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BASIC INSTRUCTION FORMATS

 

    

 

   

     

REGISTER NAME, NUMBER, USE, CALL CONVENTION

 

   

 

CORE INSTRUCTION SET

 

OPCODE

NAME, MNEMONIC
FOR-
MAT OPERATION (in Verilog)

/ FUNCT
(Hex)

Add

 

add

 

R R[rd] = R[rs] + R[rt] (1) 0 / 20

 

hex

 

Add Immediate

 

addi

 

I R[rt] = R[rs] + SignExtImm (1,2) 8

 

hex

 

Add Imm. Unsigned

 

addiu

 

I R[rt] = R[rs] + SignExtImm  (2) 9

 

hex

 

Add Unsigned

 

addu

 

R R[rd] = R[rs] + R[rt] 0 / 21

 

hex

 

And

 

and

 

R R[rd] = R[rs] & R[rt] 0 / 24

 

hex

 

And Immediate

 

andi

 

I R[rt] = R[rs] & ZeroExtImm (3) c

 

hex

 

Branch On Equal

 

beq

 

I
if(R[rs]==R[rt])
  PC=PC+4+BranchAddr (4)

4

 

hex

 

Branch On Not Equal

 

bne

 

I
if(R[rs]!=R[rt])
  PC=PC+4+BranchAddr (4)

5

 

hex

 

Jump

 

j

 

J PC=JumpAddr (5) 2

 

hex

 

Jump And Link

 

jal

 

J R[31]=PC+8;PC=JumpAddr (5) 3

 

hex

 

Jump Register

 

jr

 

R PC=R[rs] 0 / 08

 

hex

 

Load Byte Unsigned

 

lbu

 

I
R[rt]={24’b0,M[R[rs]
            +SignExtImm](7:0)} (2)

24

 

hex

 

Load Halfword 
Unsigned

 

lhu

 

I
R[rt]={16’b0,M[R[rs]
            +SignExtImm](15:0)} (2)

25

 

hex

 

Load Linked

 

ll

 

I R[rt] = M[R[rs]+SignExtImm] (2,7) 30

 

hex

 

Load Upper Imm.

 

lui

 

I R[rt] = {imm, 16’b0} f

 

hex

 

Load Word

 

lw

 

I R[rt] = M[R[rs]+SignExtImm] (2) 23

 

hex

 

Nor

 

nor

 

R R[rd] = ~ (R[rs] | R[rt]) 0 / 27

 

hex

 

Or

 

or

 

R R[rd] = R[rs] | R[rt] 0 / 25

 

hex

 

Or Immediate

 

ori

 

I R[rt] = R[rs] | ZeroExtImm (3) d

 

hex

 

Set Less Than

 

slt

 

R R[rd] = (R[rs] < R[rt]) ? 1 : 0 0 / 2a

 

hex

 

Set Less Than Imm.

 

slti

 

I R[rt] = (R[rs] < SignExtImm)? 1 : 0 (2) a

 

hex

 

Set Less Than Imm. 
Unsigned

 

sltiu

 

I
R[rt] = (R[rs] < SignExtImm) 
                    ? 1 : 0  (2,6)

b

 

hex

 

Set Less Than Unsig.

 

sltu

 

R R[rd] = (R[rs] < R[rt]) ? 1 : 0  (6) 0 / 2b

 

hex

 

Shift Left Logical

 

sll

 

R R[rd] = R[rt] << shamt 0 / 00

 

hex

 

Shift Right Logical

 

srl

 

R R[rd] = R[rt] > > shamt 0 / 02

 

hex

 

Store Byte

 

sb

 

I
M[R[rs]+SignExtImm](7:0) =   
                             R[rt](7:0) (2)

28

 

hex

 

Store Conditional

 

sc

 

I
M[R[rs]+SignExtImm] = R[rt]; 
              R[rt] = (

 

atomic

 

) ? 1 : 0 (2,7)
38

 

hex

 

Store Halfword

 

sh

 

I
M[R[rs]+SignExtImm](15:0) = 
                                 R[rt](15:0) (2)

29

 

hex

 

Store Word

 

sw

 

I M[R[rs]+SignExtImm] = R[rt] (2) 2b

 

hex

 

Subtract

 

sub

 

R R[rd] = R[rs] - R[rt] (1) 0 / 22

 

hex

 

Subtract Unsigned

 

subu

 

R R[rd] = R[rs] - R[rt] 0 / 23

 

hex

 

(1) May cause overflow exception
(2) SignExtImm = { 16{immediate[15]}, immediate }
(3) ZeroExtImm = { 16{1b’0}, immediate }

(5) JumpAddr =    { PC+4[31:28], address, 2’b0 }

(7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic

 

R

 

opcode rs rt rd shamt funct

 

31 26 25 21 20 16 15 11 10 6 5 0

 

I

 

opcode rs rt immediate

 

31 26 25 21 20 16 15 0

 

J

 

opcode address

 

31 26 25 0

 

ARITHMETIC CORE INSTRUCTION SET

 

OPCODE 

NAME, MNEMONIC
FOR-
MAT OPERATION 

/ FMT /FT
/ FUNCT

(Hex)
Branch On FP True

 

bc1t

 

FI if(FPcond)PC=PC+4+BranchAddr (4) 11/8/1/--
Branch On FP False

 

bc1f

 

FI if(!FPcond)PC=PC+4+BranchAddr(4) 11/8/0/--
Divide

 

div

 

R Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] 0/--/--/1a
Divide Unsigned

 

divu

 

R Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6) 0/--/--/1b
FP Add Single

 

add.s

 

FR F[fd ]= F[fs] + F[ft] 11/10/--/0
FP Add 
Double

 

add.d

 

FR {F[fd],F[fd+1]} = {F[fs],F[fs+1]} + 
                               {F[ft],F[ft+1]}

11/11/--/0

FP Compare Single

 

c

 

.

 

x

 

.

 

s

 

*

 

FR FPcond = (F[fs] 

 

op

 

 F[ft]) ? 1 : 0 11/10/--/

 

y

 

FP Compare 
Double

 

c

 

.

 

x

 

.

 

d

 

*

 

FR FPcond = ({F[fs],F[fs+1]} 

 

op

 

 
                   {F[ft],F[ft+1]}) ? 1 : 0

11/11/--/

 

y

 

* (

 

x

 

 is 

 

eq

 

, 

 

lt

 

, or 

 

le

 

)  (

 

op

 

 is ==, <, or <=) ( 

 

y

 

 is 32, 3c, or 3e)
FP Divide Single

 

div.s

 

FR F[fd] = F[fs] / F[ft] 11/10/--/3
FP Divide 
Double

 

div.d

 

FR {F[fd],F[fd+1]} = {F[fs],F[fs+1]} / 
                               {F[ft],F[ft+1]}

11/11/--/3

FP Multiply Single

 

mul.s

 

FR F[fd] = F[fs] * F[ft] 11/10/--/2
FP Multiply 
Double

 

mul.d

 

FR {F[fd],F[fd+1]} = {F[fs],F[fs+1]} * 
                               {F[ft],F[ft+1]}

11/11/--/2

FP Subtract Single

 

sub.s

 

FR F[fd]=F[fs] - F[ft] 11/10/--/1
FP Subtract 
Double

 

sub.d

 

FR {F[fd],F[fd+1]} = {F[fs],F[fs+1]} - 
                               {F[ft],F[ft+1]}

11/11/--/1

Load FP Single

 

lwc1

 

I F[rt]=M[R[rs]+SignExtImm] (2) 31/--/--/--
Load FP 
Double

 

ldc1

 

I F[rt]=M[R[rs]+SignExtImm]; (2)
F[rt+1]=M[R[rs]+SignExtImm+4] 

35/--/--/--

Move From Hi

 

mfhi

 

R R[rd] = Hi 0 /--/--/10
Move From Lo

 

mflo

 

R R[rd] = Lo 0 /--/--/12
Move From Control

 

mfc0

 

R R[rd] = CR[rs] 10 /0/--/0
Multiply

 

mult

 

R {Hi,Lo} = R[rs] *  R[rt] 0/--/--/18
Multiply Unsigned

 

multu

 

R {Hi,Lo} = R[rs] *  R[rt] (6) 0/--/--/19
Shift Right Arith.

 

sra

 

R R[rd] = R[rt] >> shamt 0/--/--/3
Store FP Single

 

swc1

 

I M[R[rs]+SignExtImm] = F[rt] (2) 39/--/--/--
Store FP 
Double

 

sdc1

 

I M[R[rs]+SignExtImm] = F[rt]; (2) 
M[R[rs]+SignExtImm+4] = F[rt+1]

3d/--/--/--

 

FR

 

opcode fmt ft fs fd funct

 

31 26 25 21 20 16 15 11 10 6 5 0

 

FI

 

opcode fmt ft immediate

 

31 26 25 21 20 16 15 0

 

NAME MNEMONIC OPERATION
Branch Less Than

 

blt

 

if(R[rs]<R[rt]) PC = Label
Branch Greater Than

 

bgt

 

if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal

 

ble

 

if(R[rs]<=R[rt]) PC = Label
Branch Greater Than or Equal

 

bge

 

if(R[rs]>=R[rt]) PC = Label
Load Immediate

 

li

 

R[rd] = immediate
Move

 

move

 

R[rd] = R[rs]

NAME NUMBER USE
PRESERVED ACROSS 

A CALL?
$zero 0 The Constant Value 0 N.A.

$at 1 Assembler Temporary No

$v0-$v1 2-3
Values for Function Results 
and Expression Evaluation

No

$a0-$a3 4-7 Arguments No
$t0-$t7 8-15 Temporaries No
$s0-$s7 16-23 Saved Temporaries Yes
$t8-$t9 24-25 Temporaries No
$k0-$k1 26-27 Reserved for OS Kernel No

$gp 28 Global Pointer Yes
$sp 29 Stack Pointer Yes
$fp 30 Frame Pointer Yes
$ra 31 Return Address Yes

1 2
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FLOATING-POINT INSTRUCTION FORMATS 

PSEUDOINSTRUCTION SET 
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(4) BranchAddr = { 14{immediate[15]}, immediate, 2’b0 }

’(6) Operands considered unsigned numbers (vs. 2 s comp.)

>



...
Argument 6
Argument 5

Saved Registers

Local Variables

OPCODES, BASE CONVERSION, ASCII SYMBOLS  

(1) opcode(31:26) == 0
(2) opcode(31:26) == 17ten (11hex); if fmt(25:21)==16ten (10hex) f = s (single); 
      if fmt(25:21)==17ten (11hex) f = d (double)

STANDARD

 (-1)S × (1 + Fraction) × 2(Exponent - Bias)

   where Single Precision Bias = 127, 
   Double Precision Bias = 1023.

IEEE Single Precision and
Double Precision Formats:

MEMORY ALLOCATION

   $sp 7fff fffchex

   $gp 1000 8000hex

1000 0000hex

   pc 0040 0000hex

0hex

DATA ALIGNMENT

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

EXCEPTION CODES

SIZE PREFIXES (10x for Disk, Communication; 2x for Memory)

The symbol for each prefix is just its first letter, except μ is used for micro.

MIPS 
opcode 
(31:26)

(1)  MIPS 
funct 
(5:0)

(2) MIPS 
funct 
(5:0)

Binary
Deci-

mal

Hexa-
deci-
mal

ASCII 
Char-
acter

Deci-
mal

Hexa-
deci-
mal

ASCII 
Char-
acter

(1) sll add.f 00 0000 0 0 NUL 64 40 @
sub.f 00 0001 1 1 SOH 65 41 A

j srl mul.f 00 0010 2 2 STX 66 42 B
jal sra div.f 00 0011 3 3 ETX 67 43 C
beq sllv sqrt.f 00 0100 4 4 EOT 68 44 D
bne abs.f 00 0101 5 5 ENQ 69 45 E
blez srlv mov.f 00 0110 6 6 ACK 70 46 F
bgtz srav neg.f 00 0111 7 7 BEL 71 47 G
addi jr 00 1000 8 8 BS 72 48 H
addiu jalr 00 1001 9 9 HT 73 49 I
slti movz 00 1010 10 a LF 74 4a J
sltiu movn 00 1011 11 b VT 75 4b K
andi syscall round.w.f 00 1100 12 c FF 76 4c L
ori break trunc.w.f 00 1101 13 d CR 77 4d M
xori ceil.w.f 00 1110 14 e SO 78 4e N
lui sync floor.w.f 00 1111 15 f SI 79 4f O

mfhi 01 0000 16 10 DLE 80 50 P
(2) mthi 01 0001 17 11 DC1 81 51 Q

mflo movz.f 01 0010 18 12 DC2 82 52 R
mtlo movn.f 01 0011 19 13 DC3 83 53 S

01 0100 20 14 DC4 84 54 T
01 0101 21 15 NAK 85 55 U
01 0110 22 16 SYN 86 56 V
01 0111 23 17 ETB 87 57 W

mult 01 1000 24 18 CAN 88 58 X
multu 01 1001 25 19 EM 89 59 Y
div 01 1010 26 1a SUB 90 5a Z
divu 01 1011 27 1b ESC 91 5b [

01 1100 28 1c FS 92 5c \
01 1101 29 1d GS 93 5d ]
01 1110 30 1e RS 94 5e ^
01 1111 31 1f US 95 5f _

lb add cvt.s.f 10 0000 32 20 Space 96 60 ‘
lh addu cvt.d.f 10 0001 33 21 ! 97 61 a
lwl sub 10 0010 34 22 " 98 62 b
lw subu 10 0011 35 23 # 99 63 c
lbu and cvt.w.f 10 0100 36 24 $ 100 64 d
lhu or 10 0101 37 25 % 101 65 e
lwr xor 10 0110 38 26 & 102 66 f

nor 10 0111 39 27 ’ 103 67 g
sb 10 1000 40 28 ( 104 68 h
sh 10 1001 41 29 ) 105 69 i
swl slt 10 1010 42 2a * 106 6a j
sw sltu 10 1011 43 2b + 107 6b k

10 1100 44 2c , 108 6c l
10 1101 45 2d - 109 6d m

swr 10 1110 46 2e . 110 6e n
cache 10 1111 47 2f / 111 6f o
ll tge c.f.f 11 0000 48 30 0 112 70 p
lwc1 tgeu c.un.f 11 0001 49 31 1 113 71 q
lwc2 tlt c.eq.f 11 0010 50 32 2 114 72 r
pref tltu c.ueq.f 11 0011 51 33 3 115 73 s

teq c.olt.f 11 0100 52 34 4 116 74 t
ldc1 c.ult.f 11 0101 53 35 5 117 75 u
ldc2 tne c.ole.f 11 0110 54 36 6 118 76 v

c.ule.f 11 0111 55 37 7 119 77 w
sc c.sf.f 11 1000 56 38 8 120 78 x
swc1 c.ngle.f 11 1001 57 39 9 121 79 y
swc2 c.seq.f 11 1010 58 3a : 122 7a z

c.ngl.f 11 1011 59 3b ; 123 7b {
c.lt.f 11 1100 60 3c < 124 7c |

sdc1 c.nge.f 11 1101 61 3d = 125 7d }
sdc2 c.le.f 11 1110 62 3e > 126 7e ~

c.ngt.f 11 1111 63 3f ? 127 7f DEL

S Exponent Fraction
31 30  23 22 0

S Exponent Fraction
63 62  52 51 0

Double Word
Word Word

Byte Byte Byte Byte Byte Byte Byte Byte
0 1 2 3 4 5 6 7

Value of three least significant bits of byte address (Big Endian)

B
D

Interrupt 
Mask

Exception
Code

31  15 8 6 2

Pending 
Interrupt

U
M

E
L

I
E

 15 8 4 1 0

Number Name Cause of Exception Number Name Cause of Exception
0 Int Interrupt (hardware) 9 Bp Breakpoint Exception

4 AdEL
Address Error Exception
(load or instruction fetch)

10 RI
Reserved Instruction 

Exception

5 AdES
Address Error Exception

  (store)
11 CpU

Coprocessor 
Unimplemented

6 IBE
Bus Error on 

Instruction Fetch
12 Ov

Arithmetic Overflow 
Exception

7 DBE
Bus Error on 
Load or Store

13 Tr Trap

8 Sys Syscall Exception 15 FPE Floating Point Exception

SIZE
PRE-
FIX SIZE

PRE-
FIX SIZE

PRE-
FIX SIZE

PRE-
FIX

103, 210 Kilo- 1015, 250 Peta- 10-3 milli- 10-15 femto-
106, 220 Mega- 1018, 260 Exa- 10-6 micro- 10-18 atto-
109, 230 Giga- 1021, 270 Zetta- 10-9 nano- 10-21 zepto-
1012, 240 Tera- 1024, 280 Yotta- 10-12 pico- 10-24 yocto-

3

Stack

Dynamic Data

Static Data

Text

Reserved

IEEE 754 Symbols

S.P. MAX = 255, D.P. MAX = 2047

Exponent Fraction Object
0 0  ± 0
0 ≠0 ± Denorm

1 to MAX - 1 anything ± Fl. Pt. Num.
MAX 0 ±∞
MAX ≠0 NaN

STACK FRAME
Higher
Memory
Addresses

Lower
Memory
Addresses

Stack
Grows

$sp

$fp
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IEEE 754 FLOATING-POINT

Halfword Halfword Halfword Halfword

 BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable
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In Praise of Computer Organization and Design: The Hardware/
Software Interface, Revised Fourth Edition

“Patterson and Hennessy not only improve the pedagogy of the traditional mate-
rial on pipelined processors and memory hierarchies, but also greatly expand the 
multiprocessor coverage to include emerging multicore processors and GPUs. The 
fourth edition of Computer Organization and Design sets a new benchmark against 
which all other architecture books must be compared.”

—David A. Wood, University of Wisconsin-Madison

“Patterson and Hennessy have greatly improved what was already the gold stan-
dard of textbooks. In the rapidly evolving field of computer architecture, they have 
woven an impressive number of recent case studies and contemporary issues into 
a framework of time-tested fundamentals.”

—Fred Chong, University of California at Santa Barbara

“Since the publication of the first edition in 1994, Computer Organization and 
Design has introduced a generation of computer science and engineering students 
to computer architecture. Now, many of those students have become leaders in the 
field. In academia, the tradition continues as faculty use the latest edition of the 
book that inspired them to engage the next generation. With the fourth  edition, 
readers are prepared for the next era of computing.”

—David I. August, Princeton University

“The new coverage of multiprocessors and parallelism lives up to the standards 
of this well-written classic. It provides well-motivated, gentle introductions to the 
new topics, as well as many details and examples drawn from current hardware.”

—John Greiner, Rice University

“As computer hardware architecture moves from uniprocessor to multicores, the 
parallel programming environments used to take advantage of these cores will be 
a defining challenge to the success of these new systems. In the multicore systems, 
the interface between the hardware and software is of particular importance. This 
new edition of Computer Organization and Design is mandatory for any student 
who wishes to understand multicore architecture including the interface between 
programming it and its architecture.”

—Jesse Fang, Director of Programming System Lab at Intel

“The fourth edition of Computer Organization and Design continues to improve 
the high standards set by the previous editions. The new content, on trends that 
are reshaping computer systems including multicores, Flash memory, GPUs, etc., 
makes this edition a must read—even for all of those who grew up on previous 
editions of the book.”

—Parthasarathy Ranganathan, Principal Research Scientist, HP Labs
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Preface

The most beautiful thing we can experience is the mysterious. 
It is the source of all true art and science.

Albert Einstein, What I Believe, 1930

About This Book
We believe that learning in computer science and engineering should reflect the 
current state of the field, as well as introduce the principles that are shaping com-
puting. We also feel that readers in every specialty of computing need to appreciate 
the organizational paradigms that determine the capabilities, performance, and, 
ultimately, the success of computer systems. 

Modern computer technology requires professionals of every computing spe-
cialty to understand both hardware and software. The interaction between hard-
ware and software at a variety of levels also offers a framework for under standing 
the fundamentals of computing. Whether your primary interest is hardware or 
software, computer science or electrical engineering, the central ideas in computer 
organization and design are the same. Thus, our emphasis in this book is to show 
the relationship between hardware and software and to focus on the concepts that 
are the basis for current computers.

The recent switch from uniprocessor to multicore microprocessors confirmed 
the soundness of this perspective, given since the first edition. While programmers 
could ignore the advice and rely on computer architects, compiler writers, and 
silicon engineers to make their programs run faster without change, that era is over. 
For programs to run faster, they must become parallel. While the goal of many 
researchers is to make it possible for programmers to be unaware of the underlying 
parallel nature of the hardware they are programming, it will take many years to 
realize this vision. Our view is that for at least the next decade, most programmers 
are going to have to understand the hardware/software interface if they want 
programs to run efficiently on parallel computers.

The audience for this book includes those with little experience in assembly 
language or logic design who need to understand basic computer organization as 
well as readers with backgrounds in assembly language and/or logic design who 
want to learn how to design a computer or understand how a system works and 
why it performs as it does.
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About the Other Book
Some readers may be familiar with Computer Architecture: A Quantitative Approach, 
popularly known as Hennessy and Patterson. (This book in turn is often called 
 Patterson and Hennessy.) Our motivation in writing the earlier book was to describe 
the principles of computer architecture using solid engineering fundamentals and 
quantitative cost/performance tradeoffs. We used an approach that combined exam-
ples and measurements, based on commercial systems, to create realistic design 
experiences. Our goal was to demonstrate that computer architecture could be 
learned using quantitative methodologies instead of a descriptive approach. It was 
intended for the serious computing professional who wanted a detailed under-
standing of computers.

A majority of the readers for this book do not plan to become computer archi-
tects. The performance and energy efficiency of future software systems will be 
 dramatically affected, however, by how well software designers understand the basic 
hardware techniques at work in a system. Thus, compiler writers, operating system 
designers, database programmers, and most other software engineers need a firm 
grounding in the principles presented in this book. Similarly, hardware designers 
must understand clearly the effects of their work on software applications. 

Thus, we knew that this book had to be much more than a subset of the  material 
in Computer Architecture, and the material was extensively revised to match the 
different audience. We were so happy with the result that the subsequent editions 
of Computer Architecture were revised to remove most of the introductory mate-
rial; hence, there is much less overlap today than with the first editions of both 
books.

Changes for the Fourth Edition
We had five major goals for the fourth edition of Computer Organization and 
Design: given the multicore revolution in microprocessors, highlight parallel 
hardware and software topics throughout the book; streamline the existing mate-
rial to make room for topics on parallelism; enhance pedagogy in general; update 
the technical content to reflect changes in the industry since the publication of the 
third edition in 2004; and restore the usefulness of exercises in this Internet age.

Before discussing the goals in detail, let’s look at the table on the next page. It 
shows the hardware and software paths through the material. Chapters 1, 4, 5, and 
7 are found on both paths, no matter what the experience or the focus. Chapter 1  
is a new introduction that includes a discussion on the importance of power and 
how it motivates the switch from single core to multicore microprocessors. It also 
includes performance and benchmarking material that was a separate chapter in 
the third edition. Chapter 2 is likely to be review material for the hardware- oriented, 
but it is essential reading for the software-oriented, especially for those readers 
interested in learning more about compilers and object-oriented  programming 
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Chapter or appendix Sections Software focus Hardware focus

1. Computer Abstractions
and Technology

1.1 to 1.9

      1.10 (History)

3. Arithmetic for Computers
3.1 to 3.9

      3.10 (History)

4. The Processor

4.1 (Overview)

4.2 (Logic Conventions)

4.3 to 4.4 (Simple Implementation)

E. RISC Instruction-Set Architectures       E.1 to E.19

2. Instructions: Language
of the Computer

2.1 to 2.14

      2.15 (Compilers & Java)

2.16 to 2.19

      2.20 (History)

4.5 (Pipelining Overview)

4.6 (Pipelined Datapath)

4.7 to 4.9 (Hazards, Exceptions)

4.10 to 4.11 (Parallel, Real Stuff)

      4.15 (History)

C. The Basics of Logic Design       C.1 to C.13

D. Mapping Control to Hardware       D.1 to D.6

B. Assemblers, Linkers, and
the SPIM Simulator

 B.1 to B.12

Read carefully

Review or read

Read if have time

Read for culture

Reference

      4.12 (Verilog Pipeline Control)

5. Large and Fast: Exploiting
Memory Hierarchy

5.1 to 5.8

      5.13 (History)

4.13 to 4.14 (Fallacies)

7. Multicores, Multiprocessors,
and Clusters

      7.1 to 7.13

      7.14 (History)

6. Storage and
Other I/O Topics

6.1 to 6.10

      6.11 (Networks)

6.12 to 6.13

      6.14 (History)

5.10 to 5.12

A. Graphics Processor Units       A.1 to A.12

      5.9 (Verilog Cache Controller)
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languages. It includes material from Chapter 3 in the third edition so that the 
complete MIPS architecture is now in a single chapter, minus the floating-point 
instructions. Chapter 3 is for readers interested in constructing a datapath or in 
learning more about floating-point arithmetic. Some will skip Chapter 3, either 
because they don’t need it or because it is a review. Chapter 4 combines two chap-
ters from the third edition to explain pipelined processors. Sections 4.1, 4.5, and 
4.10 give overviews for those with a software focus. Those with a hardware focus, 
however, will find that this chapter presents core material; they may also, depend-
ing on their background, want to read Appendix C on logic design first. Chapter 6 
on storage is critical to readers with a software focus, and should be read by others 
if time permits. The last chapter on multicores, multiprocessors, and clusters is 
mostly new content and should be read by everyone.

The first goal was to make parallelism a first class citizen in this edition, as it 
was a separate chapter on the CD in the last edition. The most obvious example is 
Chapter 7. In particular, this chapter introduces the Roofline performance model, 
and shows its value by evaluating four recent multicore architectures on two 
kernels. This model could prove to be as insightful for multicore microprocessors 
as the 3Cs model is for caches. 

Given the importance of parallelism, it wasn’t wise to wait until the last chapter 
to talk about, so there is a section on parallelism in each of the preceding six 
chapters:

■	 Chapter 1: Parallelism and Power. It shows how power limits have forced the 
industry to switch to parallelism, and why parallelism helps.

■	 Chapter 2: Parallelism and Instructions: Synchronization. This section dis-
cusses locks for shared variables, specifically the MIPS instructions Load 
Linked and Store Conditional.

■	 Chapter 3: Parallelism and Computer Arithmetic: Floating-Point Associativity. 
This section discusses the challenges of numerical precision and floating-
point calculations.

■	 Chapter 4: Parallelism and Advanced Instruction-Level Parallelism. It 
 covers advanced ILP—superscalar, speculation, VLIW, loop-unrolling, and  
OOO—as well as the relationship between pipeline depth and power 
consump tion.

■	 Chapter 5: Parallelism and Memory Hierarchies: Cache Coherence. It introduces 
coherency, consistency, and snooping cache protocols.

■	 Chapter 6: Parallelism and I/O: Redundant Arrays of Inexpensive Disks. It 
describes RAID as a parallel I/O system as well as a highly available ICO 
system.
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Chapter 7 concludes with reasons for optimism why this foray into parallelism 
should be more successful than those of the past.

I am particularly excited about the addition of an appendix on  Graphical 
 Processing Units written by NVIDIA’s chief scientist, David Kirk, and chief archi-
tect, John Nickolls. Appendix A is the first in-depth description of GPUs, which 
is a new and interesting thrust in computer architecture. The appendix builds 
upon the parallel themes of this edition to present a style of computing that allows 
the  programmer to think MIMD yet the hardware tries to execute in SIMD-style 
 whenever possible. As GPUs are both inexpensive and widely available—they are 
even found in many laptops—and their programming environments are freely 
available, they provide a parallel hardware platform that many could experiment 
with.

The second goal was to streamline the book to make room for new material in 
parallelism. The first step was simply going through all the paragraphs accumulated 
over three editions with a fine-toothed comb to see if they were still necessary. The 
coarse-grained changes were the merging of chapters and dropping of topics. Mark 
Hill suggested dropping the multicycle processor implementation and instead 
adding a multicycle cache controller to the memory hierarchy chapter. This allowed 
the processor to be presented in a single chapter instead of two, enhancing the 
processor material by omission. The performance material from a separate chapter 
in the third edition is now blended into the first chapter. 

The third goal was to improve the pedagogy of the book. Chapter 1 is now 
meatier, including performance, integrated circuits, and power, and it sets the stage 
for the rest of the book. Chapters 2 and 3 were originally written in an evolutionary 
style, starting with a “single celled” architecture and ending up with the full MIPS 
architecture by the end of Chapter 3. This leisurely style is not a good match to the 
modern reader. This edition merges all of the instruction set material for the integer 
instructions into Chapter 2—making Chapter 3 optional for many readers—and 
each section now stands on its own. The reader no longer needs to read all of the 
preceding sections. Hence, Chapter 2 is now even better as a reference than it was in 
prior editions. Chapter 4 works better since the processor is now a single chapter, as 
the multicycle implementation is a distraction today. Chapter 5 has a new section 
on building cache controllers, along with a new CD section containing the Verilog 
code for that cache.

The accompanying CD-ROM introduced in the third edition allowed us to 
reduce the cost of the book by saving pages as well as to go into greater depth on 
topics that were of interest to some but not all readers. Alas, in our enthusiasm 
to save pages, readers sometimes found themselves going back and forth between 
the CD and book more often than they liked. This should not be the case in this 
edition. Each chapter now has the Historical Perspectives section on the CD and 
four chapters also have one advanced material section on the CD. Additionally, all 
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exercises are in the printed book, so flipping between book and CD should be rare 
in this edition. 

For those of you who wonder why we include a CD-ROM with the book, 
the answer is simple: the CD contains content that we feel should be easily and 
immediately accessible to the reader no matter where they are. If you are interested 
in the advanced content, or would like to review a VHDL tutorial (for example), it 
is on the CD, ready for you to use. The CD-ROM also includes a feature that should 
greatly enhance your study of the material: a search engine is included that allows 
you to search for any string of text, in the printed book or on the CD itself. If you 
are hunting for content that may not be included in the book’s printed index, you 
can simply enter the text you’re searching for and the page number it appears on 
will be displayed in the search results. This is a very useful feature that we hope you 
make frequent use of as you read and review the book.

This is a fast-moving field, and as is always the case for our new editions, an 
important goal is to update the technical content. The AMD Opteron X4 model 
2356 (code named “Barcelona”) serves as a running example throughout the book, 
and is found in Chapters 1, 4, 5, and 7. Chapters 1 and 6 add results from the new 
power benchmark from SPEC. Chapter 2 adds a section on the ARM architec-
ture, which is currently the world’s most popular 32-bit ISA. Chapter 5 adds a new 
section on Virtual Machines, which are resurging in importance. Chapter 5 has 
detailed cache performance measurements on the Opteron X4 multicore and a 
few details on its rival, the Intel Nehalem, which will not be announced until after 
this edition is published. Chapter 6 describes Flash Memory for the first time as 
well as a remarkably compact server from Sun, which crams 8 cores, 16 DIMMs, 
and 8 disks into a single 1U bit. It also includes the recent results on long-term 
disk failures. Chapter 7 covers a wealth of topics regarding parallelism—including 
multithreading, SIMD, vector, GPUs, performance models, benchmarks, multipro-
cessor networks—and describes three multicores plus the Opteron X4: Intel Xeon 
model e5345 (Clovertown), IBM Cell model QS20, and the Sun Microsystems T2 
model 5120 (Niagara 2).

The final goal was to try to make the exercises useful to instructors in this Internet 
age, for homework assignments have long been an important way to learn material. 
Alas, answers are posted today almost as soon as the book appears. We have a two-
part approach. First, expert contributors have worked to develop entirely new 
exercises for each chapter in the book. Second, most exercises have a qualitative 
description supported by a table that provides several alternative quantitative 
parameters needed to answer this question. The sheer number plus flexibility in 
terms of how the instructor can choose to assign variations of exercises will make 
it hard for students to find the matching solutions online. Instructors will also be 
able to change these quantitative parameters as they wish, again frustrating those 
students who have come to rely on the Internet to provide solutions for a static and 
unchanging set of exercises. We feel this new approach is a valuable new addition 
to the book—please let us know how well it works for you, either as a student or 
instructor!
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We have preserved useful book elements from prior editions. To make the book 
work better as a reference, we still place definitions of new terms in the margins 
at their first occurrence. The book element called “Understanding Program Per-
formance” sections helps readers understand the performance of their programs 
and how to improve it, just as the “Hardware/Software Interface” book element 
helped readers understand the tradeoffs at this interface. “The Big Picture” section 
remains so that the reader sees the forest even despite all the trees. “Check Yourself” 
sections help readers to confirm their comprehension of the material on the first 
time through with answers provided at the end of each chapter. This edition also 
includes the green MIPS reference card, which was inspired by the “Green Card” of 
the IBM System/360. The removable card has been updated and should be a handy 
reference when writing MIPS assembly language programs.

Instructor Support
We have collected a great deal of material to help instructors teach courses using this 
book. Solutions to exercises, chapter quizzes, figures from the book, lecture notes, 
lecture slides, and other materials are available to adopters from the publisher. 
Check the publisher’s Web site for more information: 

-

Concluding Remarks
If you read the following acknowledgments section, you will see that we went to 
great lengths to correct mistakes. Since a book goes through many printings, we 
have the opportunity to make even more corrections. If you uncover any remaining, 
resilient bugs, please contact the publisher by electronic mail at cod4bugs@mkp.
com or by low-tech mail using the address found on the copyright page.

This edition marks a break in the long-standing collaboration between  Hennessy 
and Patterson, which started in 1989. The demands of running one of the world’s 
great universities meant that President Hennessy could no longer make the sub-
stantial commitment to create a new edition. The remaining author felt like a jug-
gler who had always performed with a partner who suddenly is thrust on the stage 
as a solo act. Hence, the people in the acknowledgments and Berkeley colleagues 
played an even larger role in shaping the contents of this book. Nevertheless, this 
time around there is only one author to blame for the new material in what you 
are about to read.

Acknowledgments for the Fourth Edition
I’d like to thank David Kirk, John Nickolls, and their colleagues at NVIDIA (Michael 
Garland, John Montrym, Doug Voorhies, Lars Nyland, Erik Lindholm, Paulius 
Micikevicius, Massimiliano Fatica, Stuart Oberman, and Vasily Volkov) for writing 

textbooks.elsevier.com/9780123747501

mailto:cod4bugs@mkp.com
mailto:cod4bugs@mkp.com
http://textbooks.elsevier.com/9780123744937
http://textbooks.elsevier.com/9780123744937
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the first in-depth appendix on GPUs. I’d like to express again my appreciation to 
Jim Larus of Microsoft Research for his willingness in contributing his expertise on 
assembly language programming, as well as for welcoming readers of this book to 
use the simulator he developed and maintains. 

I am also very grateful for the contributions of the many experts who developed 
the new exercises for this new edition. Writing good exercises is not an easy task, 
and each contributor worked long and hard to develop problems that are both 
challenging and engaging: 

■	 Chapter 1: Javier Bruguera (Universidade de Santiago de Compostela)

■	 Chapter 2: John Oliver (Cal Poly, San Luis Obispo), with contributions from 
Nicole Kaiyan (University of Adelaide) and Milos Prvulovic (Georgia Tech)

■	 Chapter 3: Matthew Farrens (University of California, Davis)

■	 Chapter 4: Milos Prvulovic (Georgia Tech)

■	 Chapter 5: Jichuan Chang, Jacob Leverich, Kevin Lim, and Partha 
Ranganathan (all from Hewlett-Packard), with contributions from Nicole 
Kaiyan (University of Adelaide)

■	 Chapter 6: Perry Alexander (The University of Kansas)

■	 Chapter 7: David Kaeli (Northeastern University)

Peter Ashenden took on the Herculean task of editing and evaluating all of the 
new exercises. Moreover, he even added the substantial burden of developing the 
companion CD and new lecture slides.

Thanks to David August and Prakash Prabhu of Princeton University for their 
work on the chapter quizzes that are available for instructors on the publisher’s 
Web site. 

I relied on my Silicon Valley colleagues for much of the technical material that 
this book relies upon:

■	 AMD—for the details and measurements of the Opteron X4 (Barcelona): 
William Brantley, Vasileios Liaskovitis, Chuck Moore, and Brian 
Waldecker.

■	 Intel—for the prereleased information on the Intel Nehalem: Faye Briggs.

■	 Micron—for background on Flash Memory in Chapter 6: Dean Klein.

■	 Sun Microsystems—for the measurements of the instruction mixes for the 
SPEC CPU2006 benchmarks in Chapter 2 and details and measurements of 
the Sun Server x4150 in Chapter 6: Yan Fisher, John Fowler, Darryl Gove, 
Paul Joyce, Shenik Mehta, Pierre Reynes, Dimitry Stuve, Durgam Vahia, 
and David Weaver.

■	 U.C. Berkeley—Krste Asanovic (who supplied the idea for software 
concurrency versus hardware parallelism in Chapter 7), James Demmel 
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and Velvel Kahan (who commented on parallelism and floating-point 
calculations), Zhangxi Tan (who designed the cache controller and wrote the 
Verilog for it in Chapter 5), Sam Williams (who supplied the roofline model 
and the multicore measurements in Chapter 7), and the rest of my colleagues 
in the Par Lab who gave extensive suggestions and feedback on parallelism 
topics found throughout the book. 

I am grateful to the many instructors who answered the publisher’s surveys, 
reviewed our proposals, and attended focus groups to analyze and respond to our 
plans for this edition. They include the following individuals: Focus Group: Mark 
Hill (University of Wisconsin, Madison), E.J. Kim (Texas A&M University), Jihong 
Kim (Seoul National University), Lu Peng (Louisiana State University), Dean Tullsen 
(UC San Diego), Ken Vollmar (Missouri State University), David Wood (University 
of Wisconsin, Madison), Ki Hwan Yum (University of Texas, San Antonio); Surveys 
and Reviews: Mahmoud Abou-Nasr (Wayne State University), Perry Alexander (The 
University of Kansas), Hakan Aydin (George Mason University), Hussein Badr (State 
University of New York at Stony Brook), Mac Baker (Virginia Military Institute), 
Ron Barnes (George Mason University), Douglas Blough (Georgia Institute of 
Technology), Kevin Bolding (Seattle Pacific University), Miodrag Bolic (University 
of Ottawa), John Bonomo (Westminster College), Jeff Braun (Montana Tech), Tom 
Briggs (Shippensburg University), Scott Burgess (Humboldt State University), Fazli 
Can (Bilkent University), Warren R. Carithers (Rochester Institute of Technology), 
Bruce Carlton (Mesa Community College), Nicholas Carter (University of Illinois 
at Urbana-Champaign), Anthony Cocchi (The City University of New York), Don 
Cooley (Utah State University), Robert D. Cupper (Allegheny College), Edward W. 
Davis (North Carolina State University), Nathaniel J. Davis (Air Force Institute of 
Technology), Molisa Derk (Oklahoma City University), Derek Eager (University of 
Saskatchewan), Ernest Ferguson (Northwest Missouri State University), Rhonda 
Kay Gaede (The University of Alabama), Etienne M. Gagnon (UQAM), Costa 
Gerousis (Christopher Newport University), Paul Gillard (Memorial University of 
Newfoundland), Michael Goldweber (Xavier University), Georgia Grant (College 
of San Mateo), Merrill Hall (The Master’s College), Tyson Hall (Southern Adventist 
University), Ed Harcourt (Lawrence University), Justin E. Harlow (University of 
South Florida), Paul F. Hemler (Hampden-Sydney College), Martin Herbordt 
(Boston University), Steve J. Hodges (Cabrillo College), Kenneth Hopkinson 
(Cornell University), Dalton Hunkins (St. Bonaventure University), Baback 
Izadi (State University of New York—New Paltz), Reza Jafari, Robert W. Johnson 
(Colorado Technical University), Bharat Joshi (University of North Carolina, 
Charlotte), Nagarajan Kandasamy (Drexel University), Rajiv Kapadia, Ryan 
Kastner (University of California, Santa Barbara), Jim Kirk (Union University), 
Geoffrey S. Knauth (Lycoming College), Manish M. Kochhal (Wayne State), Suzan 
Koknar-Tezel (Saint Joseph’s University), Angkul Kongmunvattana (Columbus 
State University), April Kontostathis (Ursinus College), Christos Kozyrakis  
(Stanford University), Danny Krizanc (Wesleyan University), Ashok Kumar, 
S. Kumar (The University of Texas), Robert N. Lea (University of Houston),  
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Baoxin Li (Arizona State University), Li Liao (University of Delaware), Gary 
Livingston (University of Massachusetts), Michael Lyle, Douglas W. Lynn (Oregon 
Institute of Technology), Yashwant K Malaiya (Colorado State University), Bill 
Mark (University of Texas at Austin), Ananda Mondal (Claflin University), Alvin 
Moser (Seattle University), Walid Najjar (University of California, Riverside), 
Danial J. Neebel (Loras College), John Nestor (Lafayette College), Joe Oldham 
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 1.1 Introduction

Welcome to this book! We’re delighted to have this opportunity to convey the 
excitement of the world of computer systems. This is not a dry and dreary field, 
where progress is glacial and where new ideas atrophy from neglect. No! Comput
ers are the product of the incredibly vibrant information technology industry, all 
aspects of which are responsible for almost 10% of the gross national product of 
the United States, and whose economy has become dependent in part on the rapid 
improvements in information technology promised by Moore’s law. This unusual 
industry embraces innovation at a breath taking rate. In the last 25 years, there have 
been a number of new computers whose introduction appeared to rev olutionize 
the computing industry; these revolutions were cut short only because someone 
else built an even better computer. 

This race to innovate has led to unprecedented progress since the inception of 
electronic computing in the late 1940s. Had the transportation industry kept pace 
with the computer industry, for example, today we could travel from New York 
to London in about a  second for roughly a few cents. Take just a moment to 
contemplate how such an improvement would change society—living in Tahiti 
while working in San Francisco, going to Moscow for an evening at the Bolshoi 
Ballet—and you can appreciate the implications of such a change. 
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Computers have led to a third revolution for civilization, with the information 
revolution taking its place alongside the agricultural and the industrial revolu
tions. The resulting multiplication of humankind’s intellectual strength and reach 
naturally has affected our everyday lives profoundly and changed the ways in which 
the search for new knowledge is carried out. There is now a new vein of sci entific 
investigation, with computational scientists joining theoretical and experi mental 
scientists in the exploration of new frontiers in astronomy, biol ogy, chemistry, and 
physics, among others.

The computer revolution continues. Each time the cost of computing improves 
by another factor of 10, the opportunities for computers multiply. Applications 
that were economically infeasible suddenly become practical. In the recent past, the 
following applications were “computer science fiction.”

 ■ Computers in automobiles: Until microprocessors improved dramatically in 
price and performance in the early 1980s, computer control of cars was ludi
crous. Today, computers reduce pollution, improve fuel efficiency via engine 
controls, and increase safety through the prevention of dangerous skids and 
through the inflation of air bags to protect occupants in a crash. 

 ■ Cell phones: Who would have dreamed that advances in computer systems 
would lead to mobile phones, allowing persontoperson communication 
almost anywhere in the world?

 ■ Human genome project: The cost of computer equipment to map and ana
lyze human DNA sequences is hundreds of millions of dollars. It’s unlikely 
that anyone would have considered this project had the computer costs been 
10 to 100 times higher, as they would have been 10 to 20 years ago. More
over, costs continue to drop; you may be able to acquire your own genome, 
allowing medical care to be tailored to you.

 ■ World Wide Web: Not in existence at the time of the first edition of this book, 
the World Wide Web has transformed our society. For many, the WWW has 
replaced libraries. 

 ■ Search engines: As the content of the WWW grew in size and in value, find
ing relevant information became increasingly important. Today, many peo
ple rely on search engines for such a large part of their lives that it would be a 
hardship to go without them.

Clearly, advances in this technology now affect almost every aspect of our soci
ety. Hardware advances have allowed programmers to create wonderfully useful 
software, which explains why computers are omnipresent. Today’s science fiction 
suggests tomorrow’s killer applications: already on their way are virtual worlds, 
practical speech recognition, and personalized health care.
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Classes of Computing Applications and Their Characteristics

Although a common set of hardware technologies (see Sections 1.3 and 1.7) is used 
in computers ranging from smart home appliances to cell phones to the larg est 
supercomputers, these different applications have different design require ments 
and employ the core hardware technologies in different ways. Broadly speaking, 
computers are used in three different classes of applications. 

Desktop computers are possibly the bestknown form of computing and are 
characterized by the personal computer, which readers of this book have likely used 
extensively. Desktop computers emphasize delivery of good performance to single 
users at low cost and usually execute thirdparty software. The evolution of many 
computing technologies is driven by this class of computing, which is only about 
30 years old!

Servers are the modern form of what were once mainframes, minicomputers, 
and supercomputers, and are usually accessed only via a network. Servers are ori
ented to carrying large workloads, which may consist of either single complex 
applications—usually a scientific or engineering application—or handling many 
small jobs, such as would occur in building a large Web server. These applications 
are usually based on software from another source (such as a database or simula
tion system), but are often modified or customized for a particular function. Serv
ers are built from the same basic technology as desktop computers, but provide for 
greater expandability of both computing and input/output capacity. In gen eral, 
servers also place a greater emphasis on dependability, since a crash is usually more 
costly than it would be on a singleuser desktop computer. 

Servers span the widest range in cost and capability. At the low end, a server 
may be little more than a desktop computer without a screen or keyboard and 
cost a thousand dollars. These lowend servers are typically used for file storage, 
small business applications, or simple Web serving (see Section 6.10). At the other 
extreme are supercomputers, which at the present consist of hundreds to thou
sands of processors and usually terabytes of memory and petabytes of storage, and 
cost millions to hundreds of millions of dollars. Supercomputers are usually used 
for highend scientific and engineering calculations, such as weather fore casting, 
oil exploration, protein structure determination, and other largescale problems. 
Although such supercomputers represent the peak of computing capa bility, they 
represent a relatively small fraction of the servers and a relatively small fraction of 
the overall computer market in terms of total revenue.

Although not called supercomputers, Internet datacenters used by companies 
like eBay and Google also contain thousands of processors, terabytes of memory, 
and petabytes of storage. These are usually considered as large clusters of comput
ers (see Chapter 7).

Embedded computers are the largest class of computers and span the wid
est range of applications and performance. Embedded computers include the 

desktop computer  
A com puter designed 
for use by an individual, 
usually incorporat ing a 
graphics display, a key
board, and a mouse.

server A computer 
used for running larger 
programs for multiple 
users, often simulta neously, 
and typically accessed only 
via a network.

supercomputer A class 
of computers with the 
highest per formance and 
cost; they are con figured 
as servers and typically 
cost millions of dollars.

terabyte Originally 
1,099,511,627,776 (240) 
bytes,  although some 
communica tions and 
secondary  storage sys tems 
have redefined it to mean 
1,000,000,000,000 (1012) 
bytes.

petabyte Depending 
on the situation, either 
1000 or 1024 terabytes.

datacenter A room or 
building designed to 
handle the power, cooling, 
and networking needs of 
a large number of servers.

embedded computer 
A com puter inside 
another device used 
for running one 
predetermined application 
or collection of  software.
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 microprocessors found in your car, the computers in a cell phone, the computers 
in a video game or television, and the networks of processors that control a mod
ern airplane or cargo ship. Embedded computing systems are designed to run one 
application or one set of related applications, that are normally integrated with 
the hardware and delivered as a single system; thus, despite the large number of 
embedded computers, most users never really see that they are using a computer! 

Figure 1.1 shows that during the last several years, the growth in cell phones that 
rely on embedded computers has been much faster than the growth rate of desktop 
computers. Note that the embedded computers are also found in digital TVs and 
settop boxes, automobiles, digital cameras, music players, video games, and a 
variety of other such consumer devices, which further increases the gap between 
the number of embedded computers and desktop computers.
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FIGURE 1.1 The number of cell phones, personal computers, and televisions manufactured 
per year between 1997 and 2007. (We have television data only from 2004.) More than a billion new 
cell phones were shipped in 2006. Cell phones sales exceeded PCs by only a factor of 1.4 in 1997, but the 
ratio grew to 4.5 in 2007. The total number in use in 2004 is estimated to be about 2.0B televisions, 1.8B cell 
phones, and 0.8B PCs. As the world population was about 6.4B in 2004, there were approximately one PC, 
2.2 cell phones, and 2.5 televisions for every eight people on the planet. A 2006 survey of U.S. families found 
that they owned on average 12 gadgets, including three TVs, 2 PCs, and other devices such as game consoles, 
MP3 players, and cell phones. 
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Embedded applications often have unique application requirements that 
 combine a minimum performance with stringent limitations on cost or power. For 
example, consider a music player: the processor need only be as fast as necessary to 
handle its limited function, and beyond that, minimizing cost and power are the 
most important objectives. Despite their low cost, embedded computers often have 
lower tolerance for failure, since the results can vary from upsetting (when your 
new television crashes) to devastating (such as might occur when the com puter in 
a plane or cargo ship crashes). In consumeroriented embedded applica tions, such 
as a digital home appliance, dependability is achieved primarily through simplic
ity—the emphasis is on doing one function as perfectly as possi ble. In large embed
ded systems, techniques of redundancy from the server world are often employed 
(see Section 6.9). Although this book focuses on generalpur pose computers, most 
concepts apply directly, or with slight modifications, to embedded computers. 

