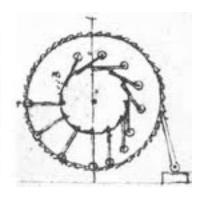
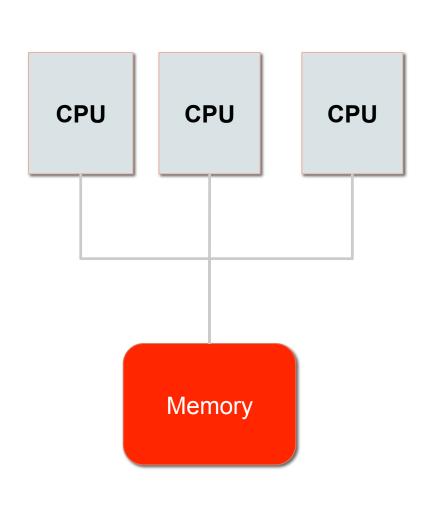

INTRODUCCIÓN A LA PROGRAMACIÓN DE MEMORIA COMPARTIDA ... CON OPENMP®


Carlos Jaime BARRIOS HERNANDEZ, PhD. Escuela de Ingeniería de Sistemas e Informática Universidad Industrial de Santander

Las herramientas antes que el diseño



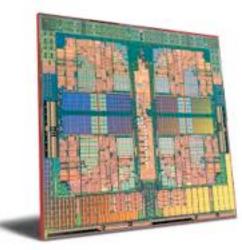
- •OpenMP® como herramienta de aprendizaje para entender el modelo de programación de memoria compartida.
- •A partir de la experiencia técnica pensar en el modelo teórico.

El Modelo de Memoria Compartida

- Los Procesadores
 Interactúan con otro
 mediante variables
 compartida.
- OpenMP es un estándar para programación de memoria compartida

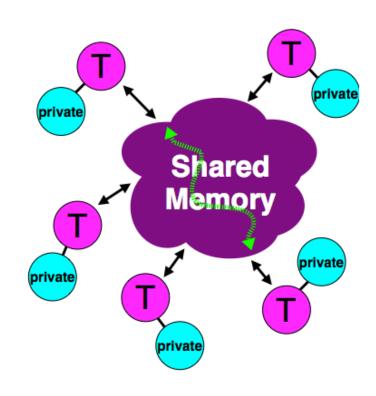
OpenMP®

- OpenMP es una especificación para implementaciones portables de paralelismo en FORTRAN y C/C++
- Las especificación contiene provee directivos de compilador para programación de multihilos, variables de ambiente y rutinas de biblioteca que controlan paralelismo
 - Nivel de Cores
 - Nivel de Procesadores
- Soporta el modelo de paralelismo de datos
- Paralelismo Incremental
- Combina código serial y paralelo en un solo código fuente.

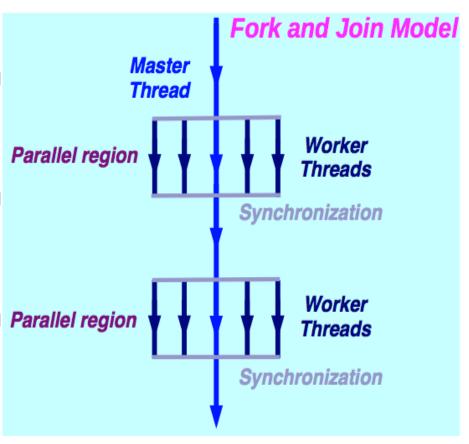


The OpenMP® API specification for parallel programming www.openmp.org

OpenMP es ideal para Arquitecturas Multicore

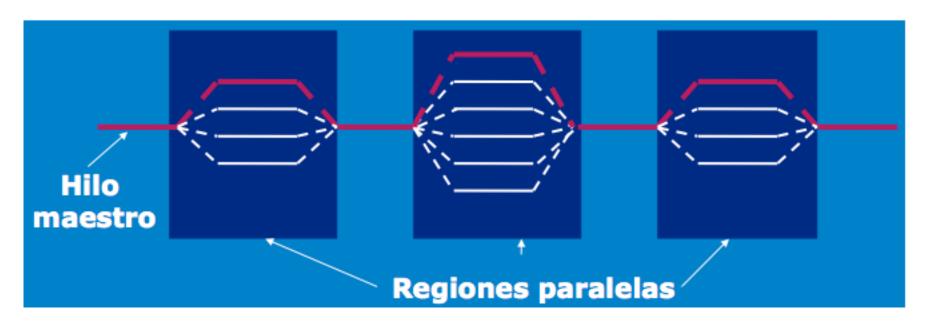

- Modelo de Hilos y de Memoria mapeado naturalmente
- Ligero
- Robusto
- Disponible y usado para múltiples códigos sobre diferentes tecnologias disponibles (Intel, AMD)

