
Organisation and Computer
Design

Performance Evaluation
« Performance Evaluation as Criteria to Best Computer Systems »

Carlos Jaime BARRIOS HERNÁNDEZ, PhD.
@carlosjaimebh

PERFORMANCE	EVALUATION	
• Often in Computer Science you need to:

•  demonstrate that a new concept, technique, or
algorithm is feasible

• demonstrate that a new method is better than an
existing method

• understand the impact of various factors and
parameters on the performance, scalability, or
robustness of a system

Thinking in Computers…

• Classes
• Program Performance
• Programer Point of View

CLASSES OF COMPUTERS

•  Desktop Computers

• Personal Use, Good Performance to an Single
User

• Third Party Software, Low Cost
•  Servers

• Access Only Via Network
• Carry Large Workload
• Single Complex Applications // Many Small Jobs
• Dependability

CLASSES OF… (II)

•  Supercomputers
•  Large Processing / Memory / Storage
•  High End-Scientific Calculations
•  Peak of Computing Capability

•  Data Centers
•  Large Processing / Memory / Storage with Emphasis in Storage

•  Embedded Computers
•  Designed to run one application or one set of related application
•  Single System
•  Widest Range of Applications
•  Large Scale Development
•  Minimum Performance
•  Low Fault Tolerance
•  Simplicity
•  Dependability
•  Redundancy

UNDERSTANDING PERFORMANCE
PROGRAM POINT OF VIEW

• Depends on a combination of the efectiveness
of the algorithms used in the program, the
software systems used to create and traslate
the program into machine instructions, and the
efectiveness of the computer hardware
elements.

CONCEPTION, DEVELOPMENT AND USE
OF COMPUTER SYSTEMS

7

$ €

SW AND HW PERFORMANCE

• Algorithm
•  # of Source-Level statements and # of I/O operations

executed

• Programming Language, Compiler and Architecture
•  # of Computer Instructions foe each source-level

statements

•  I/O System (HW and O.S)
•  How fast I/O operations may be executed.

Applications

PROGRAMMER POINT OF VIEW

System Software

Hardware

System Software

O.S. Compilers

SOME CONCEPTS

•  Letter: Binary Digit : bit
•  Instruction: Command that Computer

hardware understand and obeys
(Collection of bits)

•  Assembler: A program that TRANSLATE
symbolic version of instructions INTO the
binary version.

•  Assembly Language: A symbolic
representation of machine instructions

•  Machine Language: A Binary
representation of machine instructions.

SO?

• In all steps of a development process,
performance evaluation is mandatory.
• Monitoring
• Benchmarking
• Tests (Non-intrusive / Intrusive)

• Performance Evaluation in any Enginnering
Systems project allows to take factible and
good decisions

THE COMPUTER SCIENCE PROBLEM

12

Is
Science!

Is
Engineering!

Is Art

SO.. IN PERFORMANCE EVALUATION
CONTEXT?

•  Science is formal and based in scientific method
(Mathematical description of phenomena), then
computer science/informatics is science.
•  Observations and experimentations in controlled or non-

controlled environments
•  Engineering is based on science (Applied Science,

Mathematic tools to implement models), then systems
engineering is an applied science.
•  Tests and benchkmarking

•  Informatics requires creativity, passion, inspiration and
intuition…
•  Contemplation, esthetical views?

THE PARADIGM...

p What process are part
of a scientific
approach?

p What process are a
technological or
engineering approach?

p What process are
made with intuition,
experience or
inspiration?

14

THE FOCUS PROBLEM

p  Theoretical:
n  I know everything... but nothing works.

p Practical:
n  Everything works... but I don't know why.

p  Theoretical-Practical (Hybrid):
n  Nothing works... and nobody knows why.

