A First View about

Performance Evaluation and Analysis

« Performance Evaluation as Criteria to Best Computer Systems »

Carlos Jaime BARRIOS HERNANDEZ, PhD.
@carlosjaimebh

Pair testing gone wrong

"Not 50 fost Michaell It says here that you sheudd
write the test case before you can execute it

Arcy Saver cartocehocter blojopet com

*Often in Computer Science you need to:

 Demonstrate that a new concept, technique,
or algorithm is feasible

*Show that a new method is better than an
existing method

* Understand the impact of various factors and
parameters on the performance, scalability, or
robustness of a system

Computers...

ing in

Think

* Desktop Computers

* Personal Use, Good Performance to an Single User
* Third Party Software, Low Cost

* Servers

* Access Only Via Network

* Carry Large Workload

* Single Complex Applications // Many Small Jobs
* Dependability

* Large Processing / Memory / Storage

Classes of... (ll)

’M“ ——

* Large Processing / Memory / Storage with Emphasis in Storage

. Mbmm”mnm#dmw

Widest Range of Applications

|

* Low Fault Tolerance

.
.
.
o
.
o

*Depends on a combination of the efectiveness
of the algorithms used in the program, the
software systems used to create and traslate
the program into machine instructions, and the
efectiveness of the computer hardware
elements.

Problem

Engineer or Scientist
Computer Scientist

SW and HW Performance

P a——

Programmer Point of View

Applications

System Software

Hardware

System Software

Program

Produced by

Source
Assembly
Object
Executable
Process

Programmer
Compiler
Assembler
Linker
Loader

swap(int v|], int k)
{int temp;
temp = v|k];
v k] = v|k+l];
v|k+l] = temp;
t

=wap:

mali $2, 55,4
add 52, 34,352
lw 215, 0(52)
1w 216, 4(352)
=w 316, 0(352)
=w 315, 4(352)
jr $31

00000000101000010000000000011000
00000000100011100001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

Letter: Binary Digit : bit

Instruction: Command that Computer
hardware understand and obeys
(Collection of bits)

Assembler: A program that
TRANSLATE symbolic version of
instructions INTO the binary version.

Assembly Language: A symbolic
representation of machine instructions

Machine Language: A Binary
representation of machine
instructions.

Is
Engineering!

* Science is formal and based in scientific method (Mathematical
dgscrlp’rlon of phenomena), then computer science /informatics is
science.

* Observations and experimentations in controlled or non-controlled
environments

* Engineering is based on science (Applied Science, Mathematic
tools to implement models), then systems engineering is an
applied science.

* Tests and benchkmarking

* Informatics requires creativity, passion, inspiration and intuition...
* Contemplation, esthetical views?

W 4
: 7"‘&

) —_
Z z > e O What process are part
A 2 %
%\ 'V of a scientific

y

At

\ approach?
'fiL_féj'j'"ﬁ'f’j_,, <7 .n{;},,,;;; \ O What process are a

\ technological or
INFORMATIC engineering ClppI‘OCICh?

w‘ Data Mlnlng \

N4 \ _ O What process are
& made with intuition,
experience or
inspiration?

COMPUTER SCIENCE

O Theoretical:

® | know everything... but nothing works.

O Practical:
®m Everything works... but | don't know why.

O Theoretical-Practical (Hybrid):
® Nothing works... and nobody knows why.

In any case, we need predict the behavior

of our system

The Importance of Performance in

Computer Systems

Experimentation Mess

What your research supposedly

What your research actually
looks like:

looks like:

\

5
Y

Data Acquisition

T
E
-
-~
s [
LA
A
’
!

Prototype Controller

Computer

Figure 1. Experimental Diagram o
Figure 2. Experimental Mess

* No emphasis on design

* Performance evaluation is relegated
* Absecense of Test Plans
* Incorrect Metrics to observate
* Form and Esthetic over Funcional feautures

* No documentation in different levels
* Developper
* User
* Administrator

* Systemic Think forgetfulness

OBSERVATION IDEA

EXPERIMENTAL
EXPERIMENTATION f' VACIDEEAON
IMPLEMENTATION
PREDICTION HYPOTHESIS OR ~\
MODELING DESIGN
Scientific Method Conception and Design of Systems

= From Special section in Communications of the ACM 50(11), Nov 2007

(Point of view of Systems Conception)

Practice

Implementation

O Theory Programs

Abstraction Applications
" Models

= Paradigms
= Methods
= Algorithms

Methodologies
Protocols

O Experimentation (tests) could be confirm or refute the accuracy
(efficiency) of a software (system) design.