Elaboration:  Elaborations are short sections used throughout the text to provide more 
detail on a particular subject that may be of interest. Disinterested readers may skip 
over an elabo ration, since the subsequent material will never depend on the contents 
of the elaboration.

Many embedded processors are designed using processor cores, a version of a proces-
sor written in a hardware description language, such as Verilog or VHDL (see Chapter 4).  
The core allows a designer to integrate other application-specific hardware with the pro-
cessor core for fabrication on a single chip.

What You Can Learn in This Book

Successful programmers have always been concerned about the performance of 
their programs, because getting results to the user quickly is critical in creating 
successful software. In the 1960s and 1970s, a primary constraint on computer 
performance was the size of the computer’s memory. Thus, programmers often 
followed a simple credo: minimize memory space to make  programs fast. In the 
last decade, advances in computer design and memory technology have greatly 
reduced the importance of small memory size in most applications other than 
those in embedded computing systems. 

Programmers interested in performance now need to understand the issues 
that have replaced the simple memory model of the 1960s: the parallel nature of 
processors and the hierarchical nature of memories. Programmers who seek to build 
competitive versions of compilers, operating systems, databases, and even applications 
will therefore need to increase their knowledge of computer organization.

We are honored to have the opportunity to explain what’s inside this revolution
ary machine, unraveling the software below your program and the hard ware under 
the covers of your computer. By the time you complete this book, we believe you 
will be able to answer the following questions:
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 ■ How are programs written in a highlevel language, such as C or Java, trans
lated into the language of the hardware, and how does the hardware execute 
the resulting program? Comprehending these concepts forms the basis of 
understanding the aspects of both the hardware and software that affect 
program performance.

 ■ What is the interface between the software and the hardware, and how does 
software instruct the hardware to perform needed functions? These con cepts 
are vital to understanding how to write many kinds of software.

 ■ What determines the performance of a program, and how can a program
mer improve the performance? As we will see, this depends on the original 
program, the software translation of that program into the computer’s 
language, and the effectiveness of the hardware in executing the program.

 ■ What techniques can be used by hardware designers to improve perfor mance? 
This book will introduce the basic concepts of modern computer design. The 
interested reader will find much more material on this topic in our advanced 
book, Computer Architecture: A Quantitative Approach. 

 ■ What are the reasons for and the consequences of the recent switch from 
sequential processing to parallel processing? This book gives the motivation, 
describes the current hardware mechanisms to support parallelism, and 
surveys the new generation of “multicore” microprocessors (see Chapter 7).

Without understanding the answers to these questions, improving the perfor
mance of your program on a modern computer, or evaluating what features might 
make one computer better than another for a particular application, will be a 
complex process of trial and error, rather than a scientific procedure driven by 
insight and analysis.

This first chapter lays the foundation for the rest of the book. It introduces the 
basic ideas and definitions, places the major components of software and hard ware 
in perspective, shows how to evaluate performance and power, introduces inte
grated circuits (the technology that fuels the computer revolution), and explains 
the shift to multicores.

In this chapter and later ones, you will likely see many new words, or words 
that you may have heard but are not sure what they mean. Don’t panic! Yes, there 
is a lot of special terminology used in describing modern computers, but the ter
minology actually helps, since it enables us to describe precisely a function or 
capability. In addition, computer designers (including your authors) love using 
acronyms, which are easy to understand once you know what the letters stand for! 
To help you remember and locate terms, we have included a highlighted defini
tion of every term in the margins the first time it appears in the text. After a short 
time of working with the terminology, you will be fluent, and your friends will 
be impressed as you correctly use acronyms such as BIOS, CPU, DIMM, DRAM, 
PCIE, SATA, and many others.

multicore 
microprocessor A 
microprocessor containing 
mul tiple processors 
(“cores”) in a single 
integrated circuit.

acronym A word 
constructed by taking the 
initial letters of a string of 
words. For example:  
RAM is an acronym for 
Ran dom Access Memory, 
and CPU is an acronym 
for Central Processing 
Unit.
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To reinforce how the software and hardware systems used to run a program will 
affect performance, we use a special section, Understanding Program Perfor mance, 
throughout the book to summarize important insights into program performance. 
The first one appears below.

The performance of a program depends on a combination of the effectiveness of 
the algorithms used in the program, the software systems used to create and trans
late the program into machine instructions, and the effectiveness of the computer 
in executing those instructions, which may include input/output (I/O) opera tions. 
This table summarizes how the hardware and software affect performance.

Understanding 
Program 
Performance

Hardware or software 
component

How this component affects 
performance

Where is this 
topic covered?

Algorithm Determines both the number of source-level 
statements and the number of I/O operations 
executed

Other books!

Programming language, 
compiler, and architecture

Determines the number of computer 
instructions for each source-level statement 

Chapters 2 and 3

Processor and memory system Determines how fast instructions can be 
executed

Chapters 4, 5, and 7

I/O system (hardware and 
operating system)

Determines how fast I/O operations may be 
executed 

Chapter 6

Check Yourself sections are designed to help readers assess whether they compre
hend the major concepts introduced in a chapter and understand the implications 
of those concepts. Some Check Yourself questions have simple answers; others are 
for discussion among a group. Answers to the specific ques tions can be found at 
the end of the chapter. Check Yourself questions appear only at the end of a section, 
making it easy to skip them if you are sure you under stand the material.

1. Section 1.1 showed that the number of embedded processors sold every year 
greatly outnumbers the number of desktop processors. Can you con firm or 
deny this insight based on your own experience? Try to count the number of 
embedded processors in your home. How does it compare with the number 
of desktop computers in your home?

2. As mentioned earlier, both the software and hardware affect the performance 
of a program. Can you think of examples where each of the follow ing is the 
right place to look for a performance bottleneck?

 ■ The algorithm chosen

 ■ The programming language or compiler

 ■ The operating system

 ■ The processor

 ■ The I/O system and devices

Check  
Yourself
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 1.2 Below Your Program

A typical application, such as a word processor or a large database system, may 
consist of millions of lines of code and rely on sophisticated software libraries that 
implement complex functions in support of the application. As we will see, the 
hardware in a computer can only execute extremely simple lowlevel instructions. 
To go from a complex application to the simple instructions involves several layers 
of software that interpret or translate highlevel operations into simple computer 
instructions.

Figure 1.2 shows that these layers of software are organized primarily in a hier 
archical fashion, with applications being the outermost ring and a variety of 
systems software sitting between the hardware and applications software.

There are many types of systems software, but two types of systems software are 
central to every computer system today: an operating system and a compiler. An 
operating system interfaces between a user’s program and the hardware and pro
vides a variety of services and supervisory functions. Among the most important 
functions are

 ■ Handling basic input and output operations

 ■ Allocating storage and memory

 ■ Providing for protected sharing of the computer among multiple applications 
using it simultaneously. 

Examples of operating systems in use today are Linux, MacOS, and Windows.

In Paris they simply 
stared when I spoke to 
them in French; I never 
did succeed in making 
those idiots understand 
their own  language.

Mark Twain, The 
Innocents Abroad, 1869

systems software 
Software that provides 
services that are 
commonly useful, 
including operating 
systems, compilers, 
loaders, and assemblers.

operating system 
Supervising program that 
manages the resources of 
a computer for the benefit 
of the  programs that run 
on that computer.

FIGURE 1.2 A simplified view of hardware and software as hierarchical layers, shown as 
concentric circles with hardware in the center and applications software outermost. In 
complex applications, there are often multiple layers of application software as well. For example, a database 
system may run on top of the systems software hosting an application, which in turn runs on top of the 
database. 

Applications software 

Sy

ste
ms software 

Hardware



Compilers perform another vital function: the translation of a program written 
in a highlevel language, such as C, C++, Java, or Visual Basic into instructions 
that the hardware can execute. Given the sophistication of modern programming 
lan guages and the simplicity of the instructions executed by the hardware, the 
translation from a highlevel language program to hardware instructions is 
complex. We give a brief overview of the process here and then go into more depth 
in Chapter 2 and Appendix B. 

From a High-Level Language to the Language of Hardware

To actually speak to electronic hardware, you need to send electrical signals. The 
easiest signals for computers to understand are on and off, and so the computer 
alphabet is just two letters. Just as the 26 letters of the English alphabet do not limit 
how much can be written, the two letters of the computer alphabet do not limit 
what computers can do. The two symbols for these two letters are the num bers 0 
and 1, and we commonly think of the computer language as numbers in base 2, or 
binary numbers. We refer to each “letter” as a binary digit or bit. Com puters are 
slaves to our commands, which are called instructions. Instructions, which are just 
collections of bits that the computer understands and obeys, can be thought of as 
numbers. For example, the bits

1000110010100000

tell one computer to add two numbers. Chapter 2 explains why we use  numbers 
for instructions and data; we don’t want to steal that chapter’s  thunder, but using 
numbers for both instructions and data is a foundation of computing.

The first programmers communicated to computers in binary numbers, but this 
was so tedious that they quickly invented new notations that were closer to the way 
humans think. At first, these notations were translated to binary by hand, but this 
process was still tiresome. Using the computer to help program the com puter, the 
pioneers invented programs to translate from symbolic notation to binary. The first 
of these programs was named an assembler. This program trans lates a symbolic 
version of an instruction into the binary version. For example, the programmer 
would write

add A,B

and the assembler would translate this notation into

1000110010100000

This instruction tells the computer to add the two numbers A and B. The name 
coined for this symbolic language, still used today, is assembly language. In con
trast, the binary language that the machine understands is the machine language.

Although a tremendous improvement, assembly language is still far from the 
notations a scientist might like to use to simulate fluid flow or that an accountant 
might use to balance the books. Assembly language requires the programmer 

compiler A program 
that translates highlevel 
language statements 
into assembly  language 
statements.

binary digit Also called 
a bit. One of the two 
 numbers in base 2 (0 or 1) 
that are the compo nents 
of information.

instruction A command 
that computer hardware 
under stands and obeys.

assembler A program 
that translates a symbolic 
version of instructions 
into the binary  version.

assembly language 
A sym bolic representation 
of machine instructions.

machine language 
A binary representation of 
machine instructions.
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to write one line for every instruction that the computer will follow, forcing the 
programmer to think like the computer. 

The recognition that a program could be written to translate a more powerful 
language into computer instructions was one of the great breakthroughs in the 
early days of computing. Programmers today owe their productivity—and their 
sanity—to the creation of high-level programming languages and compilers that 
translate programs in such languages into instructions. Figure 1.3 shows the rela
tionships among these programs and languages. 

high-level 
programming 
language A portable 
language such as C, C++, 
Java, or Visual Basic that 
is composed of words 
and algebraic notation 
that can be translated by 
a compiler into assembly 
 language.

FIGURE 1.3 C program compiled into assembly language and then assembled into binary 
machine language. Although the translation from highlevel language to binary machine language is 
shown in two steps, some compilers cut out the middleman and produce binary machine language directly. 
These languages and this program are examined in more detail in Chapter 2. 

swap(int v[], int k)
{int temp;
   temp = v[k];
   v[k] = v[k+1];
   v[k+1] = temp;
}

swap:
      multi $2, $5,4
      add   $2, $4,$2
      lw    $15, 0($2)
      lw    $16, 4($2)
      sw    $16, 0($2)
      sw    $15, 4($2)
      jr    $31

00000000101000100000000100011000
0000000010000010000100000100001
10001101111000100000000000000000
10001110000100100000000000000100
10101110000100100000000000000000
10101101111000100000000000000100
00000011111000000000000000001000

Assembler

Compiler

Binary machine
language
program
(for MIPS)

Assembly
language
program
(for MIPS)

High-level
language
program
(in C)



A compiler enables a programmer to write this highlevel language expression: 

A + B

The compiler would compile it into this assembly language statement:

add A,B

As shown above, the assembler would translate this statement into the binary 
instructions that tell the computer to add the two numbers A and B.

Highlevel programming languages offer several important benefits. First, they 
allow the programmer to think in a more natural language, using English words 
and algebraic notation, resulting in programs that look much more like text than 
like tables of cryptic symbols (see Figure 1.3). Moreover, they allow languages to be 
designed according to their intended use. Hence, Fortran was designed for sci entific 
computation, Cobol for business data processing, Lisp for symbol manipu lation, 
and so on. There are also domainspecific languages for even narrower groups of 
users, such as those interested in simulation of fluids, for example.

The second advantage of programming languages is improved programmer 
productivity. One of the few areas of widespread agreement in software develop
ment is that it takes less time to develop programs when they are written in 
languages that require fewer lines to express an idea. Conciseness is a clear 
advantage of highlevel languages over assembly language. 

The final advantage is that programming languages allow programs to be inde
pendent of the computer on which they were developed, since compilers and 
assemblers can translate highlevel language programs to the binary instructions 
of any computer. These three advantages are so strong that today little program
ming is done in assembly language.

 1.3 Under the Covers

Now that we have looked below your program to uncover the unde rlying soft ware, 
let’s open the covers of your computer to learn about the underlying hardware. The 
underlying hardware in any computer performs the same basic functions: inputting 
data, outputting data, processing data, and storing data. How these functions are 
performed is the primary topic of this book, and subsequent chap ters deal with 
different parts of these four tasks. 

When we come to an important point in this book, a point so important 
that we hope you will remember it forever, we emphasize it by identifying it as a 
Big Picture item. We have about a dozen Big Pictures in this book, the first being 

 1.3 Under the Covers 13



14 Chapter 1 Computer Abstractions and Technology

the five components of a computer that perform the tasks of inputting, out putting, 
processing, and storing data.          

The five classic components of a computer are input, output, memory, 
datapath, and control, with the last two sometimes combined and called 
the processor. Figure 1.4 shows the standard organization of a computer. 
This organization is independent of hardware technology: you can place 
every piece of every computer, past and present, into one of these five cat
egories. To help you keep all this in perspective, the five components of a 
computer are shown on the front page of each of the following chapters, 
with the portion of interest to that chapter highlighted.

The BIG
Picture

FIGURE 1.4 The organization of a computer, showing the five classic components. The 
processor gets instructions and data from memory. Input writes data to memory, and output reads data 
from memory. Control sends the signals that determine the operations of the datapath, memory, input, and 
output. 



Figure 1.5 shows a computer with keyboard, wireless mouse, and screen. This 
photograph reveals two of the key components of computers: input devices, such 
as the keyboard and mouse, and output devices, such as the screen. As the names 
suggest, input feeds the computer, and output is the result of computation sent to 
the user. Some devices, such as networks and disks, provide both input and out put 
to the computer.

Chapter 6 describes input/output (I/O) devices in more detail, but let’s take an 
introductory tour through the computer hardware, starting with the external I/O 
devices.

input device 
A mechanism through 
which the computer is fed 
information, such as the 
keyboard or mouse.

output device 
A mechanism that 
conveys the result of a 
com putation to a user or 
another computer.

FIGURE 1.5 A desktop computer. The liquid crystal display (LCD) screen is the primary output 
device, and the keyboard and mouse are the primary input devices. On the right side is an Ethernet 
cable that connected the laptop to the network and the Web. The lap top contains the processor, memory, 
and additional I/O devices. This system is a Macbook Pro 15" laptop connected to an external display. 
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Anatomy of a Mouse

Although many users now take mice for granted, the idea of a pointing device such 
as a mouse was first shown by Doug Engelbart using a research prototype in 1967. 
The Alto, which was the inspiration for all workstations as well as for the Macintosh 
and Windows OS, included a mouse as its pointing device in 1973. By the 1990s, all 
desktop computers included this device, and new user interfaces based on graphics 
displays and mice became the norm.

The original mouse was electromechanical and used a large ball that when rolled 
across a surface would cause an x and y counter to be incremented. The amount of 
increase in each counter told how far the mouse had been moved. 

The electromechanical mouse has largely been replaced by the newer alloptical 
mouse. The optical mouse is actually a miniature optical processor including an 
LED to provide lighting, a tiny blackandwhite camera, and a simple optical pro
cessor. The LED illuminates the surface underneath the mouse; the camera takes 
1500 sample pictures a second under the illumination. Successive pictures are sent 
to a simple optical processor that compares the images and determines whether 
the mouse has moved and how far. The replacement of the electromechanical 
mouse by the electrooptical mouse is an illustration of a common phenomenon 
where the decreasing costs and higher reliability of electronics cause an electronic 
solution to replace the older electromechanical technology. On page 22 we’ll see 
another example: flash memory.

Through the Looking Glass

The most fascinating I/O device is probably the graphics display. All laptop and 
handheld computers, calculators, cellular phones, and almost all desktop comput
ers now use liquid crystal displays (LCDs) to get a thin, lowpower dis play. 
The LCD is not the source of light; instead, it controls the transmission of light. 
A typical LCD includes rodshaped molecules in a liquid that form a twist ing 
helix that bends light entering the display, from either a light source behind the 
display or less often from reflected light. The rods straighten out when a cur rent is 
applied and no longer bend the light. Since the liquid crystal material is between 
two screens polarized at 90 degrees, the light cannot pass through unless it is bent. 
Today, most LCD displays use an active matrix that has a tiny transistor switch at 
each pixel to precisely control current and make sharper  images. A redgreenblue 
mask associated with each dot on the display determines the intensity of the three 
color components in the final image; in a color active matrix LCD, there are three 
transistor switches at each point.

The image is composed of a matrix of picture elements, or pixels, which can be 
represented as a matrix of bits, called a bit map. Depending on the size of the screen 
and the resolution, the display matrix ranges in size from 640 × 480 to 2560 × 1600 
pixels in 2008. A  color display might use 8 bits for each of the three colors (red, 
blue, and green), for 24 bits per pixel, permitting millions of different colors to be 
displayed.

I got the idea for the 
mouse while attending 
a talk at a computer 
conference. The speaker 
was so boring that I 
started daydreaming 
and hit upon the idea.

Doug Engelbart

Through computer 
displays I have landed 
an airplane on the deck 
of a moving  carrier, 
observed a nuclear 
particle hit a potential 
well, flown in a rocket 
at nearly the speed of 
light and watched a 
com puter reveal its 
innermost workings.

Ivan Sutherland, the 
“father” of computer 
graphics, Scientif c 
American, 1984

liquid crystal display 
A dis play technology 
using a thin layer of liquid 
polymers that can be used 
to transmit or block light 
according to whether a 
charge is applied.

active matrix display 
A liq uid crystal display 
using a tran sistor to 
control the transmission 
of light at each individual 
pixel.

pixel The smallest 
individual picture element. 
Screens are composed of 
hundreds of thousands 
to millions of pixels, 
organized in a matrix.



The computer hardware support for graphics consists mainly of a raster refresh 
buffer, or frame buffer, to store the bit map. The im age to be represented onscreen is 
stored in the frame buffer, and the bit pattern per pixel is read out to the graph ics 
display at the refresh rate. Figure 1.6 shows a frame buffer with a simplified design 
of just 4 bits per pixel. 
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Y0

Frame buffer

Raster scan CRT display

0
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1

1
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1
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FIGURE 1.6 Each coordinate in the frame buffer on the left determines the shade of 
the corresponding coordinate for the raster scan CRT display on the right. Pixel (X

0
, Y

0
) 

contains the bit pattern 0011, which is a lighter shade on the screen than the bit pattern 1101 in pixel (X
1
, Y

1
). 

The goal of the bit map is to faithfully represent what is on the screen. The 
challenges in graphics systems arise because the human eye is very good at  detecting 
even subtle changes on the screen. 

Opening the Box

If we open the box containing the computer, we see a fascinating board of thin 
plastic, covered with dozens of small gray or black rectangles. Figure 1.7 shows the 
contents of the laptop computer in Figure 1.5. The motherboard is shown in the 
upper part of the photo. Two disk drives are in front—the hard drive on the left and 
a DVD drive on the right. The hole in the middle is for the laptop battery.

The small rectangles on the motherboard contain the devices that drive our 
advancing technology, called integrated circuits and nicknamed chips. The board 
is composed of three pieces: the piece connecting to the I/O devices mentioned 
earlier, the memory, and the processor. 

The memory is where the programs are kept when they are running; it also 
contains the data needed by the running programs. Figure 1.8 shows that memory 
is found on the two small boards, and each small memory board contains eight 
inte grated  circuits. The memory in Figure 1.8 is built from DRAM chips. DRAM 

motherboard 
A plastic board containing 
packages of  integrated 
circuits or chips, including 
processor, cache, memory, 
and connectors for I/O 
devices such as networks 
and disks.

integrated circuit Also 
called a chip. A device 
combining doz ens to 
millions of transistors.

memory The storage 
area in which programs 
are kept when they are 
running and that con tains 
the data needed by the 
running programs.
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FIGURE 1.7 Inside the laptop computer of Figure 1.5. The shiny box with the white label on the lower left is a 100 GB SATA 
hard disk drive, and the shiny metal box on the lower right side is the DVD drive. The hole between them is where the laptop battery would 
be located. The small hole above the battery hole is for memory DIMMs. Figure 1.8 is a closeup of the DIMMs, which are inserted from the 
bottom in this laptop. Above the battery hole and DVD drive is a printed circuit board (PC board), called the motherboard, which contains 
most of the electronics of the computer. The two shiny circles in the upper half of the picture are two fans with covers. The processor is the 
large raised rectangle just below the left fan. Photo courtesy of OtherWorldComputing.com.

Hard drive Processor Fan with
cover

Spot for
memory
DIMMs

Spot for
battery

Motherboard Fan with
cover

DVD drive



stands for dynamic random access memory. Several DRAMs are used together 
to contain the instructions and data of a program. In contrast to sequential access 
memories, such as magnetic tapes, the RAM portion of the term DRAM means that 
memory accesses take basically the same amount of time no matter what portion 
of the memory is read. 

dynamic random access 
memory (DRAM) 
Memory built as an 
integrated circuit; it 
provides random access to 
any location.

FIGURE 1.8 Close-up of the bottom of the laptop reveals the memory. The main memory is 
contained on one or more small boards shown on the left. The hole for the battery is to the right. The DRAM 
chips are mounted on these boards (called DIMMs, for dual inline memory modules) and then plugged into 
the connectors. Photo courtesy of OtherWorldComputing.com.

dual inline memory 
module (DIMM) 
A small board that 
contains DRAM chips on 
both sides. (SIMMs have 
DRAMs on only one side.)

The processor is the active part of the board, following the instructions of a pro
gram to the letter. It adds numbers, tests numbers, signals I/O devices to activate, 
and so on. The processor is under the fan and covered by a heat sink on the left 
side of Figure 1.7. Occasionally, people call the processor the CPU, for the more 
bureaucraticsounding central processor unit. 

Descending even lower into the hardware, Figure 1.9 reveals details of a micro
processor. The processor logically comprises two main components: datapath and 
control, the respective brawn and brain of the processor. The datapath performs 
the arithmetic operations, and control tells the datapath, memory, and I/O devices 
what to do according to the wishes of the instructions of the program. Chapter 4 
explains the datapath and control for a higherperformance design.

central processor 
unit (CPU) Also called 
processor. The active part 
of the computer, which 
contains the datapath and 
con trol and which adds 
numbers, tests numbers, 
signals I/O devices to 
activate, and so on.

datapath The 
component of the 
processor that performs 
arithmetic operations

control The component 
of the processor that 
commands the datapath, 
memory, and I/O devices 
according to the instruc
tions of the program.
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Descending into the depths of any component of the hardware reveals insights 
into the computer. Inside the processor is another type of memory—cache mem
ory. Cache memory consists of a small, fast memory that acts as a buffer for the 
DRAM memory. (The nontechnical definition of cache is a safe place for hiding 
things.) Cache is built using a different memory technology, static random access 
memory (SRAM). SRAM is faster but less dense, and hence more expensive, than 
DRAM (see Chapter 5).

You may have noticed a common theme in both the software and the hardware 
descriptions: delving into the depths of hardware or software reveals more infor
mation or, conversely, lowerlevel details are hidden to offer a simpler model at 
higher levels. The use of such layers, or abstractions, is a principal technique for 
designing very sophisticated computer systems.

One of the most important abstractions is the interface between the hard
ware and the lowestlevel software. Because of its importance, it is given a  special  

cache memory A small, 
fast memory that acts as a 
buffer for a slower, larger 
memory.

static random access 
mem ory (SRAM) Also 
memory built as an 
integrated circuit, but 
faster and less dense than 
DRAM.

abstraction A model 
that ren ders lowerlevel 
details of com puter 
systems temporarily 
invisible to facilitate 
design of sophisticated 
systems.

FIGURE 1.9 Inside the AMD Barcelona microprocessor. The lefthand side is a microphotograph of the AMD Barcelona processor 
chip, and the righthand side shows the major blocks in the processor. This chip has four processors or “cores”. The microprocessor in the 
laptop in Figure 1.7 has two cores per chip, called an Intel Core 2 Duo. 
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name: the instruction set architecture, or simply architecture, of a  computer. 
The instruction set architecture includes anything programmers need to know  
to make a binary machine language program work correctly, including  ins tructions, 
I/O devices, and so on. Typically, the operating system will encapsulate the details 
of doing I/O, allocating memory, and other lowlevel system functions so that 
application programmers do not need to worry about such details. The combina
tion of the basic instruction set and the operating system interface provided for 
application programmers is called the application binary interface (ABI). 

An instruction set architecture allows computer designers to talk about func
tions independently from the hardware that performs them. For example, we 
can talk about the functions of a digital clock (keeping time, displaying the time, 
set ting the alarm) independently from the clock hardware (quartz  crystal, LED 
dis plays, plastic buttons). Computer designers distinguish architecture from an 
implementation of an architecture along the same lines: an implementation is 
hardware that obeys the architecture abstraction. These ideas bring us to another 
Big Picture.

instruction set 
architecture Also 
called architecture. An 
abstract interface between 
the hardware and the 
 lowestlevel software 
that encompasses all the 
information necessary to 
write a machine  language 
pro gram that will run 
correctly, including 
instructions, regis ters, 
memory access, I/O, ....

application binary 
interface (ABI) The user 
portion of the instruction 
set plus the operat ing 
system interfaces used by 
application programmers. 
Defines a standard for 
binary portability across 
computers. 

implementation 
Hardware that obeys the 
architecture abstraction.

Both hardware and software consist of hierarchical layers, with each lower 
layer hiding details from the level above. This principle of abstrac tion is 
the way both hardware designers and software designers cope with the 
complexity of computer systems. One key interface between the levels 
of abstraction is the instruction set architecture—the interface between 
the hardware and lowlevel software. This abstract interface enables 
many implementations of varying cost and performance to run identical 
soft ware.

A Safe Place for Data

Thus far, we have seen how to input data, compute using the data, and display 
data. If we were to lose power to the computer, however, everything would be lost 
because the memory inside the computer is volatile—that is, when it loses power, 
it forgets. In contrast, a DVD doesn’t forget the recorded film when you turn off the 
power to the DVD player and is thus a nonvolatile memory technology. 

To distinguish between the volatile memory used to hold data and programs 
while they are running and this nonvolatile memory used to store data and pro
grams between runs, the term main memory or primary memory is used for the 

volatile memory Stor
age, such as DRAM, that 
 retains data only if it is 
receiving power. 

nonvolatile memory 
A form of memory that 
retains data even in 
the absence of a power 
source and that is used to 
store programs between 
runs. Mag netic disk is 
nonvolatile.

main memory Also 
called pri mary memory. 
Memory used to hold 
programs while they are 
 running; typically  consists 
of DRAM in today’s 
 computers.
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former, and secondary memory for the latter. DRAMs have dominated main 
memory since 1975, but magnetic disks have dominated secondary memory 
since 1965. The primary nonvolatile storage used in all server computers and 
workstations is the magnetic hard disk. Flash memory, a nonvolatile semiconduc
tor memory, is used instead of disks in mobile devices such as cell phones and is 
increasingly replacing disks in music players and even laptops. 

As Figure 1.10 shows, a mag netic hard disk consists of a collection of platters, 
which rotate on a spindle at 5400 to 15,000 revolutions per minute. The metal 
plat ters are covered with magnetic recording material on both sides, similar to the 
material found on a cassette or videotape. To read and write information on a hard 
disk, a movable arm containing a small electromagnetic coil called a read-write 
head is located just above each surface. The entire drive is permanently sealed to 
control the environment inside the drive, which, in turn, allows the disk heads to 
be much closer to the drive surface. 

secondary memory 
Non  volatile memory 
used to store programs 
and data between runs; 
typically consists of mag
netic disks in today’s 
computers.

magnetic disk Also 
called hard disk. A form 
of nonvolatile sec ondary 
memory composed of 
rotating platters coated 
with a magnetic recording 
 material.

flash memory  
A nonvolatile semi
conductor memory. It 
is cheaper and slower 
than DRAM but more 
expensive and faster than 
magnetic disks.

FIGURE 1.10 A disk showing 10 disk platters and the read/write heads. 



Diameters of hard disks vary by more than a factor of 3 today, from 1 inch to 
3.5 inches, and have been shrunk over the years to fit into new products;    work  station 
servers, personal computers, laptops, palmtops, and digital cameras have all inspired 
new disk form factors. Traditionally, the widest disks have the highest performance 
and the smallest disks have the lowest unit cost. The best cost per gigabyte varies. 
Although most hard drives appear inside computers, as in Figure 1.7, hard drives 
can also be attached using external interfaces such as universal serial bus (USB).

The use of mechanical components means that access times for magnetic disks 
are much slower than for DRAMs: disks typically take 5–20 milli seconds, while 
DRAMs take 50–70 nanoseconds—making DRAMs about 100,000 times faster. Yet 
disks have much lower costs than DRAM for the same storage capacity, because the 
production costs for a given amount of disk storage are lower than for the same 
amount of integrated circuit. In 2008, the cost per gigabyte of disk is 30 to 100 
times less expensive than DRAM.

Thus, there are three primary differences between magnetic disks and main 
memory: disks are nonvolatile because they are magnetic; they have a slower 
access time because they are mechanical devices; and they are cheaper per gigabyte 
because they have very high storage capacity at a modest cost.

Many have tried to invent a technology cheaper than DRAM but faster than 
disk to fill that gap, but many have failed. Challengers have never had a product to 
market at the right time. By the time a new product would ship, DRAMs and disks 
had continued to make rapid advances, costs had dropped accordingly, and the 
challenging product was immediately obsolete. 

Flash memory, however, is a serious challenger. This semiconductor memory 
is nonvolatile like disks and has about the same bandwidth, but latency is 100 to 
1000 times faster than disk. Flash is popular in cameras and portable music players 
because it comes in much smaller capacities, it is more rugged, and it is more 
power efficient than disks, despite the cost per gigabyte in 2008 being about 6 to 10 
times higher than disk. Unlike disks and DRAM, flash memory bits wear out after 
100,000 to 1,000,000 writes. Thus, file systems must keep track of the num ber of 
writes and have a strategy to avoid wearing out storage, such as by moving popular 
data. Chapter 6 describes flash in more detail.

Although hard drives are not removable, there are several storage technologies 
in use that include the following:

 ■ Optical disks, including both compact disks (CDs) and digital video disks 
(DVDs), constitute the most common form of removable storage. The Blu
Ray (BD) optical disk standard is the heirapparent to DVD.

 ■ Flashbased removable memory cards typically attach to a USB connection 
and are often used to transfer files.

 ■ Magnetic tape provides only slow serial access and has been used to back up 
disks, a role now often replaced by duplicate hard drives.

gigabyte Traditionally 
1,073,741,824 (230) 
bytes, although some 
communica tions and 
secondary storage sys tems 
have redefined it to mean 
1,000,000,000 (109) bytes. 
Simi larly, depending on 
the context, megabyte is 
either 220 or 106 bytes.
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Optical disk technology works differently than magnetic disk technology. In 
a CD, data is recorded in a spiral fashion, with individual bits being recorded by 
burning small pits—approximately 1 micron (10−6 meters) in diameter—into the 
disk surface. The disk is read by shining a laser at the CD surface and determining 
by examining the reflected light whether there is a pit or flat (reflective) surface. 
DVDs use the same approach of bouncing a laser beam off a series of pits and flat 
surfaces. In addition, there are multiple layers that the laser beam can focus on, and 
the size of each bit is much smaller, which together increase capacity signifi cantly. 
BluRay uses shorter wavelength lasers that shrink the size of the bits and thereby 
increase capacity.

Optical disk writers in personal computers use a laser to make the pits in the 
recording layer on the CD or DVD surface. This writing process is relatively slow, 
taking from minutes (for a full CD) to tens of minutes (for a full DVD). Thus, 
for large quantities a different technique called pressing is used, which costs only 
pennies per optical disk. 

Rewritable CDs and DVDs use a different recording surface that has a crystal
line, reflective material; pits are formed that are not reflective in a manner similar 
to that for a writeonce CD or DVD. To erase the CD or DVD, the surface is heated 
and cooled slowly, allowing an annealing process to restore the surface recording 
layer to its crystalline structure. These rewritable disks are the most expensive, with 
writeonce being cheaper; for readonly disks—used to distribute software, music, 
or movies—both the disk cost and recording cost are much lower.

Communicating with Other Computers

We’ve explained how we can input, compute, display, and save data, but there is 
still one missing item found in today’s computers: computer networks. Just as the 
processor shown in Figure 1.4 is connected to memory and I/O devices, networks 
interconnect whole computers, allowing computer users to extend the power of 
computing by including communication. Networks have become so popular that 
they are the backbone of current computer systems; a new computer without an 
optional network interface would be ridiculed. Net worked computers have several 
major advantages:

 ■ Communication: Information is exchanged between computers at high speeds.

 ■ Resource sharing: Rather than each computer having its own I/O devices, 
devices can be shared by computers on the net work.

 ■ Nonlocal access: By connecting computers over long distances, users need not 
be near the computer they are using.

Networks vary in length and performance, with the cost of communication 
increasing according to both the speed of communication and the distance that 
information travels. Perhaps the most popular type of network is Ethernet. It can 
be up to a kilometer long and transfer at upto 10 gigabits per second. Its length and 



speed make Ethernet useful to connect computers on the same floor of a building; 
hence, it is an example of what is generically called a local area network. Local area 
networks are interconnected with switches that can also provide routing ser vices 
and security. Wide area networks cross continents and are the backbone of the 
Internet, which supports the World Wide Web. They are typically based on optical 
fibers and are leased from telecommunication companies. 

Networks have changed the face of computing in the last 25 years, both by 
becoming much more ubiquitous and by making dramatic increases in perfor
mance. In the 1970s, very few individuals had access to electronic mail, the Internet 
and Web did not exist, and physically mailing magnetic tapes was the primary way 
to trans fer large amounts of data between two locations. Local area networks were 
almost nonexistent, and the few existing wide area networks had limited capacity 
and restricted access. 

As networking technology improved, it became much cheaper and had a much 
higher capacity. For example, the first standardized local area network technology, 
developed about 25 years ago, was a version of Ethernet that had a maximum 
capacity (also called bandwidth) of 10 million bits per second, typically shared 
by tens of, if not a hundred, computers. Today, local area network technology 
offers a capacity of from 100 million bits per second to 10 gigabits per second, 
usually shared by at most a few computers. Optical communications technology 
has allowed similar growth in the capacity of wide area networks, from hundreds 
of kilobits to gigabits and from hundreds of computers connected to a worldwide 
network to millions of comput ers connected. This combination of dramatic rise in 
deployment of networking combined with increases in capacity have made network 
technology central to the information revolution of the last 25 years.

For the last decade another innovation in networking is reshaping the way com
puters communicate. Wireless technology is widespread, and laptops now incorpo
rate this technology. The ability to make a radio in the same lowcost semiconductor 
technology (CMOS) used for memory and microprocessors enabled a significant 
improvement in price, leading to an explosion in deploy ment. Currently available 
wireless technologies, called by the IEEE standard name 802.11, allow for transmis
sion rates from 1 to nearly 100 million bits per second. Wireless technology is quite 
a bit different from wirebased networks, since all users in an immediate area share 
the airwaves. 

 ■ Semiconductor DRAM and disk storage differ significantly. Describe the 
fundamental difference for each of the following: volatility, access time, 
and cost.

Technologies for Building Processors and Memory

Processors and memory have improved at an incredible rate, because computer 
designers have long embraced the latest in electronic technology to try to win the 
race to design a better computer. Figure 1.11 shows the tech nologies that have been 

local area network 
(LAN) A network 
designed to carry data 
within a geographically 
confined area, typically 
within a single building.

wide area network 
(WAN) A network 
extended over hundreds 
of kilometers that can 
span a continent.

Check  
Yourself

 1.3 Under the Covers 25



26 Chapter 1 Computer Abstractions and Technology

used over time, with an estimate of the relative  performance per unit cost for 
each technology. Section 1.7 explores the technology that has fueled the com puter 
industry since 1975 and will continue to do so for the foreseeable future. Since this 
technology shapes what computers will be able to do and how quickly they will 
evolve, we believe all computer professionals should be familiar with the basics of 
integrated circuits.  

Year Technology used in computers Relative performance/unit cost

1951 Vacuum tube 0,000,001

1965 Transistor 0,000,035

1975 Integrated circuit 0,000,900

1995 Very large-scale integrated circuit 2,400,000

2005 Ultra large-scale integrated circuit 6,200,000,000

FIGURE 1.11 Relative performance per unit cost of technologies used in computers over 
time. Source: Computer Museum, Boston, with 2005 extrapolated by the authors. See Section 1.10 on the CD. 

vacuum tube An 
electronic component, 
predecessor of the 
transistor, that consists of 
a hol low glass tube about 
5 to 10 cm long from 
which as much air has 
been removed as possible 
and that uses an electron 
beam to transfer data.

A transistor is simply an on/off switch controlled by electricity. The inte-
grated circuit (IC) combined dozens to hundreds of transistors into a single 
chip. To describe the tremendous increase in the number of transistors from 
hundreds to millions, the adjective very large scale is added to the term, creating the 
 abbreviation VLSI, for very large-scale integrated circuit.

This rate of increasing integration has been remarkably stable. Figure 1.12 
shows the growth in DRAM capacity since 1977. For 20 years, the industry has 
consistently quadrupled capacity every 3 years, resulting in an increase in excess 
of 16,000 times! This increase in transistor count for an integrated circuit is popu
larly known as Moore’s law, which states that transistor capacity doubles every  
18–24 months. Moore’s law resulted from a prediction of such growth in IC 
capacity made by Gordon Moore, one of the founders of Intel during the 1960s.

Sustaining this rate of progress for almost 40 years has required incredible 
innovation in manufacturing techniques. In Section 1.7, we discuss how to manu
facture integrated circuits.

 1.4 Performance

Assessing the performance of computers can be quite challenging. The scale and 
intricacy of modern software systems, together with the wide range of perfor
mance improvement techniques employed by hardware designers, have made per
formance assessment much more difficult. 

When trying to choose among different computers, performance is an important 
attribute. Accurately measuring and comparing different computers is critical to 

transistor An on/off 
switch controlled by an 
electric signal.

very large-scale 
integrated (VLSI) 
circuit A device con
taining hundreds of 
thousands to  millions of 
transistors.



purchasers and therefore to designers. The people selling computers know this as 
well. Often, salespeople would like you to see their computer in the best possible 
light, whether or not this light accurately reflects the needs of the purchaser’s 
application. Hence, understanding how best to measure performance and the 
limitations of performance measurements is important in selecting a computer.

The rest of this section describes different ways in which performance can be 
determined; then, we describe the metrics for measuring performance from the 
viewpoint of both a computer user and a designer. We also look at how these metrics 
are related and present the classical processor performance equation, which we will 
use throughout the text. 

Defining Performance

When we say one computer has better performance than another, what do we 
mean? Although this question might seem simple, an analogy with passenger 
airplanes shows how subtle the question of performance can be. Figure 1.13 shows 
some typical passenger airplanes, together with their cruising speed, range, and 
capacity. If we wanted to know which of the planes in this table had the best per
formance, we would first need to define performance. For example, considering 
different measures of performance, we see that the plane with the highest cruising 
speed is the Concorde, the plane with the longest range is the DC8, and the plane 
with the largest capacity is the 747.

Let’s suppose we define performance in terms of speed. This still leaves two possi
ble definitions. You could define the fastest plane as the one with the highest cruis ing 
speed, taking a single passenger from one point to another in the least time. If you 

FIGURE 1.12 Growth of capacity per DRAM chip over time. The yaxis is measured in Kilobits, 
where K = 1024 (210). The DRAM industry quadrupled capacity almost every three years, a 60% increase per 
year, for 20 years. In recent years, the rate has slowed down and is somewhat closer to doubling every two 
years to three years. 
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were interested in transporting 450 passengers from one point to another,  however, 
the 747 would clearly be the fastest, as the last column of the figure shows. Similarly, 
we can define computer performance in several different ways.

If you were running a program on two different desktop computers, you’d say that 
the faster one is the desktop computer that gets the job done first. If you were running 
a datacenter that had several servers running jobs submitted by many users, you’d say 
that the faster computer was the one that completed the most jobs during a day. 
As an individual computer user, you are interested in reducing response time—the 
time between the start and completion of a task—also referred to as execution time. 
Datacenter managers are often interested in increasing throughput or bandwidth—
the total amount of work done in a given time. Hence, in most cases, we will need 
different performance metrics as well as different sets of applications to benchmark 
embedded and desktop computers, which are more focused on response time, versus 
servers, which are more focused on throughput. 

Throughput and Response Time

Do the following changes to a computer system increase throughput, decrease 
re sponse time, or both?

1. Replacing the processor in a computer with a faster version

2. Adding additional processors to a system that uses multiple processors 
for separate tasks—for example, searching the World Wide Web 

Decreasing response time almost always improves throughput. Hence, in case 1, 
both response time and throughput are improved. In case 2, no one task gets 
work done faster, so only throughput increases. 

If, however, the demand for processing in the second case was almost as large 
as the throughput, the system might force requests to queue up. In this case, 
increasing the throughput could also improve response time, since it would 
reduce the waiting time in the queue. Thus, in many real computer systems, 
changing either execution time or throughput often affects the other.

response time Also 
called  execution time. 
The total time required 
for the computer to 
complete a task,  including 
disk accesses, memory 
accesses, I/O  activities, 
operating system over
head, CPU  execution 
time, and so on.

throughput Also called 
band width. Another 
measure of per formance, 
it is the number of tasks 
completed per unit time.

EXAMPLE

ANSWER

Airplane
Passenger 
capacity

Cruising range 
(miles)

Cruising speed 
(m.p.h.)

Passenger throughput 
(passengers × m.p.h.)

Boeing 777 375 4630 0610 228,750

Boeing 747 470 4150 0610 286,700

BAC/Sud Concorde 132 4000 1350 178,200

Douglas DC-8-50 146 8720 0544   79,424

FIGURE 1.13 The capacity, range, and speed for a number of commercial airplanes. The last 
column shows the rate at which the airplane transports passengers, which is the capacity times the cruising 
speed (ignoring range and takeoff and landing times). 



In discussing the performance of computers, we will be primarily concerned 
with response time for the first few chapters. To maximize performance, we want 
to minimize response time or execution time for some task. Thus, we can relate 
performance and execution time for a computer X:

Performance
X
 =    1 ______________  Execution time

X

  

This means that for two computers X and Y, if the performance of X is greater 
than the performance of Y, we have

Performance
X
 > Performance

Y

  
1
   

Execution time
X

    >    
1
   

Execution time
Y

  

Execution time
Y
 > Execution time

X

That is, the execution time on Y is longer than that on X, if X is faster than Y.
In discussing a computer design, we often want to relate the performance of two 

different computers quantitatively. We will use the phrase “X is n times  faster than 
Y”—or equivalently “X is n times as fast as Y”—to mean

  
Performance

X    
Performance

Y

    = n

If X is n times faster than Y, then the execution time on Y is n times longer than it is 
on X:

  
Performance

X    
Performance

Y

    =    
Execution time

Y    
Execution time

X

    = n

Relative Performance

If computer A runs a program in 10 seconds and computer B runs the same 
program in 15 seconds, how much faster is A than B?

We know that A is n times faster than B if

  
Performance

A  ____________  
Performance

B

    =    
Execution time

B  _____________  
 Execution time

A

   =  n

EXAMPLE

ANSWER
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Thus the performance ratio is

  15 ___ 10    = 1.5

and A is therefore 1.5 times faster than B.

In the above example, we could also say that computer B is 1.5 times slower than 
computer A, since

  
Performance

A    
Performance

B

    = 1.5

means that

  
Performance

A   
1.5

    = Performance
B

For simplicity, we will normally use the terminology faster than when we try to 
compare computers quantitatively. Because performance and execution time are 
reciprocals, increasing perfor mance requires decreasing execution time. To avoid 
the potential confusion between the terms increasing and decreasing, we usually 
say “improve performance” or “improve execution time” when we mean “increase 
performance” and “decrease execution time.”

Measuring Performance

Time is the measure of computer performance: the computer that performs the 
same amount of work in the least time is the fastest. Program execution time is 
measured in seconds per program. However, time can be defined in different ways, 
depending on what we count. The most straightforward definition of time is called 
wall clock time, response time, or elapsed time. These terms mean the total time 
to complete a task, including disk accesses, memory accesses, input/output (I/O) 
activities, operating system overhead—every thing. 

Computers are often shared, however, and a processor may work on several 
programs simultaneously. In such cases, the system may try to optimize through
put rather than attempt to minimize the elapsed time for one program. Hence, 
we often want to distinguish between the elapsed time and the time that the 
proces sor is working on our behalf. CPU execution time or simply CPU time, 
which recognizes this distinction, is the time the CPU spends comput ing for this 
task and does not include time spent waiting for I/O or running other programs. 
(Remember, though, that the response time experienced by the user will be the 
elapsed time of the program, not the CPU time.) CPU time can be further divided 
into the CPU time spent in the program, called user CPU time, and the CPU time 
spent in the operating sys tem performing tasks on behalf of the program, called 
system CPU time. Differentiating between system and user CPU time is difficult to 

CPU execution time 
Also called CPU time. 
The actual time the CPU 
spends computing for a 
specific task.

user CPU time The 
CPU time spent in a 
program itself.

system CPU time 
The CPU time spent in 
the operating sys tem 
performing tasks on 
behalf of the program.



do accurately, because it is often hard to assign responsibility for operating sys tem 
activities to one user program rather than another and because of the func tionality 
differences among operating systems.

For consistency, we maintain a distinction between perfor mance based on 
elapsed time and that based on CPU execution time. We will use the term  system 
perfor mance to refer to elapsed time on an unloaded system and CPU performance 
to refer to user CPU time. We will focus on CPU per formance in this chapter, 
although our discussions of how to summarize  performance can be applied to 
either elapsed time or CPU time measurements. 

Different applications are sensitive to different aspects of the performance of a 
com puter system. Many applications, especially those running on servers, depend 
as much on I/O performance, which, in turn, relies on both hardware and software. 
Total elapsed time measured by a wall clock is the measurement of interest. In 
some application environments, the user may care about throughput, response 
time, or a complex combination of the two (e.g., maximum throughput with a 
worstcase response time). To improve the performance of a program, one must 
have a clear definition of what performance metric matters and then proceed to 
look for performance bottlenecks by measuring program execution and looking 
for the likely bottlenecks. In the following chapters, we will describe how to search 
for bot tlenecks and improve performance in various parts of the system.

Although as computer users we care about time, when we examine the  details 
of a computer it’s convenient to think about performance in other metrics. In par
ticular, computer designers may want to think about a computer by using a mea
sure that relates to how fast the hardware can perform basic functions. Almost all 
computers are constructed using a clock that determines when events take place in 
the hardware. These discrete time intervals are called clock cycles (or ticks, clock 
ticks, clock per iods, clocks, cycles). Designers refer to the length of a clock period 
both as the time for a complete clock cycle (e.g., 250 picoseconds, or 250 ps) and as 
the clock rate (e.g., 4 gigahertz, or 4 GHz), which is the inverse of the clock period. 
In the next subsection, we will formalize the relationship between the clock cycles 
of the hardware designer and the seconds of the computer user.

1. Suppose we know that an application that uses both a desktop client and a 
remote server is limited by network performance. For the following changes, 
state whether only the throughput improves, both response time and 
throughput improve, or neither improves.

a. An extra network channel is added between the client and the server, 
increasing the total network throughput and reducing the delay to obtain 
network access (since there are now two channels).

Understanding 
Program 
Performance

clock cycle Also called 
tick, clock tick, clock 
period, clock, cycle. The 
time for one clock period, 
usually of the processor 
clock, which runs at a 
constant rate. 

clock period The length 
of each clock cycle.