15

In any case, we need predict the behavior
of our system

THE IMPORTANCE OF PERFORMANCE
IN

COMPUTER SYSTEMS

• Mission-critical applications
• Life support applications
• Homeland security
• Battlefield situations
• Personal communication systems

EXPERIMENTATION MESS (REMEMBER THE
LAST SESSION)

17

BAD HABITS

• No emphasis on design
•  Performance evaluation is relegated

•  Absecense of Test Plans
•  Incorrect Metrics to observate
•  Form and Esthetic over Funcional feautures

• No documentation in different levels
•  Developper
•  User
•  Administrator

•  Systemic Think forgetfulness

CONCEPTION OF SYSTEMS

19

THEORY AND PRACTICE
(POINT OF VIEW OF SYSTEMS CONCEPTION)

p  Theory
p  Abstraction

§  Models
§  Paradigms
§  Methods
§  Algorithms

Practice
Implementation

Programs
Applications
Methodologies
Protocols

20

SCIENCE OF THE COMPUTER SCIENCE

p  Experimentation (tests) could be confirm or refute
the accuracy (efficiency) of a software (system)
design.

p Questions and theoric motivations with experiences
(tests) produce « good » algorithms and programs.

p Development Cycle of software (systems) include:
modeling (design), experimentation (tests –
performance evaluation), build (programming)... (It's
not a linear cycle).

21

OBSERVING THE BEHAVIOR OF A
SYSTEM

p Observation
p Measures

p  Metrics

p  Replication
p Validation
p Confrontation

Monitoring
Measures

Metrics

Implantation in different
environments

Validation
Comparison

Benchmarking

22

EXPERIMENTAL COMPUTER SCIENCE

p  Experimental Computer Science includes:
n  Observation
n  Confrontation of hypothesis
n  Reproduction of tests

23

Performance Evaluation

PERFORMANCE EVALUATION

p  Application goal is to run with the maximum
performance at least cost.
n  Thus, It's necessary Performance Evaluation

p  Performance Evaluation is constant in all life cycle of the
Application (or system)
n  Design
n  Building
n  Implementation
n  Implantation
n  Use
n  Actualization

24

QOS METRICS

• Response time
• Throughput
• Availability
• Reliability
• Security
• Scalability
• Extensibility

PERFORMANCE EVALUATION
(FROM THE COMPUTER SCIENCE PROBLEM HERITAGE)

p  Performance Evaluation is a technique:
n  Processes
n  Methodology
n  Tools

p  Performance Evaluation is a science:
n  Theoric Basis
n  Experimentation
n  Replication and Validation

p  Performance Evaluation is Art:
n  Intuition (Deep Knowledge)
n  Abstraction Capacity
n  Creativity
n  Activity non repetitive
n  Tools

26

Performance Evaluation allows to know the capacities
and limitations of a system.

MODELING, MEASURING AND
SIMULATING

p Modeling: It allows to build formal abstractions
n  Mathematical Models
n  Analytical Models
n  Causal Models

p Measurement: It allows to characterize
n  Tests, Experiences in environments controlled known.

p Simulating: It allows to observe defined scenarios
n  In according with the modeling.

27

ANALYTICAL EXAMPLE: QUEUEING
THEORY

•  Queuing theory is a mathematical technique that
specializes in the analysis of queues (e.g., customer
arrivals at a bank, jobs arriving at CPU, I/O requests
arriving at a disk subsystem, lineup at Tim Hortons)

•  General diagram:

28

Customer
Arrivals Departures

Buffer Server

QUEUEING THEORY (CONT’D)

• The queueing system is characterized by:
•  Arrival process (M, G)
•  Service time process (M, D, G)
•  Number of servers (1 to infinity)
•  Number of buffers (infinite or finite)

• Example notation: M/M/1, M/D/1
• Example notation: M/M/ , M/G/1/k

29

8

QUEUEING THEORY (CONT’D)

• There are well-known mathematical results
for the mean waiting time and the number of
customers in the system for several simple
queueing models

• E.g., M/M/1, M/D/1, M/G/1
• Example: M/M/1

•  q = rho/ (1 - rho) where rho = lambda/mu < 1

30

QUEUEING THEORY (CONT’D)

• These simple models can be cascaded in
series and in parallel to create arbitrarily
large complicated queueing network
models

• Two main types:
•  closed queueing network model (finite pop.)
•  open queueing network model (infinite pop.)

• Software packages exist for solving these
types of models to determine steady-state
performance (e.g., delay, throughput, util.)

31

QUEUEING THEORY (CONT’D)

• These simple models can be cascaded in
series and in parallel to create arbitrarily
large complicated queueing network
models

• Two main types:
•  closed queueing network model (finite pop.)
•  open queueing network model (infinite pop.)

