A bualt-in mem-
ory interface allows to attach memory and
other sockets directly without a chipset.

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard Wellein,




-A Simple view of Multithreading (Before a Form

« * \
(L o
[Ioihlv-n ] Irll-c‘h?lv’n ]
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I
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| Mor;\ory I

Multiprocessing

Thread

_I CPU CPU

Thread

I CPU CPU

Process

ICode Data||Files

|registers stack

Process
Code Data Files
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S

Thread

Thread
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Multithreading
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Multithread Processors I

| i _g

L] [ 12 cache — _fal:hT_ } T FH— 5
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Memory Lo Y
| | | J=—={ Contral =T 1]

Figure 1.19: Simplhified diagram of control/data flow 1n a (multi-)pipelined microprocessor
without SMT. White boxes in the execution units denote pipeline bubbles (stall cycles). Graph-
1cs by courtesy of Intel.

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard Wellein,



Vector Processors
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Figure 1.21: Block diagram of a prototypical vector processor with 4-track pipelines.

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard Wellein,



-Programming Vector Architectures

A vector CPU can issue a single instruction for a whole array if it is shorter than the vector length:

vliocad V1(1:N) B(1:N)
vicad V2(1:N) C(1:N)
vadd V3(1l:N) = V1(1:N) + V2(1:N)
vetore A(1l:N) = V3(1:N)

4 W o

Here, V1, V2, and V3 denote vector registers. The distribution of vector indices across the pipeline tracks is automatic. If the array
length is larger than the vector length, the loop must be stripmined, i.e., the original arrays are traversed in chunks of the vector

do &8 = 1,N,L,

E = min(N,S5+L.-1)

L = E-S5+1

vicad V1(1l:L) = B(S8:B)

vicad V2(1l:L) = C(8:B)

vadd V3(1l:L) = V1(1l:L) + V2(1:L)
7 vatore A(S:E) = V3(1l:L)
¢ enddo

W & W oo

o

This is done automatically by the compiler.

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard Wellein,



-Pipeline Utilization Timeline

A(:) = B(:) + C(:) * D(:)

Pipeline utilization timeline for execution of the vector Triad on the vector
processor shown in Figure 1.21. Light gray boxes denote unused arithmetic units.

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard Wellein,



-Mask Registers and Vectorization

Vector reg. Vector reg. Mask reg. Vector reg. Loop with if/else branch can be
s*y(1) ¥y(1)*y(1) ¥(1)*y(1) vectorized using Mask Registers:
S* 2 2)* 2 sS* 2

¥(2) p— ¥(2)*¥(2) ¥(2) do i = LN
s*y(3) ¥(3)*yY(3) ¥Y(3)*yY(3) 1f(y(r) .le. 0.d0) then
x(1) = 8 = y(1)

s*y(4) ¥(8)*y(4) ¥(8)*¥(8) else

s*y(5) p—| ¥(5)*¥(5) TRUB - s*y(5) x(1) = y(1) * y(1)
endif

s*¥(6) ym*r(s) ¥(6)*¥(6) anddo

s*Y(7) p— ¥()*¥(7) TRUB = sS*Yy(7)

s*¥(8) Pp—| ¥(8)*¥(8) TRUB - s*y(8) Conditional false:

ANA/WN

WA

AN

do 1=1,N
1if(y(1) .ge. 0.d0) then
x(1) = sgrt(y(1))
endif
enddo

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard Wellein,




WVectorization with Gather/Scatter Method

Vector reg.
¥(2)
Memory
¥(5)
x(1)
¥(7)
=gre(y(2))
¥(8)
x(3)
= N x(4)
g .J =grt(y(5))
> x(6)
4
Eart(y(2)) =qre(y(7))
=gqrt(y(5)) TRUE | =grt(y(8))
=gqre(y(7))

=gre(y(8))

ANANN

Vector reg.

Figure 1.24: Vectorization by the gather/scatter method. Data transfer from/to main memory
occurs only for those elements whose comresponding mask entry is true. The same mask 1s
used for loading and stoning data.

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard Wellein,



Massive Parallel Processing
(MPP)

m Computer system with many
independent arithmetic units
Or entire miCroprocessors,
that run in parallel

From Computer Desktop Encyclopedia
@ 19928 The Computer Language Co. Inc.