Check  
Yourself
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b. The networking software is improved, thereby reducing the network 
communication delay, but not increasing throughput. 

c. More memory is added to the computer.

2. Computer C’s performance is 4 times faster than the performance of com
puter B, which runs a given application in 28 seconds. How long will computer 
C take to run that application? 

CPU Performance and Its Factors

Users and designers often examine performance using different metrics. If we could 
relate these different metrics, we could determine the effect of a design change 
on the performance as experienced by the user. Since we are confining ourselves 
to CPU performance at this point, the bottomline performance measure is CPU 
execution time. A simple formula relates the most basic metrics (clock cycles and 
clock cycle time) to CPU time:

 CPU execution time            
for a program

   
 = 

 CPU clock cycles           
for a program

  
  × Clock cycle time

Alternatively, because clock rate and clock cycle time are inverses,

 CPU execution time            
for a program

  
  =    

CPU clock cycles for a program
     

Clock rate
  

This formula makes it clear that the hardware designer can improve performance 
by reducing the number of clock cycles required for a program or the length of 
the clock cycle. As we will see in later chapters, the designer often faces a tradeoff 
between the number of clock cycles needed for a program and the length of each 
cycle. Many techniques that decrease the number of clock cycles may also increase 
the clock cycle time.

Improving Performance

Our favorite program runs in 10 seconds on computer A, which has a 2 GHz 
clock. We are trying to help a computer designer build a computer, B, which will 
run this program in 6 seconds. The designer has determined that a sub stantial 
increase in the clock rate is possible, but this increase will  affect the rest of the 
CPU design, causing computer B to require 1.2 times as many clock cycles as 
computer A for this program. What clock rate should we tell the designer to 
target?

EXAMPLE



Let’s first find the number of clock cycles required for the program on A:

CPU time
A
  =    

CPU clock cycles
A  _________________  

Clock rate
A

  

10 seconds  =    
CPU clock cycles

A    

2 × 109   
cycles

  
second

  

  

CPU clock cycles
A
 = 10 seconds × 2 × 109    

cycles
 _______ 

second
    = 20 × 109 cycles

CPU time for B can be found using this equation:

CPU time
B
  =      

1.2 × CPU clock cycles
A  _______________________  

Clock rate
B

  

6 seconds  =      
1.2 × 20 × 109 cycles

  ___________________  
Clock rate

B

  

ANSWER
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Clock rate
B
 =   

1.2 × 20 × 109 cycles
    

6 seconds
   =   

0.2 × 20 ×109 cycles
    

second
   =   

4 × 109 cycles
  

second
   = 4 GHz

To run the program in 6 seconds, B must have twice the clock rate of A.

Instruction Performance

The performance equations above did not include any reference to the number of 
instructions needed for the program. (We’ll see what the instructions that make up 
a program look like in the next chapter.) However, since the compiler clearly gener
ated instructions to execute, and the computer had to execute the instructions to 
run the program, the execution time must depend on the number of instructions 
in a program. One way to think about execution time is that it equals the number 
of instructions executed multiplied by the average time per instruction. Therefore, 
the number of clock cycles required for a program can be written as

CPU clock cycles = Instructions for a program  ×   Average clock cycles           
per instruction

  

The term clock cycles per instruction, which is the average number of clock 
cycles each instruction takes to execute, is often abbreviated as CPI. Since different 

clock cycles per 
instruction (CPI) 
Average number of clock 
cycles per instruction for 
a pro gram or program 
fragment.
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instructions may take different amounts of time depending on what they do, 
CPI is an average of all the instructions executed in the program. CPI provides 
one way of comparing two different implementations of the same instruction 
set architecture, since the number of instructions executed for a program will, of 
course, be the same.

Using the Performance Equation

Suppose we have two implementations of the same instruction set architec
ture. Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some 
program, and computer B has a clock cycle time of 500 ps and a CPI of 1.2 
for the same program. Which computer is faster for this program and by how 
much?

We know that each computer executes the same number of instructions for 
the program; let’s call this number I. First, find the number of processor clock 
cycles for each computer:

CPU clock cycles
A
 =  I × 2.0

CPU clock cycles
B
 =  I × 1.2

Now we can compute the CPU time for each computer:

CPU time
A
 =  CPU clock cycles

A
 × Clock cycle time

  =  I × 2.0 × 250 ps = 500 × I ps

Likewise, for B:

CPU time
B
 =  I × 1.2 × 500 ps = 600 × I ps

Clearly, computer A is faster. The amount faster is given by the ratio of the 
execution times:

  
CPU performance

A    
CPU performance

B

    =    
Execution time

B    
Execution time

A

    =    
600 × I ps

  
500 × I ps

    = 1.2

We can conclude that computer A is 1.2 times as fast as computer B for this 
program.

EXAMPLE

ANSWER



The Classic CPU Performance Equation

We can now write this basic performance equation in terms of instruction count 
(the number of instructions executed by the program), CPI, and clock  cycle time:

CPU time = Instruction count × CPI × Clock cycle time

or, since the clock rate is the inverse of clock cycle time:

CPU time =   Instruction count × CPI    
Clock rate

  

These formulas are particularly useful because they separate the three key factors 
that affect performance. We can use these formulas to compare two different 
implementations or to evaluate a design alternative if we know its impact on these 
three parameters.

Comparing Code Segments

A compiler designer is trying to decide between two code sequences for a par
ticular computer. The hardware designers have supplied the following facts:

instruction count The 
num ber of instructions 
executed by the program.

EXAMPLE

CPI for each instruction class

A B C

CPI 1 2 3

Instruction counts for each instruction class

Code sequence A B C

1 2 1 2

2 4 1 1

For a particular highlevel language statement, the compiler writer is consid
ering two code sequences that require the following instruction counts:

Which code sequence executes the most instructions? Which will be faster? 
What is the CPI for each sequence?
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Sequence 1 executes 2 + 1 + 2 = 5 instructions. Sequence 2 executes 4 + 1 + 1 = 6 
instructions. Therefore, sequence 1 executes fewer instructions.

We can use the equation for CPU clock cycles based on instruction count 
and CPI to find the total number of clock cycles for each sequence:

CPU clock cycles =  ∑ 
i = 1

  
n

   (CPI
i
 × C

i
) 

This yields

CPU clock cycles
1
 = (2 × 1) + (1 × 2) + (2 × 3) = 2 + 2 + 6 = 10 cycles

CPU clock cycles
2
 = (4 × 1) + (1 × 2) + (1 × 3) = 4 + 2 + 3 = 9 cycles

So code sequence 2 is faster, even though it executes one extra instruction. 
Since code sequence 2 takes fewer overall clock cycles but has more instruc
tions, it must have a lower CPI. The CPI values can be computed by

 CPI =   
CPU clock cycles

    
Instruction count

  

CPI
1
 =   

CPU clock cycles
1    

Instruction count
1

   =   10  
5

   = 2.0

 CPI
2
 =   

CPU clock cycles
2    

Instruction count
2

   =   9  
6

   = 1.5

ANSWER

Figure 1.14 shows the basic measurements at different levels in the 
computer and what is being  measured in each case. We can see how these 
fac tors are combined to yield execution time measured in  seconds per 
program:

Time = Seconds/Program =   Instructions  
Program

    ×   Clock cycles
  

Instruction
   ×   Seconds  

Clock cycle
  

Always bear in mind that the only complete and reliable measure of 
computer performance is time. For example, changing the instruction set 
to lower the instruction count may lead to an organization with a slower 
clock cycle time or higher CPI that offsets the improvement in instruc tion 
count. Similarly, because CPI depends on type of instructions exe cuted, 
the code that executes the fewest number of instructions may not be the 
 fastest.

The BIG
Picture



How can we determine the value of these factors in the performance equation? 
We can measure the CPU execution time by running the program, and the clock 
cycle time is usually published as part of the documentation for a computer. The 
instruction count and CPI can be more difficult to obtain. Of course, if we know 
the clock rate and CPU execution time, we need only one of the instruction count 
or the CPI to determine the other.

We can measure the instruction count by using software tools that profile the 
execution or by using a simulator of the architecture. Alternatively, we can use 
hardware counters, which are included in most processors, to record a variety of 
measurements, including the number of instructions executed, the average CPI, and 
often, the sources of performance loss. Since the instruction count depends on the 
architecture, but not on the exact implementation, we can measure the instruction 
count without knowing all the details of the implementation. The CPI, however, 
depends on a wide variety of design details in the computer, includ ing both the 
memory system and the processor structure (as we will see in Chap ters 4 and 5), as 
well as on the mix of instruction types executed in an application. Thus, CPI varies 
by application, as well as among implementations with the same instruction set. 

The above example shows the danger of using only one factor (instruction count) 
to assess performance. When comparing two computers, you must look at all three 
components, which combine to form execution time. If some of the fac tors are 
identical, like the clock rate in the above example, performance can be determined 
by comparing all the nonidentical factors. Since CPI varies by instruction mix, 
both instruction count and CPI must be compared, even if clock rates are identical. 
Several exercises at the end of this chapter ask you to evaluate a series of computer 
and compiler enhancements that affect clock rate, CPI, and instruction count. In 
Section 1.8, we’ll examine a common performance measure ment that does not 
incorporate all the terms and can thus be misleading.

instruction mix 
A measure of the dynamic 
frequency of instructions 
across one or many 
programs.

Components of performance Units of measure

CPU execution time for a program Seconds for the program

Instruction count Instructions executed for the program

Clock cycles per instruction (CPI) Average number of clock cycles per instruction

Clock cycle time  Seconds per clock cycle

FIGURE 1.14 The basic components of performance and how each is measured. 
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The performance of a program depends on the algorithm, the language, the 
compiler, the architecture, and the actual hardware. The following table summarizes 
how these components affect the factors in the CPU performance equation.

Understanding 
Program 

Performance
Hardware 

or software 
component Affects what? How?

Algorithm Instruction count, 
possibly CPI

The algorithm determines the number of source program 
instructions executed and hence the number of processor 
instructions executed. The algorithm may also affect the CPI, by 
favoring slower or faster instructions. For example, if the 
algorithm uses more floating-point operations, it will tend to have 
a higher CPI. 

Programming 
language

Instruction count, 
CPI

The programming language certainly affects the instruction count, 
since statements in the language are translated to processor 
instructions, which determine instruction count. The language 
may also affect the CPI because of its features; for example, 
a language with heavy support for data abstraction (e.g., Java)  
will require indirect calls, which will use higher CPI instructions. 

Compiler Instruction count, 
CPI

The efficiency of the compiler affects both the instruction count 
and average cycles per instruction, since the compiler determines 
the translation of the source language instructions into computer 
instructions. The compiler’s role can be very complex and affect 
the CPI in complex ways.

Instruction set 
architecture

Instruction count, 
clock rate, 
CPI

The instruction set architecture affects all three aspects of CPU 
performance, since it affects the instructions needed for a 
function, the cost in cycles of each instruction, and the overall 
clock rate of the processor.

Elaboration: Although you might expect that the minimum CPI is 1.0, as we’ll see in 
Chap ter 4, some processors fetch and execute multiple instructions per clock cycle. To 
reflect that approach, some designers invert CPI to talk about  IPC, or  instructions per 
clock cycle. If a pro cessor executes on average 2 instructions per clock cycle, then it has 
an IPC of 2 and hence a CPI of 0.5.

A given application written in Java runs 15 seconds on a desktop processor. A new 
Java compiler is released that requires only 0.6 as many instructions as the old 
compiler. Unfortunately, it increases the CPI by 1.1. How fast can we expect the 
application to run using this new compiler? Pick the right answer from the three 
choices below

a.   15 × 0.6  
1.1

   = 8.2 sec

b. 15 × 0.6 × 1.1 = 9.9 sec

c.   15 × 1.1  
0.6

   = 27.5 sec

Check 
Yourself



 1.5 The Power Wall

Figure 1.15 shows the increase in clock rate and power of eight generations of Intel 
microprocessors over 25 years. Both clock rate and power increased rapidly for 
decades, and then flattened off recently. The reason they grew together is that they 
are correlated, and the reason for their recent slowing is that we have run into the 
practical power limit for cooling commodity microprocessors.

FIGURE 1.15 Clock rate and Power for Intel x86 microprocessors over eight generations 
and 25 years. The Pentium 4 made a dramatic jump in clock rate and power but less so in performance. 
The Prescott thermal problems led to the abandonment of the Pentium 4 line. The Core 2 line reverts to a 
simpler pipeline with lower clock rates and multiple processors per chip. 
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Power

The dominant technology for integrated circuits is called CMOS (complemen
tary metal oxide semiconductor). For CMOS, the primary source of power dissi
pation is socalled dynamic power—that is, power that is consumed  during 
switching. The dynamic power dissipation depends on the capacitive loading 
of each transistor, the voltage applied, and the frequency that the transistor is 
switched:

Power = Capacitive load × Voltage2 × Frequency switched
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Frequency switched is a function of the clock rate. The capacitive load per 
tran sistor is a function of both the number of transistors connected to an output 
(called the fanout) and the technology, which determines the capacitance of both 
wires and transistors.

How could clock rates grow by a factor of 1000 while power grew by only a 
factor of 30? Power can be reduced by lowering the voltage, which occurred with 
each new generation of technology, and power is a function of the voltage squared. 
Typically, the voltage was reduced about 15% per generation. In 20 years, voltages 
have gone from 5V to 1V, which is why the increase in power is only 30 times. 

Relative Power

Suppose we developed a new, simpler processor that has 85% of the capacitive 
load of the more complex older processor. Further, assume that it has adjust
able voltage so that it can reduce voltage 15% compared to processor B, which 
results in a 15% shrink in frequency. What is the impact on dynamic power?

  
Power

new  
Power

old

    =     
〈Capacitive load × 0.85〉 × 〈Voltage × 0.85〉2 × 〈Frequency switched × 0.85〉 

          
Capacitive load × Voltage2 × Frequency switched

  

Thus the power ratio is

0.854 = 0.52

Hence, the new processor uses about half the power of the old processor.

The problem today is that further lowering of the voltage appears to make the 
transistors too leaky, like water faucets that cannot be completely shut off. Even 
today about 40% of the power consumption is due to leakage. If transistors started 
leaking more, the whole process could become unwieldy.

To try to address the power problem, designers have already attached large 
devices to increase cooling, and they turn off parts of the chip that are not used in a 
given clock cycle. Although there are many more expensive ways to cool chips and 
thereby raise their power to, say, 300 watts, these techniques are too expensive for 
desktop computers.

Since computer designers slammed into a power wall, they needed a new way 
forward. They chose a different way from the way they designed microprocessors 
for their first 30 years.

Elaboration: Although dynamic power is the primary source of power dissipation in 
CMOS, static power dissipation occurs because of leakage current that flows even when 
a  transistor  is  off.  As  mentioned  above,  leakage  is  typically  responsible  for  40%  of 
the power consumption in 2008. Thus, increasing the number of transistors increases 
power dissipation, even if the tran sistors are always off. A variety of design techniques 
and technology innovations are being deployed to control leakage, but it’s hard to lower 
voltage further.

EXAMPLE

ANSWER



 1.6  The Sea Change: The Switch from 
Uniprocessors to Multiprocessors

The power limit has forced a dramatic change in the design of microprocessors. 
Figure 1.16 shows the improvement in response time of programs for desktop 
microprocessors over time. Since 2002, the rate has slowed from a factor of 1.5 per 
year to less than a factor of 1.2 per year. 

Rather than continuing to decrease the response time of a single program run
ning on the single processor, as of 2006 all desktop and server companies are ship
ping microprocessors with multiple processors per chip, where the benefit is often 
more on throughput than on response time. To reduce confusion between the 
words processor and microprocessor, companies refer to processors as “cores,” and 
such microprocessors are generically called multicore microprocessors. Hence, a 
“quadcore” microprocessor is a chip that contains four processors or four cores.

Figure 1.17 shows the number of processors (cores), power, and clock rates 
of recent microprocessors. The official plan of record for many companies is to 
double the number of cores per microprocessor per semiconductor technology 
gener ation, which is about every two years (see Chapter 7).

In the past, programmers could rely on innovations in hardware, architecture, 
and compilers to double performance of their programs every 18 months without 
having to change a line of code. Today, for programmers to get significant improve
ment in response time, they need to rewrite their programs to take advantage of 
multiple processors. Moreover, to get the historic benefit of running faster on new 
microprocessors, programmers will have to continue to improve performance of 
their code as the number of cores doubles.

To reinforce how the software and hardware systems work hand in hand, we use 
a special section, Hardware/Software Interface, throughout the book, with the first 
one appearing below. These elements summarize important insights at this critical 
interface.

Parallelism has always been critical to performance in computing, but it was often 
hidden. Chapter 4 will explain pipelining, an elegant technique that runs pro
grams faster by overlapping the execution of instructions. This is one example of 
instruction-level parallelism, where the parallel nature of the hardware is abstracted 
away so the programmer and compiler can think of the hardware as executing 
instructions sequentially.

Forcing programmers to be aware of the parallel hardware and to explicitly 
rewrite their programs to be parallel had been the “third rail” of computer architec
ture, for companies in the past that depended on such a change in behavior failed 
(see Section 7.14 on the CD). From this historical perspective, it’s startling that 
the whole IT industry has bet its future that programmers will finally successfully 
switch to explicitly parallel programming.

“Up to now, most 
software has been like 
music written for a 
solo performer; with 
the current generation 
of chips we’re getting a 
little experi ence with 
duets and quar tets and 
other small ensembles; 
but scoring a work for 
large orchestra and 
chorus is a different 
kind of challenge.”

Brian Hayes, Computing 
in a Parallel Universe, 
2007.

Hardware/ 
Software 
Interface
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Why has it been so hard for programmers to write explicitly parallel programs? 
The first reason is that parallel programming is by definition performance pro
gramming, which increases the difficulty of programming. Not only does the 
pro gram need to be correct, solve an important problem, and provide a useful 
interface to the people or other programs that invoke it, the program must also be 
fast. Otherwise, if you don’t need performance, just write a sequential program. 

The second reason is that fast for parallel hardware means that the program mer 
must divide an application so that each processor has roughly the same amount to 

FIGURE 1.16 Growth in processor performance since the mid-1980s. This chart plots performance relative to the VAX 11/780 
as measured by the SPECint benchmarks (see Section 1.8). Prior to the mid1980s, processor performance growth was largely technology
driven and averaged about 25% per year. The increase in growth to about 52% since then is attributable to more advanced architectural and 
organizational ideas. By 2002, this growth led to a difference in performance of about a factor of seven. Performance for floatingpoint
oriented calculations has increased even faster. Since 2002, the limits of power, available instructionlevel parallelism, and long memory latency 
have slowed uniprocessor performance recently, to about 20% per year. 
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FIGURE 1.17 Number of cores per chip, clock rate, and power for 2008 multicore micro-
processors. 



do at the same time, and that the overhead of scheduling and coordi nation doesn’t 
fritter away the potential performance benefits of parallelism. 

As an analogy, suppose the task was to write a newspaper story. Eight reporters 
working on the same story could potentially write a story eight times faster. To 
achieve this increased speed, one would need to break up the task so that each 
reporter had something to do at the same time. Thus, we must schedule the sub
tasks. If anything went wrong and just one reporter took longer than the seven 
others did, then the benefits of having eight writers would be diminished. Thus, we 
must balance the load evenly to get the desired speedup. Another danger would be 
if reporters had to spend a lot of time talking to each other to write their sec tions. 
You would also fall short if one part of the story, such as the conclusion, couldn’t 
be written until all of the other parts were completed. Thus, care must be taken 
to reduce communication and synchronization overhead. For both this anal ogy and 
parallel programming, the challenges include scheduling, load balancing, time for 
synchronization, and overhead for communication between the parties. As you 
might guess, the challenge is stiffer with more reporters for a newspa per story and 
more processors for parallel programming. 

To reflect this sea change in the industry, the next five chapters in this edition of 
the book each have a section on the implications of the parallel revolution to that 
chapter:

 ■ Chapter 2, Section 2.11: Parallelism and Instructions: Synchronization. Usually 
independent parallel tasks need to coordinate at times, such as to say when 
they have completed their work. This chapter explains the instructions used 
by multi core processors to synchronize tasks.

 ■ Chapter 3, Section 3.6: Parallelism and Computer Arithmetic : Associativity. 
Often parallel program mers start from a working sequential program. 
A natural question to learn if their parallel version works is, “does it get the 
same answer?” If not, a logical conclusion is that there are bugs in the new 
version. This logic assumes that computer arithmetic is associative: you get 
the same sum when adding a million numbers, no matter what the order. 
This chapter explains that while this logic holds for integers, it doesn’t hold 
for floatingpoint numbers.

 ■ Chapter 4, Section 4.10: Parallelism and Advanced Instruction-Level Parallelism. 
Given the difficulty of explicitly parallel programming, tremendous effort was 
invested in the 1990s in having the hardware and the compiler uncover implicit 
par allelism. This chapter describes some of these aggressive techniques, includ
ing fetching and executing multiple instructions simultaneously and guessing 
on the outcomes of decisions, and executing instructions speculatively.
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 ■ Chapter 5, Section 5.8: Parallelism and Memory Hierarchies: Cache Coherence. 
One way to lower the cost of communication is to have all processors use 
the same address space, so that any processor can read or write any data. 
Given that all processors today use caches to keep a temporary copy of the 
data in faster memory near the pro cessor, it’s easy to imagine that parallel 
programming would be even more difficult if the caches associated with each 
processor had inconsistent values of the shared data. This chapter describes 
the mechanisms that keep the data in all caches consistent.

 ■ Chapter 6, Section 6.9: Parallelism and I/O: Redundant Arrays of Inexpensive 
Disks. If you ignore input and output in this parallel revolution, the 
unintended conse quence of parallel programming may be to make your 
parallel program spend most of its time waiting for I/O. This chapter 
describes RAID, a tech nique to accelerate the performance of storage 
accesses. RAID points out another potential benefit of parallelism: by having 
many copies of resources, the system can continue to provide service despite 
a failure of one resource. Hence, RAID can improve both I/O performance 
and availability.

In addition to these sections, there is a full chapter on parallel processing. 
Chapter 7 goes into more detail on the challenges of parallel programming; 
presents the two contrasting approaches to communication of shared addressing 
and explicit message passing; describes a restricted model of parallelism that is 
easier to program; discusses the difficulty of benchmarking parallel processors; 
introduces a new simple performance model for multicore microprocessors and 
finally describes and evaluates four examples of multicore microprocessors using 
this model.

Starting with this edition of the book, Appendix A describes an increasingly 
popular hardware component that is included with desktop computers, the graph
ics processing unit (GPU). Invented to accelerate graphics, GPUs are becoming 
programming platforms in their own right. As you might expect, given these times, 
GPUs are highly parallel. Appendix A describes the NVIDIA GPU and highlights 
parts of its parallel programming environment.

 1.7  Real Stuff: Manufacturing and 
Benchmarking the AMD Opteron X4

Each chapter has a section entitled “Real Stuff” that ties the concepts in the book 
with a computer you may use every day. These sections cover the technology 
underlying modern computers. For this first “Real Stuff” section, we look at how 
integrated circuits are manufactured and how performance and power are mea
sured, with the AMD Opteron X4 as the example. 

I thought [computers] 
would be a universally 
applicable idea, like a 
book is. But I didn’t 
think it would develop 
as fast as it did, because 
I didn’t envision we’d 
be able to get as many 
parts on a chip as 
we fnally got. The 
transistor came along 
unex pectedly. It all 
happened much faster 
than we expected.

J. Presper Eckert, 
coinventor of ENIAC, 
speaking in 1991



Let’s start at the beginning. The manufacture of a chip begins with silicon, a 
substance found in sand. Because silicon does not conduct electricity well, it is 
called a semiconductor. With a special chemical process, it is possible to add 
 materials to silicon that allow tiny areas to transform into one of three devices:  

 ■ Excellent conductors of electricity (using either microscopic copper or 
aluminum wire) 

 ■ Excellent insulators from electricity (like plastic sheathing or glass)

 ■ Areas that can conduct or insulate under special conditions (as a switch)

Transistors fall in the last category. A VLSI circuit, then, is just billions of combi
nations of conductors, insulators, and switches manufactured in a  single small 
package.

The manufacturing process for integrated circuits is critical to the cost of the 
chips and hence important to computer designers. Figure 1.18 shows that process. 
The process starts with a silicon crystal ingot, which looks like a giant sausage. 
Today, ingots are 8–12 inches in diameter and about 12–24 inches long. An ingot is 
finely sliced into wafers no more than 0.1 inch thick. These wafers then go through 
a series of processing steps, during which patterns of chemicals are placed on 

silicon A natural element 
that is a semiconductor.

semiconductor 
A substance that does not 
conduct  electricity well.

silicon crystal ingot 
A rod composed of a 
silicon crystal that is 
between 8 and 12 inches 
in diameter and about 12 
to 24 inches long.

wafer A slice from a 
silicon ingot no more 
than 0.1 inch thick, used 
to create chips.

FIGURE 1.18 The chip manufacturing process. After being sliced from the silicon ingot, blank 
wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.19). These pat terned wafers 
are then tested with a wafer tester, and a map of the good parts is made. Then, the wafers are diced into dies 
(see Figure 1.9). In this figure, one wafer produced 20 dies, of which 17 passed testing. (X means the die is 
bad.) The yield of good dies in this case was 17/20, or 85%. These good dies are then bonded into packages 
and tested one more time before shipping the packaged parts to customers. One bad packaged part was 
found in this final test. 
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each wafer, creating the transistors, conductors, and insulators discussed ear lier. 
Today’s integrated circuits contain only one layer of transistors but may have from 
two to eight levels of metal conductor, separated by layers of insulators. 

A single microscopic flaw in the wafer itself or in one of the dozens of pattern
ing steps can result in that area of the wafer failing. These defects, as they are 
called, make it virtually impossible to manufacture a perfect wafer. To cope with 
imperfection, several strategies have been used, but the simplest is to place many 
independent components on a single wafer. The patterned wafer is then chopped 
up, or diced, into these components, called dies and more informally known as 
chips. Figure 1.19 is a photograph of a wafer containing microprocessors before 
they have been diced; earlier, Figure 1.9 on page 20 shows an individual micro
processor die and its major components. 

Dicing enables you to discard only those dies that were unlucky enough to con
tain the flaws, rather than the whole wafer. This concept is quantified by the yield 
of a process, which is defined as the percentage of good dies from the total num ber 
of dies on the wafer. 

The cost of an integrated circuit rises quickly as the die size increases, due both 
to the lower yield and the smaller number of dies that fit on a wafer. To reduce 
the cost, a large die is often “shrunk” by using the next generation process, which 
incorporates smaller sizes for both transistors and wires. This improves the yield 
and the die count per wafer. 

Once you’ve found good dies, they are connected to the input/output pins  
of a package, using a process called bonding. These packaged parts are tested a 
final time, since mistakes can occur in packaging, and then they are shipped to 
cus tomers.

As mentioned above, an increasingly important design constraint is power. 
Power is a challenge for two reasons. First, power must be brought in and distrib
uted around the chip; modern microprocessors use hundreds of pins just for power 
and ground! Similarly, multiple levels of interconnect are used solely for power and 
ground distribution to portions of the chip. Second, power is dissi pated as heat and 
must be removed. An AMD Opteron X4 model 2356 2.0 GHz burns 120 watts in 
2008, which must be removed from a chip whose surface area is just over 1 cm2!

Elaboration: The  cost  of  an  integrated  circuit  can  be  expressed  in  three  simple 
equations:

  Cost per die =       Cost per wafer
  ____________________  

Dies per wafer × yield
  

  Dies per wafer ≈      Wafer area __________ 
Die area

   

  Yield =     1  __________________________________    (1 + (Defects per area × Die area/2))2  

defect A microscopic 
flaw in a wafer or in 
patterning steps that can 
result in the failure of the 
die containing that defect.

die The individual 
rectangular sections that 
are cut from a wafer, 
more informally known 
as chips.

yield The percentage of 
good dies from the total 
number of dies on the 
wafer.



The  first  equation  is  straightforward  to  derive.  The  second  is  an  approximation, 
since  it  does  not  subtract  the  area  near  the  border  of  the  round  wafer  that  cannot 
accommodate the rectangu lar dies  (see Figure 1.19). The final equation  is based on 
empirical observations of yields at inte grated circuit factories, with the exponent related 
to the number of critical processing steps. 

Hence, depending on  the defect  rate and the size of  the die and wafer, costs are 
generally not linear in die area.

FIGURE 1.19 A 12-inch (300mm) wafer of AMD Opteron X2 chips, the predecessor of 
Opteron X4 chips (Courtesy AMD). The number of dies per wafer at 100% yield is 117. The several 
dozen partially rounded chips at the boundaries of the wafer are useless; they are included because it’s easier 
to create the masks used to pattern the silicon. This die uses a 90nanometer technology, which means that the 
smallest transistors are approximately 90 nm in size, although they are typically somewhat smaller than the 
actual feature size, which refers to the size of the transistors as “drawn” versus the final manufactured size. 
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SPEC CPU Benchmark

A computer user who runs the same programs day in and day out would be the 
perfect candidate to evaluate a new computer. The set of programs run would form 
a workload. To evaluate two computer systems, a user would simply com pare the 
execution time of the workload on the two computers. Most users, how ever, are 
not in this situation. Instead, they must rely on other methods that measure the 
performance of a candidate computer, hoping that the methods will reflect how 
well the computer will perform with the user’s workload. This alterna tive is usually 
followed by evaluating the computer using a set of benchmarks—programs 
specifically chosen to measure performance. The benchmarks form a workload 
that the user hopes will predict the performance of the actual workload.

SPEC (System Performance Evaluation Cooperative) is an effort funded and 
supported by a number of computer vendors to create standard sets of bench marks 
for modern computer systems. In 1989, SPEC originally created a bench mark 
set focusing on processor performance (now called SPEC89), which has evolved 
through five generations. The latest is SPEC CPU2006, which consists of a set of 12 
integer benchmarks (CINT2006) and 17 floatingpoint benchmarks (CFP2006). 
The integer benchmarks vary from part of a C compiler to a chess program to a 
quantum computer simulation. The floatingpoint benchmarks include structured 
grid codes for finite element modeling, particle method codes for molecular 
dynamics, and sparse linear algebra codes for fluid dynam ics. 

Figure 1.20 describes the SPEC integer benchmarks and their execution time 
on the Opteron X4 and shows the factors that explain execution time: instruction 
count, CPI, and clock cycle time. Note that CPI varies by a factor of 13. 

To simplify the marketing of computers, SPEC decided to report a single 
number to summarize all 12 integer benchmarks. The execution time measure
ments are first normalized by dividing the execution time on a reference processor 
by the execution time on the measured computer; this normalization yields a 
measure, called the SPECratio, which has the advantage that bigger numeric 
results indicate faster performance (i.e., the SPECratio is the inverse of execution 
time). A CINT2006 or CFP2006 summary measurement is obtained by taking the 
geometric mean of the SPECratios.

Elaboration: When comparing  two computers using SPECratios, use the geometric 
mean so  that  it gives  the same relative answer no matter what computer  is used to 
normalize  the  results.  If  we  averaged  the  normalized  execution  time  values  with  an 
arithmetic mean, the results would vary depending on the computer we choose as the 
reference. 

workload A set of 
programs run on a 
computer that is either 
the actual collection of 
applica tions run by a user 
or con structed from real 
programs to approximate 
such a mix. A typi cal 
workload specifies both 
the programs and the 
relative fre quencies.

benchmark A program 
selected for use in 
comparing computer 
performance.



The formula for the geometric mean is

n 


    
i = 1

   
n

   Execution time ratio   
i

where Execution time ratio
i
 is the execution time, normalized to the reference computer, 

for the ith program of a total of n in the workload, and 

  
i = 1

  
n

   ai
 means the product a1 × a2 × … × a

n
 

SPEC Power Benchmark

Today, SPEC offers a dozen different benchmark sets designed to test a wide 
variety of computing environments using real applications and strictly specified 
execution rules and reporting requirements. The most recent is SPECpower. It 
reports power consumption of servers at different workload levels, divided into 
10% increments, over a period of time. Figure 1.21 shows the results for a server 
using Barcelona. 

SPECpower started with the SPEC benchmark for Java business applications 
(SPECJBB2005), which exercises the processors, caches, and main memory as well 
as the Java virtual machine, compiler, garbage collector, and pieces of the  operat ing  
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FIGURE 1.20 SPECINTC2006 benchmarks running on AMD Opteron X4 model 2356 (Barcelona). As the equation on 
page 35 explains, execution time is the prod uct of the three factors in this table: instruction count in billions, clocks per instruction (CPI), and 
clock cycle time in nanoseconds. SPECratio is sim ply the reference time, which is supplied by SPEC, divided by the measured execution time. 
The single number quoted as SPECINTC2006 is the geometric mean of the SPECratios. Figure 5.40 on page 542 shows that mcf, libquantum, 
omnetpp, and xalancbmk have relatively high CPIs because they have high cache miss rates. 

Description Name
Instruction 
Count × 109 CPI

Clock cycle time
(seconds × 10-9)

Execution  
Time  

(seconds)

Reference  
Time  

(seconds) SPECratio

Interpreted string processing perl 2,118 0.75 0.4 637 9,770 15.3

Block-sorting  
compression

bzip2 2,389 0.85 0.4 817 9,650 11.8

GNU C compiler gcc 1,050 1.72 0.4 724 8,050 11.1

Combinatorial optimization mcf 336 10.00 0.4 1,345 9,120 6.8

Go game (AI) go 1,658 1.09 0.4 721 10,490 14.6

Search gene sequence hmmer 2,783 0.80 0.4 890 9,330 10.5

Chess game (AI) sjeng 2,176 0.96 0.4 837 12,100 14.5

Quantum computer 
simulation

libquantum 1,623 1.61 0.4 1,047 20,720 19.8

Video compression h264avc 3,102 0.80 0.4 993 22,130 22.3

Discrete event  
simulation library

omnetpp 587 2.94 0.4 690 6,250 9.1

Games/path finding astar 1,082 1.79 0.4 773 7,020 9.1

XML parsing xalancbmk 1,058 2.70 0.4 1,143 6,900 6.0

Geometric Mean 11.7
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system. Performance is measured in throughput, and the units are business 
operations per second. Once again, to simplify the marketing of computers, SPEC 
boils these numbers down to a single number, called “overall ssj_ops per Watt.” The 
formula for this single summarizing metric is

overall ssj_ops per Watt =    ∑ 
i = 0

  
10

   ssj_ops
i
    /    ∑ 

i = 0

  
10

   power
i
   

where ssj_ops
i
 is performance at each 10% increment and power

i
 is power con

sumed at each performance level.

A key factor in determining the cost of an integrated circuit is volume. Which of 
the following are reasons why a chip made in high volume should cost less?

1. With high volumes, the manufacturing process can be tuned to a particular 
design, increasing the yield.

2. It is less work to design a highvolume part than a lowvolume part.

3. The masks used to make the chip are expensive, so the cost per chip is lower 
for higher volumes.

4. Engineering development costs are high and largely independent of vol ume; 
thus, the development cost per die is lower with highvolume parts.

5. Highvolume parts usually have smaller die sizes than lowvolume parts and 
therefore have higher yield per wafer. 

Check  
Yourself

Target Load %
Performance  

(ssj_ops)
Average Power  

(Watts)

100% 231,867 295

90% 211,282 286

80% 185,803 275

70% 163,427 265

60% 140,160 256

50% 118,324 246

40% 92,035 233

30% 70,500 222

20% 47,126 206

10% 23,066 180

0% 0 141

Overall Sum 1,283,590 2,605

Σ ssj_ops / Σ power =   493

FIGURE 1.21 SPECpower_ssj2008 running on dual socket 2.3 GHz AMD Opteron X4 2356 
(Barcelona) with 16 GB Of DDR2-667 DRAM and one 500 GB disk. 



 1.8 Fallacies and Pitfalls

The purpose of a section on fallacies and pitfalls, which will be found in every 
chapter, is to explain some commonly held misconceptions that you might 
encounter. We call such misbeliefs fallacies. When discussing a fallacy, we try to 
give a counterexample. We also discuss pitfalls, or easily made mistakes. Often pit
falls are generalizations of principles that are true in a limited context. The pur pose 
of these sections is to help you avoid making these mistakes in the computers you 
may design or use. Cost/performance fallacies and pitfalls have ensnared many a 
computer architect, including us. Accordingly, this section suffers no shortage of 
relevant examples. We start with a pitfall that traps many designers and reveals an 
important relationship in computer design. 

Pitfall: Expecting the improvement of one aspect of a computer to increase overall 
performance by an amount proportional to the size of the improvement.

This pitfall has visited designers of both hardware and software. A simple design prob
lem illustrates it well. Suppose a program runs in 100 seconds on a computer, with 
multiply operations responsible for 80 seconds of this time. How much do I have to 
improve the speed of multiplication if I want my program to run five times faster?

The execution time of the program after making the improvement is given by 
the following simple equation known as Amdahl’s law:

Execution time after improvement =

  
Execution time affected by improvement

       
Amount of improvement

    +  Execution time unaffected

For this problem:

Execution time after improvement  =    80 seconds  n    +  (100 − 80 seconds)

Since we want the performance to be five times faster, the new execution time 
should be 20 seconds, giving

20 seconds  =    80 seconds  n    +  20 seconds

 0  =    80 seconds  n  

That is, there is no amount by which we can enhancemultiply to achieve a fivefold 
increase in performance, if multiply accounts for only 80% of the workload.  

Science must begin 
with myths, and the 
criticism of myths.

Sir Karl Popper, The 
 Philosophy of Science, 
1957

Amdahl’s law A rule 
stating that the 
performance  enhance
ment possible with a 
given improvement is 
limited by the amount 
that the improved feature 
is used. It is a quantita
tive version of the law of 
diminishing returns.
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The performance enhancement possible with a given improvement is limited by 
the amount that the improved feature is used. This concept also yields what we 
call the law of diminishing returns in everyday life. 

We can use Amdahl’s law to estimate performance improvements when we 
know the time consumed for some function and its potential speedup. Amdahl’s 
law, together with the CPU performance equation, is a handy tool for evaluating 
potential enhancements. Amdahl’s law is explored in more detail in the exercises.

A common theme in hardware design is a corollary of Amdahl’s law: Make the 
common case fast. This simple guideline reminds us that in many cases the fre quency 
with which one event occurs may be much higher than the frequency of another. 
 Amdahl’s law reminds us that the opportunity for improvement is affected by how 
much time the event consumes. Thus, making the common case fast will tend to 
enhance performance better than optimizing the rare case. Ironically, the com mon 
case is often simpler than the rare case and hence is often easier to enhance. 

Amdahl’s law is also used to argue for practical limits to the number of parallel 
processors. We examine this argument in the Fallacies and Pitfalls section of 
Chapter 7.

Fallacy: Computers at low utilization use little power. 

Power efficiency matters at low utilizations because server workloads vary. CPU 
utilization for servers at Google, for example, is between 10% and 50% most of the 
time and at 100% less than 1% of the time. Figure 1.22 shows power for serv ers 
with the best SPECpower results at 100% load, 50% load, 10% load, and idle. Even 
servers that are only 10% utilized burn about twothirds of their peak power.

Since servers’ workloads vary but use a large fraction of peak power, Luiz 
Barroso and Urs Hölzle [2007] argue that we should redesign hardware to achieve 
“energyproportional computing.” If future servers used, say, 10% of peak power at 
10% workload, we could reduce the electricity bill of datacenters and become good 
corporate citizens in an era of increasing concern about CO

2
 emissions.  

FIGURE 1.22 SPECPower results for three servers with the best overall ssj_ops per watt in the fourth quarter of 
2007. The overall ssj_ops per watt of the three servers are 698, 682, and 667, respectively. The memory of the top two servers is 16 GB and 
the bottom is 8 GB. 

Server  
Manufacturer

Micro-  
processor

Total  
Cores/  
Sockets

Clock 
 Rate

Peak  
Performance  

(ssj_ops)

100% 
Load 

Power

50% 
Load 

Power

50% 
Load/ 
100% 
Power

10% 
Load 

Power

10% 
Load/ 
100% 
Power

Active 
Idle 

Power

Active 
Idle/ 
100% 
Power

HP Xeon E5440 8/2 3.0 GHz 308,022 269 W 227 W 84% 174 W 65% 160 W 59%

Dell Xeon E5440 8/2 2.8 GHz 305,413 276 W 230 W 83% 173 W 63% 157 W 57%

Fujitsu Seimens Xeon X3220 4/1 2.4 GHz 143,742 132 W 110 W 83% 85 W 65% 80 W 60%

Pitfall: Using a subset of the performance equation as a performance metric. 

We have already shown the fallacy of predicting performance based on simply one 
of clock rate, instruction count, or CPI. Another common mistake is to use only 



two of the three factors to compare performance. Although using two of the three 
factors may be valid in a limited context, the concept is also easily misused. Indeed, 
nearly all pro posed alternatives to the use of time as the performance metric have 
led eventually to misleading claims, distorted results, or incorrect interpretations.

One alternative to time is MIPS (million instructions per second). For a given 
program, MIPS is simply

MIPS  =    Instruction count
    

Execution time × 106  

Since MIPS is an instruction execution rate, MIPS specifies performance 
inversely to execution time; faster computers have a higher MIPS rating. The good 
news about MIPS is that it is easy to understand, and faster computers mean big ger 
MIPS, which matches intuition.

There are three problems with using MIPS as a measure for comparing com
puters. First, MIPS specifies the instruction execution rate but does not take into 
account the capabilities of the instructions. We cannot compare computers with 
different instruction sets using MIPS, since the instruction counts will certainly 
differ. Second, MIPS varies between programs on the same computer; thus, a com
puter cannot have a single MIPS rating. For example, by substituting for execu tion 
time, we see the relationship between MIPS, clock rate, and CPI: 

MIPS  =    Instruction count     

  Instruction count × CPI    
 Clock rate

   × 106

    =    Clock rate  
CPI × 106

  

Recall that CPI varied by 13× for SPEC CPU2006 on Opteron X4, so MIPS does as 
well. Finally, and most importantly, if a new program executes more instructions 
but each instruction is faster, MIPS can vary independently from performance!

Consider the following performance measurements for a program:

million instructions  
per sec ond (MIPS) 
A measurement of 
program execution speed 
based on the number of 
millions of instructions. 
MIPS is computed as the 
instruction count divided 
by the product of the 
execution time and 106.

Check 
Yourself

Measurement Computer A Computer B

Instruction count 10 billion 8 billion

Clock rate 4 GHz 4 GHz

CPI 1.0 1.1

a. Which computer has the higher MIPS rating?

b. Which computer is faster? 
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 1.9 Concluding Remarks

Although it is difficult to predict exactly what level of cost/performance comput
ers will have in the future, it’s a safe bet that they will be much better than they 
are today. To participate in these advances, computer designers and programmers 
must understand a wider variety of issues. 

Both hardware and software designers construct computer systems in hierar
chical layers, with each lower layer hiding details from the level above. This princi
ple of abstraction is fundamental to understanding today’s computer systems, but it 
does not mean that designers can limit themselves to knowing a single abstraction. 
Perhaps the most important example of abstraction is the interface between 
hardware and lowlevel software, called the instruction set architecture. Maintain
ing the instruction set architecture as a constant enables many implementations of 
that architecture—presumably varying in cost and performance—to run identical 
software. On the downside, the architecture may preclude introducing innova tions 
that require the interface to change.

There is a reliable method of determining and reporting performance by using 
the execution time of real programs as the metric. This execution time is related to 
other important measurements we can make by the following equation:

  Seconds  
Program

    =    Instructions  
Program

    ×    Clock cycles
  

Instruction
    ×    Seconds  

Clock cycle
  

We will use this equation and its constituent factors many times. Remember, 
though, that individually the factors do not determine performance: only the 
product, which equals execution time, is a reliable measure of performance. 

Execution time is the only valid and unimpeachable measure of perfor
mance. Many other metrics have been proposed and found wanting. 
Sometimes these metrics are flawed from the start by not reflecting exe
cution time; other times a metric that is valid in a limited context is 
extended and used beyond that context or without the additional clarifi
cation needed to make it valid.

The key hardware technology for modern processors is silicon. Equal in impor
tance to an understanding of integrated circuit technology is an understanding of 
the expected rates of technological change. While silicon fuels the rapid advance 
of hardware, new ideas in the organization of computers have improved price/
performance. Two of the key ideas are exploiting parallelism in the program, 

The BIG
Picture

Where . . . the ENIAC 
is equipped with 
18,000  vacuum tubes 
and weighs 30 tons, 
computers in the future 
may have 1,000  
vacuum tubes and 
perhaps weigh just 
1½ tons.

Popular Mechanics, 
March 1949



typically today via multiple processors, and exploiting locality of accesses to a 
memory hierarchy, typically via caches.

Power has replaced die area as the most critical resource of microprocessor 
design. Conserving power while trying to increase performance has forced the 
hardware industry to switch to multicore microprocessors, thereby forcing the 
software industry to switch to programming parallel hardware.

Computer designs have always been measured by cost and performance, as well 
as other important factors such as power, reliability, cost of ownership, and scal
ability. Although this chapter has focused on cost, performance, and power, the 
best designs will strike the appropriate balance for a given market among all the 
factors.

Road Map for This Book
At the bottom of these abstractions are the five classic components of a computer: 
datapath, control, memory, input, and output (refer to Figure 1.4). These five 
components also serve as the framework for the rest of the chapters in this book:

 ■ Datapath: Chapters 3, 4, 7, and Appendix A

 ■ Control: Chapters 4, 7, and Appendix A

 ■ Memory: Chapter 5 

 ■ Input: Chapter 6

 ■ Output: Chapter 6

As mentioned above, Chapter 4 describes how processors exploit implicit par
allelism, Chapter 7 describes the explicitly parallel multicore microprocessors that 
are at the heart of the parallel revolution, and Appendix A describes the highly 
parallel graphics processor chip. Chapter 5 describes how a memory hierarchy 
exploits locality. Chapter 2 describes instruction sets—the interface between com
pilers and the computer—and emphasizes the role of compilers and  programming 
languages in using the features of the instruction set. Appendix B provides a 
reference for the instruction set of Chapter 2. Chapter 3 describes how computers 
handle arithmetic data.  Appendix C, on the CD, introduces logic design. 

   Historical Perspective and Further Reading

For each chapter in the text, a section devoted to a historical perspective can be 
found on the CD that accompanies this book. We may trace the development of 
an idea through a series of computers or describe some important projects, and we 
provide references in case you are interested in probing further. 

An active feld of 
science is like an 
immense anthill; the 
individual almost 
vanishes into the mass 
of minds tum bling 
over each other, carry-
ing information from 
place to place, passing 
it around at the speed 
of light.

Lewis Thomas, “Natural 
 Science,” in The Lives of 
a Cell, 1974

1.10
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The historical perspective for this chapter provides a background for some 
of the key ideas presented in this opening chapter. Its purpose is to give you the 
human story behind the technological advances and to place achievements in 
their historical context. By understanding the past, you may be better able to 
understand the forces that will shape computing in the future. Each historical per
spectives section on the CD ends with suggestions for further reading, which are 
also collected separately on the CD under the section “Further Reading.” The rest 
of  Section 1.10 is found on the CD.

 1.11 Exercises
Contributed by Javier Bruguera of Universidade de Santiago de Compostela

Most of the exercises in this edition are designed so that they feature a qualitative 
description supported by a table that provides alternative quantitative parameters. 
These parameters are needed to solve the questions that comprise the exercise. 
Individual questions can be solved using any or all of the parameters—you decide 
how many of the parameters should be considered for any given exercise question. 
For example, it is possible to say “complete Question 4.1.1 using the parameters 
given in row A of the table.” Alternately, instructors can customize these exercises 
to create novel solutions by replacing the given parameters with your own unique 
values.

The number of quantitative exercises varies from chapter to chapter and depends 
largely on the topics covered. More conventional exercises are provided where the 
quantitative approach does not fit.

The relative time ratings of exercises are shown in square brackets after each 
exercise number. On average, an exercise rated [10] will take you twice as long as 
one rated [5]. Sections of the text that should be read before attempting an exercise 
will be given in angled brackets; for example, <1.3> means you should have read 
Section 1.3, Under the Covers, to help you solve this exercise.

Exercise 1.1
Find the word or phrase from the list below that best matches the description in the 
following questions. Use the num bers to the left of words in the answer. Each 
answer should be used only once. 