• Software packages exist for solving these
types of models to determine steady-state
performance (e.g., delay, throughput, util.)

32

SIMULATION EXAMPLE: TCP THROUGHPUT

• Can use an existing simulation tool, or
design and build your own custom simulator

• Example: ns-2 network simulator
• A discrete-event simulator with detailed TCP

protocol models
• Configure network topology and workload
• Run simulation using pseudo-random

numbers and produce statistical output

33

OTHER ISSUES

• Simulation run length
•  choosing a long enough run time to get

statistically meaningful results (equilibrium)

• Simulation start-up effects and end effects
•  deciding how much to “chop off” at the start

and end of simulations to get proper results

• Replications
•  ensure repeatability of results, and gain

greater statistical confidence in the results
given

34

EXPERIMENTAL EXAMPLE:
BENCHMARKING

• The design of a performance study requires
great care in experimental design and
methodology

• Need to identify
•  experimental factors to be tested
•  levels (settings) for these factors
•  performance metrics to be used
•  experimental design to be used

35

FACTORS

• Factors are the main “components”
that are varied in an experiment, in
order to understand their impact on
performance

• Examples: request rate, request size,
read/write ratio, num concurrent clients

• Need to choose factors properly, since
the number of factors affects size of
study 36

LEVELS

• Levels are the precise settings of the factors
that are to be used in an experiment

• Examples:
•  req size S = 1 KB, 10 KB, 1 MB

• Example:
•  num clients C = 10, 20, 30, 40, 50

• Need to choose levels realistically
• Need to cover useful portion of the design

space
37

TECHNIQUES

p  MODELING (Analytical Model)‏
p  SIMULATION
p  EXPERIMENTATION (TESTS –

MEASUREMENT)‏
n  Tests in controlled systems
n  Tests « On Live » (also controlled)

p  Benchmarking
p  Tracing and Profiling

38
ANYONE COULD BE VALIDATE FOR ALMOST ANOTHER ONE!!!

SOLUTION TECHNIQUES

39

High
Medium
Low
Accuracy

High
Medium
Low
Believability

High
Medium
Low
Cost

Low
High
High
Flexibility

Measurement Simulation Analytical Characteristic

Technique

From Measuring Computer Performance: A Practitioner’s Guide, David J. Lilja 2004

PERFORMANCE EVALUATION STEPS

1.  Stablish the goals of the study and define the system
boundaries.

2.  List system services and possible outcomes
3.  Select performance metrics
4.  List system and workload parameters.
5.  Select factors and their values.
6.  Select evaluation techniques.
7.  Select the workload.
8. Design the experiments.
9. Analyze and interpret the data.
10.  Present the results. Start over, if necessary.

40

n  From The Art of Computer Systems Performance Analysis Techniques For Experimental
Design Measurements Simulation And Modeling de Raj Jain .Wiley Computer Publishing,
John Wiley & Sons, Inc.

THROUGHPUT AND REPONSE TIME

• Throughput: Bandwidth: Number of tasks completed
per unit time.

• Reponse Time: Execution Time: The total time
required for a computer to complete a task.
•  Disk Accesses
•  I/O Activities
• Memory Accesses
• Operating System Overhead
•  CPU execution time

OPEN QUESTION

• Do the following changes to a computer
system increase throughtput, decrease
response time, or both?
1.  Replacing the processor in a computer with a

faster version
2.  Adding additional processors to a system that

uses multiple processors for separate tasks?

OPEN ANSWERS

1. Response time and throughput are
improved

•  Decreasing response time almost always
improves throughput.

2. Thoughtput Increases
•  No ones task gets work done faster.

ABOUT THE METRICS

44

p Performance metrics are
n  Count

p  Of how many times an event occurs
n  Duration

p  Of a time interval
n  Size

p  Of some parameter
n  Derivated values from these measurements

PERFORMANCE METRICS

• Performance metrics specify what you want
to measure in your performance study

• Examples: response time, throughput, pkt
loss

• Must choose your metrics properly and
instrument your experiment accordingly

45

TIME-NORMALIZED METRICS
p  « Rate » metrics

n  Normalize metric to common time basis
p  Transactions per second

p  Bytes per second

n  (Number of events) ÷ (time interval over which events occurred)

p  « Throughput »
n  Average rate of successful message delivery over a communication