O Questions and theoric motivations with experiences (tests)
produce « good » algorithms and programs.

O Development Cycle of software (systems) include: modeling
(design), experimentation (tests — performance evaluation),
build (programming)... (It's not a linear cycle).

O Observation

O Measures

Metrics
O Replication
O Validation

O Confrontation

Monitoring

Measures

Metrics

Implantation in different
environments

Validation

Comparison
Benchmarking

O Experimental Computer Science includes:
® Observation
m Confrontation of hypothesis
® Reproduction of tests

Performance Evaluation

O Application goal is to run with the maximum performance ¢t
least cost.

® Thus, It's necessary Performance Evaluation

O Performance Evaluation is constant in all life cycle of the
Application (or system)

Design

Building

Implementation

Implantation

Use

0
0
0
0
0
® Actualization

QoS Metrics

O Performance Evaluation is a technique:
B Processes
B Methodology
B Tools

O Performance Evaluation is a science:

B Theoric Basis
B Experimentation

B Replication and Validation

O Performance Evaluation is Art:

B |Intuition (Deep Knowledge)
Abstraction Capacity

Creativity

Activity non repetitive

Tools

Performance Evaluation allows to know the capacities and
limitations of a system.

Modeling, Measuring and
Simulating

O Modeling: It allows to build formal abstractions

O Measurement: It allows to characterize

* Queuing theory is a mathematical technique that specializes in the
analysis of queues (e.g., customer arrivals at a bank, jobs arriving at
CPU, 1/0 requests arriving at a disk subsystem, lineup at Tim Hortons)

« General diagram:

Customer

Arrivals

v

A :
\J Departures

Bufter

Server

Queueing Theory (cont’ d)

 The queueing system is ch
Arrival process (M, G)

Service time process (M, D, G)
Number of servers (1 to infinity)

o

°

.

.

CPSC 641 Winter 2011

cont’ d)

(

Queueing Theory

i
|
|
¥

m
M

m

> t"‘ ’

=

i

*q

1
D
o
N
[
(O]
-
c
=

CPSC 641

» These simple models can be cascaded in series and in parallel to create
arbitrarily large complicated queueing network models

* Two main types:
 closed queueing network model (finite pop.)
« open queueing network model (infinite pop.)

» Software packages exist for solving these types of models to determine
steady-state performance (e.g., delay, throughput, util.)

» These simple models can be cascaded in series and in parallel to create
arbitrarily large complicated queueing network models

« Two main types:
 closed queueing network model (finite pop.)
* open queueing network model (infinite pop.)

» Software packages exist for solving these types of models to determine
steady-state performance (e.g., delay, throughput, util.)

» Can use an existing simulation tool, or design and build your own
custom simulator

» Example: ns-2 network simulator
A discrete-event simulator with detailed TCP protocol models
» Configure network topology and workload

* Run simulation using pseudo-random numbers and produce
statistical output

 Simulation run length
» choosing a long enough run time to get statistically meaningful results
(equilibrium)
 Simulation start-up effects and end effects
« deciding how much to “chop off” at the start and end of simulations to get
proper results
» Replications

» ensure repeatability of results, and gain greater statistical confidence in the
results given

Experimental Example: Benchmarking

CPSC 641 Winter 2011

 Factors are the main “components” that are varied in an experiment, in
order to understand their impact on performance

« Examples: request rate, request size, read/write ratio, num concurrent
clients

* Need to choose factors properly, since the number of factors affects size of
study

» Levels are the precise settings of the factors that are to be used
in an experiment

« Examples: req size S = 1 KB, 10 KB, 1 MB

« Example: num clients C = 10, 20, 30, 40, 50

* Need to choose levels realistically

* Need to cover useful portion of the design space

O MODELING (Analytical Model)
O SIMULATION

O EXPERIMENTATION (TESTS —
MEASUREMENT)
m Tests in controlled systems
m Tests « On Live » (also controlled)

Benchmarking

Tracing and Profiling

Technique

Simulation | Measurement

Characteristic | Analytical

Flexibility High High Low
Cost Low Medium High
Believability Low Medium High
Accuracy Low Medium High

| e ALV A

1. Stablish the goals of the study and define the system
boundaries.

. List system services and possible outcomes

. Select performance metrics

List system and workload parameters.