1. virtual worlds 14. operating system

2. desktop computers 15. compiler

3. servers 16. bit

4. low-end servers 17. instruction

5. supercomputers 18. assembly language

6. terabyte 19. machine language

7. petabyte  20. C

8. data centers  21. assembler

9. embedded computers 22. high-level language

10. multicore processors 23. system software

11. VHDL 24. application software

12. RAM 25. Cobol

13. CPU 26. Fortran

1.1.1 [2] <1.1> Computer used to run large problems and usually accessed via a 
network

1.1.2 [2] <1.1> 1015 or 250 bytes

1.1.3 [2] <1.1> A class of computers composed of hundred to thousand proces
sors and terabytes of memory and having the highest performance and cost

1.1.4 [2] <1.1> Today’s science fiction application that probably will be available 
in the near future 

1.1.5 [2] <1.1> A kind of memory called random access memory

1.1.6 [2] <1.1> Part of a computer called central processor unit

1.1.7 [2] <1.1> Thousands of processors forming a large cluster

1.1.8 [2] <1.1> Microprocessors containing several processors in the same chip

1.1.9 [2] <1.1> Desktop computer without a screen or keyboard usually accessed 
via a network

1.1.10 [2] <1.1> A computer used to running one predetermined application or 
collection of software

1.1.11 [2] <1.1> Special language used to describe hardware components
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1.1.12 [2] <1.1> Personal computer delivering good performance to single users 
at low cost

1.1.13 [2] <1.2> Program that translates statements in highlevel language to 
assembly language 

1.1.14 [2] <1.2> Program that translates symbolic instructions to binary 
 ins tructions

1.1.15 [2] <1.2> Highlevel language for business data processing

1.1.16 [2] <1.2> Binary language that the processor can understand

1.1.17 [2] <1.2> Commands that the processors understand

1.1.18 [2] <1.2> Highlevel language for scientific computation

1.1.19 [2] <1.2> Symbolic representation of machine instructions

1.1.20 [2] <1.2> Interface between user’s program and hardware providing a 
variety of services and supervision functions

1.1.21 [2] <1.2> Software/programs developed by the users 

1.1.22 [2] <1.2> Binary digit (value 0 or 1)

1.1.23 [2] <1.2> Software layer between the application software and the hard
ware that includes the operating system and the compilers

1.1.24 [2] <1.2> Highlevel language used to write application and system 
software

1.1.25 [2] <1.2> Portable language composed of words and algebraic expres
sions that must be translated into assembly language before run in a computer

1.1.26 [2] <1.2> 1012 or 240 bytes

Exercise 1.2
Consider the different configurations shown in the table

Configuration Resolution Main Memory Ethernet Network

a. 1  640 × 480 2 Gbytes 100 Mbit

2  1280 × 1024 4 Gbytes 1 Gbit

b. 1  1024 × 768 2 Gbytes 100 Mbit

2  2560 × 1600 4 Gbytes 1Gbit



1.2.1 [10] <1.3> For a color display using 8 bits for each of the primary colors 
(red, green, blue) per pixel, what should be the minimum size in bytes of the frame 
buffer to store a frame?

1.2.2 [5] <1.3> How many frames could it store, assuming the memory contains 
no other information?

1.2.3 [5] <1.3> If a 256 Kbytes file is sent through the Ethernet connection, how 
long it would take?

For problems below, use the information about access time for every type of mem
ory in the following table.

Cache DRAM Flash Memory Magnetic Disk

a. 5 ns 50 ns 5 μs 5 ms

b. 7 ns 70 ns 15 μs 20 ms

1.2.4 [5] <1.3> Find how long it takes to read a file from a DRAM if it takes 2 
microseconds from the cache memory.

1.2.5 [5] <1.3> Find how long it takes to read a file from a disk if it takes 2 micro
seconds from the cache memory.

1.2.6 [5] <1.3> Find how long it takes to read a file from a flash memory if it 
takes 2 microseconds from the cache memory.

Exercise 1.3
Consider three different processors P1, P2, and P3 executing the same instruction 
set with the clock rates and CPIs given in the following table.

Processor Clock Rate CPI

a. P1 3 GHz 1.5

P2 2.5 GHz 1.0

P3 4 GHz 2.2

b. P1 2 GHz 1.2

P2 3 GHz 0.8

P3 4 GHz 2.0

1.3.1 [5] <1.4> Which processor has the highest performance expressed in 
instructions per second?

1.3.2 [10] <1.4> If the processors each execute a program in 10 seconds, find the 
number of cycles and the number of instructions.
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1.3.3 [10] <1.4> We are trying to reduce the time by 30% but this leads to 
an increase of 20% in the CPI. What clock rate should we have to get this time 
reduction?

For problems below, use the information in the following table.

Processor Clock Rate No. Instructions Time

a. P1 3 GHz 20.00E+09 7 s

P2 2.5 GHz 30.00E+09 10 s

P3 4 GHz 90.00E+09 9 s

b. P1 2 GHz 20.00E+09 5 s

P2 3 GHz 30.00E+09 8 s

P3 4 GHz 25.00E+09 7 s

1.3.4 [10] <1.4> Find the IPC (instructions per cycle) for each processor.

1.3.5 [5] <1.4> Find the clock rate for P2 that reduces its execution time to 
that of P1.

1.3.6 [5] <1.4> Find the number of instructions for P2 that reduces its execution 
time to that of P3.

Exercise 1.4
Consider two different implementations of the same instruction set architecture. 
There are four classes of instructions, A, B, C, and D. The clock rate and CPI of each 
implementation are given in the following table.

Clock Rate CPI Class A CPI Class B CPI Class C CPI Class D

a. P1 2.5 GHz 1 2 3 3

P2 3 GHz 2 2 2 2

b. P1 2.5 GHz 2 1.5 2 1

P2 3 GHz 1 2 1 1

1.4.1 [10] <1.4> Given a program with 106 instructions divided into classes as 
follows: 10% class A, 20% class B, 50% class C, and 20% class D, which implemen
tation is faster?

1.4.2 [5] <1.4> What is the global CPI for each implementation?

1.4.3 [5] <1.4> Find the clock cycles required in both cases.



The following table shows the number of instructions for a program.

Arith Store Load Branch Total

a. 650 100 600 50 1400

b. 750 250 500 500 2000

1.4.4 [5] <1.4> Assuming that arith instructions take 1 cycle, load and store 5 
cycles, and branches 2 cycles, what is the execution time of the program in a 2 GHz 
processor?

1.4.5 [5] <1.4> Find the CPI for the program.

1.4.6 [10] <1.4> If the number of load instructions can be reduced by one half, 
what is the speedup and the CPI?

Exercise 1.5
Consider two different implementations, P1 and P2, of the same instruction set. 
There are five classes of instructions (A, B, C, D, and E) in the instruction set. The 
clock rate and CPI of each class is given below.

Clock Rate CPI Class A CPI Class B CPI Class C CPI Class D CPI Class E

a. P1 2.0 GHz 1 2 3 4 3

P2 4.0 GHz 2 2 2 4 4

b. P1 2.0 GHz 1 1 2 3 2

P2 3.0 GHz 1 2 3 4 3

1.5.1 [5] <1.4> Assume that peak performance is defined as the fastest rate that 
a computer can execute any instruction sequence. What are the peak performances 
of P1 and P2 expressed in instructions per second?

1.5.2 [10] <1.4> If the number of instructions executed in a certain program 
is divided equally among the classes of instructions except for class A, which  
occurs twice as often as each of the others, which computer is faster? How much 
faster is it?

1.5.3 [10] <1.4> If the number of instructions executed in a certain program 
is divided equally among the classes of instructions except for class E, which oc
curs twice as often as each of the others, which computer is faster? How much 
faster is it?

The table below shows instructiontype breakdown for different programs. Using 
this data, you will be exploring the performance tradeoffs for different changes 
made to an MIPS processor.
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No. Instructions

Compute Load Store Branch Total

a. Program1 600 600 200 50 1450

b. Program 2 900 500 100 200 1700

1.5.4 [5] <1.4> Assuming that computes take 1 cycle, loads and store instructions 
take 10 cycles, and branches take 3 cycles, find the execution time on a 3 GHz MIPS 
processor.

1.5.5 [5] <1.4> Assuming that computes take 1 cycle, loads and store instructions 
take 2 cycles, and branches take 3 cycles, find the execution time on a 3 GHz MIPS 
processor.

1.5.6 [5] <1.4> Assuming that computes take 1 cycle, loads and store instruc
tions take 2 cycles, and branches take 3 cycles, what is the speedup if the number of 
compute instruction can be reduced by onehalf?

Exercise 1.6
Compilers can have a profound impact on the performance of an application on 
given a processor. This problem will explore the impact compilers have on execu
tion time.

Compiler A Compiler B

No. Instructions Execution Time No. Instructions Execution Time

a. 1.00E+09 1.8 s 1.20E+09 1.8 s

b. 1.00E+09 1.1 s 1.20E+09 1.5 s

1.6.1 [5] <1.4> For the same program, two different compilers are used. The table 
above shows the execution time of the two different compiled programs. Find the 
average CPI for each program given that the processor has a clock cycle time of 1 ns.

1.6.2 [5] <1.4> Assume the average CPIs found in 1.6.1, but that the compiled 
programs run on two different processors. If the execution times on the two pro
cessors are the same, how much faster is the clock of the processor running com
piler A’s code versus the clock of the processor running compiler B’s code?

1.6.3 [5] <1.4> A new compiler is developed that uses only 600 million instruc
tions and has an average CPI of 1.1. What is the speedup of using this new compiler 
versus using Compiler A or B on the original processor of 1.6.1?

Consider two different implementations, P1 and P2, of the same instruction set. 
There are five classes of instructions (A, B, C, D, and E) in the instruction set. P1 
has a clock rate of 4 GHz, and P2 has a clock rate of 6 GHz. The average number 
of cycles for each instruction class for P1 and P2 are listed in the following table.



CPI Class A CPI Class B CPI Class C CPI Class D CPI Class E

a. P1 1 2 3 4 5

P2 3 3 3 5 5

b. P1 1 2 3 4 5

P2 2 2 2 2 6

1.6.4 [5] <1.4> Assume that peak performance is defined as the fastest rate that 
a computer can execute any instruction sequence. What are the peak performances 
of P1 and P2 expressed in instructions per second?

1.6.5 [5] <1.4> If the number of instructions executed in a certain program is di
vided equally among the five classes of instructions except for class A, which occurs 
twice as often as each of the others, how much faster is P2 than P1?

1.6.6 [5] <1.4> At what frequency does P1 have the same performance of P2 for 
the instruction mix given in 1.6.5?

Exercise 1.7
The following table shows the increase in clock rate and power of eight generations 
of Intel processors over 28 years.

Processor Clock Rate Power 

80286 (1982) 12.5 MHz  3.3 W 

80386 (1985)    16 MHz  4.1 W 

80486 (1989)  25 MHz  4.9 W 

Pentium (1993)   66 MHz  10.1 W 

Pentium Pro (1997)   200 MHz  29.1 W 

Pentium 4 Willamette (2001)   2 GHz  75.3 W 

Pentium 4 Prescott (2004)  3.6 GHz  103 W 

Core 2 Ketsfield (2007)  2.667 GHz  95 W 

1.7.1 [5] <1.5> What is the geometric mean of the ratios between consecutive 
generations for both clock rate and power? (The geometric mean is described in 
Section 1.7.)

1.7.2 [5] <1.5> What is the largest relative change in clock rate and power 
between generations?

1.7.3 [5] <1.5> How much larger is the clock rate and power of the last genera
tion with respect to the first generation?
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Consider the following values for voltage in each generation.

Processor Voltage

80286 (1982) 5

80386 (1985)   5

80486 (1989)  5

Pentium (1993)  5

Pentium Pro (1997)  3.3

Pentium 4 Willamette (2001)  1.75

Pentium 4 Prescott (2004)  1.25

Core 2 Ketsfield (2007)  1.1

1.7.4 [5] <1.5> Find the average capacitive loads, assuming a negligible static 
power consumption.

1.7.5 [5] <1.5> Find the largest relative change in voltage between generations.

1.7.6 [5] <1.5> Find the geometric mean of the voltage ratios in the generations 
since the Pentium.

Exercise 1.8
Suppose we have developed new versions of a processor with the following char
acteristics.

Version Voltage Clock Rate

a. Version 1 1.75 V 1.5 GHz

Version 2 1.2 V 2 GHz

b. Version 1 1.1 V 3 GHz

Version 2 0.8 V 4 GHz

1.8.1 [5] <1.5> How much has the capacitive load varied between versions if the 
dynamic power has been reduced by 10%?

1.8.2 [5] <1.5> How much has the dynamic power been reduced if the capacitive 
load does not change?

1.8.3 [10] <1.5> Assuming that the capacitive load of version 2 is 80% the 
capacitive load of version 1, find the voltage for version 2 if the dynamic power of 
version 2 is reduced by 40% from version 1.

Suppose that the industry trends show that a new process generation varies as  
follows.



Capacitance Voltage Clock Rate Area

a. 1  1/21/2 1.15 1/21/2

b. 1 1/21/4 1.2 1/21/4

1.8.4 [5] <1.5> Find the scaling factor for the dynamic power.

1.8.5 [5] <1.5> Find the scaling of the capacitance per unit area unit.

1.8.6 [5] <1.5> Assuming a Core 2 processor with a clock rate of 2.667 GHz, a 
power consumption of 95 W, and a voltage of 1.1 V, find the voltage and clock rate 
of this processor for the next process generation.

Exercise 1.9
Although the dynamic power is the primary source of power dissipation in CMOS, 
leakage current produces a static power dissipation V × I

leak
. The smaller the on

chip dimensions, the more significant is the static power. Assume the figures shown 
in the following table for static and dynamic power dissipation for several genera
tions of processors.

Technology Dynamic Power (W) Static Power (W) Voltage (V)

a. 180 nm 50 10 1.2

b. 70 nm 90 60 0.9

1.9.1 [5] <1.5> Find the percentage of the total dissipated power comprised by 
static power.

1.9.2 [5] <1.5> If the total dissipated power is reduced by 10% while maintain
ing the static to total power rate of problem 1.9.1, how much should the voltage be 
reduced to maintain the same leakage current?

1.9.3 [5] <1.5> Determine the ratio of static power to dynamic power for each 
technology.

Consider now the dynamic power dissipation of different versions of a given pro
cessor for three different voltages given in the following table.

1.2 V 1.0 V 0.8 V

a. 75 W 60 W 35 W

b. 62 W 50 W 30 W
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1.9.4 [5] <1.5> Determine the static power at 0.8 V, assuming a static to dynamic 
power ratio of 0.6.

1.9.5 [5] <1.5> Determine the static and dynamic power dissipation assuming 
the rates obtained in problem 1.9.1.

1.9.6 [10] <1.5> Determine the geometric mean of the power variations between 
versions.

Exercise 1.10
The table below shows the instruction type breakdown of a given application  
executed on 1, 2, 4, or 8 processors. Using this data, you will be exploring the speed
up of applications on parallel processors.

Processors No. Instructions per Processor CPI

Arithmetic Load/Store Branch Arithmetic Load/Store Branch

a. 1 2560 1280 256 1 4 2

2 1280 640 128 1 5 2

4 640 320 64 1 7 2

8 320 160 32 1 12 2

Processors No. Instructions per Processor CPI

Arithmetic Load/Store Branch Arithmetic Load/Store Branch

b. 1 2560 1280 256 1 4 2

2 1280 640 128 1 6 2

4 640 320 64 1 8 2

8 320 160 32 1 10 2

1.10.1 [5] <1.4, 1.6> The table above shows the number of instructions required 
per processor to complete a program on a multiprocessor with 1, 2, 4, or 8 proces
sors. What is the total number of instructions executed per processor? What is the 
aggregate number of instructions executed across all processors?

1.10.2 [5] <1.4, 1.6> Given the CPI values on the right of the table above, find 
the total execution time for this program on 1, 2, 4, and 8 processors. Assume that 
each processor has a 2 GHz clock frequency.

1.10.3 [10] <1.4, 1.6> If the CPI of the arithmetic instructions was doubled, 
what would the impact be on the execution time of the program on 1, 2, 4, or 8 
processors?



The table below shows the number of instructions per processor core on a multi core 
processor as well as the average CPI for executing the program on 1, 2, 4, or 8 cores. 
Using this data, you will be exploring the speedup of applications on  multicore 
 processors.

Cores per Processor Instructions per Core Average CPI

a. 1 1.00E+10 1.2

2 5.00E+09 1.4

4 2.50E+09 1.8

8 1.25E+09 2.6

Cores per Processor Instructions per Core Average CPI

b. 1 1.00E+10 1.0

2 5.00E+09 1.2

4 2.50E+09 1.4

8 1.25E+09 1.7

1.10.4 [10] <1.4, 1.6> Assuming a 3 GHz clock frequency, what is the execution 
time of the program using 1, 2, 4, or 8 cores?

1.10.5 [10] <1.5, 1.6> Assume that the power consumption of a processor core 
can be described by the following equation:

Power =   5.0mA  
MHz

    Voltage2

where the operation voltage of the processor is described by the following equa
tion:

Voltage =   1  
5
   Frequency + 0.4

with the frequency measured in GHz. So, at 5 GHz, the voltage would be 1.4 V. Find 
the power consumption of the program executing on 1, 2, 4, and 8 cores assuming 
that each core is operating at a 3 GHz clock frequency. Likewise, find the power 
consumption of the program executing on 1, 2, 4, or 8 cores assuming that each 
core is operating at 500 MHz.

1.10.6 [10] <1.5, 1.6> If using a single core, find the required CPI for this core 
to get an execution time equal to the time obtained by using the number of cores 
in the table above (execution times in problem 1.10.4). Note that the number of 
instructions should be the aggregate number of instructions executed across all 
the cores.
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Exercise 1.11
The following table shows manufacturing data for various processors.

Wafer Diameter Dies per Wafer Defects per Unit Area Cost per Wafer

a. 15 cm 84 0.020 defects/cm2 12

b. 20 cm 100 0.031 defects/cm2 15

1.11.1 [10] <1.7> Find the yield.

1.11.2 [5] <1.7> Find the cost per die.

1.11.3 [10] <1.7> If the number of dies per wafer is increased by 10% and the 
defects per area unit increases by 15%, find the die area and yield.

Suppose that, with the evolution of the electronic devices manufacturing tech
nology, the yield varies as shown in the following table.

T1 T2 T3 T4

Yield 0.85 0.89 0.92 0.95

1.11.4 [10] <1.7> Find the defects per area unit for each technology given a die 
area of 200 mm2.

1.11.5 [5] <1.7> Represent graphically the variation of the yield together with 
the variation of defects per unit area.

Exercise 1.12
The following table shows results for SPEC CPU2006 benchmark programs  
running on an AMD Barcelona.

Name Intr. Count × 109 Execution Time (seconds) Reference Time (seconds)

a. bzip2  2389 750 9650

b. go 1658  700 10,490

1.12.1 [5] <1.7> Find the CPI if the clock cycle time is 0.333 ns.

1.12.2 [5] <1.7> Find the SPECratio.

1.12.3 [5] <1.7> For these two benchmarks, find the geometric mean of the 
SPECratio.



The following table shows data for further benchmarks.

Name CPI Clock Rate SPECratio

a. libquantum 1.61 4 GHz  19.8

b. astar 1.79 4 GHz  9.1

1.12.4 [5] <1.7> Find the increase in CPU time if the number of instructions of 
the benchmark is increased by 10% without affecting the CPI.

1.12.5 [5] <1.7> Find the increase in CPU time if the number of instructions of 
the benchmark is increased by 10% and the CPI is increased by 5%.

1.12.6 [5] <1.7> Find the change in the SPECratio for the change described in 
1.12.5.

Exercise 1.13
Suppose that we are developing a new version of the AMD Barcelona proces
sor with a 4 GHz clock rate. We have added some additional instructions to the  
instruction set in such a way that the number of instructions has been reduced by 
15% from the values shown for each benchmark in Exercise 1.12. The execution 
times obtained are shown in the following table.

Name Execution Time (seconds) Reference Time (seconds) SPECratio

a. bzip2  700 9650 13.7

b. go 620 10490 16.9

1.13.1 [10] <1.8> Find the new CPI.

1.13.2 [10] <1.8> In general, these CPI values are larger than those obtained in 
previous exercises for the same benchmarks. This is due mainly to the clock rate 
used in both cases, 3 GHz and 4 GHz. Determine whether the increase in the CPI 
is similar to that of the clock rate. If they are dissimilar, why?

1.13.3 [5] <1.8> How much has the CPU time been reduced?

The following table shows data for further benchmarks.

Name Execution Time (seconds) CPI Clock Rate

a. libquantum 960 1.61 3 GHz 

b. astar 690 1.79 3 GHz 
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1.13.4 [10] <1.8> If the execution time is reduced by an additional 10% with
out affecting to the CPI and with a clock rate of 4 GHz, determine the number of 
instructions.

1.13.5 [10] <1.8> Determine the clock rate required to give a further 10% reduc
tion in CPU time while maintaining the number of instructions and with the CPI 
unchanged.

1.13.6 [10] <1.8> Determine the clock rate if the CPI is reduced by 15% and the 
CPU time by 20% while the number of instructions is unchanged.

Exercise 1.14
Section 1.8 cites as a pitfall the utilization of a subset of the performance equa
tion as a performance metric. To illustrate this, consider the following data for the  
execution of a program in different processors.

Processor Clock Rate CPI No. Instr.

a. P1 4 GHz 0.9 5.00E+06

P2 3 GHz 0.75 1.00E+06

b. P1 3 GHz 1.1 3.00E+06

P2 2.5 GHz 1.0 0.50E+06

1.14.1 [5] <1.8> One usual fallacy is to consider the computer with the largest 
clock rate as having the largest performance. Check if this is true for P1 and P2.

1.14.2 [10] <1.8> Another fallacy is to consider that the processor executing the 
largest number of instructions will need a larger CPU time. Considering that pro
cessor P1 is executing a sequence of 106 instructions and that the CPI of proces
sors P1 and P2 do not change, determine the number of instructions that P2 can 
execute in the same time that P1 needs to execute 106 instructions.

1.14.3 [10] <1.8> A common fallacy is to use MIPS (millions of instructions per 
second) to compare the performance of two different processors, and consider that 
the processor with the largest MIPS has the largest performance. Check if this is 
true for P1 and P2.

Another common performance figure is MFLOPS (million of floatingpoint  
operations per second), defined as

MFLOPS = No. FP operations / (execution time × 106)

but this figure has the same problems as MIPS. Consider the program in the fol
lowing table, running on the two processors below.



Processor Instr. Count

No. Instructions CPI

L/S FP Branch L/S FP Branch Clock Rate

a. P1 1.00E+06 50% 40% 10% 0.75 1.0 1.5 4 GHz

P2 5.00E+06 40% 40% 20% 1.25 0.8 1.25 3 GHz

b. P1 5.00E+06 30% 30% 40% 1.5 1.0 2.0 4 GHz

P2 2.00E+06 40% 30% 30% 1.25 1.0 2.5 3 GHz

1.14.4 [10] <1.8> Find the MFLOPS figures for the programs.

1.14.5 [10] <1.8> Find the MIPS figures for the programs.

1.14.6 [10] <1.8> Find the performance for the programs and compare it with 
MIPS and MFLOPS.

Exercise 1.15
Another pitfall cited in Section 1.8 is expecting to improve the overall performance 
of a computer by improving only one aspect of the computer. This might be true, 
but not always. Consider a computer running programs with CPU times shown in 
the following table.

 FP Instr. INT Instr. L/S Instr. Branch Instr. Total Time

a. 70 s 85 s 55 s 40 s 250 s

b. 40 s 90 s 60 s 20 s 210 s

1.15.1 [5] <1.8> How much is the total time reduced if the time for FP opera
tions is reduced by 20%?

1.15.2 [5] <1.8> How much is the time for INT operations reduced if the total 
time is reduced by 20%?

1.15.3 [5] <1.8> Can the total time can be reduced by 20% by reducing only the 
time for branch instructions?

The following table shows the instruction type breakdown per processor of given 
applications executed in different numbers of processors.

Processors FP Instr. INT Instr. L/S Instr.
Branch  
Instr.

CPI 
(FP)

CPI 
(INT)

CPI 
(L/S)

CPI 
(Branch)

a. 2 280 × 106 1000 × 166 640 × 106 128 × 106 1 1 4 2

b. 16 50 × 106 110 × 106 80 × 106 16 × 106 1 1 4 2
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Assume that each processor has a 2 GHz clock rate.

1.15.4 [10] <1.8> How much must we improve the CPI of FP instructions if we 
want the program to run two times faster?

1.15.5 [10] <1.8> How much must we improve the CPI of L/S instructions if we 
want the program to run two times faster?

1.15.6 [5] <1.8> How much is the execution time of the program improved if the 
CPI of INT and FP instructions is reduced by 40% and the CPI of L/S and Branch 
is reduced by 30%?

Exercise 1.16
Another pitfall, related to the execution of programs in multiprocessor systems, is 
expecting improvement in performance by improving only the execution time of 
part of the routines. The following table shows the execution time of five routines 
of a program running on different numbers of processors.

No. 
Processors

Routine A 
(ms)

Routine B 
(ms)

Routine C 
(ms)

Routine D 
(ms)

Routine E 
(ms)

a. 4 12 45 6 36 3

b. 32 2 7 1 6 2

1.16.1 [10] <1.8> Find the total execution time and by how much it is reduced if 
the time of routines A, C, and E is improved by 15%.

1.16.2 [10] <1.8> How much is the total time reduced if routine B is improved 
by 10%?

1.16.3 [10] <1.8> How much is the total time reduced if routine D is improved 
by 10%?

Execution time in a multiprocessor system can be split into computing time for 
the routines plus routing time spent sending data from one processor to another. 
Consider the execution time and routing time given in the following table. In this 
case, the routing time is an important component of the total time.



No. 
Processors

Routine A 
(ms)

Routine B 
(ms)

Routine C 
(ms) 

Routine D 
(ms)

Routine E 
(ms)

Routing 
Time (ms)

2 40 78 9 70 4 11

4 29 60 4 36 2 13

8 15 45 3 19 3 17

16 7 35 1 11 2 22

32 4 23 1 6 1 23

64 2 12 0.5 3 1 26

1.16.4 [10] <1.8> For each doubling of the number of processors, determine the 
ratio of new to old computing time and the ratio of new to old routing time.

1.16.5 [5] <1.8> Using the geometric means of the ratios, extrapolate to find the 
computing time and routing time in a 128processor system.

1.16.6 [10] <1.8> Find the computing time and routing time for a system with 
one processor.

§1.1, page 9: Discussion questions: many answers are acceptable.
§1.3, page 25: Disk memory: nonvolatile, long access time (milliseconds), and cost 
$0.20–$2.00/GB. Semiconductor memory: volatile, short access time (nanosec onds), 
and cost $20–$75/GB.
§1.4, page 31: 1. a: both, b: latency, c: neither. 2. 7 seconds.
§1.4, page 38: b.
§1.7, page 50: 1, 3, and 4 are valid reasons. Answer 5 can be generally true because 
high volume can make the extra investment to reduce die size by, say, 10% a good 
economic decision, but it doesn’t have to be true.
§1.8, page 53: a. Computer A has the higher MIPS rating. b. Computer B is faster.

Answers to 
Check Yourself
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 2.1 Introduction

To command a computer’s hardware, you must speak its language. The words 
of a computer’s language are called instructions, and its vocabulary is called an 
instruction set. In this chapter, you will see the instruction set of a real computer, 
both in the form written by people and in the form read by the computer. We 
introduce instructions in a top-down fashion. Starting from a notation that looks 
like a restricted programming language, we refine it step-by-step until you see 
the real language of a real computer. Chapter 3 continues our downward descent, 
unveiling the hardware for arithmetic and the representation of floating-point 
numbers.

You might think that the languages of computers would be as diverse as those 
of people, but in reality computer languages are quite similar, more like regional 
dialects than like independent languages. Hence, once you learn one, it is easy to 
pick up others. This similarity occurs because all computers are constructed from 
hardware technologies based on similar underlying principles and because there 
are a few basic operations that all computers must provide. Moreover, computer 
designers have a common goal: to find a language that makes it easy to build the 
hardware and the compiler while maximizing performance and minimizing cost 
and power. This goal is time honored; the following quote was written before you 
could buy a computer, and it is as true today as it was in 1947:

It is easy to see by formal-logical methods that there exist certain [instruction 
sets] that are in abstract adequate to control and cause the execution of any 
se quence of operations . . . . The really decisive considerations from the present 
point of view, in selecting an [instruction set], are more of a practical nature: 
simplicity of the equipment demanded by the [instruction set], and the clarity of 
its application to the actually important problems together with the speed of its 
handling of those problems.

Burks, Goldstine, and von Neumann, 1947

The “simplicity of the equipment” is as valuable a consideration for today’s 
computers as it was for those of the 1950s. The goal of this chapter is to teach 
an instruction set that follows this advice, showing both how it is represented 
in hardware and the relationship between high-level programming languages 
and this more primitive one. Our examples are in the C programming language;  

 Section 2.15 on the CD shows how these would change for an object-oriented 
language like Java.

instruction set The 
vocabu lary of commands 
understood by a given 
architecture.



By learning how to represent instructions, you will also discover the  secret of 
computing: the stored-program concept. Moreover, you will exercise your “for eign 
language” skills by writing programs in the language of the computer and running 
them on the simulator that comes with this book. You will also see the impact of 
programming languages and compiler optimization on performance. We conclude 
with a look at the historical evolution of instruction sets and an overview of other 
computer dialects.

The chosen instruction set comes from MIPS Technologies, which is an elegant 
example of the instruction sets designed since the 1980s. Later, we will take a quick 
look at two other popular instruction sets. ARM is quite similar to MIPS, and more 
than three bil lion ARM processors were shipped in embedded devices in 2008. The 
other exam ple, the Intel x86, is inside almost all of the 330 million PCs made in 
2008.

We reveal the MIPS instruction set a piece at a time, giving the rationale along 
with the computer structures. This top-down, step-by-step tutorial weaves the 
components with their explanations, making the computer’s language more palat-
able. Figure 2.1 gives a sneak preview of the instruction set covered in this chapter.

 2.2 Operations of the Computer Hardware

Every computer must be able to perform arithmetic. The MIPS assembly language 
notation

add a, b, c

instructs a computer to add the two variables b and c and to put their sum in a.
This notation is rigid in that each MIPS arithmetic instruction performs only 

one operation and must always have exactly three variables. For example, suppose 
we want to place the sum of four variables b, c, d, and e into variable a. (In this 
section we are being deliberately vague about what a “variable” is; in the next 
section we’ll explain in detail.)

The following sequence of instructions adds the four variables:

add a, b, c # The sum of b and c is placed in a. 
add a, a, d # The sum of b, c, and d is now in a. 
add a, a, e # The sum of b, c, d, and e is now in a.

Thus, it takes three instructions to sum the four variables.
The words to the right of the sharp symbol (#) on each line above are comments 

for the human reader, and the computer ignores them. Note that unlike other pro-
gramming languages, each line of this language can contain at most one instruction. 
Another difference from C is that comments always terminate at the end of a line.

stored-program 
concept The idea that 
instructions and data of 
many types can be stored 
in memory as numbers, 
leading to the stored-
program computer.

There must certainly 
be instructions 
for performing 
the fundamental 
arithmetic operations.

Burks, Goldstine, and 
von Neumann, 1947
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MIPS operands

Name Example Comments

32 registers
$s0–$s7, $t0–$t9, $zero, 
$a0–$a3, $v0–$v1, $gp, $fp, 
$sp, $ra, $at

Fast locations for data. In MIPS, data must be in registers to perform arithmetic, 
register $zero always equals 0, and register $at is reserved by the assembler to 
handle large constants.

230 memory 
words

Memory[0], Memory[4], . . . , 
Memory[4294967292]

Accessed only by data transfer instructions. MIPS uses byte addresses, so 
sequential word addresses differ by 4. Memory holds data structures, arrays, and 
spilled registers. 

MIPS assembly language

Category Instruction Example Meaning Comments

Arithmetic

add add  $s1,$s2,$s3 $s1 = $s2 + $s3 Three register operands
subtract sub  $s1,$s2,$s3 $s1 = $s2 – $s3 Three register operands
add immediate addi $s1,$s2,20 $s1 = $s2 + 20 Used to add constants

Data  
transfer

load word lw  $s1,20($s2) $s1 = Memory[$s2 + 20] Word from memory to register
store word sw  $s1,20($s2) Memory[$s2 + 20] = $s1 Word from register to memory
load half lh  $s1,20($s2) $s1 = Memory[$s2 + 20] Halfword memory to register

load half unsigned lhu  $s1,20($s2) $s1 = Memory[$s2 + 20] Halfword memory to register

store half sh  $s1,20($s2) Memory[$s2 + 20] = $s1 Halfword register to memory

load byte lb  $s1,20($s2) $s1 = Memory[$s2 + 20] Byte from memory to register

load byte unsigned lbu  $s1,20($s2) $s1 = Memory[$s2 + 20] Byte from memory to register

store byte sb  $s1,20($s2) Memory[$s2 + 20] = $s1 Byte from register to memory

load linked word ll  $s1,20($s2) $s1 = Memory[$s2 + 20] Load word as 1st half of atomic swap 

store condition. word sc  $s1,20($s2) Memory[$s2+20]=$s1;$s1=0 or 1 Store word as 2nd half of atomic swap 

load upper immed. lui  $s1,20 $s1 = 20 * 216 Loads constant in upper 16 bits

Logical

and and   $s1,$s2,$s3 $s1 = $s2 & $s3 Three reg. operands; bit-by-bit AND

or or    $s1,$s2,$s3 $s1 = $s2 | $s3 Three reg. operands; bit-by-bit OR

nor nor   $s1,$s2,$s3 $s1 = ~ ($s2 | $s3) Three reg. operands; bit-by-bit NOR

and immediate andi  $s1,$s2,20 $s1 = $s2 & 20 Bit-by-bit AND reg with constant

or immediate ori   $s1,$s2,20 $s1 = $s2 | 20 Bit-by-bit OR reg with constant

shift left logical sll   $s1,$s2,10 $s1 = $s2 << 10 Shift left by constant

shift right logical srl   $s1,$s2,10 $s1 = $s2 >> 10 Shift right by constant

Conditional 
branch

branch on equal beq  $s1,$s2,25 if ($s1 == $s2) go to 
PC + 4 + 100

Equal test; PC-relative branch

branch on not equal bne  $s1,$s2,25 if ($s1!=  $s2) go to 
PC + 4 + 100

Not equal test; PC-relative 

set on less than slt  $s1,$s2,$s3 if ($s2 < $s3)  $s1 = 1; 
else $s1 = 0

Compare less than; for beq, bne

set on less than 
unsigned

sltu  $s1,$s2,$s3 if ($s2 < $s3)  $s1 = 1; 
else $s1 = 0

Compare less than unsigned

set less than 
immediate 

slti $s1,$s2,20 if ($s2 < 20) $s1 = 1; 
else $s1 = 0

Compare less than constant

set less than 
immediate unsigned

sltiu $s1,$s2,20 if ($s2 < 20) $s1 = 1; 
else $s1 = 0

Compare less than constant  
unsigned

Unconditional 

jump

jump j    2500 go to 10000 Jump to target address
jump register jr   $ra go to $ra For switch, procedure return
jump and link jal  2500 $ra = PC + 4; go to 10000 For procedure call

FIGURE 2.1 MIPS assembly language revealed in this chapter. This information is also found in Column 1 of the MIPS Reference 
Data Card at the front of this book. 



The natural number of operands for an operation like addition is three: the 
two numbers being added together and a place to put the sum. Requiring every 
instruction to have exactly three operands, no more and no less, conforms to the 
philosophy of keeping the hardware simple: hardware for a variable number of 
operands is more complicated than hardware for a fixed number. This situation 
illustrates the first of four underlying principles of hardware  design:

Design Principle 1: Simplicity favors regularity.

We can now show, in the two examples that follow, the relationship of pro grams 
written in higher-level programming languages to programs in this more primitive 
notation.

Compiling Two C Assignment Statements into MIPS

This segment of a C program contains the five variables a, b, c, d, and e. Since 
Java evolved from C, this example and the next few work for either high-level 
programming language:

a = b + c; 
d = a – e;

The translation from C to MIPS assembly language instructions is performed 
by the compiler. Show the MIPS code produced by a compiler.

A MIPS instruction operates on two source operands and places the result 
in one destination operand. Hence, the two simple statements above compile 
directly into these two MIPS assembly language instructions:

add a, b, c 
sub d, a, e

Compiling a Complex C Assignment into MIPS

A somewhat complex statement contains the five variables f, g, h, i, and j:

f = (g + h) – (i + j);

What might a C compiler produce?

EXAMPLE

ANSWER

EXAMPLE
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The compiler must break this statement into several assembly instructions, 
since only one operation is performed per MIPS instruction. The first MIPS 
instruction calculates the sum of g and h. We must place the result some where, 
so the compiler creates a temporary variable, called t0:

add t0,g,h # temporary variable t0 contains g + h

Although the next operation is subtract, we need to calculate the sum of i and 
j before we can subtract. Thus, the second instruction places the sum of i and 
j in another temporary variable created by the compiler, called t1:

add t1,i,j  # temporary variable t1 contains i + j

Finally, the subtract instruction subtracts the second sum from the first and 
places the difference in the variable f, completing the compiled code:

sub f,t0,t1 # f gets t0 – t1, which is (g + h) – (i + j)

For a given function, which programming language likely takes the most lines of 
code? Put the three representations below in order.

1. Java

2. C

3. MIPS assembly language

Elaboration: To increase portability, Java was originally envisioned as relying on a 
soft ware interpreter. The instruction set of this interpreter is called Java bytecodes (see 

 Section 2.15 on the CD), which is quite different from the MIPS instruction set. To 
get performance close to the equivalent C program, Java systems today typically compile 
Java bytecodes into the native instruction sets like MIPS. Because this compilation is 
normally done much later than for C programs, such Java compilers are often called Just 
In Time (JIT) compilers. Section 2.12 shows how JITs are used later than C compilers 
in the start-up process, and Section 2.13 shows the performance consequences of 
compiling versus interpreting Java programs.

 2.3 Operands of the Computer Hardware

Unlike programs in high-level languages, the operands of arithmetic instructions 
are restricted; they must be from a limited number of special locations built directly 
in hardware called registers. Registers are primitives used in hardware design that 

ANSWER

Check  
Yourself



are also visible to the programmer when the computer is completed, so you can 
think of registers as the bricks of computer construction. The size of a register in 
the MIPS architecture is 32 bits; groups of 32 bits occur so frequently that they are 
given the name word in the MIPS architecture.

One major difference between the variables of a programming language and 
registers is the limited number of registers, typically 32 on current computers, 
like MIPS. (See Section 2.20 on the CD for the history of the number of reg-
isters.) Thus, continu ing in our top-down, stepwise evolution of the symbolic 
 representation of the MIPS language, in this section we have added the restriction 
that the three oper ands of MIPS arithmetic instructions must each be chosen from 
one of the 32 32-bit registers.

The reason for the limit of 32 registers may be found in the second of our four 
underlying design principles of hardware technology:

Design Principle 2: Smaller is faster.

A very large number of registers may increase the clock cycle time simply because 
it takes electronic signals longer when they must travel farther. 

Guidelines such as “smaller is faster” are not absolutes; 31 registers may not be 
faster than 32. Yet, the truth behind such observations causes computer designers 
to take them seriously. In this case, the designer must balance the craving of pro-
grams for more registers with the designer’s desire to keep the clock cycle fast. 
Another reason for not using more than 32 is the number of bits it would take in 
the instruction format, as Section 2.5 demonstrates.

Chapter 4 shows the central role that registers play in hardware construction; 
as we shall see in this chapter, effective use of registers is critical to program 
perfor mance. 

Although we could simply write instructions using numbers for registers, from 
0 to 31, the MIPS convention is to use two-character names following a dollar sign 
to represent a register. Section 2.8 will explain the reasons behind these names. For 
now, we will use $s0, $s1, . . .  for registers that correspond to variables in C and 
Java programs and $t0, $t1, . . .  for temporary registers needed to compile the 
program into MIPS instructions. 

Compiling a C Assignment Using Registers

It is the compiler’s job to associate program variables with registers. Take, for 
instance, the assignment statement from our earlier example:

f = (g + h) – (i + j);

The variables f, g, h, i, and j are assigned to the registers $s0, $s1, $s2, $s3, 
and $s4, respectively. What is the compiled MIPS code?

word The natural unit 
of access in a computer, 
usually a group of 32 bits; 
corresponds to the size 
of a register in the MIPS 
architecture.
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The compiled program is very similar to the prior example, except we replace 
the variables with the register names mentioned above plus two temporary 
registers, $t0 and $t1, which correspond to the temporary variables above:

add $t0,$s1,$s2 # register $t0 contains g + h
add $t1,$s3,$s4 # register $t1 contains i + j
sub $s0,$t0,$t1 # f gets $t0 – $t1, which is (g + h)–(i + j)

Memory Operands

Programming languages have simple variables that contain single data elements, as 
in these examples, but they also have more complex data structures—arrays and 
structures. These complex data structures can contain many more data  elements 
than there are registers in a computer. How can a computer represent and access 
such large structures?

Recall the five components of a computer introduced in Chapter 1 and repeated 
on page 75. The processor can keep only a small amount of data in regis ters, but 
computer memory contains billions of data elements. Hence, data struc tures 
(arrays and structures) are kept in memory. 

As explained above, arithmetic operations occur only on registers in MIPS 
instructions; thus, MIPS must include instructions that transfer data between 
memory and registers. Such instructions are called data transfer instructions. 
To access a word in memory, the instruction must supply the memory address. 
Memory is just a large, single-dimensional array, with the address acting as the 
index to that array, starting at 0. For example, in Figure 2.2, the address of the third 
data element is 2, and the value of Memory[2] is 10.

ANSWER

data transfer instruction 
A command that moves 
data between memory 
and registers.

address A value used to 
delin eate the location of 
a  specific data element 
within a memory array.

FIGURE 2.2 Memory addresses and contents of memory at those locations. If these ele ments 
were words, these addresses would be incorrect, since MIPS actually uses byte addressing, with each word 
representing four bytes. Figure 2.3 shows the memory addressing for sequential word addresses.
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The data transfer instruction that copies data from memory to a register is 
traditionally called load. The format of the load instruction is the name of the 
opera tion followed by the register to be loaded, then a constant and register used 
to access memory. The sum of the constant portion of the instruction and the con-
tents of the second register forms the memory address. The  actual MIPS name for 
this instruction is lw, standing for load word. 

Compiling an Assignment When an Operand Is in Memory

Let’s assume that A is an array of 100 words and that the compiler has asso-
ciated the variables g and h with the registers $s1 and $s2 as before. Let’s 
also assume that the starting address, or base address, of the array is in $s3. 
 Compile this C assignment statement:

g = h + A[8];

Although there is a single operation in this assignment statement, one of 
the operands is in memory, so we must first transfer A[8] to a register. The 
address of this array element is the sum of the base of the array A, found in 
reg ister $s3, plus the number to select element 8. The data should be placed 
in a temporary register for use in the next instruction. Based on  Figure 2.2, the 
first compiled instruction is

lw $t0,8($s3) # Temporary reg $t0 gets A[8]

(On the next page we’ll make a slight adjustment to this instruction, but we’ll 
use this simplified version for now.) The following instruction can operate on 
the value in $t0 (which equals A[8]) since it is in a register. The instruction 
must add h (contained in $s2) to A[8] ($t0) and put the sum in the register 
corresponding to g (associated with $s1):

add $s1,$s2,$t0 # g = h + A[8]

The constant in a data transfer instruction (8) is called the offset, and the reg-
ister added to form the address ($s3) is called the base register.

EXAMPLE
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In addition to associating variables with registers, the compiler allocates data 
structures like arrays and structures to locations in memory. The compiler can then 
place the proper starting address into the data transfer instructions. 

Since 8-bit bytes are useful in many programs, most architectures address indi-
vidual bytes. Therefore, the address of a word matches the address of one of the 
4 bytes within the word, and addresses of sequential words differ by 4. For example, 
 Figure 2.3 shows the actual MIPS addresses for the words in Figure 2.2; the byte 
address of the third word is 8.

In MIPS, words must start at addresses that are multiples of 4. This require-
ment is called an alignment restriction, and many architectures have it. (Chapter 4 
suggests why alignment leads to faster data transfers.)

Computers divide into those that use the address of the leftmost or “big end” 
byte as the word address versus those that use the rightmost or “little end” byte. 
MIPS is in the big-endian camp. (Appendix B, shows the two options to number 
bytes in a word.) 

Byte addressing also affects the array index. To get the proper byte address in 
the code above, the offset to be added to the base register $s3 must be 4 × 8, or 32, so 
that the load address will select A[8] and not A[8/4]. (See the related pitfall on 
page 175 of Section 2.18.)

Hardware/ 
Software 
Interface

alignment restriction 
A requirement that data 
be aligned in memory on 
natural boundaries.

FIGURE 2.3 Actual MIPS memory addresses and contents of memory for those words. 
The changed addresses are highlighted to contrast with Figure 2.2. Since MIPS addresses each byte, word 
addresses are multiples of 4: there are 4 bytes in a word. 
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The instruction complementary to load is traditionally called store; it copies 
data from a register to memory. The format of a store is similar to that of a load:  
the name of the operation, followed by the register to be stored, then offset to select 
the array element, and finally the base register. Once again, the MIPS address is 
specified in part by a constant and in part by the contents of a register. The actual 
MIPS name is sw, standing for store word. 

Compiling Using Load and Store

Assume variable h is associated with register $s2 and the base address of the 
array A is in $s3. What is the MIPS assembly code for the C assignment state-
ment below?

A[12] = h + A[8];

Although there is a single operation in the C statement, now two of the oper-
ands are in memory, so we need even more MIPS instructions. The first two 
instructions are the same as the prior example, except this time we use the 
proper offset for byte addressing in the load word instruction to select A[8], 
and the add instruction places the sum in $t0:

lw   $t0,32($s3)  # Temporary reg $t0 gets A[8]
add  $t0,$s2,$t0  # Temporary reg $t0 gets h + A[8]

The final instruction stores the sum into A[12], using 48 (4 × 12) as the off set 
and register $s3 as the base register.

sw   $t0,48($s3) # Stores h + A[8] back into A[12]

Load word and store word are the instructions that copy words between 
memory and registers in the MIPS architecture. Other brands of computers use 
other instructions along with load and store to transfer data. An architecture with 
such alternatives is the Intel x86, described in Section 2.17.
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ANSWER

 2.3 Operands of the Computer Hardware 85



86 Chapter 2 Instructions: Language of the Computer

Many programs have more variables than computers have registers. Consequently, 
the compiler tries to keep the most frequently used variables in registers and places 
the rest in memory, using loads and stores to move variables between regis ters and 
memory. The process of putting less commonly used variables (or those needed 
later) into memory is called spilling registers. 

The hardware principle relating size and speed suggests that memory must be 
slower than registers, since there are fewer registers. This is indeed the case; data 
accesses are faster if data is in registers instead of memory. 

Moreover, data is more useful when in a register. A MIPS arithmetic instruc-
tion can read two registers, operate on them, and write the result. A MIPS data 
transfer instruction only reads one operand or writes one operand, without oper-
ating on it. 

Thus, registers take less time to access and have higher throughput than mem ory, 
making data in registers both faster to access and simpler to use. Accessing registers 
also uses less energy than accessing memory. To achieve highest performance and 
conserve energy, compilers must use registers  efficiently.

Constant or Immediate Operands

Many times a program will use a constant in an operation—for example, incre-
menting an index to point to the next element of an array. In fact, more than half 
of the MIPS arithmetic instructions have a constant as an operand when running 
the SPEC CPU2006 benchmarks.

Using only the instructions we have seen so far, we would have to load a con stant 
from memory to use one. (The constants would have been placed in mem ory when 
the program was loaded.) For example, to add the constant 4 to register $s3, we 
could use the code

lw $t0, AddrConstant4($s1) # $t0 = constant 4

add $s3,$s3,$t0 # $s3 = $s3 + $t0 ($t0 == 4)

assuming that $s1 + AddrConstant4 is the memory address of the constant 4.
An alternative that avoids the load instruction is to offer versions of the arith-

metic instructions in which one operand is a constant. This quick add instruction 
with one constant operand is called add immediate or addi. To add 4 to register 
$s3, we just write

addi $s3,$s3,4 # $s3 = $s3 + 4

Immediate instructions illustrate the third hardware design principle, first 
mentioned in the Fallacies and Pitfalls of Chapter 1:

Design Principle 3: Make the common case fast.

Hardware/ 
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Constant operands occur frequently, and by including constants inside arithmetic 
instructions, operations are much faster and use less energy than if constants were 
loaded from memory.

The constant zero has another role, which is to simplify the instruction set by 
offering useful variations. For example, the move operation is just an add instruc-
tion where one operand is zero. Hence, MIPS dedicates a register $zero to be hard-
wired to the value zero. (As you might expect, it is register number 0.)

Given the importance of registers, what is the rate of increase in the number of 
registers in a chip over time?