RAM chips
(SIMMs)

m MPPA is a MIMD (Multiple
Instruction streams, Multiple
Data) architecture, with
distributed memory ]
accessed locally, not shared
globally

App




-Parallel Massive Processors (Manycores) I.
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From https://www.parallella.org/



https://www.parallella.org/

¥emember Architectural Flynn’s Taxonomy

SIMD: All processors units
are executing the same
instructions in any instant.

SPMD: Parallel Processing Units

execute the same program on
multiple parts of data

Instructions Input Data Input Data Input Data Input Data

l

CU

Output Output Output Output
Data Data Data Data

SIMD

Procescsor



Comparing CPU (Multicore) and GPU
(Manycore/massive Multiprocessing)

_
Control

IEEERENNN

CPU GPU

 Manycore processors are distinct from multi-core processors in that they are optimised
from the outset for a higher degree of explicit parallelism, and for higher throughput (or
lower power consumption) at the expense of latency and lower single thread
performance.

 Manycore processors are specialist multi-core processors designed for a high degree of
parallel processing, containing a large number of simpler, independent processor cores.

 Manycore processors are used extensively in embedded computers and high-
performance computing.




-Parallel Massive Processors Motivation

Peak Double Precision FLOPS

Peak Memory Bandwidth

8000 oREORS l 1300 Fm"'
7000 &
J 7,000 1200 l?‘; 2ho
! L)
6000 Volnll Volpé
I 1000 «
! ’I 1,000
5000 ! reacey
! 800 7
/
4000 e )
/7 4000 l4
"“:9" 600 #
3000 7 KSQ,
’ .
’
Ka(}’ 400 480
2000 K40 o K40
K20 _x 1864 K20,
M2090 W= 1,430 e 200 M&‘BQ-f.y s
1000 / s ..', Whna <08
P wre o - — e 148 —
W 2 g i S
0 - 0
200878 2000 2010 2011 2012 2013 2014 2015 2016 2017 20086 2009 2010 2011 2012 2013 2014 2015 016 2017
-=-NVIDIA GPU -o-x86 CPU -=-NVIDIA GPU -o-x86 CPU
Table overlays: Theoretical DP GFLOPS and bandwidth of NVIDIA Tesla cards. Light grey italic text represents my guesses. hitp:/fwww.ecmud.int/stes/defaultiles/HPCWS - Posey. 0,bdf (¢

From https://www.nvidia.com
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Memory Hierarchy (Quickly View) ll

* Programming Mod
and Paradigms observe
Hierarchy of Memory
e  Memory Hierarchy is an
e active problem in

Level 2
o research and

— Storage

Main Memory RAM Areas development.
* Model costs of processing
and memory use.

Virtual Memory

Indirect Access to CPU

Secondary Starage Device Type Py ¢ Energy MOde].S.
Operating System Network/ Auen * Model costs of both
Assisted Memory Internet Areas .
Management Storage 1nterprocessor

communication and
memory hierarchy traffic

Input Sources

Scanners/

Keyboard Camera/ Remote Other
Mic/ Source Source
Video



Gache Mapping (Direct Mapped) ‘I
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Memory

Figure 1.10: In a direct-mapped cache, memory locations which lie a multiple of the cache
size apart are mapped to the same cache line (shaded boxes).

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard
Wellein,



Gache Mapping (Different Cache Wa
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Memory

Figure 1.11: In an m-way set-assoclative cache, memory locations which are located a mul-
tiple of %th of the cache size apart can be mapped to either of m cache lines (here shown for
m=2).

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard
Wellein,



Latency Penalties in Memory I.

1 LD| cache miss: latency use data -
2 " ; >|LD use data
» 3 LD | use data
38: 4 LD| use data
§ 5 LD| cache miss: latency | use data
8 - >|LD use data
7 ; LD | use data

Figure 1.12: Timing diagram on the influence of cache misses and subsequent latency penal-
ties for a vector norm loop. The penalty occurs on each new muss.