. Select factors and their values.

. Select evaluation techniques.

. Select the workload.

Design the experiments.

. Analyze and interpret the data.

O. Present the results. Start over, if necessary.

—-090\lo~o1;>oow

Throughput and Reponse Time

o B0 Sesas
* 1/O Activities

Open Question

Open Answers

* Dunsaig s S des dusgs Sapens

oPerformance metrics are

= Count
Of how many times an event occurs

m Duration

Of a time interval
mSize

Of some parameter

m Derivated values from these measurements

PERFORMANCE METRICS 46

» Performance metrics specify what you want to measure in your performance

study —
« Examples: response time, throughput, pkt loss

* Must choose your metrics properly and instrument your experiment
accordingly

CPSC 641 Winter 2011

Time-normalized metrics

O « Rate » metrics
® Normalize metric to common time basis

- Transactions per second
O« Throughput »
® Average rate of successful message delivery over a

Allows accurate and
detailed comparisons

Leads to correct
conclusions

Is well understood by
everyone

Has a quantitative basis

A good metric helps
avoid erroneous
conclusions

Good metrics is
Linear

If metric increases 2x, performance. should increase 2x
Reliable

If metric A > metric B
Then, Perf. A > Perf.B

Repeatable
Easy to use

Consistent

Units and definition are constant across systems

Independent

Indepentent to pressure on manufacturers to optimize for
a particular metric

Clock MIPS MFLOPS SPEC QUIPS TIME
Linear ~© ©
Reliable ~©
Repeatable % o © & © ©
e | o | o | o | ve o
Consistent Z & © ©
Independent ¢ @ @ ©

From Measuring Computer Performance: A Practitioner’s Guide, David J. Lilja 2004

Other metrics

O Response time

m Elapsed time from request to response

® Jobs, operations completed per unit time

qii

s
a

"

m Defined for a specific need

m Bits per second

O Performance in systems is multidimensional
m CPU time
m /O time
® Network time
B Read/Write speedup
® Disk Access
® Storage Capacity

B Interactions of various components
D

About measurement tools and

methodologies...

a register’s state

§
13
i
i

® Network message
® Processor interrupt

_
|

:
a

® Change in

Event
Tracing Sampling
count
Statistical
Resolution Exact count | Detailed info i
summary
Overhead Low High Constant
Perturbation ~ f#fevents High Fixed

From Measuring Computer Performance: A Practitioner’s Guide, David J. Lilja 2004

O Infrastructure

B Monitoring A o T

® Benchmarking . ’ EDACCUFaCY _

o Bmviating :m In accord with your ;
: needs)

O Applications :
B Monitoring "» D EfﬂCIenCy
® Benchmarking im In accord with the
® Tracing and Profiling : available resources

O Users :0Fault tolerance

® Monitoring
® Organization Techn

O Benchmark:

B Result of running a computer program, or a set of programs, in
order to assess the relative performance of an object by running a
number of standard tests and trials against it (wikipedia)

O Workload:

® Quantified effort
Adition Instructions
Hybrid Instructions
Syntetics Programs
Kernels

Benchmark Applications

O

O OO0 0O O 0O 0O

Data Transfer

® High Bandwidth Data Transfer implies heterogenity, dynamicity, concurrence and so on.
File System Sensibility
® |/O Sensibility
Adaptation and Effectiveness
Scalability
Fault Tolerance
Security
Energy Consumption

... and the « Human invervention »

Processing is critical but...

Response Time Breakdown

e Congestion (load-dependent)

Browser Time Network Time E-commerce Server Time

Browser to Internet ISP to Server

Processing 11O ISP Time Time Time Processing | /0 | Networking

CONGESTION -

Throughput

Throughput Example

- What is the maximum throughput of the disk?

What is the throughput of the disk if it receives I/

.

Throughput example

~ Throughput } no thrashing
system
saturation

Availability

* Fraction of time a system is available (i.e.,
« Service interruptions can damage the reputation of a
x 24 x 60 = 4.32 minutes.