1. Very fast: They increase as fast as Moore’s law, which predicts doubling the 
number of transistors on a chip every 18 months.

2. Very slow: Since programs are usually distributed in the language of the 
computer, there is inertia in instruction set architecture, and so the number 
of registers increases only as fast as new instruction sets become viable.

Elaboration: Although the MIPS registers in this book are 32 bits wide, there is a 
64-bit version of the MIPS instruction set with 32 64-bit registers. To keep them straight, 
they are offi cially called MIPS-32 and MIPS-64. In this chapter, we use a subset of  
MIPS-32.  Appendix E shows the differences between MIPS-32 and MIPS-64.

The MIPS offset plus base register addressing is an excellent match to structures 
as well as arrays, since the register can point to the beginning of the structure and the 
offset can select the desired element. We’ll see such an example in Section 2.13.

The register in the data transfer instructions was originally invented to hold an index 
of an array with the offset used for the starting address of an array. Thus, the base 
register is also called the index register. Today’s memories are much larger and the 
software model of data allocation is more sophisticated, so the base address of the 
array is normally passed in a register since it won’t fit in the offset, as we shall see.

Since MIPS supports negative constants, there is no need for subtract immediate in 
MIPS.

 2.4 Signed and Unsigned Numbers

First, let’s quickly review how a computer represents numbers. Humans are taught 
to think in base 10, but numbers may be represented in any base. For example, 123 
base 10 = 1111011 base 2.

Numbers are kept in computer hardware as a series of high and low electronic 
signals, and so they are considered base 2 numbers. (Just as base 10 numbers are 
called decimal numbers, base 2 numbers are called binary numbers.) 

A single digit of a binary number is thus the “atom” of computing, since all 
information is composed of binary digits or bits. This fundamental building block 
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binary digit Also 
called binary bit. One 
of the two  numbers 
in base 2, 0 or 1, that 
are the components of 
information.
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can be one of two values, which can be thought of as several alternatives: high or 
low, on or off, true or false, or 1 or 0.

Generalizing the point, in any number base, the value of ith digit d is

d × Basei

where i starts at 0 and increases from right to left. This leads to an obvious 
way to number the bits in the word: simply use the power of the base for that 
bit. We subscript decimal numbers with ten and binary numbers with two. For 
example,

1011two

represents

(1 × 23)  + (0 × 22) + (1 × 21) + (1 × 20)ten
= (1 × 8) + (0 × 4) + (1 × 2) + (1 × 1)ten 
=    8 +    0      +    2      +    1ten 
= 11ten

We number the bits 0, 1, 2, 3,  .  .  .  from right to left in a word. The drawing below 
shows the numbering of bits within a MIPS word and the placement of the num ber 
1011two:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

(32 bits wide)

Since words are drawn vertically as well as horizontally, leftmost and rightmost 
may be unclear. Hence, the phrase least significant bit is used to refer to the right-
most bit (bit 0 above) and most significant bit to the leftmost bit (bit 31).

The MIPS word is 32 bits long, so we can represent 232 different 32-bit patterns. 
It is natural to let these combinations represent the numbers from 0 to 232 - 1 
(4,294,967,295ten):

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = 2ten
 . . . . . . 
1111 1111 1111 1111 1111 1111 1111 1101two = 4,294,967,293ten
1111 1111 1111 1111 1111 1111 1111 1110two = 4,294,967,294ten
1111 1111 1111 1111 1111 1111 1111 1111two = 4,294,967,295ten

That is, 32-bit binary numbers can be represented in terms of the bit value times a 
power of 2 (here xi means the ith bit of x):

least significant bit 
The right most bit in a 
MIPS word.

most significant bit 
The left most bit in a 
MIPS word.



(x31 × 231) + (x30 × 230) + (x29 × 229) + . . . + (x1 × 21) + (x0 × 20)

Keep in mind that the binary bit patterns above are simply representatives of 
numbers. Numbers really have an infinite number of digits, with almost all being 
0 except for a few of the rightmost digits. We just don’t normally show leading 0s.

Hardware can be designed to add, subtract, multiply, and divide these binary 
bit patterns. If the number that is the proper result of such operations cannot be 
represented by these rightmost hardware bits, overflow is said to have occurred. 
It’s up to the programming language, the operating system, and the program to 
determine what to do if overflow occurs.

Computer programs calculate both positive and negative numbers, so we need a 
representation that distinguishes the positive from the negative. The most obvi ous 
solution is to add a separate sign, which conveniently can be represented in a single 
bit; the name for this representation is sign and magnitude.

Alas, sign and magnitude representation has several shortcomings. First, it’s 
not obvious where to put the sign bit. To the right? To the left? Early computers 
tried both. Second, adders for sign and magnitude may need an extra step to set 
the sign because we can’t know in advance what the proper sign will be. Finally, a 
separate sign bit means that sign and magnitude has both a positive and a negative 
zero, which can lead to problems for inattentive programmers. As a result of these 
shortcomings, sign and magnitude representation was soon abandoned.

In the search for a more attractive alternative, the question arose as to what 
would be the result for unsigned numbers if we tried to subtract a large number 
from a small one. The answer is that it would try to borrow from a string of lead ing 
0s, so the result would have a string of leading 1s. 

Given that there was no obvious better alternative, the final solution was to pick 
the representation that made the hardware simple: leading 0s mean positive, and 
leading 1s mean negative. This convention for representing signed binary numbers 
is called two’s complement representation:

0000  0000  0000  0000  0000  0000  0000  0000two =  0ten
0000  0000  0000  0000  0000  0000  0000  0001two =  1ten
0000  0000  0000  0000  0000  0000  0000  0010two =  2ten
 . . .   . . .

0111  1111  1111  1111  1111  1111  1111  1101two =  2,147,483,645ten
0111  1111  1111  1111  1111  1111  1111  1110two =  2,147,483,646ten
0111  1111  1111  1111  1111  1111  1111  1111two =  2,147,483,647ten
1000  0000  0000  0000  0000  0000  0000  0000two =  –2,147,483,648ten
1000  0000  0000  0000  0000  0000  0000  0001two =  –2,147,483,647ten
1000  0000  0000  0000  0000  0000  0000  0010two = –2,147,483,646ten
. . .    . . . 

1111  1111  1111  1111  1111  1111  1111  1101two =  –3ten
1111  1111  1111  1111  1111  1111  1111  1110two =  –2ten
1111  1111  1111  1111  1111  1111  1111  1111two =  –1ten
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The positive half of the numbers, from 0 to 2,147,483,647ten (231 - 1), use the 
same representation as before. The following bit pattern (1000 . . . 0000two) rep-
resents the most negative number -2,147,483,648ten (-231). It is followed by a 
declining set of negative numbers: -2,147,483,647ten (1000 . . . 0001two) down to 
-1ten (1111 . . . 1111two). 

Two’s complement does have one negative number, -2,147,483,648ten, that has 
no corresponding positive number. Such imbalance was also a worry to the inat-
tentive programmer, but sign and magnitude had problems for both the program-
mer and the hardware designer. Consequently, every computer today uses two’s 
complement binary representations for signed numbers.

Two’s complement representation has the advantage that all negative numbers 
have a 1 in the most significant bit. Consequently, hardware needs to test only this 
bit to see if a number is positive or negative (with the number 0 considered posi-
tive). This bit is often called the sign bit. By recognizing the role of the sign bit, we 
can represent positive and negative 32-bit numbers in terms of the bit value times 
a power of 2:

(x31 × -231) + (x30 × 230) + (x29 × 229) + . . . + (x1 × 21) + (x0 × 20)

The sign bit is multiplied by -231, and the rest of the bits are then multiplied by 
positive versions of their respective base values.

Binary to Decimal Conversion

What is the decimal value of this 32-bit two’s complement number?

1111   1111   1111   1111   1111   1111   1111   1100two

Substituting the number’s bit values into the formula above:

(1 × -231) + (1 × 230) + (1 × 229) + . . .  + (1 × 22) + (0 × 21) + (0 × 20)
= -231       +      230     +     229      + . . .  +      22     +      0       +     0
= -2,147,483,648ten + 2,147,483,644ten
= - 4ten

We’ll see a shortcut to simplify conversion from negative to positive soon.

Just as an operation on unsigned numbers can overflow the capacity of hard-
ware to represent the result, so can an operation on two’s complement numbers. 
Overflow occurs when the leftmost retained bit of the binary bit pattern is not the 
same as the infinite number of digits to the left (the sign bit is incorrect): a 0 on 
the left of the bit pattern when the number is negative or a 1 when the number is 
positive.

EXAMPLE
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Unlike the numbers discussed above, memory addresses naturally start at 0 and con-
tinue to the largest address. Put another way, negative addresses make no sense. Thus, 
programs want to deal sometimes with numbers that can be positive or negative and 
sometimes with numbers that can be only positive. Some pro gramming languages 
reflect this distinction. C, for example, names the former integers (declared as int in 
the program) and the latter unsigned integers (unsigned int). Some C style guides 
even recommend declaring the former as signed int to keep the distinction clear.

Let’s examine two useful shortcuts when working with two’s complement 
numbers. The first shortcut is a quick way to negate a two’s complement binary 
number. Simply invert every 0 to 1 and every 1 to 0, then add one to the result. This 
shortcut is based on the observation that the sum of a number and its inverted 
representation must be 111 . . . 111two, which represents -1. Since x + x– = -1, 
therefore x + x– + 1 = 0 or x– + 1 = -x.

Negation Shortcut

Negate 2ten, and then check the result by negating -2ten.

2ten = 0000 0000 0000 0000 0000 0000 0000 0010two

Negating this number by inverting the bits and adding one,

  1111  1111  1111  1111  1111  1111  1111  1101two
 +                                    1two

 =  1111  1111  1111  1111  1111  1111  1111  1110two
 =  –2ten
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Going the other direction,

 1111  1111  1111  1111  1111  1111  1111  1110two

is first inverted and then incremented:

 0000  0000  0000  0000  0000  0000  0000  0001two
 +                                     1two

 = 0000  0000  0000  0000  0000  0000  0000  0010two
 = 2ten

Our next shortcut tells us how to convert a binary number represented in n bits 
to a number represented with more than n bits. For example, the immediate field 
in the load, store, branch, add, and set on less than instructions  contains a two’s 
complement 16-bit number, representing -32,768ten (-215) to 32,767ten (215 - 1). 
To add the immediate field to a 32-bit register, the computer must convert that 
16-bit number to its 32-bit equivalent. The shortcut is to take the most significant 
bit from the smaller quantity—the sign bit—and replicate it to fill the new bits of 
the larger quantity. The old bits are simply copied into the right portion of the new 
word. This shortcut is commonly called sign  extension.

Sign Extension Shortcut

Convert 16-bit binary versions of 2ten and -2ten to 32-bit binary numbers.

The 16-bit binary version of the number 2 is

0000  0000  0000  0010two = 2ten

It is converted to a 32-bit number by making 16 copies of the value in the most 
significant bit (0) and placing that in the left-hand half of the word. The right 
half gets the old value:

0000  0000  0000  0000  0000  0000  0000  0010two = 2ten
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Let’s negate the 16-bit version of 2 using the earlier shortcut. Thus,

0000  0000  0000  0010two 

becomes

1111  1111  1111  1101two
+                1two

= 1111  1111  1111  1110two

Creating a 32-bit version of the negative number means copying the sign bit 
16 times and placing it on the left:

1111  1111  1111  1111  1111  1111  1111  1110two = –2ten

This trick works because positive two’s complement numbers really have an 
infinite number of 0s on the left and negative two’s complement numbers have an 
infinite number of 1s. The binary bit pattern representing a number hides leading 
bits to fit the width of the hardware; sign extension simply restores some of them.

Summary

The main point of this section is that we need to represent both positive and neg-
ative integers within a computer word, and although there are pros and cons to any 
option, the overwhelming choice since 1965 has been two’s complement. 

What is the decimal value of this 64-bit two’s complement number?

1111  1111  1111  1111  1111  1111  1111  1111  1111  1111  1111  1111  1111  1111  1111  1000two

1) –4ten

2) –8ten 

3) –16ten 

4) 18,446,744,073,709,551,609ten

Elaboration: Two’s complement gets its name from the rule that the unsigned sum 
of an n-bit number and its negative is 2n; hence, the complement or negation of a two’s 
complement number x is 2n – x. 
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A third alternative representation to two’s complement and sign and magnitude is 
called one’s complement. The negative of a one’s complement is found by inverting each 
bit, from 0 to 1 and from 1 to 0, which helps explain its name since the complement of 
x is 2n – x – 1. It was also an attempt to be a better solution than sign and magnitude, 
and several early scientific com puters did use the notation. This representation is 
similar to two’s complement except that it also has two 0s: 00 . . . 00two is positive 
0 and 11 . . . 11two is negative 0. The most negative number, 10 . . . 000two, represents 
–2,147,483,647ten, and so the positives and negatives are bal anced. One’s complement 
adders did need an extra step to subtract a number, and hence two’s complement 
dominates today.

A final notation, which we will look at when we discuss floating point in Chapter 3, 
is to represent the most negative value by 00 . . . 000two and the most positive value 
by 11 . . . 11two, with 0 typi cally having the value 10  . . . 00two. This is called a biased 
notation, since it biases the number such that the number plus the bias has a non neg-
ative representation. 

Elaboration: For signed decimal numbers, we used “–” to represent negative because 
there are no limits to the size of a decimal number. Given a fixed word size, binary and 
hexadecimal (see Figure 2.4) bit strings can encode the sign; hence we do not normally 
use “+” or “–” with binary or hexadecimal notation.

 2.5 Representing Instructions in the Computer

We are now ready to explain the difference between the way humans instruct 
computers and the way computers see instructions. 

Instructions are kept in the computer as a series of high and low electronic 
signals and may be represented as numbers. In fact, each piece of an instruction 
can be considered as an individual number, and placing these numbers side by side 
forms the instruction. 

Since registers are referred to by almost all instructions, there must be a con-
vention to map register names into numbers. In MIPS assembly language, regis ters 
$s0 to $s7 map onto registers 16 to 23, and registers $t0 to $t7 map onto registers 
8 to 15. Hence, $s0 means register 16, $s1 means register 17, $s2 means register 
18, . . . , $t0 means register 8, $t1 means register 9, and so on. We’ll describe the 
convention for the rest of the 32 registers in the following sections.

one’s complement 
A notation that represents 
the most  negative value 
by 10 . . . 000two and the 
most positive value by 
01 . . . 11two, leaving 
an equal number of 
negatives and posi tives 
but ending up with 
two zeros, one positive 
(00 . . . 00two) and one 
negative (11 . . . 11two). 
The term is also used to 
mean the inversion of 
every bit in a pattern: 0 to 
1 and 1 to 0.

biased notation 
A notation that represents 
the most negative value 
by 00 . . . 000two and 
the most positive value 
by 11 . . . 11two, with 0 
typically having the value 
10 . . . 00two, thereby 
biasing the number such 
that the number plus the 
bias has a nonnegative 
representation.



Translating a MIPS Assembly Instruction into a Machine Instruction

Let’s do the next step in the refinement of the MIPS language as an example. 
We’ll show the real MIPS language version of the instruction represented 
symbolically as

add $t0,$s1,$s2

first as a combination of decimal numbers and then of binary numbers.

The decimal representation is

EXAMPLE

ANSWER
0 17 18 8 0 32

Each of these segments of an instruction is called a field. The first and last fields 
(containing 0 and 32 in this case) in combination tell the MIPS computer that 
this instruction performs addition. The second field gives the number of the reg-
ister that is the first source operand of the addition operation (17 = $s1), and the 
third field gives the other source operand for the addition (18 = $s2). The fourth 
field contains the number of the register that is to receive the sum (8 = $t0). The 
fifth field is unused in this instruction, so it is set to 0. Thus, this instruction adds 
register $s1 to register $s2 and places the sum in register $t0.

This instruction can also be represented as fields of binary numbers as 
opposed to decimal:

000000 10001 10010 01000 00000 100000

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

This layout of the instruction is called the instruction format. As you can see 
from counting the number of bits, this MIPS instruction takes exactly 32 bits—the 
same size as a data word. In keeping with our design principle that simplicity favors 
regularity, all MIPS instructions are 32 bits long.

To distinguish it from assembly language, we call the numeric version of instruc-
tions machine language and a sequence of such instructions machine code.

It would appear that you would now be reading and writing long, tedious strings 
of binary numbers. We avoid that tedium by using a higher base than binary that 
converts easily into binary. Since almost all computer data sizes are multiples of 4, 
hexadecimal (base 16) numbers are popular. Since base 16 is a power of 2, we can 
trivially convert by replacing each group of four binary digits by a single hexadeci-
mal digit, and vice versa. Figure 2.4 converts between hexadecimal and binary. 

instruction format 
A form of representation 
of an instruction 
composed of fields of 
binary numbers. 

machine language 
Binary rep resentation 
used for communi cation 
within a computer system.

hexadecimal 
Numbers in base 16.
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Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary 
 

0hex 0000two 4hex 0100two 8hex 1000two chex 1100two

1hex 0001two 5hex 0101two 9hex 1001two dhex 1101two

2hex 0010two 6hex 0110two ahex 1010two ehex 1110two

3hex 0011two 7hex 0111two bhex 1011two fhex 1111two

FIGURE 2.4 The hexadecimal-binary conversion table. Just replace one hexadecimal digit by the corresponding four binary 
digits, and vice versa. If the length of the binary number is not a multiple of 4, go from right to left.

Because we frequently deal with different number bases, to avoid confusion we 
will subscript decimal numbers with ten, binary numbers with two, and hexadeci-
mal numbers with hex. (If there is no subscript, the default is base 10.) By the way, 
C and Java use the notation 0xnnnn for hexadecimal numbers. 

Binary to Hexadecimal and Back

Convert the following hexadecimal and binary numbers into the other base: 

 eca8  6420hex

0001   0011 0101    0111 1001  1011    1101   1111 two

Using Figure 2.4, the answer is just a table lookup one way:  

EXAMPLE

ANSWER
eca8  6420hex

 1110   1100   1010   1000   0110  0100   0010   0000two

And then the other direction: 

 0001   0011 0101    0111 1001  1011    1101   1111two

 

1357 9bdfhex

MIPS Fields

MIPS fields are given names to make them easier to discuss:

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
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Here is the meaning of each name of the fields in MIPS instructions:

 ■ op: Basic operation of the instruction, traditionally called the opcode.

 ■ rs: The first register source operand.

 ■ rt: The second register source operand.

 ■ rd: The register destination operand. It gets the result of the operation.

 ■ shamt: Shift amount. (Section 2.6 explains shift instructions and this term; it 
will not be used until then, and hence the field contains zero in this sec tion.)

 ■ funct: Function. This field, often called the function code, selects the specific 
variant of the operation in the op field.

A problem occurs when an instruction needs longer fields than those shown 
above. For example, the load word instruction must specify two registers and a 
constant. If the address were to use one of the 5-bit fields in the format above, 
the constant within the load word instruction would be limited to only 25 or 32. 
This constant is used to select elements from arrays or data structures, and it often 
needs to be much larger than 32. This 5-bit field is too small to be useful. 

Hence, we have a conflict between the desire to keep all instructions the same 
length and the desire to have a single instruction format. This leads us to the final 
hardware design principle:

Design Principle 4: Good design demands good compromises. 

The compromise chosen by the MIPS designers is to keep all instructions the 
same length, thereby requiring different kinds of instruction formats for different 
kinds of instructions. For example, the format above is called R-type (for register) 
or R-format. A second type of instruction format is called I-type (for immediate) 
or I-format and is used by the immediate and data transfer instructions. The fields 
of I-format are

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

The 16-bit address means a load word instruction can load any word within a 
region of ±215 or 32,768 bytes (±213 or 8192 words) of the address in the base 
reg ister rs. Similarly, add immediate is limited to constants no larger than ±215. We 
see that more than 32 registers would be difficult in this format, as the rs and rt 
fields would each need another bit, making it harder to fit everything in one word.

Let’s look at the load word instruction from page 83:

lw   $t0,32($s3) # Temporary reg $t0 gets A[8]

opcode The field that 
denotes the operation and 
format of an instruction.
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Here, 19 (for $s3) is placed in the rs field, 8 (for $t0) is placed in the rt field, and 
32 is placed in the address field. Note that the meaning of the rt field has changed 
for this instruction: in a load word instruction, the rt field specifies the destination 
register, which receives the result of the load.

Although multiple formats complicate the hardware, we can reduce the complex-
ity by keeping the formats similar. For example, the first three fields of the R-type and 
I-type formats are the same size and have the same names; the length of the fourth 
field in I-type is equal to the sum of the lengths of the last three fields of R-type. 

In case you were wondering, the formats are distinguished by the values in the 
first field: each format is assigned a distinct set of values in the first field (op) so 
that the hardware knows whether to treat the last half of the instruction as three 
fields (R-type) or as a single field (I-type). Figure 2.5 shows the numbers used in 
each field for the MIPS instructions covered here.

Instruction Format op rs rt rd shamt funct address

add R 0 reg reg reg 0 32ten n.a.

sub (subtract) R 0 reg reg reg 0 34ten n.a.

add immediate I 8ten reg reg n.a. n.a. n.a. constant

lw (load word) I 35ten reg reg n.a. n.a. n.a. address

sw (store word) I 43ten reg reg n.a. n.a. n.a. address

FIGURE 2.5 MIPS instruction encoding. In the table above, “reg” means a register number between 
0 and 31, “address” means a 16-bit address, and “n.a.” (not applicable) means this field does not appear in this 
format. Note that add and sub instructions have the same value in the op field; the hardware uses the funct 
field to decide the variant of the operation: add (32) or subtract (34).

Translating MIPS Assembly Language into Machine Language

We can now take an example all the way from what the programmer writes to 
what the computer executes. If $t1 has the base of the array A and $s2 corre-
sponds to h, the assignment statement 

A[300] = h + A[300];

is compiled into

lw   $t0,1200($t1) # Temporary reg $t0 gets A[300] 
add  $t0,$s2,$t0 # Temporary reg $t0 gets h + A[300] 
sw   $t0,1200($t1) # Stores h + A[300] back into A[300]

What is the MIPS machine language code for these three instructions?

EXAMPLE



For convenience, let’s first represent the machine language instructions using 
decimal numbers. From Figure 2.5, we can determine the three machine lan-
guage instructions:

ANSWER

Note the similarity of the binary representations of the first and last instruc-
tions. The only difference is in the third bit from the left, which is highlighted here.

Figure 2.6 summarizes the portions of MIPS machine language described in this 
section. As we shall see in Chapter 4, the similarity of the binary representa tions 
of related instructions simplifies hardware design. These similarities are another 
example of regularity in the MIPS architecture.

 2.5 Representing Instructions in the Computer 99

op rs rt rd
address/ 

shamt funct

35 9 8 1200

0 18 8 8 0 32

43 9 8 1200

The lw instruction is identified by 35 (see Figure 2.5) in the first field (op). 
The base register 9 ($t1) is specified in the second field (rs), and the destination 
reg ister 8 ($t0) is specified in the third field (rt). The offset to select A[300] 
(1200 = 300 × 4) is found in the final field (address). 

The add instruction that follows is specified with 0 in the first field (op) and 
32 in the last field (funct). The three register operands (18, 8, and 8) are found 
in the second, third, and fourth fields and correspond to $s2, $t0, and $t0. 

The sw instruction is identified with 43 in the first field. The rest of this final 
instruction is identical to the lw instruction. 

Since 1200ten = 0000 0100 1011 0000two, the binary equivalent to the decimal 
form is:

100011 01001 01000 0000 0100 1011 0000

000000 10010 01000 01000 00000 100000

101011 01001 01000 0000 0100 1011 0000
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Today’s computers are built on two key principles:

1. Instructions are represented as numbers.

2. Programs are stored in memory to be read or written, just like numbers.

These principles lead to the stored-program concept; its invention let the 
computing genie out of its bottle. Figure 2.7 shows the power of the concept; 
specifically, memory can contain the source code for an editor program, the 
corresponding compiled machine code, the text that the compiled program is 
using, and even the compiler that generated the machine code. 

One consequence of instructions as numbers is that programs are often 
shipped as files of binary numbers. The commercial implication is that 
computers can inherit ready-made software provided they are compatible 
with an existing instruction set. Such “binary compatibility” often leads 
industry to align around a small number of instruction set architectures.

The BIG
Picture

MIPS machine language

Name Format Example Comments

add R 0 18 19 17 0 32 add  $s1,$s2,$s3
sub R 0 18 19 17 0 34 sub  $s1,$s2,$s3
addi I 8 18 17 100 addi  $s1,$s2,100
lw I 35 18 17 100 lw   $s1,100($s2)
sw I 43 18 17 100 sw   $s1,100($s2)
Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions are 32 bits long

R-format R op rs rt rd shamt funct Arithmetic instruction format

I-format I op rs rt address Data transfer format

FIGURE 2.6 MIPS architecture revealed through Section 2.5. The two MIPS instruction formats so far are R and I. The first 
16 bits are the same: both contain an op field, giving the base operation; an rs field, giving one of the sources; and the rt field, which speci fies 
the other source operand, except for load word, where it specifies the destination register. R-format divides the last 16 bits into an rd field, 
specifying the destination register; the shamt field, which Section 2.6 explains; and the funct field, which specifies the specific operation of 
R-format instructions. I-format combines the last 16 bits into a single address field. 



What MIPS instruction does this represent? Chose from one of the four options 
below.

Check  
Yourself

FIGURE 2.7 The stored-program concept. Stored programs allow a computer that performs 
accounting to become, in the blink of an eye, a computer that helps an author write a book. The switch hap-
pens simply by loading memory with programs and data and then telling the computer to begin executing at 
a given location in memory. Treating instructions in the same way as data greatly simplifies both the memory 
hardware and the software of computer systems. Specifically, the memory technology needed for data can 
also be used for programs, and programs like compilers, for instance, can translate code written in a notation 
far more convenient for humans into code that the computer can understand. 

Memory

Accounting program
(machine code)

Processor

Editor program
(machine code)

C compiler
(machine code)

Payroll data

Book text

Source code in C
for editor program

op rs rt rd shamt funct

0 8 9 10 0 34

1. sub $t0, $t1, $t2

2. add $t2, $t0, $t1

3. sub $t2, $t1, $t0

4. sub $t2, $t0, $t1
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 2.6 Logical Operations

Although the first computers operated on full words, it soon became clear that it 
was useful to operate on fields of bits within a word or even on individual bits. 
Examining characters within a word, each of which is stored as 8 bits, is one  
exam ple of such an operation (see Section 2.9). It follows that operations were added 
to programming languages and instruction set architectures to simplify, among 
other things, the packing and unpacking of bits into words. These instructions 
are called logical operations. Figure 2.8 shows logical operations in C, Java, and 
MIPS. 

Logical operations C operators Java operators MIPS instructions

 Shift left << <<  sll
 Shift right >> >>>  srl
 Bit-by-bit AND & &  and, andi
 Bit-by-bit OR | |  or, ori
 Bit-by-bit NOT ~ ~  nor

FIGURE 2.8 C and Java logical operators and their corresponding MIPS instructions. MIPS 
implements NOT using a NOR with one operand being zero.

The first class of such operations is called shifts. They move all the bits in a word 
to the left or right, filling the emptied bits with 0s. For example, if register $s0 
contained

0000  0000  0000  0000  0000  0000  0000  1001two = 9ten

and the instruction to shift left by 4 was executed, the new value would be:

0000  0000  0000  0000  0000  0000  1001    0000two= 144ten

The dual of a shift left is a shift right. The actual name of the two MIPS shift 
instructions are called shift left logical (sll) and shift right logical (srl). The fol lowing 

“Contrariwise,” 
continued Tweedledee, 
“if it was so, it might 
be; and if it were so, 
it would be; but as it 
isn’t, it ain’t. That’s 
logic.”

Lewis Carroll, Alice’s 
Adven tures in 
Wonderland, 1865



instruction performs the operation above, assuming that the original value was in 
register $s0 and the result should go in register $t2:

sll $t2,$s0,4 # reg $t2 = reg $s0 << 4 bits

We delayed explaining the shamt field in the R-format. Used in shift instruc tions, 
it stands for shift amount. Hence, the machine language version of the instruction 
above is

op rs rt rd shamt funct

0 0 16 10 4 0

The encoding of sll is 0 in both the op and funct fields, rd contains 10 (register 
$t2), rt contains 16 (register $s0), and shamt contains 4. The rs field is unused 
and thus is set to 0.

Shift left logical provides a bonus benefit. Shifting left by i bits gives the 
same result as multiplying by 2i, just as shifting a decimal number by i digits is 
equivalent to multiplying by 10i. For example, the above sll shifts by 4, which 
gives the same result as multiplying by 24 or 16. The first bit pattern above 
represents 9, and 9 × 16 = 144, the value of the second bit pattern.

Another useful operation that isolates fields is AND. (We capitalize the word 
to avoid confusion between the operation and the English conjunction.) AND is a 
bit-by-bit operation that leaves a 1 in the result only if both bits of the operands are 
1. For example, if register $t2 contains

0000  0000  0000  0000  0000  1101 1100  0000two

and register $t1 contains

0000  0000  0000  0000  0011  1100  0000  0000two

then, after executing the MIPS instruction

and $t0,$t1,$t2 # reg $t0 = reg $t1 & reg $t2

the value of register $t0 would be

0000  0000  0000  0000  0000  1100  0000  0000two

AND A logical bit-by-
bit oper ation with two 
operands that calculates 
a 1 only if there is a 1 in 
both operands.
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As you can see, AND can apply a bit pattern to a set of bits to force 0s where there 
is a 0 in the bit pattern. Such a bit pattern in conjunction with AND is tradition ally 
called a mask, since the mask “conceals” some bits.

To place a value into one of these seas of 0s, there is the dual to AND, called OR. 
It is a bit-by-bit operation that places a 1 in the result if either operand bit is a 1. To 
elaborate, if the registers $t1 and $t2 are unchanged from the preceding example, 
the result of the MIPS instruction

or $t0,$t1,$t2 # reg $t0 = reg $t1 | reg $t2

is this value in register $t0: 

0000  0000  0000  0000  0011  1101  1100  0000two 

The final logical operation is a contrarian. NOT takes one operand and 
places a 1 in the result if one operand bit is a 0, and vice versa. In keeping with the 
three-operand format, the designers of MIPS decided to include the instruction 
NOR (NOT OR) instead of NOT. If one operand is zero, then it is equivalent to 
NOT: A NOR 0 = NOT (A OR 0) = NOT (A).

If the register $t1 is unchanged from the preceding example and register $t3 
has the value 0, the result of the MIPS instruction

nor $t0,$t1,$t3 # reg $t0 = ~ (reg $t1 | reg $t3)

is this value in register $t0: 

1111  1111  1111  1111  1100  0011  1111  1111two

Figure 2.8 above shows the relationship between the C and Java operators and 
the MIPS instructions. Constants are useful in AND and OR logical operations 
as well as in arithmetic operations, so MIPS also provides the instructions and 
immediate (andi) and or immediate (ori). Constants are rare for NOR, since its 
main use is to invert the bits of a single operand; thus, the MIPS instruction set 
architecture has no immediate version.

Elaboration: The full MIPS instruction set also includes exclusive or (XOR), which 
sets the bit to 1 when two corresponding bits differ, and to 0 when they are the same. 
C allows bit fields or fields to be defined within words, both allowing objects to be 

OR A logical bit-by-
bit opera tion with two 
operands that cal culates 
a 1 if there is a 1 in either 
operand.

NOT A logical bit-by-
bit oper ation with one 
operand that inverts the 
bits; that is, it replaces 
every 1 with a 0, and every 
0 with a 1.

NOR A logical bit-by-
bit oper ation with two 
operands that calculates 
the NOT of the OR of the 
two operands. That is, it 
cal culates a 1 only if there 
is a 0 in both operands.



packed within a word and to match an externally enforced interface such as an I/O 
device. All fields must fit within a single word. Fields are unsigned integers that can be 
as short as 1 bit. C compilers insert and extract fields using logical instructions in MIPS: 
and, or, sll, and srl.

Which operations can isolate a field in a word?

1. AND

2. A shift left followed by a shift right

 2.7 Instructions for Making Decisions

What distinguishes a computer from a simple calculator is its ability to make deci-
sions. Based on the input data and the values created during  computation, different 
instructions execute. Decision making is commonly  represented in programming 
languages using the if statement, sometimes combined with go to statements and 
labels. MIPS assembly language includes two  decision-making instructions, simi-
lar to an if statement with a go to. The first  instruction is 

beq register1, register2, L1

This instruction means go to the statement labeled L1 if the value in register1 
equals the value in register2. The mnemonic beq stands for branch if equal. The 
second instruction is

bne register1, register2, L1 

It means go to the statement labeled L1 if the value in register1 does not equal 
the value in register2. The mnemonic bne stands for branch if not equal. These 
two instructions are traditionally called conditional branches.

Check  
Yourself

The utility of an 
automatic computer 
lies in the possibility of 
using a given sequence of 
instructions repeatedly, 
the number of times it is 
iterated being dependent 
upon the results of the 
computation. ...This 
choice can be made 
to depend upon the 
sign of a number 
(zero being reckoned 
as plus for machine 
purposes). Consequently, 
we introduce an 
[instruction] (the 
conditional transfer 
[instruction]) which will, 
depending on the sign of 
a given number, cause 
the proper one of two 
routines to be exe cuted.

Burks, Goldstine, and 
von Neumann, 1947

conditional branch 
An instruction that 
requires the comparison 
of two values and that 
allows for a subsequent 
transfer of control to 
a new address in the 
program based on 
the outcome of the 
comparison.
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Compiling if-then-else into Conditional Branches

In the following code segment, f, g, h, i, and j are variables. If the five vari-
ables f through j correspond to the five registers $s0 through $s4, what is the 
compiled MIPS code for this C if statement?

if (i == j) f = g + h; else f = g – h;

Figure 2.9 is a flowchart of what the MIPS code should do. The first expres-
sion compares for equality, so it would seem that we would want the branch if 
registers are equal instruction (beq). In general, the code will be more effi cient 
if we test for the opposite condition to branch over the code that per forms the 
subsequent then part of the if (the label Else is defined below) and so we use 
the branch if registers are not equal instruction (bne):

bne $s3,$s4,Else # go to Else if i ≠ j

The next assignment statement performs a single operation, and if all the 
operands are allocated to registers, it is just one instruction:

add $s0,$s1,$s2 # f = g + h (skipped if i ≠ j)

We now need to go to the end of the if statement. This example introduces 
another kind of branch, often called an unconditional branch. This instruc-
tion says that the processor always follows the branch. To distinguish between 
conditional and unconditional branches, the MIPS name for this type of 
instruction is jump, abbreviated as j (the label Exit is defined below).

j Exit # go to Exit

The assignment statement in the else portion of the if statement can again 
be compiled into a single instruction. We just need to append the label Else 
to this instruction. We also show the label Exit that is after this instruction, 
showing the end of the if-then-else compiled code:

Else:sub $s0,$s1,$s2 # f = g – h (skipped if i = j) 
Exit:

EXAMPLE

ANSWER



Notice that the assembler relieves the compiler and the assembly language pro-
grammer from the tedium of calculating addresses for branches, just as it does for 
calculating data addresses for loads and stores (see Section 2.12).

Compilers frequently create branches and labels where they do not appear in 
the programming language. Avoiding the burden of writing explicit labels and 
branches is one benefit of writing in high-level programming languages and is a 
reason coding is faster at that level. 

Loops

Decisions are important both for choosing between two alternatives—found in if 
statements—and for iterating a computation—found in loops. The same assem bly 
instructions are the building blocks for both cases.  

Compiling a while Loop in C

Here is a traditional loop in C:

while (save[i] == k)  
 i += 1;

Assume that i and k correspond to registers $s3 and $s5 and the base of the 
array save is in $s6. What is the MIPS assembly code corresponding to this 
C segment? 

Hardware/ 
Software 
Interface

EXAMPLE

FIGURE 2.9 Illustration of the options in the if statement above. The left box corresponds to 

the then part of the if statement, and the right box corresponds to the else part. 

f=g+h f=g–h

i=j i≠ j
i= =j?

Else:

Exit:
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The first step is to load save[i] into a temporary register. Before we can load 
save[i] into a temporary register, we need to have its address. Before we can 
add i to the base of array save to form the address, we must multiply the 
index i by 4 due to the byte addressing problem. Fortunately, we can use shift 
left logical, since shifting left by 2 bits multiplies by 22 or 4 (see page 103 in the 
prior section). We need to add the label Loop to it so that we can branch back 
to that instruction at the end of the loop:

Loop: sll  $t1,$s3,2 # Temp reg $t1 = i * 4

To get the address of save[i], we need to add $t1 and the base of save in $s6:

add $t1,$t1,$s6 # $t1 = address of save[i]

Now we can use that address to load save[i] into a temporary register:

lw  $t0,0($t1) # Temp reg $t0 = save[i]

The next instruction performs the loop test, exiting if save[i] ≠ k:

bne  $t0,$s5, Exit # go to Exit if save[i] ≠ k

The next instruction adds 1 to i:

addi  $s3,$s3,1 # i = i + 1

The end of the loop branches back to the while test at the top of the loop. We 
just add the Exit label after it, and we’re done:

j    Loop # go to Loop

Exit:

(See the exercises for an optimization of this sequence.)

Such sequences of instructions that end in a branch are so fundamental to compil ing 
that they are given their own buzzword: a basic block is a sequence of instruc tions 
without branches, except possibly at the end, and without branch targets or branch 
labels, except possibly at the beginning. One of the first early phases of compilation is 
breaking the program into basic blocks.

The test for equality or inequality is probably the most popular test, but some-
times it is useful to see if a variable is less than another variable. For example, a for 
loop may want to test to see if the index variable is less than 0. Such comparisons are 
accomplished in MIPS assembly language with an instruction that compares two 

ANSWER

Hardware/ 
Software 
Interface

basic block A sequence 
of instructions without 
branches (except possibly 
at the end) and without 
branch t argets or branch 
labels (except possibly at 
the  beginning).



registers and sets a third register to 1 if the first is less than the second; otherwise, it is 
set to 0. The MIPS instruction is called set on less than, or slt. For example,

slt     $t0, $s3, $s4 # $t0 = 1 if $s3 < $s4

means that register $t0 is set to 1 if the value in register $s3 is less than the value 
in register $s4; otherwise, register $t0 is set to 0. 

Constant operands are popular in comparisons, so there is an immediate ver-
sion of the set on less than instruction. To test if register $s2 is less than the con-
stant 10, we can just write

slti     $t0,$s2,10 # $t0 = 1 if $s2 < 10

MIPS compilers use the slt, slti, beq, bne, and the fixed value of 0 (always 
available by reading register $zero) to create all relative conditions: equal, not 
equal, less than, less than or equal, greater than, greater than or equal. 

Heeding von Neumann’s warning about the simplicity of the “equipment,” the 
MIPS architecture doesn’t include branch on less than because it is too compli-
cated; either it would stretch the clock cycle time or it would take extra clock cycles 
per instruction. Two faster instructions are more useful.

Comparison instructions must deal with the dichotomy between signed and 
unsigned numbers. Sometimes a bit pattern with a 1 in the most significant bit 
represents a negative number and, of course, is less than any positive number, 
which must have a 0 in the most significant bit. With unsigned integers, on the 
other hand, a 1 in the most significant bit represents a number that is larger than 
any that begins with a 0. (We’ll soon take advantage of this dual meaning of the 
most significant bit to reduce the cost of the array bounds checking.)

MIPS offers two versions of the set on less than comparison to handle these 
alternatives. Set on less than (slt) and set on less than immediate (slti) work with 
signed integers. Unsigned integers are compared using set on less than unsigned 
(sltu) and set on less than immediate unsigned (sltiu).

Hardware/ 
Software 
Interface

Hardware/ 
Software 
Interface
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Signed versus Unsigned Comparison

Suppose register $s0 has the binary number

1111   1111   1111   1111   1111   1111   1111   1111two

and that register $s1 has the binary number

0000   0000   0000   0000   0000   0000   0000   0001two

What are the values of registers $t0 and $t1 after these two instructions?

slt $t0, $s0, $s1 # signed comparison 
sltu $t1, $s0, $s1 # unsigned comparison

The value in register $s0 represents -1ten if it is an integer and 4,294,967,295ten 
if it is an unsigned integer. The value in register $s1 repre sents 1ten in either 
case. Then register $t0 has the value 1, since -1ten < 1ten, and register $t1 has 
the value 0, since 4,294,967,295ten > 1ten.

Treating signed numbers as if they were unsigned gives us a low cost way of 
checking if 0 ≤ x < y, which matches the index out-of-bounds check for arrays. The 
key is that negative integers in two’s complement notation look like large numbers 
in unsigned notation; that is, the most significant bit is a sign bit in the former 
notation but a large part of the number in the latter. Thus, an unsigned comparison 
of x < y also checks if x is negative as well as if x is less than y.

Bounds Check Shortcut

Use this shortcut to reduce an index-out-of-bounds check: jump to 
IndexOutOfBounds if $s1 ≥ $t2 or if $s1 is negative. 

The checking code just uses sltu to do both checks:

sltu $t0,$s1,$t2 # $t0=0 if $s1>=length or $s1<0 
beq  $t0,$zero,IndexOutOfBounds #if bad, goto Error

EXAMPLE

ANSWER

EXAMPLE

ANSWER



Case/Switch Statement

Most programming languages have a case or switch statement that allows the pro-
grammer to select one of many alternatives depending on a single  value. The sim plest 
way to implement switch is via a sequence of conditional tests, turning the switch 
statement into a chain of if-then-else statements. 

Sometimes the alternatives may be more efficiently encoded as a table of 
addresses of alternative instruction sequences, called a jump address table or jump 
table, and the program needs only to index into the table and then jump to the 
appropriate sequence. The jump table is then just an array of words containing 
addresses that correspond to labels in the code. The program loads the appropri ate 
entry from the jump table into a register. It then needs to jump using the address 
in the register. To support such situations, computers like MIPS include a jump 
register instruction (jr), meaning an unconditional jump to the address specified 
in a register. Then it jumps to the proper address using this instruction, which is 
described in the next section. 

Although there are many statements for decisions and loops in programming 
lan guages like C and Java, the bedrock statement that implements them at the 
instruction set level is the conditional branch.

Elaboration: If you have heard about delayed branches, covered in Chapter 4, don’t 
worry: the MIPS assembler makes them invisible to the assembly language programmer. 

I. C has many statements for decisions and loops, while MIPS has few. Which of 
the following do or do not explain this imbalance? Why?

1. More decision statements make code easier to read and understand.

2. Fewer decision statements simplify the task of the underlying layer that is 
responsible for execution.

3. More decision statements mean fewer lines of code, which generally reduces 
coding time.

4. More decision statements mean fewer lines of code, which generally results 
in the execution of fewer operations.

jump address table 
Also called jump table. 
A table of  addresses of 
alternative instruction 
sequences.

Hardware/ 
Software 
Interface

Check  
Yourself
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II. Why does C provide two sets of operators for AND (& and &&) and two sets of 
operators for OR (| and ||), while MIPS doesn’t?

1. Logical operations AND and OR implement & and |, while conditional 
branches implement && and ||.

2. The previous statement has it backwards: && and || correspond to logical 
operations, while & and | map to conditional branches.

3. They are redundant and mean the same thing: && and || are simply inher ited 
from the programming language B, the predecessor of C. 

 2.8  
Supporting Procedures in Computer 
Hardware

A procedure or function is one tool programmers use to structure pro grams, both 
to make them easier to understand and to allow code to be reused. Procedures 
allow the programmer to concentrate on just one portion of the task at a time; 
parameters act as an interface between the procedure and the rest of the program 
and data, since they can pass values and return results. We describe the equivalent 
to procedures in Java in Section 2.15 on the CD, but Java needs everything from a 
computer that C needs.

You can think of a procedure like a spy who leaves with a secret plan, acquires 
resources, performs the task, covers his or her tracks, and then returns to the point 
of origin with the desired result. Nothing else should be perturbed once the mission 
is complete. Moreover, a spy operates on only a “need to know” basis, so the spy 
can’t make assumptions about his employer.

Similarly, in the execution of a procedure, the program must follow these six 
steps:

1. Put parameters in a place where the procedure can access them.

2. Transfer control to the procedure.

3. Acquire the storage resources needed for the procedure.

4. Perform the desired task.

5. Put the result value in a place where the calling program can access it.

6. Return control to the point of origin, since a procedure can be called from 
several points in a program.

procedure A stored 
subroutine that performs 
a specific task based on 
the parameters with 
which it is  provided.



As mentioned above, registers are the fastest place to hold data in a computer, 
so we want to use them as much as possible. MIPS software follows the following 
convention for procedure calling in allocating its 32 registers:

 ■ $a0-$a3: four argument registers in which to pass parameters

 ■ $v0-$v1: two value registers in which to return values

 ■ $ra: one return address register to return to the point of origin

In addition to allocating these registers, MIPS assembly language includes an 
instruction just for the procedures: it jumps to an address and simultaneously 
saves the address of the following instruction in register $ra. The jump-and-link 
instruction (jal) is simply written 

jal ProcedureAddress

The link portion of the name means that an address or link is formed that points to 
the calling site to allow the procedure to return to the proper address. This “link,” 
stored in register $ra (register 31), is called the return address. The return address 
is needed because the same procedure could be called from several parts of the 
program.

To support such situations, computers like MIPS use jump register instruc tion 
(jr), introduced above to help with case statements, meaning an uncondi tional 
jump to the address specified in a register: 

jr $ra

Jump register instruction jumps to the address stored in register $ra—which is 
just what we want. Thus, the calling program, or caller, puts the parameter val ues 
in $a0-$a3 and uses jal X to jump to procedure X (sometimes named the callee). 
The callee then performs the calculations, places the results in $v0 and $v1, and 
returns control to the caller using jr $ra.

Implicit in the stored-program idea is the need to have a register to hold the 
address of the current instruction being executed. For historical reasons, this reg-
ister is almost always called the program counter, abbreviated PC in the MIPS 
architecture, although a more sensible name would have been instruction  address 
register. The jal instruction actually saves PC + 4 in register $ra to link to the 
following instruction to set up the procedure return. 

jump-and-link 
instruction An 
instruction that jumps 
to an address and 
simultaneously saves the 
address of the following 
instruction in a register 
($ra in MIPS).

return address A link to 
the calling site that allows 
a proce dure to return 
to the proper address; 
in MIPS it is stored in 
register $ra.

caller The program that 
insti gates a procedure and 
 provides the necessary 
parameter values.

callee A procedure that 
executes a series of stored 
 instructions based on 
parameters provided by 
the caller and then returns 
con trol to the caller.

program counter 
(PC) The register 
containing the  address of 
the instruction in the pro-
gram being  executed.
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Using More Registers

Suppose a compiler needs more registers for a procedure than the four argument 
and two return value registers. Since we must cover our tracks after our mission 
is complete, any registers needed by the caller must be restored to the values that 
they contained before the procedure was invoked. This situation is an example in 
which we need to spill registers to memory, as mentioned in the Hardware/ Software 
Interface section.

The ideal data structure for spilling registers is a stack—a last-in-first-out 
queue. A stack needs a pointer to the most recently allocated address in the stack 
to show where the next procedure should place the registers to be spilled or where 
old register values are found. The stack pointer is adjusted by one word for each 
register that is saved or restored. MIPS software reserves register 29 for the stack 
pointer, giving it the obvious name $sp. Stacks are so popular that they have their 
own buzzwords for transferring data to and from the stack: placing data onto the 
stack is called a push, and removing data from the stack is called a pop.

By historical precedent, stacks “grow” from higher addresses to lower addresses. 
This convention means that you push values onto the stack by sub tracting from 
the stack  pointer. Adding to the stack pointer shrinks the stack, thereby popping 
values off the stack.

Compiling a C Procedure That Doesn’t Call Another Procedure

Let’s turn the example on page 79 from Section 2.2 into a C procedure:

int leaf_example (int g, int h, int i, int j) 
{ 
 int f; 
 
 f = (g + h) – (i + j); 
 return f; 
}

What is the compiled MIPS assembly code?

The parameter variables g, h, i, and j correspond to the argument registers 
$a0, $a1, $a2, and $a3, and f corresponds to $s0. The compiled program 
starts with the label of the procedure:

leaf_example:

stack A data structure 
for spill ing registers 
organized as a last-in-
first-out queue.

stack pointer A value 
denoting the most 
recently allocated address 
in a stack that shows 
where registers should 
be spilled or where old 
register values can be 
found. In MIPS, it is 
register $sp.

push Add element to 
stack.

pop Remove element 
from stack.