channel

p  Useful for comparing measurements over different time intervals

46

GOOD METRICS CHARACTERISTICS

p  Allows accurate and
detailed comparisons

p  Leads to correct
conclusions

p  Is well understood by
everyone

p  Has a quantitative basis
p  A good metric helps

avoid erroneous
conclusions

Good metrics is
Linear
If metric increases 2x, performance should increase 2x

Reliable
If metric A > metric B

Then, Perf. A > Perf.B

Repeatable

Easy to use

Consistent
Units and definition are constant across systems

Independent
Indepentent to pressure on manufacturers to optimize for

a particular metric

47

PERFORMANCE METRICS SUMMARY

48

TIME QUIPS SPEC MFLOPS MIPS Clock

☺
☺
☺
☺

☺

☺
☺

☺
☺

☺
½☺
☺

☺
☺
☺
☺

≈☺

☺ Independent

☺ Consistent

☺ Easy to
measure

☺ Repeatable

≈☺ Reliable

☺ Linear

From Measuring Computer Performance: A Practitioner’s Guide, David J. Lilja 2004

OTHER METRICS

p  Response time
n  Elapsed time from request to response

p  Throughput
n  Jobs, operations completed per unit time

p  E.g. video frames per second

p  Bandwidth
n  Bits per second

p  Ad hoc metrics
n  Defined for a specific need

p  Requests per transaction

49

ABOUT THE MEANS...

p  Performance in systems is multidimensional
n  CPU time
n  I/O time
n  Network time
n  Read/Write speedup
n  Disk Access
n  Storage Capacity
n  Interactions of various components
n  ...

ABOUT MEASUREMENT TOOLS AND
METHODOLOGIES...

p  Actually, measurement tools are based in events:
n  Some predefined change to system state

p  Event definition depends on metric being measured
n  Memory reference
n  Disk access
n  Change in a register’s state
n  Network message
n  Processor interrupt

SOME MEASUREMENT TECHNIQUES
COMPARAISON

52

Fixed High ~ #events Perturbation

Constant High Low Overhead

Statistical
summary

Detailed info Exact count Resolution

Sampling Tracing
Event
count

From Measuring Computer Performance: A Practitioner’s Guide, David J. Lilja 2004

WHAT EVALUATE?

p  Infrastructure
n  Monitoring
n  Benchmarking
n  Emulating

p  Applications
n  Monitoring
n  Benchmarking
n  Tracing and Profiling

p  Users
n  Monitoring
n  Organization Techniques

53

POSTERS

p Accuracy
n  In accord with your

needs)
p Efficiency
n  In accord with the

available resources
p  Fault tolerance
p Security and Safety

BENCHMARK AND WORKLOAD

p Benchmark:
n  Result of running a computer program, or a set of

programs, in order to assess the relative performance of
an object by running a number of standard tests and
trials against it (wikipedia)

p Workload:
n  Quantified effort

p Adition Instructions
p Hybrid Instructions
p Syntetics Programs
p Kernels
p Benchmark Applications

54

THE CRITICAL BEHAVIORS TO EVALUATE

p  Data Transfer
n  High Bandwidth Data Transfer implies heterogenity, dynamicity, concurrence

and so on.

p  File System Sensibility
n  I/O Sensibility

p  Adaptation and Effectiveness
p  Scalability
p  Fault Tolerance
p  Security
p  Energy Consumption
p  ... and the « Human invervention »

p  Processing is critical but...

RESPONSE TIME BREAKDOWN

•  Service time (does not depend on the load)

• Congestion (load-dependent)

THROUGHPUT

• Measured in units of work completed
over time. It’s a rate.
•  I/O’s/sec
• Page downloads/sec
• HTTP requests/sec
•  Jobs/sec
• Transactions per second (tps)

THROUGHPUT EXAMPLE

•  An I/O operation at a disk of an OLTP system takes 10
msec on average.
•  What is the maximum throughput of the disk?

•  What is the throughput of the disk if it receives I/O requests at a
rate of 80 requests/sec?

THROUGHPUT EXAMPLE

AVAILABILITY

• Fraction of time a system is available
(i.e.,operational).
•  Service interruptions can damage the reputation

of a company, may endanger lives, and may cause
financial disasters.