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard
Wellein,



Brefetch

1 PF| cache miss: latency |LD| use data -
2 i LD| use data
- E i é i LD| use data
-% 4 i E E LD| use data
&5 E PF| cache miss: latency |LD| use data
6 i E i LD| use data
7 i i i LD| use data
8 i i E LD | use data
9 i é PF| cache miss: latency |LD | use data

Figure 1.13: Computation and data transfer can be overlapped much better with prefetching.
In this example, two outstanding prefetches are required to hide latency completely.

From : “Introduction to High Performance Computing for Scientists and Engineers” by Georg Hager and Gerhard

Wellein,




+ Cluster Computing Architecture

Parallel Applications
Parallel Applications ‘

Sequential Applications
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Parallel Programming Environment

Operating System|Operating System|Operating System|Operating System

e o Communications
Communications Communications Communications

Software
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Interconnection Network/Switch




el ' Super Computacién y
f‘aﬁ% Calculo Cientifico UIS

> GUANE-1

NIWVIDIA

* Supercomputing Platform
based on GPGPU 128 TESLA
FERMI NVIDIA GPUs

* Peak 205 Tilops (Double)

* 16 Nodes (Hybrid Platform)

* Since 2012 (Obsolete but it
still the most powerful
machine in Colombia)

... however, it exits some
different HPC and

HPC@Pocket platforms...
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HPC Hybrid Systems
(HPC@Pocket)

High Performance Capabilities
m Multiple Cores (i.e. more than 192 cores in Jetson)

Co-Design Architecture
m Allowing multiple networks and protocols

m Software Implementation Mechanisms (Now, very
known, i.e. CUDA, OpenClL... same Python)

m Low Power

Low Cost
m Depending of the device... (=1 € per core)

However, Integration/interaction demands
efficiency

nVidia® Jetson TK1/TX1



* Grid Computing Architecture
(Remember the Cluster
Architecture Parallel Applications

Parallel Applications

Parallel Programming Environment

Communications Communications Communications Communications

Software Software Software Software

Interconnection Network/Switch




* Grid Computing Architecture and
the Middleware

Parallel Applications

Parallel Applications
- Parallel Programming Environment

Communications Communications
Software Software

[*]Frome http://gridcafe.web.cern.ch

Interconnection Netwo
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+ Grid Computing Architecture
(Typical Diagram)

and 0GSA
HOSTIDQ
- ? ressources
. X and services
smlao Serveurs...
"sensor" Diverse resources

SONET / SDM ;’s such as computeur,
DWD N - storage media, networks,
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Switches 3 ‘% OURENS % and sensors
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Grid Computing Architecture Views

"APPLICATION PORTALS * FRAMEWORKS
WEB GRID SERVICES
APPLICATIONS AND UTILITIES
LANGUAGE SPECIFIC APIs
GRID COLLECTIVE SERVICES
GRID COMMON SERVICES
COMMUNICATION SERVICES
SECURITY SERVICES
RESOURCES MANAGERS
PHYSICAL RESOURCES

[*]From: Grid Computing: Making The Global Infrastructure a Reality



+ HPC as A Service Model

* Red Components are (most) concerned atViz As A Service

Customized Applications

Web Services, —_—
Appliances, Viz as

a Service |

-
Science Gateways Access Apps
| e— ‘ S—

Secure Access

Virtual Ressources

Monitoring

Kadeploy, OpenNebula, ] Dteoyment Images el
KVM —
Ressources Capacit n
Embeebed Resources Clusters —
Advanced Networking
—

User/Scientist
Oriented
Services

Developer
Oriented
Services

Infrastructure
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T R Grid Exemple: Grid500
(GSK)

£
3

“ Programming Environment

4

Appllcatlbn

Application Runtime
Grid or P2P Middleware
Operating System
Networking

www.grid5000.org

m G5K has 5000

Processors
distributedin 11
sites France wide, for
research Grid
Butmg, eSclence
and ber-
mfrastructures

G5K deO]eCt a1ms at
building a h1gl;
reconfi ura
controlable and
monitorable
experimental Grid
platform
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Volunteer Computing

® Volunteer computing is a type of distributed
computing in which computer owners donate their
computing resources (such as processing power and
storage) to one or more "projec } ~

*BOINC (Seti@home) ¢ } a"{ INC
Xgrid N _)L
*GridMP

® Associated with P2P

* Can be associated with High Throughput

Computing (HTC) or High Performance Computing

(HCP)




*  BOINC Architecture

Server Client

Sheduler
MySQL (C++)
DB
Web Site
(PHP)

Data

v
Servers Rose @home

(HTTP)
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Cloud Computing

(Architecture) Model Vis@ity
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PaaS /¢
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+ UltraScale Systems |.