EXAMPLE

ANSWER



The next step is to save the registers used by the procedure. The C assignment 
statement in the procedure body is identical to the example on page 79, which 
uses two temporary registers. Thus, we need to save three  registers: $s0, $t0, 
and $t1. We “push” the old values onto the stack by creating space for three 
words (12 bytes) on the stack and then store them:

addi $sp, $sp, –12 # adjust stack to make room for 3 items
sw  $t1, 8($sp) # save register $t1 for use afterwards 
sw  $t0, 4($sp) # save register $t0 for use afterwards 
sw  $s0, 0($sp) # save register $s0 for use afterwards

Figure 2.10 shows the stack before, during, and after the procedure call. 
The next three statements correspond to the body of the procedure, which 

follows the example on page 79:

add $t0,$a0,$a1 # register $t0 contains g + h 
add $t1,$a2,$a3 # register $t1 contains i + j 
sub  $s0, $t0,  $t1 # f = $t0 – $t1, which is (g + h)–(i + j)

To return the value of f, we copy it into a return value register:

add $v0,$s0,$zero # returns f ($v0 = $s0 + 0)

Before returning, we restore the three old values of the registers we saved by 
“popping” them from the stack:

lw  $s0, 0($sp) # restore register $s0 for caller 
lw  $t0, 4($sp) # restore register $t0 for caller 
lw  $t1, 8($sp) # restore register $t1 for caller 
addi $sp,$sp,12 # adjust stack to delete 3 items

The procedure ends with a jump register using the return address:

jr  $ra       # jump back to calling routine

In the previous example, we used temporary registers and assumed their old 
values must be saved and restored. To avoid saving and restoring a register whose 
value is never used, which might happen with a temporary register, MIPS software 
sepa rates 18 of the registers into two groups:

 ■ $t0-$t9:ten temporary registers that are not preserved by the callee (called 
procedure) on a procedure call

 ■ $s0-$s7:eight saved registers that must be preserved on a procedure call (if 
used, the callee saves and restores them)

This simple convention reduces register spilling. In the example above, since the 
caller does not expect registers $t0 and $t1 to be preserved across a procedure call, 

 2.8 Supporting Procedures in Computer Hardware 115



116 Chapter 2 Instructions: Language of the Computer

we can drop two stores and two loads from the code. We still must save and restore 
$s0, since the callee must assume that the caller needs its value. 

FIGURE 2.10 The values of the stack pointer and the stack (a) before, (b) during, and (c) 
after the procedure call. The stack pointer always points to the “top” of the stack, or the last word in 
the stack in this drawing. 

High address

Low address

Contents of register $t1
Contents of register $t0

Contents of register $s0

$sp

$sp

$sp

a. b. c.

Nested Procedures

Procedures that do not call others are called leaf procedures. Life would be simple if 
all procedures were leaf procedures, but they aren’t. Just as a spy might employ other 
spies as part of a mission, who in turn might use even more spies, so do procedures 
invoke other procedures. Moreover, recursive procedures even invoke “clones” of 
themselves. Just as we need to be careful when using registers in procedures, more 
care must also be taken when invok ing nonleaf procedures.

For example, suppose that the main program calls procedure A with an argument 
of 3, by placing the value 3 into register $a0 and then using jal A. Then suppose 
that procedure A calls procedure B via jal B with an argument of 7, also placed in 
$a0. Since A hasn’t finished its task yet, there is a conflict over the use of register 
$a0. Similarly, there is a conflict over the return address in register $ra, since it 
now has the return address for B. Unless we take steps to prevent the problem, this 
conflict will eliminate procedure A’s ability to return to its caller.

One solution is to push all the other registers that must be preserved onto 
the stack, just as we did with the saved registers. The caller pushes any argument 
registers ($a0-$a3) or temporary registers ($t0-$t9) that are needed after 
the call. The callee pushes the return address register $ra and any saved registers 
($s0-$s7) used by the callee. The stack pointer $sp is adjusted to account for the 
num ber of registers placed on the stack. Upon the return, the registers are restored 
from memory and the stack pointer is readjusted.



Compiling a Recursive C Procedure, Showing Nested Procedure 
 Linking

Let’s tackle a recursive procedure that calculates factorial:

int fact (int n) 
{ 
 if (n < 1) return (1); 
 else return (n * fact(n – 1)); 
}

What is the MIPS assembly code?

The parameter variable n corresponds to the argument register $a0. The 
compiled program starts with the label of the procedure and then saves two 
registers on the stack, the return address and $a0:

fact: 
 addi $sp, $sp, –8 # adjust stack for 2 items
 sw $ra, 4($sp) # save the return address
 sw $a0, 0($sp) # save the argument n

The first time fact is called, sw saves an address in the program that called 
fact. The next two instructions test whether n is less than 1, going to L1 if 
n ≥ 1.

 slti $t0,$a0,1 # test for n < 1
 beq $t0,$zero,L1 # if n >= 1, go to L1

If n is less than 1, fact returns 1 by putting 1 into a value register: it adds 1 to 
0 and places that sum in $v0. It then pops the two saved values off the stack 
and jumps to the return address:

 addi $v0,$zero,1 # return 1
 addi $sp,$sp,8 # pop 2 items off stack
 jr $ra # return to caller

Before popping two items off the stack, we could have loaded $a0 and $ra. Since 
$a0 and $ra don’t change when n is less than 1, we skip those instructions. 

If n is not less than 1, the argument n is decremented and then fact is 
called again with the decremented value:

L1: addi $a0,$a0,–1   # n >= 1: argument gets (n – 1)
 jal  fact         # call fact with (n – 1)

EXAMPLE

ANSWER
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The next instruction is where fact returns. Now the old return address and 
old argument are restored, along with the stack pointer:

lw $a0, 0($sp) # return from jal: restore argument n 
lw $ra, 4($sp) # restore the return address 
addi $sp, $sp, 8 # adjust stack pointer to pop 2 items

Next, the value register $v0 gets the product of old argument $a0 and the 
current value of the value register. We assume a multiply instruction is avail-
able, even though it is not covered until Chapter 3:

 mul $v0,$a0,$v0 # return n * fact (n – 1)

Finally, fact jumps again to the return address:

jr $ra # return to the caller

A C variable is generally a location in storage, and its interpretation depends both on 
its type and storage class. Examples include integers and characters (see Section 2.9). 
C has two storage classes: automatic and static. Automatic variables are local to a 
procedure and are discarded when the procedure exits. Static variables exist across 
exits from and entries to procedures. C variables declared outside all procedures  
are considered static, as are any variables de clared using the keyword static. The rest 
are automatic. To simplify access to static data, MIPS software reserves another reg-
ister, called the global pointer, or $gp.

Figure 2.11 summarizes what is preserved across a procedure call. Note that sev-
eral schemes preserve the stack, guaranteeing that the caller will get the same data 
back on a load from the stack as it stored onto the stack. The stack above $sp is 
pre served simply by making sure the callee does not write above $sp; $sp is itself 
pre served by the callee adding exactly the same amount that was subtracted from it; 
and the other registers are preserved by saving them on the stack (if they are used) 
and restoring them from there.

Hardware/ 
Software 
Interface

global pointer The 
register that is reserved to 
point to the static area.

FIGURE 2.11 What is and what is not preserved across a procedure call. If the software relies 
on the frame pointer register or on the global pointer register, discussed in the following subsec tions, they 
are also preserved. 

Preserved Not preserved

Saved registers: $s0–$s7 Temporary registers: $t0–$t9

Stack pointer register: $sp Argument registers: $a0–$a3 

Return address register: $ra Return value registers: $v0–$v1

Stack above the stack pointer Stack below the stack pointer



Allocating Space for New Data on the Stack
The final complexity is that the stack is also used to store variables that are local 
to the procedure but do not fit in registers, such as local arrays or structures. The 
segment of the stack containing a procedure’s saved registers and local variables is 
called a procedure frame or activation record. Figure 2.12 shows the state of the 
stack before, during, and after the procedure call.

Some MIPS software uses a frame pointer ($fp) to point to the first word of 
the frame of a procedure. A stack pointer might change during the procedure, and 
so references to a local variable in memory might have different offsets depending 
on where they are in the procedure, making the procedure harder to understand. 
Alternatively, a frame pointer offers a stable base register within a procedure for 
local memory-references. Note that an activation record appears on the stack 
whether or not an explicit frame pointer is used. We’ve been avoiding using $fp by 
avoiding changes to $sp within a procedure: in our examples, the stack is adjusted 
only on entry and exit of the procedure. 

procedure frame Also 
called activation record. 
The  segment of the stack 
containing a proce dure’s 
saved registers and local 
variables.

frame pointer A value 
denot ing the location of 
the saved registers and 
local variables for a given 
procedure.

FIGURE 2.12 Illustration of the stack allocation (a) before, (b) during, and (c) after the 
procedure call. The frame pointer ($fp) points to the first word of the frame, often a saved argument 
register, and the stack pointer ($sp) points to the top of the stack. The stack is adjusted to make room for 
all the saved registers and any memory-resident local variables. Since the stack pointer may change during 
pro gram execution, it’s easier for programmers to reference variables via the stable frame pointer, although it 
could be done just with the stack pointer and a little address arithmetic. If there are no local variables on the 
stack within a procedure, the compiler will save time by not setting and restoring the frame pointer. When a 
frame pointer is used, it is initialized using the address in $sp on a call, and $sp is restored using $fp. This 
information is also found in Column 4 of the MIPS Reference Data Card at the front of this book. 

High address

Low address
a. b. c.

Saved argument
registers (if any)

$sp

$sp

$sp

$fp

$fp

$fp

Saved return address

Saved saved
registers (if any)

Local arrays and
structures (if any)
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Allocating Space for New Data on the Heap
In addition to automatic variables that are local to procedures, C programmers need 
space in memory for static variables and for dynamic data structures.  Figure 2.13 
shows the MIPS convention for allocation of memory. The stack starts in the 
high end of memory and grows down. The first part of the low end of memory is 
reserved, followed by the home of the MIPS machine code, traditionally called the 
text segment. Above the code is the static data segment, which is the place for con-
stants and other static variables. Although arrays tend to be a fixed length and thus 
are a good match to the static data segment, data structures like linked lists tend to 
grow and shrink during their lifetimes. The segment for such data structures is tra-
ditionally called the heap, and it is placed next in memory. Note that this allocation 
allows the stack and heap to grow toward each other, thereby allowing the efficient 
use of memory as the two seg ments wax and wane.

text segment The 
segment of a UNIX object 
file that  contains the 
machine language code 
for rou tines in the source 
file.

FIGURE 2.13 The MIPS memory allocation for program and data. These addresses are 
only a software convention, and not part of the MIPS architecture. The stack pointer is initialized to 
7fff fffchex and grows down toward the data segment. At the other end, the program code (“text”) starts 
at 0040 0000hex. The static data starts at 1000 0000hex. Dynamic data, allocated by malloc in C and 
by new in Java, is next. It grows up toward the stack in an area called the heap. The global pointer, $gp, is 
set to an address to make it easy to access data. It is initialized to 1000 8000hex so that it can access from 
1000 0000hex to 1000 ffffhex using the positive and negative 16-bit offsets from $gp. This information 
is also found in Column 4 of the MIPS Reference Data Card at the front of this book. 

Stack

Dynamic data

Static data

Text

Reserved

$sp 7fff fffchex 

$gp 1000 8000hex 
1000 0000hex 

pc 0040 0000hex 

0 

C allocates and frees space on the heap with explicit functions. malloc()  allo-
cates space on the heap and returns a pointer to it, and free() releases space on 
the heap to which the pointer points. Memory allocation is controlled by programs 
in C, and it is the source of many common and difficult bugs. Forgetting to free space 
leads to a “memory leak,” which eventually uses up so much memory that the oper-
ating system may crash. Freeing space too early leads to “dangling pointers,” which 
can cause pointers to point to things that the program never intended. Java uses 
automatic memory allocation and garbage collection just to avoid such bugs.



Figure 2.14 summarizes the register conventions for the MIPS assembly l anguage.

Name Register number Usage
Preserved on 

call?

$zero 0 The constant value 0 n.a.

$v0–$v1 2–3 Values for results and expression evaluation no

$a0–$a3 4–7 Arguments no

$t0–$t7 8–15 Temporaries no

$s0–$s7 16–23 Saved yes

$t8–$t9 24–25 More temporaries no

$gp 28 Global pointer yes

$sp 29 Stack pointer yes

$fp 30 Frame pointer yes

$ra 31 Return address yes

FIGURE 2.14 MIPS register conventions. Register 1, called $at, is reserved for the assembler (see 
Section 2.12), and registers 26-27, called $k0-$k1, are reserved for the operating system. This information 
is also found in Column 2 of the MIPS Reference Data Card at the front of this book.

Elaboration: What if there are more than four parameters? The MIPS convention is 
to place the extra parameters on the stack just above the frame pointer. The procedure 
then expects the first four parameters to be in registers $a0 through $a3 and the rest 
in memory, addressable via the frame pointer.

As mentioned in the caption of Figure 2.12, the frame pointer is convenient because all 
ref erences to variables in the stack within a procedure will have the same offset. The frame 
pointer is not necessary, however. The GNU MIPS C compiler uses a frame pointer, but the 
C compiler from MIPS does not; it treats register 30 as another save register ($s8).

Elaboration: Some recursive procedures can be implemented iteratively without using 
recursion. Iteration can significantly improve performance by removing the overhead associ-
ated with procedure calls. For example, consider a procedure used to accumulate a sum:

int sum (int n, int acc) { 
 if (n > 0) 
  return sum(n – 1, acc + n); 
 else 
  return acc; 
}

Consider the procedure call sum(3,0). This will result in recursive calls to 
sum(2,3), sum(1,5), and sum(0,6), and then the result 6 will be returned four 
times. This recursive call of sum is referred to as a tail call, and this example use of tail 
recursion can be imple mented very efficiently (assume $a0 = n and $a1 = acc):

sum: slti $t0, $a0, 1  # test if n <= 0
 bne $t0, $zero, sum_exit   # go to sum_exit if n <= 0
 add$a1, $a1, $a0      # add n to acc
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 addi$a0, $a0, –1 # subtract 1 from n 
 j sum  # go to sum 
sum_exit: 
 add$v0, $a1, $zero # return value acc 
 jr $ra # return to caller

Which of the following statements about C and Java are generally true?

1. C programmers manage data explicitly, while it’s automatic in Java.

2. C leads to more pointer bugs and memory leak bugs than does Java.

 2.9 Communicating with People

Computers were invented to crunch numbers, but as soon as they became com-
mercially viable they were used to process text. Most computers today offer 8-bit  
bytes to represent characters, with the American Standard Code for Informa-
tion Interchange (ASCII) being the representation that nearly everyone follows.  
Figure 2.15 summarizes ASCII.    

ASCII 
 value

Char- 
acter

ASCII 
 value

Char- 
acter

ASCII 
 value

Char- 
acter

ASCII 
 value

Char- 
acter

ASCII 
 value

Char- 
acter

ASCII 
 value

Char- 
acter

32  space 48 0 64 @ 80 P 096 ` 112 p

33 ! 49 1 65 A 81 Q 097 a 113 q

34 " 50 2 66 B 82 R 098 b 114 r

35 # 51 3 67 C 83 S 099 c 115 s

36 $ 52 4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e 117 u

38 & 54 6 70 F 86 V 102 f 118 v

39 ' 55 7 71 G 87 W 103 g 119 w

40 ( 56 8 72 H 88 X 104 h 120 x

41 ) 57 9 73 I 89 Y 105 i 121 y

42 * 58 : 74 J 90 Z 106 j 122 z

43 + 59 ; 75 K 91 [ 107 k 123 {

44 , 60 < 76 L 92 \ 108 l 124 |

45 - 61 = 77 M 93 ] 109 m 125 }

46 . 62 > 78 N 94 ^ 110 n 126 ~

47 / 63 ? 79 O 95 _ 111 o 127 DEL

FIGURE 2.15 ASCII representation of characters. Note that upper- and lowercase letters differ by exactly 32; this observation can lead 
to short cuts in checking or changing upper- and lowercase. Values not shown include formatting characters. For example, 8 represents a backspace, 
9 represents a tab character, and 13 a carriage return. Another useful value is 0 for null, the value the programming language C uses to mark the 
end of a string. This information is also found in Column 3 of the MIPS Reference Data Card at the front of this book. 

Check  
Yourself

!(@ | = > (wow open 
tab at bar is great)

Fourth line of the 
keyboard poem “Hatless 
Atlas,” 1991 (some 
give names to ASCII 
characters: “!” is “wow,” 
“(” is open, “|” is bar, and 
so on).



Base 2 is not natural to human beings; we have 10 fingers and so find base 
10 natural. Why didn’t computers use decimal? In fact, the first commercial 
computer did offer decimal arithmetic. The problem was that the computer still 
used on and off signals, so a decimal digit was simply represented by several 
binary digits. Decimal proved so inefficient that subsequent computers reverted 
to all binary, con verting to base 10 only for the relatively infrequent input/output 
events.

ASCII versus Binary Numbers

We could represent numbers as strings of ASCII digits instead of as integers. 
How much does storage increase if the number 1 billion is represented in 
ASCII versus a 32-bit integer?

One billion is 1,000,000,000, so it would take 10 ASCII digits, each 8 bits long. 
Thus the storage expansion would be (10 × 8)/32 or 2.5. In addition to the 
expansion in storage, the hardware to add, subtract, multiply, and divide such 
decimal numbers is difficult. Such difficulties explain why computing profes-
sionals are raised to believe that binary is natural and that the occasional dec-
imal computer is bizarre.

A series of instructions can extract a byte from a word, so load word and store 
word are sufficient for transferring bytes as well as words. Because of the popularity 
of text in some programs, however, MIPS provides instructions to move bytes. Load 
byte (lb) loads a byte from memory, placing it in the rightmost 8 bits of a register. 
Store byte (sb) takes a byte from the rightmost 8 bits of a register and writes it to 
memory. Thus, we copy a byte with the sequence

lb $t0,0($sp)  # Read byte from source 
sb $t0,0($gp)  # Write byte to destination

Hardware/ 
Software 
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124 Chapter 2 Instructions: Language of the Computer

Signed versus unsigned applies to loads as well as to arithmetic. The function of 
a signed load is to copy the sign repeatedly to fill the rest of the register—called 
sign extension—but its purpose is to place a correct representation of the number 
within that register. Unsigned loads simply fill with 0s to the left of the data, since 
the number represented by the bit pattern is unsigned.

When loading a 32-bit word into a 32-bit register, the point is moot; signed and 
unsigned loads are identical. MIPS does offer two flavors of byte loads: load byte 
(lb) treats the byte as a signed number and thus sign-extends to fill the 24 left-
most bits of the register, while load byte unsigned (lbu) works with unsigned 
inte gers. Since C programs almost always use bytes to represent characters rather 
than consider bytes as very short signed integers, lbu is used practically exclusively 
for byte loads. 

Characters are normally combined into strings, which have a variable number 
of characters. There are three choices for representing a string: (1) the first posi tion 
of the string is reserved to give the length of a string, (2) an accompanying variable 
has the length of the string (as in a structure), or (3) the last position of a string is 
indicated by a character used to mark the end of a string. C uses the third choice, 
terminating a string with a byte whose value is 0 (named null in ASCII). Thus, 
the string “Cal” is represented in C by the following 4 bytes, shown as deci mal 
numbers: 67, 97, 108, 0. (As we shall see, Java uses the first option.) 

Compiling a String Copy Procedure, Showing How to Use C Strings

The procedure strcpy copies string y to string x using the null byte 
 termination convention of C:

void strcpy (char x[], char y[]) 
{ 
 int i; 
 
 i = 0; 
 while ((x[i] = y[i]) != ‘\0’) /* copy & test byte */ 
   i += 1; 
}

What is the MIPS assembly code?
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Below is the basic MIPS assembly code segment. Assume that base addresses 
for arrays x and y are found in $a0 and $a1, while i is in $s0. strcpy adjusts 
the stack pointer and then saves the saved register $s0 on the stack:

strcpy: 
 addi $sp,$sp,–4 # adjust stack for 1 more item 
 sw $s0, 0($sp) # save $s0 

To initialize i to 0, the next instruction sets $s0 to 0 by adding 0 to 0 and plac-
ing that sum in $s0:

 add $s0,$zero,$zero # i = 0 + 0

This is the beginning of the loop. The address of y[i] is first formed by add-
ing i to y[]:

L1: add $t1,$s0,$a1 # address of y[i] in $t1

Note that we don’t have to multiply i by 4 since y is an array of bytes and not 
of words, as in prior examples.

To load the character in y[i], we use load byte unsigned, which puts the 
character into $t2:

 lbu $t2, 0($t1) # $t2 = y[i]

A similar address calculation puts the address of x[i] in $t3, and then the 
character in $t2 is stored at that address. 

 add $t3,$s0,$a0 # address of x[i] in $t3 
 sb $t2, 0($t3) # x[i] = y[i]

Next, we exit the loop if the character was 0. That is, we exit if it is the last 
character of the string:

 beq $t2,$zero,L2 # if y[i] == 0, go to L2

If not, we increment i and loop back:

 addi $s0, $s0,1 # i = i + 1 
 j L1  # go to L1

ANSWER
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If we don’t loop back, it was the last character of the string; we restore $s0 and 
the stack pointer, and then return.

L2: lw $s0, 0($sp) # y[i] == 0: end of string. Re
store old $s0 
 
 addi $sp,$sp,4 # pop 1 word off stack 
 jr $ra # return

String copies usually use pointers instead of arrays in C to avoid the opera tions 
on i in the code above. See Section 2.14 for an explanation of arrays versus 
pointers.

Since the procedure strcpy above is a leaf procedure, the compiler could allo-
cate i to a temporary register and avoid saving and restoring $s0. Hence, instead 
of thinking of the $t registers as being just for temporaries, we can think of them as 
registers that the callee should use whenever convenient. When a compiler finds a leaf 
procedure, it exhausts all temporary registers before using registers it must save.

Characters and Strings in Java

Unicode is a universal encoding of the alphabets of most human languages. 
Figure 2.16 is a list of Unicode alphabets; there are almost as many alphabets in 
Unicode as there are useful symbols in ASCII. To be more inclusive, Java uses 
Unicode for characters. By default, it uses 16 bits to represent a character.

The MIPS instruction set has explicit instructions to load and store such 16-bit 
quantities, called halfwords. Load half (lh) loads a halfword from memory, placing 
it in the rightmost 16 bits of a register. Like load byte, load half (lh) treats the 
halfword as a signed number and thus sign-extends to fill the 16 leftmost bits of the 
register, while load halfword unsigned (lhu) works with unsigned integers. Thus, 
lhu is the more popular of the two. Store half (sh) takes a halfword from the 
rightmost 16 bits of a register and writes it to memory. We copy a halfword with 
the sequence

lhu $t0,0($sp) # Read halfword (16 bits) from source 
sh $t0,0($gp) # Write halfword (16 bits) to destination

Strings are a standard Java class with special built-in support and predefined 
methods for concatenation, comparison, and conversion. Unlike C, Java includes a 
word that gives the length of the string, similar to Java arrays.

Elaboration: MIPS software tries to keep the stack aligned to word addresses, allowing 
the program to always use lw and sw (which must be aligned) to access the stack. This 
convention means that a char variable allocated on the stack occupies 4 bytes, even 
though it needs less. However, a C string variable or an array of bytes will pack 4 bytes per 
word, and a Java string vari able or array of shorts packs 2 halfwords per word.



Latin Malayalam Tagbanwa General Punctuation

Greek Sinhala Khmer Spacing Modifier Letters

Cyrillic Thai Mongolian Currency Symbols

Armenian Lao Limbu Combining Diacritical Marks

Hebrew Tibetan Tai Le Combining Marks for Symbols

Arabic Myanmar Kangxi Radicals Superscripts and Subscripts

Syriac Georgian Hiragana Number Forms

Thaana Hangul Jamo Katakana Mathematical Operators

Devanagari Ethiopic Bopomofo Mathematical Alphanumeric Symbols

Bengali Cherokee Kanbun Braille Patterns

Gurmukhi Unified Canadian 
Aboriginal Syllabic

Shavian Optical Character Recognition

Gujarati Ogham Osmanya Byzantine Musical Symbols

Oriya Runic Cypriot Syllabary Musical Symbols

Tamil Tagalog Tai Xuan Jing Symbols Arrows

Telugu Hanunoo Yijing Hexagram Symbols Box Drawing

Kannada Buhid Aegean Numbers Geometric Shapes

FIGURE 2.16 Example alphabets in Unicode. Unicode version 4.0 has more than 160 “blocks,” 
which is their name for a collection of symbols. Each block is a multiple of 16. For example, Greek starts at 
0370hex, and Cyrillic at 0400hex. The first three columns show 48 blocks that correspond to human languages 
in roughly Unicode numerical order. The last column has 16 blocks that are multilingual and are not in order. 
A 16-bit encoding, called UTF-16, is the default. A variable-length encoding, called UTF-8, keeps the ASCII 
subset as eight bits and uses 16-32 bits for the other characters. UTF-32 uses 32 bits per character. To learn 
more, see www.unicode.org. 

I. Which of the following statements about characters and strings in C and Java 
are true?

1. A string in C takes about half the memory as the same string in Java.

2. Strings are just an informal name for single-dimension arrays of characters 
in C and Java.

3. Strings in C and Java use null (0) to mark the end of a string.

4. Operations on strings, like length, are faster in C than in Java.

II. Which type of variable that can contain 1,000,000,000ten takes the most mem ory 
space?

1. int in C

2. string in C

3. string in Java  

Check  
Yourself
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  2.10  
MIPS Addressing for 32-Bit Immediates 
and Addresses

Although keeping all MIPS instructions 32 bits long simplifies the hardware, there 
are times where it would be convenient to have a 32-bit constant or 32-bit address. 
This section starts with the general solution for large constants, and then shows the 
optimizations for instruction addresses used in branches and jumps.

32-Bit Immediate Operands

Although constants are frequently short and fit into the 16-bit field, sometimes they 
are bigger. The MIPS instruction set includes the instruction load upper immediate 
(lui) specifically to set the upper 16 bits of a constant in a register, allowing a 
subsequent instruction to specify the lower 16 bits of the constant. Fig ure 2.17 
shows the operation of lui.

Loading a 32-Bit Constant

What is the MIPS assembly code to load this 32-bit constant into register $s0?

0000 0000 0011 1101 0000 1001 0000 0000

First, we would load the upper 16 bits, which is 61 in decimal, using lui:

lui $s0, 61   # 61 decimal = 0000 0000 0011 1101 binary

The value of register $s0 afterward is

0000 0000 0011 1101 0000 0000 0000 0000

The next step is to insert the lower 16 bits, whose decimal value is 2304:

ori $s0, $s0, 2304 # 2304 decimal = 0000 1001 0000 0000 

The final value in register $s0 is the desired value:

0000 0000 0011 1101 0000 1001 0000 0000

EXAMPLE

ANSWER



The machine language version of lui $t0, 255   # $t0 is register 8:
001111 00000 01000 0000 0000 1111 1111

Contents of register $t0 after executing lui $t0, 255:
0000 0000 1111 1111 0000 0000 0000 0000

FIGURE 2.17 The effect of the lui instruction. The instruction lui transfers the 16-bit immediate constant field value into the 
leftmost 16 bits of the register, filling the lower 16 bits with 0s. 

Either the compiler or the assembler must break large constants into pieces and 
then reassemble them into a register. As you might expect, the immediate field’s 
size restriction may be a problem for memory addresses in loads and stores as well 
as for constants in immediate instructions. If this job falls to the assembler, as it 
does for MIPS software, then the assembler must have a temporary register avail-
able in which to create the long values. This is a reason for the register $at, which 
is reserved for the assembler. 

Hence, the symbolic representation of the MIPS machine language is no longer 
limited by the hardware, but by whatever the creator of an assembler chooses to include 
(see Section 2.12). We stick close to the hardware to explain the architecture of the 
computer, noting when we use the enhanced language of the assembler that is not 
found in the processor.

Elaboration: Creating 32-bit constants needs care. The instruction addi copies the 
left most bit of the 16-bit immediate field of the instruction into the upper 16 bits of a 
word. Logical or immediate from Section 2.6 loads 0s into the upper 16 bits and hence 
is used by the assem bler in conjunction with lui to create 32-bit constants.

Addressing in Branches and Jumps

The MIPS jump instructions have the simplest addressing. They use the final MIPS 
instruction format, called the J-type, which consists of 6 bits for the opera tion field 
and the rest of the bits for the address field. Thus,

j 10000  # go to location 10000

could be assembled into this format (it’s actually a bit more complicated, as we 
will see):
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2 10000

6 bits 26 bits

where the value of the jump opcode is 2 and the jump address is 10000.
Unlike the jump instruction, the conditional branch instruction must specify 

two operands in addition to the branch address. Thus,

bne  $s0,$s1,Exit   # go to Exit if $s0 ≠ $s1

is assembled into this instruction, leaving only 16 bits for the branch address:

5 16 17 Exit

6 bits 5 bits 5 bits 16 bits

If addresses of the program had to fit in this 16-bit field, it would mean that 
no program could be bigger than 216, which is far too small to be a realistic  option 
today. An alternative would be to specify a register that would always be added to 
the branch address, so that a branch instruction would calculate the following:

Program counter = Register + Branch address

This sum allows the program to be as large as 232 and still be able to use condi tional 
branches, solving the branch address size problem. Then the question is, which 
register?

The answer comes from seeing how conditional branches are used. Conditional 
branches are found in loops and in if statements, so they tend to branch to a 
nearby instruction. For example, about half of all conditional branches in SPEC 
benchmarks go to locations less than 16 instructions away. Since the program 
counter (PC) contains the address of the current instruction, we can branch within 
± 215 words of the current instruction if we use the PC as the register to be added 
to the address. Almost all loops and if statements are much smaller than 216 words, 
so the PC is the ideal choice. 

This form of branch addressing is called PC-relative addressing. As we shall see 
in Chapter 4, it is convenient for the hardware to increment the PC early to point to 
the next instruction. Hence, the MIPS address is actually relative to the address of 
the following instruction (PC + 4) as opposed to the current instruction (PC). 

 Like most recent computers, MIPS uses PC-relative addressing for all condi-
tional branches, because the destination of these instructions is likely to be close to 
the branch. On the other hand, jump-and-link instructions invoke procedures that 
have no reason to be near the call, so they normally use other forms of addressing. 
Hence, the MIPS architecture offers long addresses for procedure calls by using the 
J-type format for both jump and jump-and-link instructions.

Since all MIPS instructions are 4 bytes long, MIPS stretches the distance of the 
branch by having PC-relative addressing refer to the number of words to the next 
instruction instead of the number of bytes. Thus, the 16-bit field can branch four 

PC-relative addressing 
An addressing regime 
in which the address is 
the sum of the pro gram 
counter (PC) and a con-
stant in the instruction.



times as far by interpreting the field as a relative word address rather than as a 
rel ative byte address. Similarly, the 26-bit field in jump instructions is also a word 
address, meaning that it represents a 28-bit byte address.

Elaboration: Since the PC is 32 bits, 4 bits must come from somewhere else for 
jumps. The MIPS jump instruction replaces only the lower 28 bits of the PC, leaving 
the upper 4 bits of the PC unchanged. The loader and linker (Section 2.12) must be 
careful to avoid placing a program across an address boundary of 256 MB (64 million 
instructions); otherwise, a jump must be replaced by a jump register instruction preceded 
by other instructions to load the full 32-bit address into a register.

Showing Branch Offset in Machine Language

The while loop on page 107–108 was compiled into this MIPS assembler code:

Loop:sll    $t1,$s3,2 # Temp reg $t1 = 4 * i 
 add $t1,$t1,$s6 # $t1 = address of save[i] 
 lw  $t0,0($t1) # Temp reg $t0 = save[i] 
 bne $t0,$s5, Exit # go to Exit if save[i] ≠ k
 addi $s3,$s3,1 # i = i + 1 
 j   Loop # go to Loop 
Exit:

If we assume we place the loop starting at location 80000 in memory, what is 
the MIPS machine code for this loop?

The assembled instructions and their addresses are:

EXAMPLE

ANSWER

80000 0 0 19 9 2 0

80004 0 9 22 9 0 32

80008 35 9 8 0

80012 5 8 21 2

80016 8 19 19 1

80020 2 20000

80024 . . .

 2.10 MIPS Addressing for 32-Bit Immediates and Addresses 131



132 Chapter 2 Instructions: Language of the Computer

Remember that MIPS instructions have byte addresses, so addresses of  
se quential words differ by 4, the number of bytes in a word. The bne instruc-
tion on the fourth line adds 2 words or 8 bytes to the address of the following 
instruction (80016), specifying the branch destination relative to that follow ing 
instruction (8 + 80016) instead of relative to the branch instruction (12 + 80012) 
or using the full destination address (80024). The jump instruction on the last 
line does use the full address (20000 × 4 = 80000), corresponding to the label 
Loop.

Most conditional branches are to a nearby location, but occasionally they branch 
far away, farther than can be represented in the 16 bits of the conditional branch 
instruction. The assembler comes to the rescue just as it did with large addresses 
or constants: it inserts an unconditional jump to the branch target, and inverts the 
condition so that the branch decides whether to skip the jump.

Branching Far Away

Given a branch on register $s0 being equal to register $s1, 

 beq $s0, $s1, L1

replace it by a pair of instructions that offers a much greater branching distance.

These instructions replace the short-address conditional branch:

 bne $s0, $s1, L2 
 j L1 
L2:

MIPS Addressing Mode Summary

Multiple forms of addressing are generically called addressing modes. Figure 2.18 
shows how operands are identified for each addressing mode.  The MIPS address-
ing modes are the following:

1. Immediate addressing, where the operand is a constant within the instruc-
tion itself

2. Register addressing, where the operand is a register
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 delimited by their varied 
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 addresses.



3. Base or displacement addressing, where the operand is at the memory loca-
tion whose address is the sum of a register and a constant in the instruction

4. PC-relative addressing, where the branch address is the sum of the PC and a 
con stant in the instruction 

5. Pseudodirect addressing, where the jump address is the 26 bits of the instruc-
tion concatenated with the upper bits of the PC

FIGURE 2.18 Illustration of the five MIPS addressing modes. The operands are shaded in color. 
The operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions of load 
and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction itself. Modes 
4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shifted left 2 bits to the PC and 
mode 5 concatenating a 26-bit address shifted left 2 bits with the 4 upper bits of the PC. 

1.  Immediate addressing

2. Register addressing

3.  Base addressing

4.  PC-relative addressing

5.  Pseudodirect addressing

Immediateop rs rt

op rs rt . . . functrd

Register

Registers

op rs rt Address

Word

Memory

+Register HalfwordByte

op rs rt Address

Word

Memory

+PC

op

Word

Memory

PC

Address
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Although we show MIPS as having 32-bit addresses, nearly all microprocessors 
(including MIPS) have 64-bit address extensions (see  Appendix E). These exten-
sions were in response to the needs of software for larger programs. The process of 
instruction set extension allows architectures to expand in such a way that is able to 
move software compatibly upward to the next generation of architecture. 

Note that a single operation can use more than one addressing mode. Add, for 
example, uses both immediate (addi) and register (add) addressing.  

Decoding Machine Language
Sometimes you are forced to reverse-engineer machine language to create the origi-
nal assembly language. One example is when looking at “core dump.” Figure 2.19 
shows the MIPS encoding of the fields for the MIPS machine language. This figure 
helps when translating by hand between assembly language and machine language.

Decoding Machine Code 

What is the assembly language statement corresponding to this machine 
instruction?

 00af8020hex

The first step in converting hexadecimal to binary is to find the op fields: 

(Bits: 31 28 26 5 2 0)
 0000 0000 1010 1111 1000 0000 0010 0000

We look at the op field to determine the operation. Referring to Figure 2.19, 
when bits 31-29 are 000 and bits 28-26 are 000, it is an  R-format instruction. 
Let’s reformat the binary instruction into R-format fields, listed in Figure 2.20:

op rs rt rd shamt funct
000000 00101 01111 10000 00000 100000

The bottom portion of Figure 2.19 determines the operation of an R-format 
instruction. In this case, bits 5-3 are 100 and bits 2-0 are 000, which means 
this binary pattern represents an add instruction. 

We decode the rest of the instruction by looking at the field values. The 
decimal values are 5 for the rs field, 15 for rt, and 16 for rd (shamt is unused). 
Figure 2.14 shows that these numbers represent registers $a1, $t7, and $s0. 
Now we can reveal the assembly instruction:

add $s0,$a1,$t7

EXAMPLE

ANSWER
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op(31:26)

28–26

31–29

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(000) Rformat Bltz/gez jump jump & link branch eq branch 
ne

blez bgtz

1(001) add 
immediate

addiu set less 
than imm.

set less 
than imm. 
unsigned

andi ori xori load upper 
immediate

2(010) TLB FlPt

3(011)

4(100) load byte load half lwl load word load byte 
unsigned

load 
half
unsigned

lwr

5(101) store byte store half swl store word swr

6(110) load linked 
word

lwc1

7(111) store cond. 
word

swc1

op(31:26)=010000 (TLB), rs(25:21)

23–21 

25–24

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(00) mfc0 cfc0 mtc0 ctc0
1(01)

2(10)

3(11)

op(31:26)=000000 (R-format), funct(5:0)

2–0

5–3

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(000) shift left 
logical

shift right 
logical

sra sllv srlv srav

1(001) jump register jalr syscall break

2(010) mfhi mthi mflo mtlo  

3(011) mult multu div divu  

4(100) add addu subtract subu and or xor not or (nor)
5(101) set l.t. set l.t. 

unsigned
6(110)

7(111)

FIGURE 2.19 MIPS instruction encoding. This notation gives the value of a field by row and by column. For example, the top portion 
of the figure shows load word in row number 4 (100two for bits 31-29 of the instruction) and column number 3 (011two for bits 28-26 of the 
instruction), so the corresponding value of the op field (bits 31-26) is 100011two. Underscore means the field is used elsewhere. For example, 
Rformat in row 0 and column 0 (op = 000000two) is defined in the bottom part of the figure. Hence, subtract in row 4 and column 2 
of the bottom section means that the funct field (bits 5-0) of the instruction is 100010two and the op field (bits 31-26) is 000000two. The 
floating point value in row 2, col umn 1 is defined in Figure 3.18 in Chapter 3. Bltz/gez is the opcode for four instructions found in 
Appendix B: bltz, bgez, bltzal, and bgezal. This chapter describes instructions given in full name using color, while Chapter 3 describes 
instructions given in mnemonics using color. Appendix B covers all instructions. 
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Figure 2.20 shows all the MIPS instruction formats. Figure 2.1 on page 78 shows 
the MIPS assembly language revealed in this chapter. The remaining hid den portion 
of MIPS instructions deals mainly with arithmetic and real numbers, which are 
covered in the next chapter.

I. What is the range of addresses for conditional branches in MIPS (K = 1024)?

1. Addresses between 0 and 64K - 1

2. Addresses between 0 and 256K - 1

3. Addresses up to about 32K before the branch to about 32K after

4. Addresses up to about 128K before the branch to about 128K after

II. What is the range of addresses for jump and jump and link in MIPS (M = 1024K)?

1. Addresses between 0 and 64M - 1

2. Addresses between 0 and 256M - 1

3. Addresses up to about 32M before the branch to about 32M after

4. Addresses up to about 128M before the branch to about 128M after

5. Anywhere within a block of 64M addresses where the PC supplies the upper 
6 bits

6. Anywhere within a block of 256M addresses where the PC supplies the upper 
4 bits

III. What is the MIPS assembly language instruction corresponding to the machine 
instruction with the value 0000 0000hex?

1. j
2. Rformat
3. addi
4. sll
5. mfc0

6. Undefined opcode: there is no legal instruction that corresponds to 0

Check  
Yourself

Name Fields Comments

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions are 32 bits long

R-format op rs rt rd shamt funct Arithmetic instruction format

I-format op rs rt address/immediate Transfer, branch, imm. format

J-format op target address Jump instruction format

FIGURE 2.20 MIPS instruction formats. 



  2.11 
 Parallelism and Instructions: 
Synchronization 

Parallel execution is easier when tasks are independent, but often they need to 
cooperate. Cooperation usually means some tasks are writing new values that 
others must read. To know when a task is finished writing so that it is safe for 
another to read, the tasks need to synchronize. If they don’t synchronize, there is a 
danger of a data race, where the results of the program can change depending on 
how events happen to occur.

For example, recall the analogy of the eight reporters writing a story on page 
43 of Chapter 1. Suppose one reporter needs to read all the prior sections before 
writing a conclusion. Hence, he must know when the other reporters have finished 
their sections, so that he or she need not worry about them being changed after-
wards. That is, they had better synchronize the writing and reading of each section 
so that the con clusion will be consistent with what is printed in the prior sections.

In computing, synchronization mechanisms are typically built with user-level 
software routines that rely on hardware-supplied synchronization instructions. In 
this section, we focus on the implementation of lock and unlock synchronization 
operations. Lock and unlock can be used straightforwardly to create regions where 
only a single processor can operate, called mutual exclusion, as well as to implement 
more complex synchronization mechanisms.

The critical ability we require to implement synchronization in a multiproces-
sor is a set of hardware primitives with the ability to atomically read and modify a 
memory location. That is, nothing else can interpose itself between the read and 
the write of the memory location. Without such a capability, the cost of building 
basic synchronization primitives will be too high and will increase as the proces sor 
count increases. 

There are a number of alternative formulations of the basic hardware primi-
tives, all of which provide the ability to atomically read and modify a location, 
together with some way to tell if the read and write were performed atomically. In 
general, architects do not expect users to employ the basic hardware primitives, but 
instead expect that the primitives will be used by system programmers to build a 
synchronization library, a process that is often complex and tricky. 

Let’s start with one such hardware primitive and show how it can be used to 
build a basic synchronization primitive. One typical operation for building syn-
chronization operations is the atomic exchange or atomic swap, which inter changes 
a value in a register for a value in memory. 

To see how to use this to build a basic synchronization primitive, assume that 
we want to build a simple lock where the value 0 is used to indicate that the lock 
is free and 1 is used to indicate that the lock is unavailable. A processor tries to set 
the lock by doing an exchange of 1, which is in a register, with the memory address 
corresponding to the lock. The value returned from the exchange instruc tion is 1 if  

data race Two memory 
accesses form a data race 
if they are from different 
threads to same location, 
at least one is a write, 
and they occur one after 
another.
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some other processor had already claimed access and 0 otherwise. In the latter 
case, the value is also changed to 1, preventing any competing exchange in another 
processor from also retrieving a 0.

For example, consider two processors that each try to do the exchange simulta-
neously: this race is broken, since exactly one of the processors will perform the 
exchange first, returning 0, and the second processor will return 1 when it does the 
exchange. The key to using the exchange primitive to implement synchroniza tion 
is that the operation is atomic: the exchange is indivisible, and two simulta neous 
exchanges will be ordered by the hardware. It is impossible for two processors 
trying to set the synchronization variable in this manner to both think they have 
simultaneously set the variable.

Implementing a single atomic memory operation introduces some challenges in 
the design of the processor, since it requires both a memory read and a write in a 
single, uninterruptible instruction.

An alternative is to have a pair of instructions in which the second instruction 
returns a value showing whether the pair of instructions was executed as if the pair 
were atomic. The pair of instructions is effectively atomic if it appears as if all other 
operations executed by any processor occurred before or after the pair. Thus, when 
an instruction pair is effectively atomic, no other processor can change the value 
between the instruction pair. 

In MIPS this pair of instructions includes a special load called a load linked and 
a special store called a store conditional. These instructions are used in sequence: 
if the contents of the memory location specified by the load linked are changed 
before the store conditional to the same address occurs, then the store conditional 
fails. The store conditional is defined to both store the value of a register in mem-
ory and to change the value of that register to a 1 if it succeeds and to a 0 if it fails. 
Since the load linked returns the initial value, and the store conditional returns 1 
only if it succeeds, the following sequence implements an atomic exchange on the 
memory location specified by the contents of $s1:

try: add $t0,$zero,$s4  ;copy exchange value 
ll $t1,0($s1)  ;load linked 
sc $t0,0($s1)  ;store conditional 
beq $t0,$zero,try ;branch store fails 
add $s4,$zero,$t1 ;put load value in $s4

At the end of this sequence the contents of $s4 and the memory location speci-
fied by $s1 have been atomically exchanged. Any time a processor intervenes and 
modifies the value in memory between the ll and sc instructions, the sc returns 
0 in $t0, causing the code sequence to try again.

Elaboration: Although it was presented for multiprocessor synchronization, atomic 
exchange is also useful for the operating system in dealing with multiple processes 
in a single processor. To make sure nothing interferes in a single processor, the store 



conditional also fails if the processor does a context switch between the two instructions 
(see Chapter 5).

Since the store conditional will fail after either another attempted store to the load 
linked address or any exception, care must be taken in choosing which instructions are 
inserted between the two instructions. In particular, only register-register instructions 
can safely be permitted; otherwise, it is possible to create deadlock situations where 
the processor can never complete the sc because of repeated page faults. In addition, 
the number of instructions between the load linked and the store conditional should be 
small to minimize the probability that either an unre lated event or a competing processor 
causes the store conditional to fail frequently. 

An advantage of the load linked/store conditional mechanism is that it can be used 
to build other synchronization primitives, such as atomic compare and swap or atomic 
fetch-and-increment, which are used in some parallel programming models. These involve 
more instruc tions between the ll and the sc.

When do you use primitives like load linked and store conditional? 

1. When cooperating threads of a parallel program need to synchronize to get 
proper behavior for reading and writing shared data

2. When cooperating processes on a uniprocessor need to synchronize for 
reading and writing shared data

  2.12 Translating and Starting a Program

This section describes the four steps in transforming a C program in a file on disk 
into a program running on a computer. Figure 2.21 shows the translation hierar-
chy. Some systems combine these steps to reduce translation time, but these are the 
logical four phases that programs go through. This section follows this trans lation 
hierarchy. 

Compiler

The compiler transforms the C program into an assembly language program, a 
symbolic form of what the machine understands. High-level language programs 
take many fewer lines of code than assembly language, so programmer productiv-
ity is much higher. 

In 1975, many operating systems and assemblers were written in assembly lan-
guage because memories were small and compilers were inefficient. The 500,000-
fold increase in memory capacity per single DRAM chip has reduced program size 
concerns, and optimizing compilers today can produce assembly language pro-
grams nearly as good as an assembly language expert, and sometimes even better 
for large programs. 

Check  
Yourself

assembly language 
A sym bolic language that 
can be trans lated into 
binary machine language.
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Assembler

Since assembly language is an interface to higher-level software, the assembler can also 
treat common variations of machine language instructions as if they were instructions 
in their own right. The hardware need not implement these instructions; however, 
their appearance in assembly language simplifies translation and programming. Such 
instructions are called pseudoinstructions.

As mentioned above, the MIPS hardware makes sure that register $zero always 
has the value 0. That is, whenever register $zero is used, it supplies a 0, and the 
programmer cannot change the value of register $zero. Register $zero is used 

pseudoinstruction 
A com mon variation 
of assembly lan guage 
instructions often treated 
as if it were an  instruction 
in its own right.

Loader

C program

Compiler

Assembly language program

Assembler

Object: Machine language module Object: Library routine (machine language)

Linker

Memory

Executable: Machine language program

FIGURE 2.21 A translation hierarchy for C. A high-level language program is first compiled into 
an assembly language program and then assembled into an object module in machine language. The linker 
combines multiple modules with library routines to resolve all references. The loader then places the machine 
code into the proper memory locations for execution by the processor. To speed up the translation process, 
some steps are skipped or combined. Some compilers produce object modules directly, and some systems use 
linking loaders that perform the last two steps. To identify the type of file, UNIX follows a suffix convention 
for files: C source files are named x.c, assembly files are x.s, object files are named x.o, stati cally linked 
library routines are x.a, dynamically linked library routes are x.so, and executable files by default are called 
a.out. MS-DOS uses the suffixes .C, .ASM, .OBJ, .LIB, .DLL, and .EXE to the same effect. 



to create the assembly language instruction move that copies the contents of one 
register to another. Thus the MIPS assembler accepts this instruction even though 
it is not found in the MIPS architecture:

move $t0,$t1 # register $t0 gets register $t1

The assembler converts this assembly language instruction into the machine lan-
guage equivalent of the following instruction:

add  $t0,$zero,$t1 # register $t0 gets 0 + register $t1

The MIPS assembler also converts blt (branch on less than) into the two 
instructions slt and bne mentioned in the example on page 128. Other examples 
include bgt, bge, and ble. It also converts branches to faraway locations into a 
branch and jump. As mentioned above, the MIPS assembler allows 32-bit constants 
to be loaded into a register despite the 16-bit limit of the immediate instructions. 

In summary, pseudoinstructions give MIPS a richer set of assembly language 
instructions than those implemented by the hardware. The only cost is reserving 
one register, $at, for use by the assembler. If you are going to write assembly pro-
grams, use pseudoinstructions to simplify your task. To understand the MIPS 
architecture and be sure to get best performance, however, study the real MIPS 
instructions found in Figures 2.1 and 2.19.