Modelo de Memoria de OpenMP

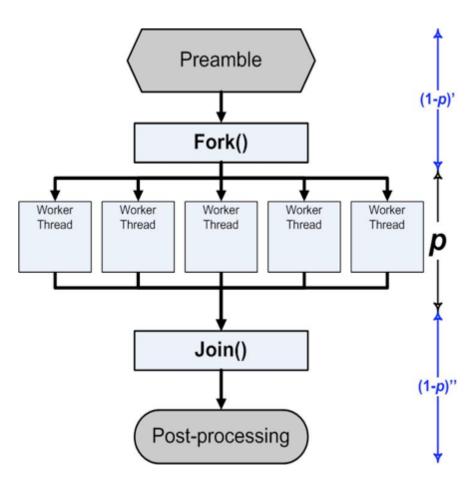

- Todos los hilos tienen acceso a la misma memoria global compartida
- Los datos pueden ser públicos o privados
- Datos privados pueden ser accedidos únicamente por su propio hilo
- Transferencia de Datos transparente al programador
- Sincronización es implícita

Tomado de An Overview of OpenMP – SUN Microsystems

Arquitectura de OpenMP


- Modelo Fork-Join
- Bloques de construcción para el trabajo en paralelo
- Bloques de construcción para el ambiente de datos
- Bloques de construcción Parallel region para la sincronización
- API extensiva para afinar el control

Modelo de Ejecución - Tomado de An Overview of OpenMP – SUN Microsystems


Modelo de Programación

- Paralelismo Fork-Join:
 - El hilo maestro se divide en un conjunto de hilos como sea necesario
 - El paralelismo se añade incrementalmente: el programa secuencial se convierte en un programa paralelo

Modelo de Programación

- Inicialmente solamente el hilo maestro está activo
- El hilo maestro ejecuta el código secuencial
- Fork: El hilo maestro crea hilos adicionales para ejecutar el código paralelo
- Join: Al finalizar de código paralelo, los hilos creados mueren o se suspenden

Parallel Scalability Isn't Child's Play, Part 2: Amdahl's Law vs. Gunther's Law

Pragmas

- Una pragma es un directivo al compilador.
- La sintaxis es

#pragma omp <el resto de la pragma>

Ejemplo:

#pragma omp parallel for

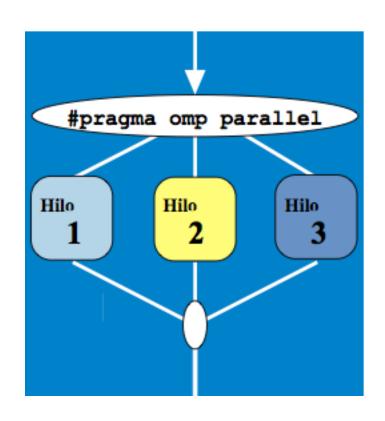
es una directriz que dice al compilador que trate a paralelizar el bucle for

La Pragma for Paralelo

```
#pragma omp parallel for
for (i = 0; i < N; i++)
    a[i] = b[i] + c[i];</pre>
```

 El compilador tiene que verificar que cuando se ejecuta, habrá disponible la información necesaria para llevar a cabo las iteraciones

La sintaxis de la pragma for paralelo


$$for(indice = primero; indice \ge \begin{cases} < \\ <= \\ >= \\ > \end{cases} ultimo;$$

$$indice + + \\ + + indice \\ indice - - \\ - - indice \\ indice + = inc \\ indice - = inc \\ indice = indice + inc \\ indice = inc + indice \\ index = indice - inc \end{cases}$$

Tomado del Curso de Open MP de Doroty Bollman http://pegasus.uprm.edu/bollman/

Regiones Paralelas

- Define una región paralela sobre un bloque de código estructurado
- Los hilos son creados como "parallel"
- Los hilos se bloquean al final de la región
- Los datos se comparten entre hilos al menos que se especifique otra cosa

Tomado de Programación en OpenMP – Robinson Rivas SC-CAMP 2011

Variables Compartidas y Variables Privadas

- Una variable compartida tiene la misma dirección en el contexto de ejecución de cada hilo.
- Una variable privada tiene una dirección distinta en el contexto de ejecución de cada hilo.
- Un hilo no puede accesar las variables privadas de otro hilo.