Availability Problems

We are lemporaily closed - GreolBookslore.com
_F||B _Ed|t_V]W_FHVOr|tBB_TBO|l_HE|p
Address ftip7www i [w]

GreatBookStore.com

We will be right back!

We are sorry, but our store is temporarily closed.

We expect to be back soon.

Admission Control

Response no admission control

Time R\H

Gl st et

admission control

Admission Control

Respon se!

Time

no admission control

—-_.-H—-‘—“_""'——L

admission control

response
eDecreased availabi

Scalability

Response ayslemA

Time

system B

1)

* Property of a system to constantly evolve to
meet functional and performance requirements.

« Autonomic computing, self-managing systems, self-
healing systems.

Computer System Lifecycle

*Functional requirements: what the system has to do and on what type of platforms.

*Non-functional requirements: how well the system has to accomplish
its functions. Service Level Agreements (SLA) are established.

In many cases, non-functional requirements have been neglected or
considered only at system test time!

*

Requirements
Analysis
and
Specification

System
Design

System
Development

Testing

—

Deployment

Operation —

Evolution

|

Computer System Lifecycle

How will the requirements be met?

- System architecture

- System broken down into components
- Major data structures, files, and databases are designed.
- Interfaces between components are specified

Requirements System System

Analysis | . - = Testin —= Deployment
and Design Development J ploy

Specification *

Operation = Evolution

Requirements
Analysis
and
Specification

System
Design

System
Development

Testing

Deployment

—

Operation =

Evolution

)

w

Components are implemented.
- Some are new

- some are re-used
- some are adapted
Components are interconnected to form a system

Components should be instrumented as they are built

Computer System Lifecycle

Concurrent with system development, as components become available
(unit testing)

Integrated tests are carried out when the entire system is ready.

Often, more time is spent in testing functional requirements than in testing noq—fU"

Requirements
stem stem

and Design Development

Specification
)

Operation = Evolution

Computer System Lifecycle

» Configuration parameters have to be set in order to meet the SLAs. _
* e.g., TCP parameters, database poolsize, maximum number of threads, etc.

Requirements
stem stem

and Design Development

Specification
[}

Operation = Evolution

Computer System Lifecycle

Constant monitoring to check if the system is meeting demands:
» workload (peak periods, unusual patterns)

* external metrics (user-perceived)

* internal metrics (help to detect bottlenecks and to fine tune the system)
» availability (external and internal)

May need to dynamically adjust configuration parameters

Requirements System System

Analysis | . - —= Testing —= Deployment
and Design Development J ploy

Specification

Operation —= Evolution

Computer System Lifecycle

- Systems may need to evolve to cope with new laws and Regulations (e.g., HIPPA)

» Systems may need to evolve to provide new functions (e.g., sale of downloadable MP3 music in
addition to CDs)

* How are the IT resources going to cope with evolution in terms of SLAs? :
N
Requirements System System
Analysis | — —= Testing —= Deployment — Operation = Evolution
and Design Development

Specification

Business Model:

- number of branches

- number and location of ATMs

- number of accounts of each type
-business evolution plans (e.g., mergers)

Social Model
- privacy policy
- accessibility policy

T

User Interaction
Model

Social and
Business Model

Information
Technology
Resources Model

User Model:

browse

o

checkout

IT Infrastructure: Example

 demilitarized
: zone :

(DM2)

—FwW

i Load
@ firewall - Balancer

E router

Application Database
Servers Server
(e.g., mainframe)

LAN1 LAN2 IAN3 1AN4

EXPERIMENTAL DESIGN

Winter 2011

CPSC 641

EXAMPLES

+ vary only one factor through its levels to see what the impact is on

Winter 2011

CPSC 641

O Performance Evaluation of Systems is REALLY important...
then,

B How to increase the level of accuracy of performance models?

Of course, it's necessary the definition of metrics and build tools.

® How to implementate realistic models to performance evaluation?

On live process

® How to integrate the needs of scientifics and enginner /computer
science scientist in performance evaluation?

Recommended Lectures

MIPS Reference Cards

i
;

"Houston, We've Had a Problem'

JAMES A. LOVELL
(NASA Apollo Xl Mission)

3