Assemblers will also accept numbers in a variety of bases. In addition to binary 
and decimal, they usually accept a base that is more succinct than binary yet con-
verts easily to a bit pattern. MIPS assemblers use hexadecimal. 

Such features are convenient, but the primary task of an assembler is assembly 
into machine code. The assembler turns the assembly language program into an 
object file, which is a combination of machine language instructions, data, and 
information needed to place instructions properly in memory. 

To produce the binary version of each instruction in the assembly language 
pro gram, the assembler must determine the addresses corresponding to all  labels. 
Assemblers keep track of labels used in branches and data transfer instructions 
in a symbol table. As you might expect, the table contains pairs of symbols and 
addresses.

The object file for UNIX systems typically contains six distinct pieces:

 ■ The object file header describes the size and position of the other pieces of the 
object file.

 ■ The text segment contains the machine language code.

 ■ The static data segment contains data allocated for the life of the program. 
(UNIX allows programs to use both static data, which is allocated throughout 
the program, and dynamic data, which can grow or shrink as needed by the 
program. See Figure 2.13.)

 ■ The relocation information identifies instructions and data words that depend 
on absolute addresses when the program is loaded into memory.

symbol table A table 
that matches names of 
labels to the addresses of 
the memory words that 
instructions  occupy.
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 ■ The symbol table contains the remaining labels that are not defined, such as 
external references.

 ■ The debugging information contains a concise description of how the mod-
ules were compiled so that a debugger can associate machine instructions 
with C source files and make data structures readable.

The next subsection shows how to attach such routines that have already been 
assembled, such as library routines.

Linker

What we have presented so far suggests that a single change to one line of one proce -
dure requires compiling and assembling the whole program. Complete retransla -
tion is a terrible waste of computing resources. This repetition is particularly 
wasteful for standard library routines, because programmers would be compiling 
and assembling routines that by definition almost never change. An alternative is 
to compile and assemble each procedure independently, so that a change to one 
line would require compiling and assembling only one procedure. This alternative 
requires a new systems program, called a link  editor or linker, which takes all 
the independently assembled machine language programs and “stitches” them 
together.

There are three steps for the linker:

1. Place code and data modules symbolically in memory.

2. Determine the addresses of data and instruction labels.

3. Patch both the internal and external references.

The linker uses the relocation information and symbol table in each object 
module to resolve all undefined labels. Such references occur in branch instruc-
tions, jump instructions, and data addresses, so the job of this program is much 
like that of an editor: it finds the old addresses and replaces them with the new 
addresses. Editing is the origin of the name “link editor,” or linker for short. The 
reason a linker is useful is that it is much faster to patch code than it is to recom pile 
and reassemble.

If all external references are resolved, the linker next determines the memory 
locations each module will occupy. Recall that Figure 2.13 on page 120 shows 
the MIPS convention for allocation of program and data to memory. Since the 
files were assembled in isolation, the assembler could not know where a module’s 
instructions and data would be placed relative to other modules. When the linker 
places a module in memory, all absolute references, that is, memory addresses that 
are not relative to a register, must be relocated to reflect its true location. 

The linker produces an executable file that can be run on a computer. Typi cally, 
this file has the same format as an object file, except that it contains no unre solved 
references. It is possible to have partially linked files, such as library routines, that 
still have unresolved addresses and hence result in object files.

linker Also called link 
editor. A systems 
program that com bines 
independently assembled 
machine  language 
programs and resolves all 
undefined labels into an 
executable file.

executable file A 
functional program in 
the format of an object 
file that contains no unre-
solved references. It can 
contain  symbol tables and 
debugging information. 
A “stripped execut able” 
does not contain that 
infor mation. Relocation 
information may be 
included for the loader.



Linking Object Files

Link the two object files below. Show updated addresses of the first few 
in structions of the completed executable file. We show the instructions in 
as sembly language just to make the example understandable; in reality, the 
instructions would be numbers.

Note that in the object files we have highlighted the addresses and symbols 
that must be updated in the link process: the instructions that refer to the 
addresses of procedures A and  B and the instructions that refer to the addresses 
of data words X and Y.

EXAMPLE

Object file header

Name Procedure A
Text size 100hex

Data size 20hex

Text segment Address Instruction

0 lw $a0, 0($gp)

4 jal 0
… …

Data segment 0 (X)
… …

Relocation information Address Instruction type Dependency

 0 lw X

4 jal B

Symbol table Label Address

X –

B –

Object file header

Name Procedure B
Text size 200hex

Data size 30hex

Text segment Address Instruction

0 sw $a1, 0($gp)
4 jal 0
… …

Data segment 0 (Y)
… …

Relocation information Address Instruction type Dependency

 0 sw Y
4 jal A

Symbol table Label Address

Y –

A –
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Procedure A needs to find the address for the variable labeled X to put in the 
load instruction and to find the address of procedure B to place in the jal 
in struction. Procedure B needs the address of the variable labeled Y for the 
store instruction and the address of procedure A for its jal instruction.

From Figure 2.13 on page 120, we know that the text segment starts at 
ad dress 40 0000hex and the data segment at 1000 0000hex. The text of proce-
dure A is placed at the first address and its data at the second. The object file 
header for procedure A says that its text is 100hex bytes and its data is 20hex bytes, 
so the starting address for procedure B text is 40 0100hex, and its data starts 
at 1000 0020hex. 

Figure 2.13 also shows that the text segment starts at address 40 0000hex 

and the data segment at 1000 0000hex. The text of procedure A is placed at the 
first address and its data at the second. The object file header for proce dure A 
says that its text is 100hex bytes and its data is 20hex bytes, so the start ing address 
for procedure B text is 40 0100hex, and its data starts at 1000 0020hex. 

Now the linker updates the address fields of the instructions. It uses the 
instruction type field to know the format of the address to be edited. We have 
two types here:

ANSWER

Executable file header

Text size 300hex

Data size 50hex

Text segment Address Instruction

0040 0000hex lw $a0, 8000hex($gp)

0040 0004hex jal 40 0100hex
… …

0040 0100hex sw $a1, 8020hex($gp)

0040 0104hex jal 40 0000hex
… …

Data segment Address

1000 0000hex (X)
… …

1000 0020hex (Y)
… …



1. The jals are easy because they use pseudodirect addressing. The jal at 
address 40 0004hex gets 40 0100hex (the address of procedure B) in its 
address field, and the jal at 40 0104hex gets 40 0000hex (the address of 
procedure A) in its address field. 

2. The load and store addresses are harder because they are relative to a 
base register. This example uses the global pointer as the base register. 
Figure 2.13 shows that $gp is initialized to 1000 8000hex. To get the 
address 1000 0000hex (the address of word X), we place 8000hex in the 
address field of lw at address 40 0000hex. Similarly, we place 7980hex 
in the address field of sw at address 40 0100hex to get the address 
1000 0020hex (the address of word Y).

Elaboration: Recall that MIPS instructions are word aligned, so jal drops the 
right two bits to increase the instruction’s address range. Thus, it use 26 bits to 
create a 28-bit byte address. Hence, the actual address in the lower 26 bits of the 
jal instruction in this example is 10 0040hex, rather than 40 0100hex.

Loader

Now that the executable file is on disk, the operating system reads it to memory and 
starts it. The loader follows these steps in UNIX systems:

1. Reads the executable file header to determine size of the text and data segments.

2. Creates an address space large enough for the text and data.

3. Copies the instructions and data from the executable file into memory.

4. Copies the parameters (if any) to the main program onto the stack.

5. Initializes the machine registers and sets the stack pointer to the first free 
location.

6. Jumps to a start-up routine that copies the parameters into the argument 
registers and calls the main routine of the program. When the main routine 
returns, the start-up routine terminates the program with an exit system call.

Sections B.3 and B.4 in Appendix B describe linkers and loaders in more detail.

Dynamically Linked Libraries

The first part of this section describes the traditional approach to linking libraries 
before the program is run. Although this static approach is the fastest way to call 
library routines, it has a few disadvantages:

loader A systems 
program that places an 
object program in main 
memory so that it is ready 
to execute.
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 ■ The library routines become part of the executable code. If a new version of 
the library is released that fixes bugs or supports new hardware devices, the 
statically linked program keeps using the old version.

 ■ It loads all routines in the library that are called anywhere in the executable, 
even if those calls are not executed. The library can be large relative to the 
program; for example, the standard C library is 2.5 MB.

These disadvantages lead to dynamically linked libraries (DLLs), where the 
library routines are not linked and loaded until the program is run. Both the pro-
gram and library routines keep extra information on the location of nonlocal pro-
cedures and their names. In the initial version of DLLs, the loader ran a dynamic 
linker, using the extra information in the file to find the appropriate libraries and 
to update all external references.

The downside of the initial version of DLLs was that it still linked all routines 
of the library that might be called, versus only those that are called during the 
running of the program. This observation led to the lazy procedure linkage version 
of DLLs, where each routine is linked only after it is called. 

Like many innovations in our field, this trick relies on a level of indirection. 
Figure 2.22 shows the technique. It starts with the nonlocal routines calling a set of 
dummy routines at the end of the program, with one entry per nonlocal rou tine. 
These dummy entries each contain an indirect jump.

The first time the library routine is called, the program calls the dummy entry 
and follows the indirect jump. It points to code that puts a number in a register to 
identify the desired library routine and then jumps to the dynamic linker/loader. 
The linker/loader finds the desired routine, remaps it, and changes the address in 
the indirect jump location to point to that routine. It then jumps to it. When the 
routine completes, it returns to the original calling site. Thereafter, the call to the 
library routine jumps indirectly to the routine without the extra hops. 

In summary, DLLs require extra space for the information needed for dynamic 
linking, but do not require that whole libraries be copied or linked. They pay a good 
deal of overhead the first time a routine is called, but only a single indirect jump 
thereafter. Note that the return from the library pays no extra overhead. Microsoft’s 
Windows relies extensively on dynamically linked libraries, and it is also the default 
when executing programs on UNIX systems today.

Starting a Java Program

The discussion above captures the traditional model of executing a program, 
where the emphasis is on fast execution time for a program targeted to a specific 
instruction set architecture, or even a specific implementation of that architec ture. 
Indeed, it is possible to execute Java programs just like C. Java was invented with 
a different set of goals, however. One was to run safely on any computer, even if it 
might slow execution time. 

dynamically linked 
libraries (DLLs) Library 
routines that are linked 
to a program during 
execution.



FIGURE 2.22 Dynamically linked library via lazy procedure linkage. (a) Steps for the first 
time a call is made to the DLL routine. (b) The steps to find the routine, remap it, and link it are skipped on 
subsequent calls. As we will see in Chapter 5, the operating system may avoid copying the desired routine by 
remapping it using virtual memory management. 
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Figure 2.23 shows the typical translation and execution steps for Java. Rather 
than compile to the assembly language of a target computer, Java is compiled first 
to instructions that are easy to interpret: the Java bytecode instruction set (see

Section 2.15 on the CD). This instruction set is designed to be close to the 
Java language so that this compilation step is trivial. Virtually no optimizations 
are performed. Like the C compiler, the Java compiler checks the types of data 
and produces the proper operation for each type. Java programs are distributed 
in the binary version of these bytecodes.

A software interpreter, called a Java Virtual Machine (JVM), can execute Java 
bytecodes. An interpreter is a program that simulates an instruction set architec-
ture. For example, the MIPS simulator used with this book is an interpreter. There 
is no need for a separate assembly step since either the translation is so simple that 
the compiler fills in the addresses or JVM finds them at runtime.

Java bytecode 
Instruction from an 
instruction set designed to 
interpret Java programs.

Java Virtual Machine 
(JVM) The program that 
inter prets Java bytecodes.
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The upside of interpretation is portability. The availability of software Java vir-
tual machines meant that most people could write and run Java programs shortly 
after Java was announced. Today, Java virtual machines are found in hundreds of 
millions of devices, in everything from cell phones to Internet browsers.

The downside of interpretation is lower performance. The incredible advances 
in performance of the 1980s and 1990s made interpretation viable for many 
important applications, but the factor of 10 slowdown when compared to tradi-
tionally compiled C programs made Java unattractive for some applications.

To preserve portability and improve execution speed, the next phase of Java 
development was compilers that translated while the program was running. Such 
Just In Time compilers (JIT) typically profile the running program to find where 
the “hot” methods are and then compile them into the native instruction set on 
which the virtual machine is running. The compiled portion is saved for the next 
time the program is run, so that it can run faster each time it is run. This balance 
of interpretation and compilation evolves over time, so that frequently run Java 
programs suffer little of the overhead of interpretation. 

As computers get faster so that compilers can do more, and as researchers invent 
betters ways to compile Java on the fly, the performance gap between Java and C or 
C++ is closing. Section 2.15 on the CD goes into much greater depth on the 
implementation of Java, Java bytecodes, JVM, and JIT compilers.

Which of the advantages of an interpreter over a translator do you think was most 
important for the designers of Java? 

1. Ease of writing an interpreter

2. Better error messages

3. Smaller object code

4. Machine independence

Just In Time compiler 
(JIT) The name 
commonly given to a 
compiler that operates at 
runtime, translating the 
inter preted code segments 
into the native code of the 
computer.

Check  
Yourself

FIGURE 2.23 A translation hierarchy for Java. A Java program is first compiled into a binary version 
of Java bytecodes, with all addresses defined by the compiler. The Java program is now ready to run on the 
interpreter, called the Java Virtual Machine (JVM). The JVM links to desired methods in the Java library while 
the program is running. To achieve greater performance, the JVM can invoke the JIT compiler, which selectively 
compiles methods into the native machine language of the machine on which it is running. 
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  2.13 A C Sort Example to Put It All Together

One danger of showing assembly language code in snippets is that you will have 
no idea what a full assembly language program looks like. In this section, we derive 
the MIPS code from two procedures written in C: one to swap array ele ments and 
one to sort them. 

The Procedure swap
Let’s start with the code for the procedure swap in Figure 2.24. This procedure 
simply swaps two locations in memory. When translating from C to assembly lan-
guage by hand, we follow these general steps:

1. Allocate registers to program variables.

2. Produce code for the body of the procedure.

3. Preserve registers across the procedure invocation.

This section describes the swap procedure in these three pieces, concluding by 
putting all the pieces together.

Register Allocation for swap
As mentioned on pages 112–113, the MIPS convention on parameter passing is to 
use registers $a0, $a1, $a2, and $a3. Since swap has just two parameters, v and 
k, they will be found in registers $a0 and $a1. The only other variable is temp, 
which we associate with register $t0 since swap is a leaf procedure (see page 116). 

void swap(int v[], int k) 
{ 
 int temp; 
 temp = v[k]; 
 v[k] = v[k+1]; 
 v[k+1] = temp; 
}

FIGURE 2.24 A C procedure that swaps two locations in memory. This subsection uses this 
procedure in a sorting example. 
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This register allocation corresponds to the variable declarations in the first part of 
the swap procedure in Figure 2.24. 

Code for the Body of the Procedure swap
The remaining lines of C code in swap are

temp = v[k]; 
v[k] = v[k+1]; 
v[k+1] = temp;

Recall that the memory address for MIPS refers to the byte address, and so words 
are really 4 bytes apart. Hence we need to multiply the index k by 4 before adding it 
to the address. Forgetting that sequential word addresses differ by 4 instead of by 1 is 
a common mistake in assembly language programming. Hence the first step is to get 
the address of v[k] by multiplying k by 4 via a shift left by 2:

sll $t1, $a1,2 # reg $t1 = k * 4  
add $t1, $a0,$t1 # reg $t1 = v + (k * 4)  
  # reg $t1 has the address of v[k]

Now we load v[k] using $t1, and then v[k+1] by adding 4 to $t1:

lw $t0, 0($t1) # reg $t0 (temp) = v[k] 
lw $t2, 4($t1) # reg $t2 = v[k + 1] 
  # refers to next element of v

Next we store $t0 and $t2 to the swapped addresses:

sw $t2, 0($t1) # v[k] = reg $t2 
sw $t0, 4($t1) # v[k+1] = reg $t0 (temp)

Now we have allocated registers and written the code to perform the operations 
of the procedure. What is missing is the code for preserving the saved registers used 
within swap. Since we are not using saved registers in this leaf procedure, there is 
nothing to preserve. 

The Full swap Procedure
We are now ready for the whole routine, which includes the procedure label and 
the return jump. To make it easier to follow, we identify in Figure 2.25 each block 
of code with its purpose in the procedure.

The Procedure sort
To ensure that you appreciate the rigor of programming in assembly language, 
we’ll try a second, longer example. In this case, we’ll build a routine that calls the 
swap procedure. This program sorts an array of integers, using bubble or exchange 
sort, which is one of the simplest if not the fastest sorts. Figure 2.26 shows the C 



version of the program. Once again, we present this procedure in sev eral steps, 
concluding with the full procedure. 

Register Allocation for sort
The two parameters of the procedure sort, v and n, are in the parameter registers 
$a0 and $a1, and we assign register $s0 to i and register $s1 to j. 

Code for the Body of the Procedure sort
The procedure body consists of two nested for loops and a call to swap that 
includes parameters. Let’s unwrap the code from the outside to the middle.

The first translation step is the first for loop:

for (i = 0; i < n; i += 1) {

Recall that the C for statement has three parts: initialization, loop test, and itera-
tion increment. It takes just one instruction to initialize i to 0, the first part of the 
for statement:

move $s0, $zero # i = 0

void sort (int v[], int n) 
{ 
 int i, j; 
 for (i = 0; i < n; i += 1) { 
  for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j = 1) { 
    swap(v,j); 
  } 
 } 
}

FIGURE 2.26 A C procedure that performs a sort on the array v. 

Procedure body

swap: sll $t1, $a1, 2  # reg $t1 = k * 4 
 add $t1, $a0, $t1    # reg $t1 = v + (k * 4) 
    # reg $t1 has the address of v[k]
 lw $t0, 0($t1)  # reg $t0 (temp) = v[k]
 lw $t2, 4($t1)  # reg $t2 = v[k + 1]
    # refers to next element of v
 sw $t2, 0($t1)  # v[k] = reg $t2
 sw $t0, 4($t1)  # v[k+1] = reg $t0 (temp)

Procedure return

 jr $ra  # return to calling routine

FIGURE 2.25 MIPS assembly code of the procedure swap in Figure 2.24. 
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(Remember that move is a pseudoinstruction provided by the assembler for the 
convenience of the assembly language programmer; see page 141.) It also takes 
just one instruction to increment i, the last part of the for statement:

addi $s0, $s0, 1 # i += 1

The loop should be exited if i < n is not true or, said another way, should be exited 
if i ≥ n. The set on less than instruction sets register $t0 to 1 if $s0 < $a1 and to 0 
otherwise. Since we want to test if $s0  ≥  $a1, we branch if register $t0 is 0. This 
test takes two instructions:

for1tst:slt $t0, $s0, $a1 # reg $t0 = 0 if $s0 ≥ $a1 (i≥n)
   beq $t0, $zero,exit1 # go to exit1 if $s0 ≥ $a1 (i≥n)

The bottom of the loop just jumps back to the loop test:

 j for1tst  # jump to test of outer loop 
exit1:

The skeleton code of the first for loop is then

 move $s0, $zero # i = 0 
for1tst:slt $t0, $s0, $a1 # reg $t0 = 0 if $s0 ≥ $a1 (i≥n)
 beq $t0, $zero,exit1 # go to exit1 if $s0 ≥ $a1 (i≥n)
  . . . 
  (body of first for loop) 
  . . . 
 addi $s0, $s0, 1 # i += 1 
 j for1tst # jump to test of outer loop 
exit1:

Voila! (The exercises explore writing faster code for similar loops.)
The second for loop looks like this in C:

for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j –= 1) {

The initialization portion of this loop is again one instruction:

addi $s1, $s0, –1 # j = i – 1

The decrement of j at the end of the loop is also one instruction:

addi $s1, $s1, –1 # j –= 1

The loop test has two parts. We exit the loop if either condition fails, so the first test 
must exit the loop if it fails (j < 0):

for2tst: slti $t0, $s1, 0 # reg $t0 = 1 if $s1 < 0 (j < 0)
 bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)

This branch will skip over the second condition test. If it doesn’t skip, j ≥ 0.



The second test exits if v[j] > v[j + 1] is not true, or exits if v[j] ≤ 

v[j + 1]. First we create the address by multiplying j by 4 (since we need a byte 
address) and add it to the base address of v:

sll $t1, $s1, 2 # reg $t1 = j * 4 
add $t2, $a0, $t1 # reg $t2 = v + (j * 4) 

Now we load v[j]:

lw $t3, 0($t2) # reg $t3   = v[j]

Since we know that the second element is just the following word, we add 4 to the 
address in register $t2 to get v[j + 1]:

lw $t4, 4($t2) # reg $t4   = v[j + 1]

The test of v[j] ≤ v[j + 1] is the same as v[j + 1] ≥ v[j], so the two 
instructions of the exit test are

slt $t0, $t4, $t3   # reg $t0 = 0 if $t4 ≥ $t3  
beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3  

The bottom of the loop jumps back to the inner loop test:

j for2tst # jump to test of inner loop

Combining the pieces, the skeleton of the second for loop looks like this:

 addi $s1, $s0, –1 # j = i – 1 
for2tst:slti $t0, $s1, 0 # reg $t0 = 1 if $s1 < 0 (j < 0) 
  bne $t0, $zero,   exit2  # go to exit2 if $s1 < 0 (j < 0) 
 sll $t1, $s1, 2 # reg $t1 = j * 4  
 add $t2, $a0, $t1 # reg $t2 = v + (j * 4)  
 lw $t3, 0($t2) # reg $t3   = v[j] 
 lw $t4, 4($t2) # reg $t4   = v[j + 1] 
 slt $t0, $t4, $t3  # reg $t0 = 0 if $t4 ≥ $t3   
 beq $t0, $zero,   exit2 # go to exit2 if $t4 ≥ $t3   
  . . . 
  (body of second for loop) 
  . . . 
 addi $s1, $s1, –1 # j –= 1 
 j for2tst # jump to test of inner loop 
exit2: 

The Procedure Call in sort
The next step is the body of the second for loop:

swap(v,j);

Calling swap is easy enough:

jal swap
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Passing Parameters in sort
The problem comes when we want to pass parameters because the sort proce dure 
needs the values in registers $a0 and $a1, yet the swap procedure needs to have its 
parameters placed in those same registers. One solution is to copy the parameters 
for sort into other registers earlier in the procedure, making registers $a0 and 
$a1 available for the call of swap. (This copy is faster than saving and restoring on 
the stack.) We first copy $a0 and $a1 into $s2 and $s3 during the procedure:

move $s2, $a0 # copy parameter $a0 into $s2 
move $s3, $a1 # copy parameter $a1 into $s3 

Then we pass the parameters to swap with these two instructions:

move $a0, $s2 # first swap parameter is v 
move $a1, $s1 # second swap parameter is j

Preserving Registers in sort
The only remaining code is the saving and restoring of registers. Clearly, we must 
save the return address in register $ra, since sort is a procedure and is called itself. 
The sort procedure also uses the saved registers $s0, $s1, $s2, and $s3, so they 
must be saved. The prologue of the sort procedure is then

addi $sp,$sp,–20 # make room on stack for 5 reg isters
sw $ra,16($sp) # save $ra on stack 
sw $s3,12($sp) # save $s3 on stack 
sw $s2, 8($sp) # save $s2 on stack 
sw $s1, 4($sp) # save $s1 on stack 
sw $s0, 0($sp) # save $s0 on stack

The tail of the procedure simply reverses all these instructions, then adds a jr to 
return.

The Full Procedure sort
Now we put all the pieces together in Figure 2.27, being careful to replace refer ences 
to registers $a0 and $a1 in the for loops with references to registers $s2 and $s3.
Once again, to make the code easier to follow, we identify each block of code with 
its purpose in the procedure. In this example, nine lines of the sort procedure in 
C became 35 lines in the MIPS assembly language.

Elaboration: One optimization that works with this example is procedure inlining. 
Instead of passing arguments in parameters and invoking the code with a jal instruction, 
the compiler would copy the code from the body of the swap procedure where the call 
to swap appears in the code. Inlining would avoid four instructions in this example. The 
downside of the inlining optimization is that the compiled code would be bigger if the 
inlined procedure is called from several locations. Such a code expansion might turn 
into lower performance if it increased the cache miss rate; see Chapter 5.



Saving registers

sort: addi $sp,$sp, –20 # make room on stack for 5 registers
 sw $ra, 16($sp)# save $ra on stack
 sw $s3,12($sp) # save $s3 on stack
 sw $s2, 8($sp)# save $s2 on stack
 sw $s1, 4($sp)# save $s1 on stack
 sw $s0, 0($sp)# save $s0 on stack

Procedure body

Move parameters
 move $s2, $a0 # copy parameter $a0 into $s2 (save $a0)
 move $s3, $a1 # copy parameter $a1 into $s3 (save $a1)

Outer loop

 move $s0, $zero# i = 0
for1tst: slt$t0, $s0, $s3 #  reg $t0 = 0 if $s0 Š $s3 (i Š n)
 beq $t0, $zero, exit1# go to exit1 if $s0 Š $s3 (i Š n)

Inner loop

 addi $s1, $s0, –1# j = i – 1
for2tst: slti$t0, $s1, 0 # reg $t0 = 1 if $s1 < 0 (j < 0)
 bne $t0, $zero, exit2# go to exit2 if $s1 < 0 (j < 0)
 sll $t1, $s1, 2# reg $t1 = j * 4 
 add $t2, $s2, $t1# reg $t2 = v + (j * 4) 
 lw $t3, 0($t2)# reg $t3 = v[j]
 lw $t4, 4($t2)# reg $t4 = v[j + 1]
 slt $t0, $t4, $t3  # reg $t0 = 0 if $t4 Š $t3  
 beq $t0, $zero, exit2# go to exit2 if $t4 Š $t3  

Pass parameters 
and call

 move $a0, $s2  # 1st parameter of swap is v (old $a0)
 move $a1, $s1 # 2nd parameter of swap is j 
 jal swap  # swap code shown in Figure 2.25

Inner loop  addi $s1, $s1, –1# j –= 1
 j for2tst  # jump to test of inner loop

Outer loop exit2: addi $s0, $s0, 1 # i += 1
 j for1tst  # jump to test of outer loop

Restoring registers

exit1: lw $s0, 0($sp) # restore $s0 from stack
 lw $s1, 4($sp)# restore $s1 from stack
 lw $s2, 8($sp)# restore $s2 from stack
 lw $s3,12($sp) # restore $s3 from stack
 lw $ra,16($sp) # restore $ra from stack
 addi $sp,$sp, 20 # restore stack pointer

Procedure return

 jr $ra  # return to calling routine

FIGURE 2.27 MIPS assembly version of procedure sort in Figure 2.26. 
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Figure 2.28 shows the impact of compiler optimization on sort program perfor-
mance, compile time, clock cycles, instruction count, and CPI. Note that unopti-
mized code has the best CPI, and O1 optimization has the lowest instruction 
count, but O3 is the fastest, reminding us that time is the only accurate measure of 
program performance.

Figure 2.29 compares the impact of programming languages, compilation 
versus interpretation, and algorithms on performance of sorts. The fourth col-
umn shows that the unoptimized C program is 8.3 times faster than the inter-
preted Java code for Bubble Sort. Using the JIT compiler makes Java 2.1 times 
faster than the unoptimized C and within a factor of 1.13 of the highest optimized 
C code. ( Section 2.15 on the CD gives more details on inter pretation versus 
compilation of Java and the Java and MIPS code for Bubble Sort.) The ratios 
aren’t as close for Quicksort in Column 5, presumably because it is harder to 
amortize the cost of runtime compilation over the shorter execu tion time. The 
last column demonstrates the impact of a better algorithm, offer ing three orders 
of magnitude a performance increases by when sorting 100,000 items. Even 
comparing interpreted Java in Column 5 to the C compiler at highest optimization 
in Column 4, Quicksort beats Bubble Sort by a factor of 50 (0.05 × 2468, or 123 
times faster than the unoptimized C code versus 2.41 times faster).

Elaboration: The MIPS compilers always save room on the stack for the arguments 
in case they need to be stored, so in reality they always decrement $sp by 16 to make 
room for all four argument registers (16 bytes). One reason is that C provides a vararg 
option that allows a pointer to pick, say, the third argument to a procedure. When the 
compiler encounters the rare vararg, it copies the four argument registers onto the 
stack into the four reserved locations.

gcc optimization
Relative 

performance
Clock cycles 

(millions)
Instruction count 

(millions) CPI

None 1.00 158,615  114,938  1.38 

O1 (medium) 2.37   66,990   37,470  1.79 

O2 (full) 2.38   66,521   39,993  1.66 

O3 (procedure integration) 2.41   65,747   44,993  1.46 

FIGURE 2.28 Comparing performance, instruction count, and CPI using compiler optimi-
zation for Bubble Sort. The programs sorted 100,000 words with the array initialized to random values. 
These programs were run on a Pentium 4 with a clock rate of 3.06 GHz and a 533 MHz system bus with 2 GB 
of PC2100 DDR SDRAM. It used Linux version 2.4.20. 
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  2.14 Arrays versus Pointers

A challenge for any new C programmer is understanding pointers. Comparing 
assembly code that uses arrays and array indices to the assembly code that uses 
pointers offers insights about pointers. This section shows C and MIPS assembly 
versions of two procedures to clear a sequence of words in memory: one using 
array indices and one using pointers. Figure 2.30 shows the two C procedures. 

The purpose of this section is to show how pointers map into MIPS instructions, 
and not to endorse a dated programming style. We’ll see the impact of modern com-
piler optimization on these two procedures at the end of the section.

Array Version of Clear

Let’s start with the array version, clear1, focusing on the body of the loop and 
ignoring the procedure linkage code. We assume that the two parameters array and 
size are found in the registers $a0 and $a1, and that i is allocated to register $t0. 

The initialization of i, the first part of the for loop, is straightforward:

 move $t0,$zero  # i = 0 (register $t0 = 0)

To set array[i] to 0 we must first get its address. Start by multiplying i by 4 to 
get the byte address:

loop1: sll $t1,$t0,2 # $t1 = i * 4

Since the starting address of the array is in a register, we must add it to the index 
to get the address of array[i] using an add instruction:

 add $t2,$a0,$t1 # $t2 = address of array[i]

Finally, we can store 0 in that address:

Language Execution method Optimization
Bubble Sort relative 

performance
Quicksort relative 

performance
Speedup Quicksort 

vs. Bubble Sort

C Compiler None 1.00 1.00 2468

Compiler O1 2.37 1.50 1562

Compiler O2 2.38 1.50 1555

Compiler O3 2.41 1.91 1955

Java Interpreter – 0.12 0.05 1050

JIT compiler – 2.13 0.29 338

FIGURE 2.29 Performance of two sort algorithms in C and Java using interpretation and optimizing compilers relative 
to unoptimized C version. The last column shows the advantage in performance of Quicksort over Bubble Sort for each language and 
execution option. These programs were run on the same system as Figure 2.28. The JVM is Sun version 1.3.1, and the JIT is Sun Hotspot 
version 1.3.1. 
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 sw $zero, 0($t2) # array[i] = 0

This instruction is the end of the body of the loop, so the next step is to increment i:

 addi $t0,$t0,1 # i = i + 1

The loop test checks if i is less than size:

 slt $t3,$t0,$a1 # $t3 = (i < size) 
 bne $t3,$zero,loop1 # if (i < size) go to loop1

We have now seen all the pieces of the procedure. Here is the MIPS code for 
clearing an array using indices:

 move $t0,$zero  # i = 0 
loop1: sll $t1,$t0,2 # $t1 = i * 4 
 add $t2,$a0,$t1 # $t2 = address of array[i] 
 sw $zero, 0($t2) # array[i] = 0 
 addi $t0,$t0,1 # i = i + 1 
 slt $t3,$t0,$a1 # $t3 = (i < size) 
 bne $t3,$zero,loop1 # if (i < size) go to loop1

(This code works as long as size is greater than 0; ANSI C requires a test of size 
before the loop, but we’ll skip that legality here.)

clear1(int array[], int size)  
{ 
  int i; 
  for (i = 0; i < size; i += 1)  
 array[i] = 0; 
} 

clear2(int *array, int size)  
{ 
  int *p; 
  for (p = &array[0]; p < 
&array[size]; p = p + 1)  
 *p = 0; 
}

FIGURE 2.30 Two C procedures for setting an array to all zeros. Clear1 uses indices, while 
clear2 uses pointers. The second procedure needs some explanation for those unfamiliar with C. The 
address of a variable is indicated by &, and the object pointed to by a pointer is indicated by *. The declara-
tions declare that array and p are pointers to integers. The first part of the for loop in clear2 assigns 
the address of the first element of array to the pointer p. The second part of the for loop tests to see if the 
pointer is pointing beyond the last element of array. Incrementing a pointer by one, in the last part of the 
for loop, means moving the pointer to the next sequential object of its declared size. Since p is a pointer to 
integers, the compiler will generate MIPS instructions to increment p by four, the number of bytes in a MIPS 
integer. The assignment in the loop places 0 in the object pointed to by p. 



Pointer Version of Clear

The second procedure that uses pointers allocates the two parameters array and 
size to the registers $a0 and $a1 and allocates p to register $t0. The code for 
the second procedure starts with assigning the pointer p to the address of the first 
element of the array:

 move $t0,$a0  # p = address of array[0]

The next code is the body of the for loop, which simply stores 0 into p:

loop2: sw $zero,0($t0)  # Memory[p] = 0

This instruction implements the body of the loop, so the next code is the iteration 
increment, which changes p to point to the next word:

 addi $t0,$t0,4  # p = p + 4

Incrementing a pointer by 1 means moving the pointer to the next sequential 
object in C. Since p is a pointer to integers, each of which uses 4 bytes, the compiler 
increments p by 4.

The loop test is next. The first step is calculating the address of the last element 
of array. Start with multiplying size by 4 to get its byte address:

 sll $t1,$a1,2  # $t1 = size * 4

and then we add the product to the starting address of the array to get the address 
of the first word after the array:

 add $t2,$a0,$t1 # $t2 = address of array[size]

The loop test is simply to see if p is less than the last element of array:

 slt $t3,$t0,$t2 # $t3 = (p<&array[size]) 
 bne $t3,$zero,loop2 # if (p<&array[size]) go to loop2

With all the pieces completed, we can show a pointer version of the code to zero 
an array:

 move $t0,$a0 # p = address of array[0] 
 loop2:sw$zero,0($t0) # Memory[p] = 0
 addi $t0,$t0,4 # p = p + 4 
 sll $t1,$a1,2 # $t1 = size * 4 
 add $t2,$a0,$t1 # $t2 = address of array[size] 
 slt $t3,$t0,$t2 # $t3 = (p<&array[size]) 
 bne $t3,$zero,loop2 # if (p<&array[size]) go to loop2

As in the first example, this code assumes size is greater than 0.
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Note that this program calculates the address of the end of the array in every 
iteration of the loop, even though it does not change. A faster version of the code 
moves this calculation outside the loop:

 move $t0,$a0  # p = address of array[0] 
 sll $t1,$a1,2  # $t1 = size * 4 
 add $t2,$a0,$t1  # $t2 = address of array[size] 
loop2:sw$zero,0($t0)  # Memory[p] = 0 
 addi $t0,$t0,4  # p = p + 4 
 slt $t3,$t0,$t2  # $t3 = (p<&array[size]) 
 bne $t3,$zero,loop2  # if (p<&array[size]) go to loop2

Comparing the Two Versions of Clear

Comparing the two code sequences side by side illustrates the difference between 
array indices and pointers (the changes introduced by the pointer version are 
highlighted):

The version on the left must have the “multiply” and add inside the loop 
because i is incremented and each address must be recalculated from the new 
index. The memory pointer version on the right increments the pointer p directly. 
The pointer version moves them outside the loop, thereby reducing the instruc-
tions executed per iteration from 6 to 4. This manual optimization corresponds 
to the compiler optimization of strength reduction (shift instead of multiply) 
and induction variable elimina tion (eliminating array address calculations 
within loops). Section 2.15 on the CD describes these two and many other 
optimizations.

Elaboration: As mentioned ealier, a C compiler would add a test to be sure that size 
is greater than 0. One way would be to add a jump just before the first instruction of the 
loop to the slt instruction. 

 move $t0,$zero  # i = 0 

loop1: sll $t1,$t0,2 # $t1 = i * 4 

 add $t2,$a0,$t1 # $t2 = &array[i] 

 sw $zero, 0($t2) # array[i] = 0 

 addi $t0,$t0,1 # i = i + 1 

 slt $t3,$t0,$a1 # $t3 = (i < size) 

 bne $t3,$zero,loop1# if () go to loop1

 move $t0,$a0 # p = & array[0]

 sll $t1,$a1,2 # $t1 = size * 4

 add $t2,$a0,$t1 # $t2 = &array[size]

loop2: sw $zero,0($t0) # Memory[p] = 0

 addi $t0,$t0,4 # p = p + 4

 slt $t3,$t0,$t2     # $t3=(p<&array[size])

 bne $t3,$zero,loop2# if () go to loop2



People used to be taught to use pointers in C to get greater efficiency than that 
available with arrays: “Use pointers, even if you can’t understand the code.” Mod-
ern optimizing compilers can produce code for the array version that is just as 
good. Most programmers today prefer that the compiler do the heavy lifting.

   Advanced Material: Compiling C and 
Interpreting Java

This section gives a brief overview of how the C compiler works and how Java is 
executed. Be cause the compiler will significantly affect the performance of a com-
puter, understanding compiler technology today is critical to understanding per-
formance. Keep in mind that the subject of compiler construction is usually taught 
in a one- or two-semester course, so our introduction will necessarily only touch 
on the basics. 

The second part of this section is for readers interested in seeing how an 
objected oriented language like Java executes on a MIPS architecture. It shows the 
Java bytecodes used for interpretation and the MIPS code for the Java version of 
some of the C segments in prior sections, including Bubble Sort. It covers both the 
Java Virtual Machine and JIT compilers.

The rest of this section is on the CD. 

  2.16 Real Stuff: ARM Instructions

ARM is the most popular instruction set architecture for embedded devices, with 
more than three billion devices per year using ARM. Standing originally for the 
Acorn RISC Machine, later changed to Advanced RISC Machine, ARM came out 
the same year as MIPS and followed similar philosophies. Figure 2.31 lists the 
similar ities. The principle difference is that MIPS has more registers and ARM has 
more addressing modes.

There is a similar core of instruction sets for arithmetic-logical and data trans fer 
instructions for MIPS and ARM, as Figure 2.32 shows.  

Addressing Modes

Figure 2.33 shows the data addressing modes supported by ARM. Unlike MIPS, 
ARM does not reserve a register to contain 0. Although MIPS has just three simple 
data addressing modes (see Figure 2.18), ARM has nine, including fairly complex 
calculations. For example, ARM has an addressing mode that can shift one register 

Understanding 
Program 
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2.15 v

object oriented 
language A 
programming language 
that is oriented around 
objects rather than 
actions, or data versus 
logic.
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ARM MIPS 

Date announced 1985 1985

Instruction size (bits) 32 32

Address space (size, model) 32 bits, flat 32 bits, flat

Data alignment Aligned Aligned

Data addressing modes 9 3

Integer registers (number, model, size) 15 GPR ´ 32 bits 31 GPR ´ 32 bits

I/O Memory mapped Memory mapped

FIGURE 2.31 Similarities in ARM and MIPS instruction sets. 

Instruction name ARM MIPS

Register-register

Add add addu, addiu

Add (trap if overflow) adds; swivs add

Subtract sub subu

Subtract (trap if overflow) subs; swivs sub

Multiply mul mult, multu

Divide — div, divu

And and and

Or orr or

Xor eor xor

Load high part register — lui

Shift left logical lsl1 sllv, sll

Shift right logical lsr1 srlv, srl

Shift right arithmetic asr1 srav, sra

Compare cmp, cmn, tst, teq slt/i, slt/iu 

Data transfer

Load byte signed ldrsb lb

Load byte unsigned ldrb lbu

Load halfword signed ldrsh lh

Load halfword unsigned ldrh lhu

Load word ldr lw

Store byte strb sb

Store halfword strh sh

Store word str sw

Read, write special registers mrs, msr move 

Atomic Exchange swp, swpb ll;sc

FIGURE 2.32 ARM register-register and data transfer instructions equivalent to MIPS 
core. Dashes mean the operation is not available in that architecture or not synthesized in a few instruc-
tions. If there are several choices of instructions equivalent to the MIPS core, they are separated by commas. 
ARM includes shifts as part of every data operation instruction, so the shifts with superscript 1 are just a 
variation of a move instruction, such as lsr1. Note that ARM has no divide instruction. 



by any amount, add it to the other registers to form the address, and then update 
one register with this new address.  

Compare and Conditional Branch

MIPS uses the contents of registers to evaluate conditional branches. ARM uses 
the traditional four condition code bits stored in the program status word: 
neg ative, zero, carry, and overflow. They can be set on any arithmetic or logical 
instruction; unlike earlier architectures, this setting is optional on each instruc-
tion. An explicit option leads to fewer problems in a pipelined implementation. 
ARM uses conditional branches to test condition codes to determine all possible 
unsigned and signed relations.

CMP subtracts one operand from the other and the difference sets the condi-
tion codes. Compare negative (CMN) adds one operand to the other, and the sum 
sets the condition codes. TST performs logical AND on the two operands to set all 
condition codes but overflow, while TEQ uses exclusive OR to set the first three 
condition codes. 

One unusual feature of ARM is that every instruction has the option of execut-
ing conditionally, depending on the condition codes. Every instruction starts with 
a 4-bit field that determines whether it will act as a no operation instruction (nop) 
or as a real instruction, depending on the condition codes. Hence, conditional 
branches are properly con sidered as conditionally executing the unconditional 
branch instruction. Condi tional execution allows avoiding a branch to jump over a 
single instruction. It takes less code space and time to simply conditionally execute 
one instruction. 

Figure 2.34 shows the instruction formats for ARM and MIPS. The principal 
differences are the 4-bit conditional execution field in every instruction and the 
smaller register field, because ARM has half the number of registers.
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FIGURE 2.33 Summary of data addressing modes. ARM has separate register indirect and register 
+ offset addressing modes, rather than just putting 0 in the offset of the latter mode. To get greater addressing 
range, ARM shifts the offset left 1 or 2 bits if the data size is halfword or word. 

Addressing mode ARM v.4 MIPS

Register operand X X

Immediate operand X X

Register + offset (displacement or based) X X

Register + register (indexed) X —

Register + scaled register (scaled) X —

Register + offset and update register X —

Register + register and update register X —

Autoincrement, autodecrement X —

PC-relative data X —
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Unique Features of ARM

Figure 2.35 shows a few arithmetic-logical instructions not found in MIPS. Since 
it does not have a dedicated register for 0, it has separate opcodes to perform 
some operations that MIPS can do with $zero. In addition, ARM has support for 
multiword arithmetic.

ARM’s 12-bit immediate field has a novel interpretation. The eight least-
significant bits are zero-extended to a 32-bit value, then rotated right the number 
of bits specified in the first four bits of the field multiplied by two. One advantage is 
that this scheme can represent all powers of two in a 32-bit word. Whether this split 
actually catches more immediates than a simple 12-bit field would be an interesting 
study. 

Operand shifting is not limited to immediates. The second register of all 
arithmetic and logical processing operations has the option of being shifted before 
being operated on. The shift options are shift left logical, shift right logical, shift 
right arithmetic, and rotate right. 

FIGURE 2.34 Instruction formats, ARM, and MIPS. The differences result from whether the 
architecture has 16 or 32 registers. 

Register ConstantOpcode

ARM

Register-register

Opx4

31 28 27

28 27

28 27

28 27

19 16 15

16 15

16 15

16 15

16 15

1112 4 3 0

Op8 Rs14 Rd4 Rs24Opx8

Data transfer

ARM Opx4

31 1112 0

Op8 Rs14 Rd4 Const12

Branch

ARM

Jump/Call

Opx4

31 2324 0

Op4 Const24

ARM Opx4

31 2324 0

Op4 Const24

MIPS

31 2526

20

21 20

2526 21 20

21 20

1920

11 10 6 5 0

Const5Rs15 Rs25 Rd5 Opx6Op6

MIPS

31 0

Const16Rs15 Rd5Op6

MIPS

31 2526

2526

0

Rs15 Opx5/Rs25 Const16Op6

31 0

Op6MIPS Const26



ARM also has instructions to save groups of registers, called block loads and 
stores. Under control of a 16-bit mask within the instructions, any of the 16 regis-
ters can be loaded or stored into memory in a single instruction. These instruc tions 
can save and restore registers on procedure entry and return. These instructions 
can also be used for block memory copy, and today block copies are the most 
important use of this instruction.

  2.17 Real Stuff: x86 Instructions

Designers of instruction sets sometimes provide more powerful operations than 
those found in ARM and MIPS. The goal is generally to reduce the number of 
instructions executed by a program. The danger is that this reduction can occur at 
the cost of simplicity, increasing the time a program takes to execute because the 
instructions are slower. This slowness may be the result of a slower clock cycle time 
or of requiring more clock cycles than a simpler sequence. 

The path toward operation complexity is thus fraught with peril. To avoid these 
problems, designers have moved toward simpler instructions. Section 2.18 dem-
onstrates the pitfalls of complexity.

Evolution of the Intel x86
ARM and MIPS were the vision of single small groups in 1985; the pieces of these 
architectures fit nicely together, and the whole architecture can be described suc-
cinctly. Such is not the case for the x86; it is the product of several independent 
groups who evolved the architecture over 30 years, adding new features to the 
original instruction set as someone might add clothing to a packed bag. Here are 
important x86 milestones.

Beauty is altogether in 
the eye of the beholder.

Margaret Wolfe 
Hungerford, Molly Bawn, 
1877
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Name Definition ARM v.4 MIPS

Load immediate Rd = Imm mov addi, $0,

Not Rd = ~(Rs1) mvn nor, $0,

Move Rd = Rs1 mov or, $0,

Rotate right Rd = Rs i >>  i 
Rd0. . . i–1 = Rs31–i. . . 31

ror  

And not Rd = Rs1 & ~(Rs2) bic   

Reverse subtract Rd = Rs2 - Rs1 rsb, rsc

Support for multiword 
integer add

CarryOut, Rd = Rd + Rs1 + 
OldCarryOut

adcs —

Support for multiword 
integer sub

CarryOut, Rd = Rd – Rs1 + 
OldCarryOut

sbcs —

FIGURE 2.35 ARM arithmetic/logical instructions not found in MIPS. 
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 ■ 1978: The Intel 8086 architecture was announced as an assembly language–
com patible extension of the then successful Intel 8080, an 8-bit microproces-
sor. The 8086 is a 16-bit architecture, with all internal registers 16 bits wide. 
Unlike MIPS, the registers have dedicated uses, and hence the 8086 is not con-
sidered a general-purpose register architecture. 

 ■ 1980: The Intel 8087 floating-point coprocessor is announced. This archi-
tecture extends the 8086 with about 60 floating-point instructions. Instead 
of using registers, it relies on a stack (see Section 2.20 and Section 3.7). 

 ■ 1982: The 80286 extended the 8086 architecture by increasing the address 
space to 24 bits, by creating an elaborate memory-mapping and protection 
model (see Chapter 5), and by adding a few instructions to round out the 
instruction set and to manipulate the protection model.

 ■ 1985: The 80386 extended the 80286 architecture to 32 bits. In addition to 
a 32-bit architecture with 32-bit registers and a 32-bit address space, the 
80386 added new addressing modes and additional operations. The added 
instructions make the 80386 nearly a general-purpose register machine. The 
80386 also added paging support in addition to segmented addressing (see 
Chapter 5). Like the 80286, the 80386 has a mode to execute 8086 programs 
without change. 

 ■ 1989–95: The subsequent 80486 in 1989, Pentium in 1992, and Pentium 
Pro in 1995 were aimed at higher performance, with only four instructions 
added to the user-visible instruction set: three to help with multiprocessing 
(Chapter 7) and a conditional move instruction. 

 ■ 1997: After the Pentium and Pentium Pro were shipping, Intel announced 
that it would expand the Pentium and the Pentium Pro architectures with 
MMX (Multi Media Extensions). This new set of 57 instructions uses the 
floating-point stack to accelerate multimedia and communication applica-
tions. MMX instructions typically operate on multiple short data elements 
at a time, in the tradition of single instruction, multiple data (SIMD) archi-
tectures (see Chapter 7). Pentium II did not introduce any new instructions.