OMP_NUM_THREADS

- Establece el numero de hilos usando una variable de ambiente
- No hay un estándar por defecto en esta variable
 - # de hilos = # de procesadores = # Cores
 - Los compiladores INTEL usan esto por defecto

```
set OMP_NUM_THREADS=4
```

Función omp_set_num_threads

- Se usa para asignar el número de hilos a ser activos en secciones paralelas del código
- Se puede llamar en varios puntos del programa

```
void omp_set_num_threads (int t)
```

omp_get_thread_num()

- Todo hilo tiene una identificación que es el número del hilo
- omp_get_thread_num()
 devuelve el número del hilo

Función omp_get_num_procs

 Devuelve el número de procesadores fisicos que están dispondible para el uso del programa paralelo

```
int omp_get_num_procs (void)
```

Hello World

```
#include <omp.h>
#include <stdio.h>
int main (int argc, char *argv∏) {
 int p,th id;
 p=omp_get_num_procs();
 omp_set_num_threads(p);
 #pragma omp parallel private(th_id)
   th id = omp get thread num();
   printf("Hello World from thread %d\n", th id);
 return 0;
```

Para compilar y ejecutar

- Compilar: cc –openmp –o hello.c hello
- Ejecutar: Hay que especificar el número de hilos Fuera del programa con

```
setenv OMP_NUM_THREADS = número de hilos

Dentro del programa con

omp_set_num_threads( número de hilos)
```

Otro Ejemplo

 For-Loop con iteraciones independientes

```
for (int i=0; i<n; i++)
c[i] = a[i] + b[i];</pre>
```

 For-Loop paralelizado usando un pragma de OpenMP

```
#pragma omp parallel for
for (int i=0; i<n; i++)
   c[i] = a[i] + b[i];</pre>
```

cc –fopenmp source.c – o source Setenv OMP_NUM_THREADS 5 source.out

Ejemplo de Ejecución Paralela

Thread 0		←	Thread 3 i=600-799	Thread 4 i=800-999
a[i]	a[i]	a[i]	a[i]	a[i]
+	+	+	+	+
b[i]	b[i]	b[i]	b[i]	b[i]
=	=	=	=	=
c[i]	c[i]	c[i]	c[i]	c[i]

Ejemplo de Ejecución - Tomado de An Overview of OpenMP – SUN Microsystems

Componentes de OpenMP® 2.5

Directivas	Ambiente de Ejecución	Variables de Ambiente
Región Paralela	Numero de Hilos	Numero de Hilos
Trabajo Compartido (Worksharing)	ID del Hilo	Tipo de Calendarizador
Atributos de Datos Compartidos : private, firstprivate, lastprivate, shared, reduction	Ajuste Dinamico de Hilos	Ajuste Dinamico de Hilos
Orfandad (Oprhaning)	Paralelismo Anidado	Paralelismo Anidado
	Limitador del tiempo de reloj – Temporizador	
	Bloqueo	

Ejemplo: Matrix -Vector

```
#pragma omp parallel for default(none) \
              private(i,j,sum) shared(m,n,a,b,c)
 for (i=0; i<m; i++)
    sum = 0.0;
    for (j=0; j<n; j++)
      sum += b[i][j]*c[j];
    a[i] = sum;
         TID = 0
                                         TID = 1
for (i=0,1,2,3,4)
                                   for (i=5,6,7,8,9)
                                   sum = \sum b[i=5][j]*c[j]
sum = \sum b[i=0][j]*c[j]
                                     a[5] = sum
  a[0] = sum
        b[i=1][j]*c[j]
                                           b[i=6][j]*c[j]
  a[1] = sum
                                     a[6] = sum
```

... etc ...