•  A system with 99.99% availability over 30 days is
unavailable (1-0.9999) x 30 x 24 x 60 = 4.32
minutes.

AVAILABILITY PROBLEMS

ADMISSION CONTROL

ADMISSION CONTROL

•Improved response time
•Decreased availability

SCALABILITY

System A is not scalable

EXTENSIBILITY

• Property of a system to
constantly evolve to meet
functional and performance
requirements.
• Autonomic computing, self-
managing systems, self-healing
systems.

COMPUTER SYSTEM LIFECYCLE

• Functional requirements: what the system has to do and on
what type of platforms.

• Non-functional requirements: how well the system has to
accomplish
its functions. Service Level Agreements (SLA) are
established.
In many cases, non-functional requirements have been
neglected or
considered only at system test time!

COMPUTER SYSTEM LIFECYCLE

How will the requirements be met?
- System architecture
- System broken down into components
- Major data structures, files, and databases are designed.
- Interfaces between components are specified

COMPUTER SYSTEM LIFECYCLE

Components are implemented.
- some are new
- some are re-used
- some are adapted
Components are interconnected to form a system
Components should be instrumented as they are
built

COMPUTER SYSTEM LIFECYCLE

Concurrent with system development, as components
become available
(unit testing)

Integrated tests are carried out when the entire system is
ready.

Often, more time is spent in testing functional requirements
than in testing non-functional requirements.

COMPUTER SYSTEM LIFECYCLE

•  Configuration parameters have to be
set in order to meet the SLAs.

•  e.g., TCP parameters, database
poolsize, maximum number of
threads, etc.

COMPUTER SYSTEM LIFECYCLE

Constant monitoring to check if the system is meeting
demands:
•  workload (peak periods, unusual patterns)
•  external metrics (user-perceived)
•  internal metrics (help to detect bottlenecks and to fine tune
the system)
•  availability (external and internal)

May need to dynamically adjust configuration parameters

COMPUTER SYSTEM LIFECYCLE

•  Systems may need to evolve to cope with new laws and Regulations
(e.g., HIPPA)

•  Systems may need to evolve to provide new functions (e.g., sale of
downloadable MP3 music in addition to CDs)

•  How are the IT resources going to cope with evolution in terms of SLAs?

REFERENCE MODEL FOR IT

Business Model:
- number of branches
- number and location of ATMs
- number of accounts of each type
- business evolution plans (e.g.,
mergers)

Social Model
- privacy policy
- accessibility policy

USER MODEL:
 CUSTOMER BEHAVIOR MODEL

GRAPH

IT INFRASTRUCTURE: EXAMPLE

EXPERIMENTAL DESIGN

•  Experimental design refers to the organizational
structure of your experiment

•  Need to methodically go through factors and levels to
get the full range of experimental results desired

•  There are several “classical” approaches to
experimental design

76

EXAMPLES

• One factor at a time
•  vary only one factor through its levels to see

what the impact is on performance

• Two factors at a time
•  vary two factors to see not only their individual

effects, but also their interaction effects, if any

• Full factorial
•  try every possible combination of factors and

levels to see full range of performance results

77

OPEN QUESTIONS

p Performance Evaluation of Systems is REALLY
important... then,
n  How to increase the level of accuracy of performance

models?
p Of course, it's necessary the definition of metrics and build

tools.

n  How to implementate realistic models to performance
evaluation?
p On live process

n  How to integrate the needs of scientifics and enginner/
computer science scientist in performance evaluation?

RECOMMENDED LECTURES

• The Art of Computer Systems Performance
Analysis Techniques For Experimental
Design Measurements Simulation And
Modeling de Raj Jain .Wiley Computer
Publishing, John Wiley & Sons, Inc.

• Measuring Computer Performance: A
Practitioner’s Guide, David J. Lilja 2004

MIPS REFERENCE CARDS

• inst.cs.berkeley.edu/~cs61c/resources/
MIPS_Green_Sheet.pdf

• refcards.com/docs/waetzigj/mips/mipsref.pdf
• www2.engr.arizona.edu/~ece369/.../spim/
MIPSReference.pdf

"HOUSTON, WE'VE HAD A PROBLEM"

JAMES A. LOVELL
(NASA APOLLO XIII MISSION)