Fog Computing Architecture
mee 8

S
N
‘Network

S
\\‘

o .-
W 1T e | -
) o e

Cloud computing

Cloud

Q Q Q
i g Lﬁlé:

Mesh network of micro data loT Devices / Sensors

centers that process or store Extends Cloud computing and
ycallv services to the edge of the

« Ultrascale systems are envisioned as large-scale complex systems joining
O NESUS ccost s parallel and distributed computing systems that will be two to three orders of

magnitude larger that today’s systems » (Carretero et al.)



Tensor Processing Units (TPUs)
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https://cloud.google.com/tpu/

+Volta Tensor Core GPU by NVIDIA®

T - . & DD PASCAL VOLTA TENSOR CORES



http://www.nvidia.com

TENSOR CORE

Mixed Precision Matrix Math 4x4 matrices

FP16 or
FP32

FP16 or
FP32




21B
transistors
815 mm?

80 SM
5120 CUDA
Cores

16 GB HBM2
900 GB/s
HBM2
300 GB/s
NVLink

INSIDE A TESLA V100




INTRODUCING TESLA V10

Volta Architecture

Improved NVLink &
HBM2

=
=

Efficient Bandwidth

Volta MPS

Inference Utilization

Improved SIMT Model

-,

New Algorithms

Tensor Core

120 Programmable
TFLOPS Deep Learning

The Fastest and Most Productive GPU for Deep Learning and

HPC

4 <ANVIDIA.




+ VOLTA NVLINK
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VOLTA: INDEPENDENT THREAD SCHEDU
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Pascal: Lock-Free Algorithms
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Threads cannot wait for Threads for
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Quantum Unit Processing

m Quantum computing is computing using quantum-

mechanical phenomena, such as superposition
and entanglement

A quantum computer is a device that performs
quantum computing

A quantum computer with a given number of
qubits is fundamentally different from a classical
computer composed of the same number of
classical bits. For example, representing the state
of an n-qubit system on a classical computer
requires the storage of 2n complex coefficients,
while to characterize the state of a classical n-bit
system it is sufficient to provide the values of the n
bits, that is, only n numbers

Vertically-polarized

/ photons

Horzontally-polarized

photons \

Entangled photons



Quantum Computing Hardware and
Simulators

AtSS
Quantum

Leamnin
MachinéJ

The Quantum Computing Company
https://www.dwavesys.com/tutorials/background- https://atos.net/en/insights-and-innovation/quantum-
reading-series/introduction-d-wave-quantum- computing/atos-quantum

hardware


https://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-quantum-hardware
https://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-quantum-hardware
https://atos.net/en/insights-and-innovation/quantum-computing/atos-quantum
https://atos.net/en/insights-and-innovation/quantum-computing/atos-quantum

Quantum Computing Architecture

Logical i

_ Physical
layer

From https://www.nextbigfuture.com/2018/04/improved-guantum-

error-correction-could-enable-universal-quantum-computing.html

Second derivative Shrodinger Wave
with respect to X /Funchon
oy’ 8n'm
-+ h2 (E B V)W =0
‘ \
Position Energy Potent:al Energy

However, the mathematical
aspect is very important!
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https://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-quantum-hardware
https://www.nextbigfuture.com/2018/04/improved-quantum-error-correction-could-enable-universal-quantum-computing.html
https://www.nextbigfuture.com/2018/04/improved-quantum-error-correction-could-enable-universal-quantum-computing.html

o .
Conclusions

m Abstractions of Parallel Architectures are addressed to
understand execution models (to see in detail after for parallel
programming execution models).

m Related with Algorithms
m Related to Implementation Mechanisms

m Scalability is a condition to understand in some aspects:
m Hardware
m Data

m Processing

m Future Directions in Computer Architecture is Parallel
Computing Architecture!
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