Tomado de An Overview of OpenMP – SUN Microsystems

Un Ejemplo mas Elaborado...

```
#pragma omp parallel if (n>limit) default(none) \
         shared(n,a,b,c,x,y,z) private(f,i,scale)
    f = 1.0;
                                                Statement is executed
                                                   by all threads
#pragma omp for nowait
                                           parallel loop
    for (i=0; i<n; i++)
                                        (work is distributed)
       z[i] = x[i] + y[i];
#pragma omp for nowait
                                           parallel loop
    for (i=0; i<n; i++)
                                        (work is distributed)
       a[i] = b[i] + c[i];
                                  synchronization
#pragma omp barrier
    scale = sum(a,0,n) + sum(z,0,n) + f;
                                                     by all threads
} /*-- End of parallel region --*/
                                                          ......
```

Tomado de An Overview of OpenMP – SUN Microsystems

Evaluacion de Rendimiento en OpenMP

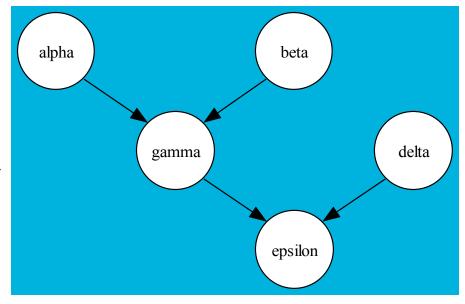
```
    Ejemplo: Medir Tiempos
        double empezar,terminar;
        empezar=omp_get_wtime();
        ... algun código
        terminar=omp_get_wtime();
        printf("TIEMPO=%lf\n",empezar-terminar)
```

El resultado es en segundos.

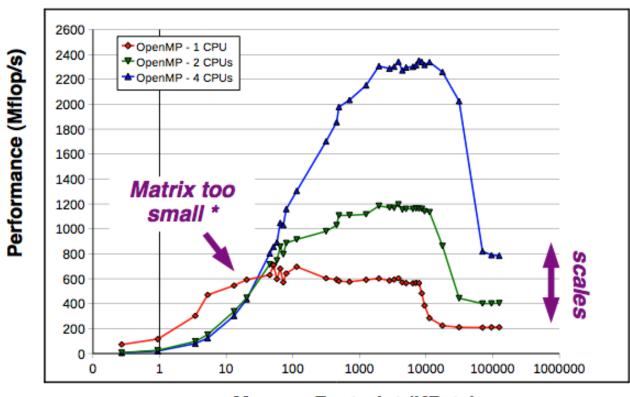
Paralelismo Funcional

 OpenMP nos permite asignar hilos distintos a partes distintas del código (paralelismo funcional)

$$y_i^{(1)} = \frac{y_{i+1} - y_{i-1}}{2d} - \frac{2d^3}{2d3!}y_i^{(3)} + ...;$$


$$y_i^{(1)} = \frac{y_{i+1} - y_i}{d} - \frac{d^2}{2! d} y_i^{(2)} + \dots;$$

$$y_i^{(1)} = \frac{y_i - y_{i-1}}{d} + \frac{d^2}{2! d} y_i^{(2)} + \dots$$


Ejemplo de Paralelismo Funcional

```
v = alpha();
w = beta();
x = gamma(v, w);
y = delta();
printf ("%6.2f\n", epsilon(x,y));
```

Se puede ejecutar alpha, beta, and delta en paralelo.

Rendimiento de OpenMP

Memory Footprint (KByte)

*) With the IF-clause in OpenMP this performance degradation can be avoided

Tomado de An Overview of OpenMP – SUN Microsystems

Conclusiones

- OpenMP permite explotar no solo paralelismo de datos, sino también de tareas.
- OpenMP debe considerarse cuando:
 - Se vayan a programar cores y es no es fácilmente la determinación la granularidad del problema, pero si el uso de memoria compartida.
- La decisión de cuantos hilos usar o no y de cómo sincronizarlos es tomada por el compilador y no necesariamente por el programador.

Lecturas Recomendadas

- Parallel Scalability Isn't Child's Play, Mark B. Friedman
 - Parte 1: http://blogs.msdn.com/b/ddperf/archive/2009/03/16/parallel-scalability-isn-t-child-s-play.aspx
 - Parte 2: http://blogs.msdn.com/b/ddperf/archive/2009/04/29/parallel-scalability-isn-t-child-s-play-part-2-amdahl-s-law-vs-gunther-s-law.aspx
- An Introduction to OpenMP, Robinson Rivas, SC-CAMP 2011 http://www.sc-camp.org/_pdf/OpenMP%20- %20sccamp%202011.pdf
- OpenMP® Official Site: http://www.openmp.org
- OpenMP Tutorial at Lawrence Livermore National Laboratory: https://computing.llnl.gov/tutorials/openMP/