 ■ 1999: Intel added another 70 instructions, labeled SSE (Streaming SIMD 
Extensions) as part of Pentium III. The primary changes were to add eight 
separate registers, double their width to 128 bits, and add a single precision 
floating-point data type. Hence, four 32-bit floating-point operations can be 
performed in parallel. To improve memory performance, SSE includes cache 
prefetch instructions plus streaming store instructions that bypass the caches 
and write directly to memory.

 ■ 2001: Intel added yet another 144 instructions, this time labeled SSE2. The 
new data type is double precision arithmetic, which allows pairs of 64-bit 
 floating-point operations in parallel. Almost all of these 144 instructions are 

general-purpose register 
(GPR) A register that can 
be used for addresses or 
for data with virtually any 
 instruction.



versions of existing MMX and SSE instructions that operate on 64 bits of 
data in parallel. Not only does this change enable more multimedia opera-
tions, it gives the compiler a different target for floating-point operations 
than the unique stack architecture. Compilers can choose to use the eight SSE 
registers as floating-point registers like those found in other computers. This 
change boosted the floating-point performance of the Pentium 4, the first 
microprocessor to include SSE2 instructions. 

 ■ 2003: A company other than Intel enhanced the x86 architecture this time. 
AMD announced a set of architectural extensions to increase the address space 
from 32 to 64 bits. Similar to the transition from a 16- to 32-bit address space 
in 1985 with the 80386, AMD64 widens all registers to 64 bits. It also increases 
the number of registers to 16 and increases the number of 128-bit SSE regis ters 
to 16. The primary ISA change comes from adding a new mode called long 
mode that redefines the execution of all x86 instructions with 64-bit addresses 
and data. To address the larger number of registers, it adds a new prefix to 
instructions. Depending how you count, long mode also adds four to ten new 
instructions and drops 27 old ones. PC-relative data addressing is another 
extension. AMD64 still has a mode that is identical to x86 (legacy mode) plus a 
mode that restricts user programs to x86 but allows operating systems to use 
AMD64 (compatibility mode). These modes allow a more graceful transition to 
64-bit addressing than the HP/Intel IA-64 architecture.

 ■ 2004: Intel capitulates and embraces AMD64, relabeling it Extended Memory 
64 Technology (EM64T). The major difference is that Intel added a 128-bit 
atomic compare and swap instruction, which probably should have been 
included in AMD64. At the same time, Intel announced another generation of 
media extensions. SSE3 adds 13 instructions to support complex arithmetic, 
graphics operations on arrays of structures, video encoding, floating-point 
conversion, and thread synchronization (see Section 2.11). AMD will offer 
SSE3 in subsequent chips and it will almost certainly add the missing atomic 
swap instruction to AMD64 to maintain binary compatibility with Intel.

 ■ 2006: Intel announces 54 new instructions as part of the SSE4 instruction set 
extensions. These extensions perform tweaks like sum of absolute differences, 
dot products for arrays of structures, sign or zero extension of narrow data to 
wider sizes, population count, and so on. They also added support for virtual 
machines (see Chapter 5).

 ■ 2007: AMD announces 170 instructions as part of SSE5, including 46 instruc-
tions of the base instruction set that adds three operand instructions like 
MIPS.

 ■ 2008: Intel announces the Advanced Vector Extension that expands the SSE 
register width from 128 to 256 bits, thereby redefining about 250 instructions 
and adding 128 new instructions.
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This history illustrates the impact of the “golden handcuffs” of compatibility on 
the x86, as the existing software base at each step was too important to jeopar dize 
with significant architectural changes. If you looked over the life of the x86, on 
average the architecture has been extended by one instruction per month!

Whatever the artistic failures of the x86, keep in mind that there are more instances 
of this architectural family on desktop computers than of any other architecture, 
increasing by more than 250 million per year. Nevertheless, this checkered ancestry 
has led to an architecture that is difficult to explain and impossible to love. 

Brace yourself for what you are about to see! Do not try to read this section with the 
care you would need to write x86 programs; the goal instead is to give you familiarity 
with the strengths and weaknesses of the world’s most popular desktop architecture.

Rather than show the entire 16-bit and 32-bit instruction set, in this section we 
concentrate on the 32-bit subset that originated with the 80386, as this portion of 
the architecture is what is used today. We start our explanation with the registers 
and addressing modes, move on to the integer operations, and conclude with an 
examination of instruction encoding.

x86 Registers and Data Addressing Modes 

The registers of the 80386 show the evolution of the instruction set (Figure 2.36). The 
80386 extended all 16-bit registers (except the segment registers) to 32 bits, prefixing 
an E to their name to indicate the 32-bit version. We’ll refer to them generically as 
GPRs (general-purpose registers). The 80386 contains only eight GPRs. This means 
MIPS programs can use four times as many and ARM twice as many. 

Figure 2.37 shows the arithmetic, logical, and data transfer instructions are two-
operand instructions. There are two important differences here. The x86 arith-
metic and logical instructions must have one operand act as both a source and a 
destination; ARM and MIPS allow separate registers for source and destination. 
This restriction puts more pressure on the limited registers, since one source regis-
ter must be modified. The second important difference is that one of the operands 
can be in memory. Thus, virtually any instruction may have one operand in mem-
ory, unlike ARM and MIPS.

Data memory-addressing modes, described in detail below, offer two sizes of 
addresses within the instruction. These so-called displacements can be 8 bits or 32 bits. 

Although a memory operand can use any addressing mode, there are restric-
tions on which registers can be used in a mode. Figure 2.38 shows the x86 address-
ing modes and which GPRs cannot be used with each mode, as well as how to get 
the same effect using MIPS instructions.

x86 Integer Operations

The 8086 provides support for both 8-bit (byte) and 16-bit (word) data types. The 
80386 adds 32-bit addresses and data (double words) in the x86. (AMD64 adds 64-bit 
addresses and data, called quad words; we’ll stick to the 80386 in this section.) The 
data type distinctions apply to register opera tions as well as memory accesses.



Source/destination operand type Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

FIGURE 2.37 Instruction types for the arithmetic, logical, and data transfer instructions. 
The x86 allows the combinations shown. The only restriction is the absence of a memory- memory mode. 
Immediates may be 8, 16, or 32 bits in length; a register is any one of the 14 major registers in Figure 2.36 
(not EIP or EFLAGS). 

GPR 0

GPR 1

GPR 2

GPR 3

GPR 4

GPR 5

GPR 6

GPR 7

Code segment pointer

Stack segment pointer (top of stack)

Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

Instruction pointer (PC)

Condition codes

Use
031

Name

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

CS

SS

DS

ES

FS

GS

EIP

EFLAGS

FIGURE 2.36 The 80386 register set. Starting with the 80386, the top eight registers were extended 
to 32 bits and could also be used as general-purpose registers. 

 2.17 Real Stuff: x86 Instructions 169



170 Chapter 2 Instructions: Language of the Computer

Mode Description
Register 

restrictions MIPS equivalent

Register indirect Address is in a register. Not ESP or EBP lw $s0,0($s1)

Based mode with 8- or 32-bit 
displacement

Address is contents of base register plus 
displacement.

Not ESP lw $s0,100($s1) # <= 16bit
               # displacement

Base plus scaled index The address is
Base + (2Scale x Index) 

where Scale has the value 0, 1, 2, or 3.

Base: any GPR 
Index: not ESP

mul $t0,$s2,4
add $t0,$t0,$s1
lw $s0,0($t0)

Base plus scaled index with 
8- or 32-bit displacement

The address is
Base + (2Scale x Index) + displacement
where Scale has the value 0, 1, 2, or 3.

Base: any GPR 
Index: not ESP

mul $t0,$s2,4
add $t0,$t0,$s1
lw $s0,100($t0) # ð16bit
   # displacement

FIGURE 2.38 x86 32-bit addressing modes with register restrictions and the equivalent MIPS code. The Base plus Scaled 
Index addressing mode, not found in ARM or MIPS, is included to avoid the multiplies by 4 (scale factor of 2) to turn an index in a register 
into a byte address (see Figures 2.25 and 2.27). A scale factor of 1 is used for 16-bit data, and a scale factor of 3 for 64-bit data. A scale factor 
of 0 means the address is not scaled. If the displacement is longer than 16 bits in the second or fourth modes, then the MIPS equivalent mode 
would need two more instructions: a lui to load the upper 16 bits of the displacement and an add to sum the upper address with the base 
register $s1. (Intel gives two dif ferent names to what is called Based addressing mode—Based and Indexed—but they are essentially identical 
and we combine them here.) 

Almost every operation works on both 8-bit data and on one longer data size. That 
size is determined by the mode and is either 16 bits or 32 bits.

Clearly, some programs want to operate on data of all three sizes, so the 80386 
architects provided a convenient way to specify each version without expanding 
code size significantly. They decided that either 16-bit or 32-bit data dominates 
most programs, and so it made sense to be able to set a default large size. This 
default data size is set by a bit in the code segment register. To override the default 
data size, an 8-bit prefix is attached to the instruction to tell the machine to use the 
other large size for this instruction.

The prefix solution was borrowed from the 8086, which allows multiple prefixes 
to modify instruction behavior. The three original prefixes override the default seg-
ment register, lock the bus to support synchronization (see Section 2.11), or repeat 
the following instruction until the register ECX counts down to 0. This last prefix 
was intended to be paired with a byte move instruction to move a variable number of 
bytes. The 80386 also added a prefix to override the default address size.

The x86 integer operations can be divided into four major classes:

1. Data movement instructions, including move, push, and pop

2. Arithmetic and logic instructions, including test, integer, and decimal arith-
metic operations

3. Control flow, including conditional branches, unconditional jumps, calls, 
and returns

4. String instructions, including string move and string compare



The first two categories are unremarkable, except that the arithmetic and logic 
instruction operations allow the destination to be either a register or a memory 
location. Figure 2.39 shows some typical x86 instructions and their functions.

Instruction Function

je name if equal(condition code) {EIP=name}; 
EIP–128 <= name < EIP+128

jmp name EIP=name

call name SP=SP–4; M[SP]=EIP+5; EIP=name; 

movw EBX,[EDI+45] EBX=M[EDI+45]

push ESI SP=SP–4; M[SP]=ESI

pop EDI EDI=M[SP]; SP=SP+4

add EAX,#6765 EAX= EAX+6765

test EDX,#42 Set condition code (flags) with EDX and 42

movsl M[EDI]=M[ESI]; 
EDI=EDI+4; ESI=ESI+4

FIGURE 2.39 Some typical x86 instructions and their functions. A list of frequent operations 
appears in Figure 2.40. The CALL saves the EIP of the next instruction on the stack. (EIP is the Intel PC.) 

Conditional branches on the x86 are based on condition codes or flags, like 
ARM. Condition codes are set as a side effect of an operation; most are used to 
compare the value of a result to 0. Branches then test the condition codes. PC-
relative branch addresses must be specified in the number of bytes, since unlike 
ARM and MIPS, 80386 instructions are not all 4 bytes in length.

String instructions are part of the 8080 ancestry of the x86 and are not com-
monly executed in most programs. They are often slower than equivalent software 
routines (see the fallacy on page 174).

Figure 2.40 lists some of the integer x86 instructions. Many of the instructions 
are available in both byte and word formats. 

x86 Instruction Encoding

Saving the worst for last, the encoding of instructions in the 80386 is complex, 
with many different instruction formats. Instructions for the 80386 may vary from 
1 byte, when there are no operands, up to 15 bytes. 

Figure 2.41 shows the instruction for mat for several of the example instructions in 
Figure 2.39. The opcode byte usually contains a bit saying whether the operand is 8 
bits or 32 bits. For some instructions, the opcode may include the addressing mode 
and the register; this is true in many instructions that have the form “register = 
register op immediate.” Other instructions use a “postbyte” or extra opcode byte, 
labeled “mod, reg, r/m,” which contains the addressing mode informa tion. This 
postbyte is used for many of the instructions that address memory. The base plus 
scaled index mode uses a second postbyte, labeled “sc, index, base.”
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Instruction Meaning

Control Conditional and unconditional branches

jnz, jz Jump if condition to EIP + 8-bit offset; JNE (for JNZ), JE (for JZ) are 
alternative names

jmp Unconditional jump—8-bit or 16-bit offset 

call Subroutine call—16-bit offset; return address pushed onto stack

ret Pops return address from stack and jumps to it

loop Loop branch—decrement ECX; jump to EIP + 8-bit displacement if ECX ≠ 0
Data transfer Move data between registers or between register and memory

move Move between two registers or between register and memory

push, pop Push source operand on stack; pop operand from stack top to a register

les Load ES and one of the GPRs from memory

Arithmetic, logical Arithmetic and logical operations using the data registers and memory

add, sub Add source to destination; subtract source from destination; register-memory 
format

cmp Compare source and destination; register-memory format

shl, shr, rcr Shift left; shift logical right; rotate right with carry condition code as fill

cbw Convert byte in eight rightmost bits of EAX to 16-bit word in right of EAX

test Logical AND of source and destination sets condition codes

inc, dec Increment destination, decrement destination

or, xor Logical OR; exclusive OR; register-memory format

String Move between string operands; length given by a repeat prefix

movs Copies from string source to destination by incrementing ESI and EDI; may be 
repeated

lods Loads a byte, word, or doubleword of a string into the EAX register

FIGURE 2.40 Some typical operations on the x86. Many operations use register-memory for mat, 
where either the source or the destination may be memory and the other may be a register or immedi ate 
operand. 

Figure 2.42 shows the encoding of the two postbyte address specifiers for both 
16-bit and 32-bit mode. Unfortunately, to understand fully which registers and 
which addressing modes are available, you need to see the encoding of all address-
ing modes and sometimes even the encoding of the instructions.

x86 Conclusion

Intel had a 16-bit microprocessor two years before its competitors’ more elegant 
architectures, such as the Motorola 68000, and this head start led to the selection 
of the 8086 as the CPU for the IBM PC. Intel engineers generally acknowledge that 
the x86 is more difficult to build than computers like ARM and MIPS, but the large 



FIGURE 2.41 Typical x86 instruction formats. Figure 2.42 shows the encoding of the postbyte. Many 
instructions contain the 1-bit field w, which says whether the operation is a byte or a double word. The d field in 
MOV is used in instructions that may move to or from memory and shows the direction of the move. The ADD 
instruction requires 32 bits for the immediate field, because in 32-bit mode, the immediates are either 8 bits or 
32 bits. The immediate field in the TEST is 32 bits long because there is no 8-bit immediate for test in 32-bit 
mode. Overall, instructions may vary from 1 to 17 bytes in length. The long length comes from extra 1-byte 
prefixes, having both a 4-byte immediate and a 4-byte displacement address, using an opcode of 2 bytes, and 
using the scaled index mode specifier, which adds another byte. 

a. JE EIP + displacement

b. CALL

c. MOV      EBX, [EDI + 45]

d. PUSH ESI

e. ADD EAX, #6765

f. TEST EDX, #42

ImmediatePostbyteTEST

ADD

PUSH

MOV

CALL

JE

w

w ImmediateReg

Reg

wd Displacementr/m
Postbyte

Offset

DisplacementCondi-
tion

4 4 8

8 32

6 81 1 8

5 3

4 323 1

7 321 8

market means AMD and Intel can afford more resources to help overcome the 
added complexity. What the x86 lacks in style, it makes up for in quantity, making 
it beauti ful from the right perspective.

Its saving grace is that the most frequently used x86 architectural compo-
nents are not too difficult to implement, as AMD and Intel have demonstrated 
by rapidly improving performance of integer programs since 1978. To get that 
performance, compilers must avoid the portions of the architecture that are hard 
to implement fast.

 2.17 Real Stuff: x86 Instructions 173



174 Chapter 2 Instructions: Language of the Computer

  2.18 Fallacies and Pitfalls

Fallacy: More powerful instructions mean higher performance. 

Part of the power of the Intel x86 is the prefixes that can modify the execution of 
the following instruction. One prefix can repeat the following instruction until 
a counter counts down to 0. Thus, to move data in memory, it would seem that 
the natural instruction sequence is to use move with the repeat prefix to perform 
32-bit memory-to-memory moves. 

An alternative method, which uses the standard instructions found in all com-
puters, is to load the data into the registers and then store the registers back to 
memory. This second version of this program, with the code replicated to reduce 
loop overhead, copies at about 1.5 times faster. A third version, which uses the 
larger floating-point registers instead of the integer registers of the x86, copies at 
about 2.0 times faster than the complex move instruction.

Fallacy: Write in assembly language to obtain the highest performance. 

At one time compilers for programming languages produced naïve instruction 
sequences; the increasing sophistication of compilers means the gap between 
compiled code and code produced by hand is closing fast. In fact, to compete 
with current compilers, the assembly language programmer needs to under stand 
the concepts in Chapters 4 and 5 thoroughly (processor pipelining and memory 
hierarchy).

reg w = 0 w = 1 r/m mod = 0 mod = 1 mod = 2 mod = 3

16b 32b 16b 32b 16b 32b 16b 32b

0 AL AX EAX 0 addr=BX+SI =EAX same same same same same

1 CL CX ECX 1 addr=BX+DI =ECX addr as addr as addr as addr as as

2 DL DX EDX 2 addr=BP+SI =EDX mod=0 mod=0 mod=0 mod=0 reg

3 BL BX EBX 3 addr=BP+SI =EBX + disp8 + disp8 + disp16 + disp32 field

4 AH SP ESP 4 addr=SI =(sib) SI+disp8 (sib)+disp8 SI+disp8 (sib)+disp32 “

5 CH BP EBP 5 addr=DI =disp32 DI+disp8 EBP+disp8 DI+disp16 EBP+disp32 “

6 DH SI ESI 6 addr=disp16 =ESI BP+disp8 ESI+disp8 BP+disp16 ESI+disp32 “

7 BH DI EDI 7 addr=BX =EDI BX+disp8 EDI+disp8 BX+disp16 EDI+disp32 “

FIGURE 2.42 The encoding of the first address specifier of the x86: mod, reg, r/m. The first four columns show the encoding 
of the 3-bit reg field, which depends on the w bit from the opcode and whether the machine is in 16-bit mode (8086) or 32-bit mode (80386). 
The remaining columns explain the mod and r/m fields. The meaning of the 3-bit r/m field depends on the value in the 2-bit mod field and the 
address size. Basically, the registers used in the address calculation are listed in the sixth and seventh columns, under mod = 0, with mod = 1 
adding an 8-bit displacement and mod = 2 adding a 16-bit or 32-bit displacement, depending on the address mode. The exceptions are 1) r/m = 6 
when mod = 1 or mod = 2 in 16-bit mode selects BP plus the displacement; 2) r/m = 5 when mod = 1 or mod = 2 in 32-bit mode selects 
EBP plus displacement; and 3) r/m = 4 in 32-bit mode when mod does not equal 3, where (sib) means use the scaled index mode shown in 
Figure 2.38. When mod = 3, the r/m field indicates a reg ister, using the same encoding as the reg field combined with the w bit. 



This battle between compilers and assembly language coders is one situa tion 
in which humans are losing ground. For example, C offers the program mer a 
chance to give a hint to the compiler about which variables to keep in registers 
versus spilled to memory. When compilers were poor at register allocation, such 
hints were vital to performance. In fact, some old C text books spent a fair amount 
of time giving examples that effectively use regis ter hints. Today’s C compilers 
generally ignore such hints, because the compiler does a better job at allocation 
than the programmer does.

Even if writing by hand resulted in faster code, the dangers of writing in assembly 
language are the longer time spent coding and debugging, the loss in portability, 
and the difficulty of maintaining such code. One of the few widely accepted axioms 
of software engineering is that coding takes longer if you write more lines, and 
it clearly takes many more lines to write a program in assembly language than 
in C or Java. Moreover, once it is coded, the next danger is that it will become a 
popular program. Such programs always live longer than expected, meaning that 
someone will have to update the code over several years and make it work with new 
releases of operating systems and new models of machines. Writing in higher-level 
language instead of assembly language not only allows future compilers to tailor 
the code to future machines, it also makes the software easier to maintain and 
allows the program to run on more brands of computers. 

Fallacy: The importance of commercial binary compatibility means successful 
instruction sets don’t change.

While backwards binary compatibility is sacrosanct, Figure 2.43 shows that the x86 
architecture has grown dramatically. The average is more than one instruc tion per 
month over its 30-year lifetime!

Pitfall: Forgetting that sequential word addresses in machines with byte addressing 
do not differ by one. 

Many an assembly language programmer has toiled over errors made by assuming 
that the address of the next word can be found by incrementing the address in a 
register by one instead of by the word size in bytes. Forewarned is forearmed!

Pitfall: Using a pointer to an automatic variable outside its defining procedure. 

A common mistake in dealing with pointers is to pass a result from a  procedure that 
includes a pointer to an array that is local to that procedure. Following the stack 
discipline in Figure 2.12, the memory that contains the local array will be reused as 
soon as the procedure returns. Pointers to automatic variables can lead to chaos.
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  2.19 Concluding Remarks

The two principles of the stored-program computer are the use of instructions that 
are indistinguishable from numbers and the use of alterable memory for programs. 
These principles allow a single machine to aid environmental scientists, financial 
advisers, and novelists in their specialties. The selection of a set of instructions that 
the machine can understand demands a delicate balance among the number of 
instructions needed to execute a program, the number of clock cycles needed by 
an instruction, and the speed of the clock. As illustrated in this chapter, four design 
principles guide the authors of instruction sets in making that delicate balance: 

1. Simplicity favors regularity. Regularity motivates many features of the MIPS 
instruction set: keeping all instructions a single size, always requiring three 
register operands in arithmetic instructions, and keeping the register fields 
in the same place in each instruction format.

2. Smaller is faster. The desire for speed is the reason that MIPS has 32 registers 
rather than many more. 

Less is more.

Robert Browning, 
Andrea del Sarto, 1855
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FIGURE 2.43 Growth of x86 instruction set over time. While there is clear technical value to 
some of these extensions, this rapid change also increases the difficulty for other companies to try to build 
compatible processors. 



3. Make the common case fast. Examples of making the common MIPS case 
fast include PC-relative addressing for conditional branches and immediate 
addressing for larger constant operands.

4. Good design demands good compromises. One MIPS example was the com-
promise between providing for larger addresses and constants in instruc-
tions and keeping all instructions the same length. 

Above this machine level is assembly language, a language that humans can read. 
The assembler translates it into the binary numbers that machines can understand, 
and it even “extends” the instruction set by creating symbolic instruc tions that 
aren’t in the hardware. For instance, constants or addresses that are too big are 
broken into properly sized pieces, common variations of instructions are given 
their own name, and so on. Figure 2.44 lists the MIPS instructions we have covered 
so far, both real and pseudoinstructions.

Each category of MIPS instructions is associated with constructs that appear in 
programming languages:

 ■ The arithmetic instructions correspond to the operations found in assign-
ment statements. 

 ■ Data transfer instructions are most likely to occur when dealing with data 
structures like arrays or structures. 

 ■ The conditional branches are used in if statements and in loops. 

 ■ The unconditional jumps are used in procedure calls and returns and for 
case/switch statements.

These instructions are not born equal; the popularity of the few dominates the 
many. For example, Figure 2.45 shows the popularity of each class of instructions 
for SPEC CPU2006. The varying popularity of instructions plays an important role 
in the chapters about datapath, control, and pipelining.

After we explain computer arithmetic in Chapter 3, we reveal the rest of the 
MIPS instruction set architecture.
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 MIPS instructions Name Format Pseudo MIPS Name Format

add add R move move R

subtract sub R multiply mult R

add immediate addi I multiply immediate multi I

load word lw I load immediate li I

store word sw I branch less than blt I

load half lh I branch less than  
or equal ble I

load half unsigned lhu I

store half sh I branch greater than bgt I

load byte lb I branch greater than 
or equal bge I

load byte unsigned lbu I

store byte sb I

load linked ll I

store conditional sc I

load upper immediate lui I

and and R

or or R

nor nor R

and immediate andi I

or immediate ori I

shift left logical sll R

shift right logical srl R

branch on equal beq I

branch on not equal bne I

set less than slt R

set less than immediate slti I

set less than immediate 
unsigned

sltiu I

jump j J

jump register jr R

jump and link jal J

FIGURE 2.44 The MIPS instruction set covered so far, with the real MIPS instructions 
on the left and the pseudoinstructions on the right. Appendix B (Section B.10) describes the 
full MIPS architecture. Figure 2.1 shows more details of the MIPS architecture revealed in this chapter. The 
information given here is also found in Columns 1 and 2 of the MIPS Reference Data Card at the front of 
the book. 



Instruction class MIPS examples HLL correspondence

Frequency

Integer Ft. pt.

Arithmetic add, sub, addi Operations in assignment statements 16% 48%

Data transfer lw, sw, lb, lbu, lh, 
lhu, sb, lui

References to data structures, such as arrays 35% 36%

Logical and, or, nor, andi, ori, 
sll, srl

0perations in assignment statements 12%  4%

Conditional branch beq, bne, slt, slti, 
sltiu

If statements and loops 34%  8%

Jump j, jr, jal Procedure calls, returns, and case/switch statements  2%  0%

FIGURE 2.45 MIPS instruction classes, examples, correspondence to high-level program language constructs, and 
percent age of MIPS instructions executed by category for the average SPEC CPU2006 benchmarks. Figure 3.26 in 
Chapter 3 shows average percent age of the individual MIPS instructions executed. 

\   Historical Perspective and 
Further Reading

This section surveys the history of instruction set architectures (ISAs) over 
time, and we give a short history of programming languages and compilers. 
ISAs include accumulator architectures, general-purpose register architectures, 
stack architectures, and a brief history of ARM and the x86. We also review the 
contro versial subjects of high-level-language computer architectures and reduced 
instruction set computer architectures. The history of programming languages 
includes Fortran, Lisp, Algol, C, Cobol, Pascal, Simula, Smalltalk, C++, and Java, 
and the history of compilers includes the key milestones and the pioneers who 
achieved them. The rest of this section is on the CD.

 2.21 Exercises
Contributed by John Oliver of Cal Poly, San Luis Obispo, with contributions from Nicole 
Kaiyan (University of Adelaide) and Milos Prvulovic (Georgia Tech)

Appendix B describes the MIPS simulator, which is helpful for these exercises. 
Although the simulator accepts pseudoinstructions, try not to use pseudo-
instructions for any exercises that ask you to produce MIPS code. Your goal should 
be to learn the real MIPS instruction set, and if you are asked to count instructions, 
your count should reflect the actual instructions that will be executed and not the 
pseudoinstructions.

There are some cases where pseudoinstructions must be used (for example, the 
la instruction when an actual value is not known at assembly time). In many cases, 

2.20 v v
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they are quite convenient and result in more readable code (for example, the li 
and move instructions). If you choose to use pseudoinstructions for these reasons, 
please add a sentence or two to your solution stating which pseudoinstructions 
you have used and why.

Exercise 2.1
The following problems explore translating from C to MIPS. Assume that the vari-
ables f, g, h, and i are given and could be considered 32-bit integers as declared in a 
C program.

a. f = g – h;

b. f = g + (h  5);

2.1.1 [5] <2.2> For the C statements above, what is the corresponding MIPS 
assembly code? Use a minimal number of MIPS assembly instructions.

2.1.2 [5] <2.2> For the C statements above, how many MIPS assembly instruc-
tions are needed to perform the C statement?

2.1.3 [5] <2.2> If the variables f, g, h, and i have values 1, 2, 3, and 4, respec-
tively, what is the end value of f?

The following problems deal with translating from MIPS to C. Assume that the 
variables g, h, i, and j are given and could be considered 32-bit integers as declared 
in a C program.

a. addi f, f, 4

b. add  f, g, h
add  f, i, f

2.1.4 [5] <2.2> For the MIPS assembly instructions above, what is a correspond-
ing C statement?

2.1.5 [5] <2.2> If the variables f, g, h, and i have values 1, 2, 3, and 4, respec-
tively, what is the end value of f?

Exercise 2.2
The following problems deal with translating from C to MIPS. Assume that the 
variables g, h, i, and j are given and could be considered 32-bit integers as declared 
in a C program.



a. f = g – f;

b. f = i + (h – 2);

2.2.1 [5] <2.2> For the C statements above, what is the corresponding MIPS 
assembly code? Use a minimal number of MIPS assembly instructions.

2.2.2 [5] <2.2> For the C statements above, how many MIPS assembly instruc-
tions are needed to perform the C statement?

2.2.3 [5] <2.2> If the variables f, g, h, and i have values 1, 2, 3, and 4, respec-
tively, what is the end value of f?

The following problems deal with translating from MIPS to C. For the following 
exercise, assume that the variables g, h, i, and j are given and could be considered 
32-bit integers as declared in a C program.

a. addi f, f, 4

b. add  f, g, h
sub  f, i, f

2.2.4 [5] <2.2> For the MIPS assembly instructions above, what is a correspond-
ing C statement?

2.2.5 [5] <2.2> If the variables f, g, h, and i have values 1, 2, 3, and 4, respec-
tively, what is the end value of f?

Exercise 2.3 
The following problems explore translating from C to MIPS. Assume that the vari-
ables f and g are given and could be considered 32-bit integers as declared in a 
C program.

a. f = –g – f;

b. f = g + (–f – 5);

2.3.1 [5] <2.2> For the C statements above, what is the corresponding MIPS 
assembly code? Use a minimal number of MIPS assembly instructions.

2.3.2 [5] <2.2> For the C statements above, how many MIPS assembly instruc-
tions are needed to perform the C statement?

2.3.3 [5] <2.2> If the variables f, g, h, i, and j have values 1, 2, 3, 4, and 5, respec-
tively, what is the end value of f?
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The following problems deal with translating from MIPS to C. Assume that the 
variables g, h, i, and j are given and could be considered 32-bit integers as declared 
in a C program.

a.	 addi f, f, –4

b.	 add  i, g, h
add  f, i, f

2.3.4	 [5] <2.2> For the MIPS statements above, what is a corresponding C statement?

2.3.5	 [5] <2.2> If the variables f, g, h, and i have values 1, 2, 3, and 4, respec-
tively, what is the end value of f?

Exercise	2.4
The following problems deal with translating from C to MIPS. Assume that the 
variables f, g, h, i, and j are assigned to registers $s0, $s1, $s2, $s3, and$s4, 
respectively. Assume that the base address of the arrays A and B are in registers $s6 
and $s7, respectively.

a.	 f = –g – A[4];

b.	 B[8] = A[i–j];

2.4.1	 [10] <2.2, 2.3> For the C statements above, what is the corresponding MIPS 
assembly code?

2.4.2	 [5] <2.2, 2.3> For the C statements above, how many MIPS assembly 
instructions are needed to perform the C statement?

2.4.3	 [5] <2.2, 2.3> For the C statements above, how many different registers are 
needed to carry out the C statement?

The following problems deal with translating from MIPS to C. Assume that the 
variables f, g, h, i, and j are assigned to registers $s0, $s1, $s2, $s3, and $s4, 
respectively. Assume that the base address of the arrays A and B are in registers $s6 
and $s7, respectively.

a.	 sll  $s2, $s4,  1
add  $s0, $s2,  $s3
add  $s0, $s0,  $s1

b.	 sll   $t0, $s0,  2      # $t0 = f * 4
add  $t0, $s6,  $t0    # $t0 = &A[f]
sll  $t1, $s1,  2      # $t1 = g * 4
add  $t1, $s7,  $t1    # $t1 = &B[g]
lw   $s0, 0($t0)       # f = A[f]
addi $t2, $t0,  4       
lw   $t0, 0($t2)
add  $t0, $t0,  $s0
sw   $t0, 0($t1)



2.4.4 [10] <2.2, 2.3> For the MIPS assembly instructions above, what is the cor-
responding C statement?

2.4.5 [5] <2.2, 2.3> For the MIPS assembly instructions above, rewrite the assem-
bly code to minimize the number if MIPS instructions (if possible) needed to carry 
out the same function.

2.4.6 [5] <2.2, 2.3> How many registers are needed to carry out the MIPS assem-
bly as written above? If you could rewrite the code above, what is the minimal 
number of registers needed?

Exercise 2.5
In the following problems, we will be investigating memory operations in the con-
text of an MIPS processor. The table below shows the values of an array stored in 
memory. Assume the base address of the array is stored in register $s6 and offset it 
with respect to the base address of the array.

a. Address
20
24
28
32
34

Data
4
5
3 
2
1

b. Address
24
38
32
36
40 

Data
2
4
3
6
1

2.5.1 [10] <2.2, 2.3> For the memory locations in the table above, write C 
code to sort the data from lowest to highest, placing the lowest value in the 
smallest memory location shown in the figure. Assume that the data shown 
represents the C variable called Array, which is an array of type int, and that 
the first number in the array shown is the first element in the array. Assume 
that this particular machine is a byte-addressable machine and a word consists 
of four bytes.

2.5.2 [10] <2.2, 2.3> For the memory locations in the table above, write MIPS 
code to sort the data from lowest to highest, placing the lowest value in the smallest 
memory location. Use a minimum number of MIPS instructions. Assume the base 
address of Array is stored in register $s6.

2.5.3 [5] <2.2, 2.3> To sort the array above, how many instructions are required 
for the MIPS code? If you are not allowed to use the immediate field in lw and sw 
instructions, how many MIPS instructions do you need?
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The following problems explore the translation of hexadecimal numbers to other 
number formats.

a. 0xabcdef12

b. 0x10203040

2.5.4 [5] <2.3> Translate the hexadecimal numbers above into decimal.

2.5.5 [5] <2.3> Show how the data in the table would be arranged in memory of a 
little-endian and a big-endian machine. Assume the data is stored starting at address 0.

Exercise 2.6
The following problems deal with translating from C to MIPS. Assume that the vari-
ables f, g, h, i, and j are assigned to registers $s0, $s1, $s2, $s3, and $s4, respec-
tively. Assume that the base address of the arrays A and B are in registers $s6 and 
$s7, respectively. Assume that the elements of the arrays A and B are 4-byte words:

a. f = f + A[2];

b. B[8] = A[i] + A[j];

2.6.1 [10] <2.2, 2.3> For the C statements above, what is the corresponding MIPS 
assembly code?

2.6.2 [5] <2.2, 2.3> For the C statements above, how many MIPS assembly 
instructions are needed to perform the C statement?

2.6.3 [5] <2.2, 2.3> For the C statements above, how many registers are needed 
to carry out the C statement using MIPS assembly code? 

The following problems deal with translating from MIPS to C. Assume that the 
variables f, g, h, i, and j are assigned to registers $s0, $s1, $s2, $s3, and $s4, 
respectively. Assume that the base address of the arrays A and B are in registers $s6 
and $s7, respectively.

a. sub $s0, $s0, $s1
sub $s0, $s0, $s3
add $s0, $s0, $s1

b. addi $t0, $s6, 4
add  $t1, $s6, $0
sw   $t1, 0($t0)
lw   $t0, 0($t0)
add  $s0, $t1, $t0



2.6.4 [5] <2.2, 2.3> For the MIPS assembly instructions above, what is the 
corresponding C statement? 

2.6.5 [5] <2.2, 2.3> For the MIPS assembly above, assume that the registers $s0, 
$s1, $s2, and $s3 contain the values 0x0000000a, 0x00000014, 0x0000001e, and 
0x00000028, respectively. Also, assume that register $s6 contains the value 0x00000100, 
and that memory contains the following values:

Address Value 

0x00000100 0x00000064

0x00000104 0x000000c8

0x00000108 0x0000012c

Find the value of $s0 at the end of the assembly code.

2.6.6 [10] <2.3, 2.5> For each MIPS instruction, show the value of the opcode 
(OP), source register (RS), and target register (RT) fields. For the I-type instruc-
tions, show the value of the immediate field, and for the R-type instructions, show 
the value of the destination register (RD) field.

Exercise 2.7 
The following problems explore number conversions from signed and unsigned 
binary numbers to decimal numbers.

a. 0010 0100 1001 0010 0100 1001 0010 0100two

b. 0101 1111 1011 1110 0100 0000 0000 0000two

2.7.1 [5] <2.4> For the patterns above, what base 10 number does the binary 
number represent, assuming that it is a two’s complement integer?

2.7.2 [5] <2.4> For the patterns above, what base 10 number does the binary 
number represent, assuming that it is an unsigned integer?

2.7.3 [5] <2.4> For the patterns above, what hexadecimal number does it 
 represent?

The following problems explore number conversions from decimal to signed and 
unsigned binary numbers.

a. –1ten

b. 1024ten
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2.7.4 [5] <2.4> For the base ten numbers above, convert to 2’s complement 
binary.

2.7.5 [5] <2.4> For the base ten numbers above, convert to 2’s complement 
 hexadecimal.

2.7.6 [5] <2.4> For the base ten numbers above, convert the negated values from 
the table to 2’s complement hexadecimal.

Exercise 2.8 
The following problems deal with sign extension and overflow. Registers $s0 and 
$s1 hold the values as shown in the table below. You will be asked to perform an 
MIPS assembly language instruction on these registers and show the result.

a. $s0 = 0x80000000sixteen, $s1 = 0xD0000000sixteen

b. $s0 = 0x00000001sixteen, $s1 = 0xFFFFFFFFsixteen

2.8.1 [5] <2.4> For the contents of registers $s0 and $s1 as specified above, what 
is the value of $t0 for the following assembly code?

add $t0, $s0, $s1

Is the result in $t0 the desired result, or has there been overflow? 

2.8.2 [5] <2.4> For the contents of registers $s0 and $s1 as specified above, what 
is the value of $t0 for the following assembly code?

sub $t0, $s0, $s1

Is the result in $t0 the desired result, or has there been overflow?

2.8.3 [5] <2.4> For the contents of registers $s0 and $s1 as specified above, what 
is the value of $t0 for the following assembly code?

add $t0, $s0, $s1
add $t0, $t0, $s0

Is the result in $t0 the desired result, or has there been overflow?

In the following problems, you will perform various MIPS operations on a pair of 
registers, $s0 and $s1. Given the values of $s0 and $s1 in each of the questions 
below, state if there will be overflow.



a. add $s0, $s0, $s1
add $s0, $s0, $s1

b. add $s0, $s0, $s1
add $s0, $s0, $s1
add $s0, $s0, $s1

2.8.4 [5] <2.4> Assume that register $s0 = 0x70000000 and $s1 = 0x10000000. 
For the table above, will there be overflow?

2.8.5 [5] <2.4> Assume that register $s0 = 0x40000000 and $s1 = 0x20000000. 
For the table above, will there be overflow?

2.8.6 [5] <2.4> Assume that register $s0 = 0x8FFFFFFF and $s1 = 0xD0000000. 
For the table above, will there be overflow?

Exercise 2.9 
The table below contains various values for register $s1. You will be asked to evalu-
ate if there would be overflow for a given operation.

a. –1ten

b. 1024ten

2.9.1 [5] <2.4> Assume that register $s0 = 0x70000000 and $s1 has the value as 
given in the table. If the instruction: add $s0, $s0, $s1 is executed, will there be 
overflow?

2.9.2 [5] <2.4> Assume that register $s0 = 0x80000000 and $s1 has the value as 
given in the table. If the instruction: sub $s0, $s0, $s1 is executed, will there be 
overflow?

2.9.3 [5] <2.4> Assume that register $s0 = 0x7FFFFFFF and $s1 has the value 
as given in the table. If the instruction: sub $s0, $s0, $s1 is executed, will there be 
overflow?

The table below contains various values for register $s1. You will be asked to evalu-
ate if there would be overflow for a given operation.

a. 0010 0100 1001 0010 0100 1001 0010 0100two

b. 0101 1111 1011 1110 0100 0000 0000 0000two

2.9.4 [5] <2.4> Assume that register $s0 = 0x70000000 and $s1 has the value as 
given in the table. If the instruction: add $s0, $s0, $s1 is executed, will there be 
overflow?

 2.21 Exercises 187



188 Chapter 2 Instructions: Language of the Computer

2.9.5 [5] <2.4> Assume that register $s0 = 0x70000000 and $s1 has the value 
as given in the table. If the instruction: add $s0, $s0, $s1 is executed, what is the 
result in hex?

2.9.6 [5] <2.4> Assume that register $s0 = 0x70000000 and $s1 has the value as 
given in the table. If the instruction: add $s0, $s0, $s1 is executed, what is the 
result in base ten?

Exercise 2.10 
In the following problems, the data table contains bits that represent the opcode 
of an instruction. You will be asked to interpret the bits as MIPS instructions into 
assembly code and determine what format of MIPS instruction the bits represent.

a. 0000 0010 0001 0000 1000 0000 0010 0000two

b. 0000 0001 0100 1011 0100 1000 0010 0010two

2.10.1 [5] <2.5> For the binary entries above, what instruction do they  
represent?

2.10.2 [5] <2.5> What type (I-type, R-type, J-type) instruction do the binary 
entries above represent?

2.10.3 [5] <2.4, 2.5> If the binary entries above were data bits, what number 
would they represent in hexadecimal? 

In the following problems, the data table contains MIPS instructions. You will be 
asked to translate the entries into the bits of the opcode and determine the MIPS 
instruction format.

a. addi $t0, $t0, 0

b. sw $t1, 32($t2)

2.10.4 [5] <2.4, 2.5> For the instructions above, show the binary then hexadeci-
mal representation of these instructions.

2.10.5 [5] <2.5> What type (I-type, R-type, J-type) instruction do the instruc-
tions above represent?

2.10.6 [5] <2.5> What is the binary then hexadecimal representation of the 
opcode, Rs, and Rt fields in this instruction? For R-type instructions, what is the 
hexadecimal representation of the Rd and funct fields? For I-type instructions, 
what is the hexadecimal representation of the immediate field?



Exercise 2.11 
In the following problems, the data table contains bits that represent the opcode 
of an instruction. You will be asked to translate the entries into assembly code and 
determine what format of MIPS instruction the bits represent.

a. 0x01084020

b. 0x02538822

2.11.1 [5] <2.4, 2.5> What binary number does the above hexadecimal number 
represent?

2.11.2 [5] <2.4, 2.5> What decimal number does the above hexadecimal number 
represent?

2.11.3 [5] <2.5> What instruction does the above hexadecimal number represent?

In the following problems, the data table contains the values of various fields of 
MIPS instructions. You will be asked to determine what the instruction is, and find 
the MIPS format for the instruction.

a. op=0, rs=3, rt=2, rd=3, shamt=0, funct=34

b. op=0x23, rs=1, rt=2, const=0x4

2.11.4 [5] <2.5> What type (I-type, R-type) instruction do the instructions 
above represent?

2.11.5 [5] <2.5> What is the MIPS assembly instruction described above? 

2.11.6 [5] <2.4, 2.5> What is the binary representation of the instructions above?

Exercise 2.12 
In the following problems, the data table contains various modifications that could 
be made to the MIPS instruction set architecture. You will investigate the impact of 
these changes on the instruction format of the MIPS architecture.

a. 128 registers

b. Four times as many different instructions

2.12.1 [5] <2.5> If the instruction set of the MIPS processor is modified, the 
instruction format must also be changed. For each of the suggested changes above, 
show the size of the bit fields of an R-type format instruction. What is the total 
number of bits needed for each instruction?
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2.12.2 [5] <2.5> If the instruction set of the MIPS processor is modified, the 
instruction format must also be changed. For each of the suggested changes above, 
show the size of the bit fields of an I-type format instruction. What is the total 
number of bits needed for each instruction?

2.12.3 [5] <2.5, 2.10> Why could the suggested change in the table above 
decrease the size of an MIPS assembly program? Why could the suggested change 
in the table above increase the size of an MIPS assembly program?

In the following problems, the data table contains hexadecimal values. You will be 
asked to determine what MIPS instruction the value represents, and find the MIPS 
instruction format.

a. 0x01090012

b. 0xAD090012

2.12.4 [5] <2.5> For the entries above, what is the value of the number in 
 decimal?

2.12.5 [5] <2.5> For the hexadecimal entries above, what instruction do they 
represent?

2.12.6 [5] <2.4, 2.5> What type (I-type, R-type, J-type) instruction do the binary 
entries above represent? What is the value of the op field and the rt field?

Exercise 2.13
In the following problems, the data table contains the values for registers $t0 and 
$t1. You will be asked to perform several MIPS logical operations on these registers.

a. $t0 = 0xAAAAAAAA, $t1 = 0x12345678

b. $t0 = 0xF00DD00D, $t1 = 0x11111111

2.13.1 [5] <2.6> For the lines above, what is the value of $t2 for the following 
sequence of instructions?

sll $t2, $t0, 44
or $t2, $t2, $t1

2.13.2 [5] <2.6> For the values in the table above, what is the value of $t2 for the 
following sequence of instructions?

sll $t2, $t0, 4
andi $t2, $t2, –1



2.13.3 [5] <2.6> For the lines above, what is the value of $t2 for the following 
sequence of instructions?

srl $t2, $t0, 3
andi $t2, $t2, 0xFFEF

In the following exercise, the data table contains various MIPS logical operations. 
You will be asked to find the result of these operations given values for registers 
$t0 and $t1.

a. sll  $t2, $t0, 1
andi $t2, $t2, –1

b. andi $t2, $t1, 0x00F0
srl  $t2, 2

2.13.4 [5] <2.6> Assume that $t0 = 0x0000A5A5 and $t1 = 00005A5A. What is 
the value of $t2 after the two instructions in the table?

2.13.5 [5] <2.6> Assume that $t0 = 0xA5A50000 and $t1 = A5A50000. What is 
the value of $t2 after the two instructions in the table?

2.13.6 [5] <2.6> Assume that $t0 = 0xA5A5FFFF and $t1 = A5A5FFFF. What is 
the value of $t2 after the two instructions in the table?

Exercise 2.14 
The following figure shows the placement of a bit field in register $t0.

Field

31 – i bits i – j bits j bits

In the following problems, you will be asked to write MIPS instructions to extract 
the bits “Field” from register $t0 and place them into register $t1 at the location 
indicated in the following table.

a. 

Field  0 0 0 … 0 0 0

b. 

1 1 1 … 1 1 1 Field 1 1 1 … 1 1 1

31 i j 0

31 0

31 14 + i – j bits 14 0
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2.14.1 [20] <2.6> Find the shortest sequence of MIPS instructions that extracts a 
field from $t0 for the constant values i = 22 and j = 5 and places the field into $t1 
in the format shown in the data table.

2.14.2 [5] <2.6> Find the shortest sequence of MIPS instructions that extracts a 
field from $t0 for the constant values i = 4 and j = 0 and places the field into $t1 
in the format shown in the data table.

2.14.3 [5] <2.6> Find the shortest sequence of MIPS instructions that extracts a 
field from $t0 for the constant values i = 31 and j = 28 and places the field into $t1 
in the format shown in the data table.

In the following problems, you will be asked to write MIPS instructions to extract 
the bits “Field” from register $t0 shown in the figure and place them into register 
$t1 at the location indicated in the following table. The bits shown as “XXX” are to 
remain unchanged.

a. 

Field X X X … X X X

b. 

X X X … X X X Field X X X … X X X

2.14.4 [20] <2.6> Find the shortest sequence of MIPS instructions that extracts 
a field from $t0 for the constant values i = 17 and j = 11 and places the field into 
$t1 in the format shown in the data table.

2.14.5 [5] <2.6> Find the shortest sequence of MIPS instructions that extracts a 
field from $t0 for the constant values i = 5 and j = 0 and places the field into $t1 
in the format shown in the data table.

2.14.6 [5] <2.6> Find the shortest sequence of MIPS instructions that extracts a 
field from $t0 for the constant values i = 31 and j = 29 and places the field into $t1 
in the format shown in the data table.

Exercise 2.15
For these problems, the table holds some logical operations that are not included in 
the MIPS instruction set. How can these instructions be implemented?

a. not $t1, $t2          // bitwise invert

b. orn $t1, $t2, $t3     // bitwise OR of $t2, !$t3

31

31 14 + i – j bits 14 0

31 – (i – j)



2.15.1 [5] <2.6> The logical instructions above are not included in the MIPS 
instruction set, but are described above. If the value of $t2 = 0x00FFA5A5 and the 
value of $t3 = 0xFFFF003C, what is the result in $t1?

2.15.2 [10] <2.6> The logical instructions above are not included in the MIPS 
instruction set, but can be synthesized using one or more MIPS assembly instruc-
tions. Provide a minimal set of MIPS instructions that may be used in place of the 
instructions in the table above.

2.15.3 [5] <2.6> For your sequence of instructions in 2.15.2, show the bit-level 
representation of each instruction.

Various C-level logical statements are shown in the table below. In this exercise, you 
will be asked to evaluate the statements and implement these C statements using 
MIPS assembly instructions.

a. A = B | !A;

b. A = C[0] << 4;

2.15.4 [5] <2.6> The table above shows different C statements that use logical 
operators. If the memory location at C[0] contains the integer values 0x00001234, 
and the initial integer values of A and B are 0x00000000 and 0x00002222, what is 
the result value of A?

2.15.5 [5] <2.6> For the C statements in the table above, write a minimal 
sequence of MIPS assembly instructions that does the identical operation. Assume 
$t1 = A, $t2 = B, and $s1 is the base address of C.

2.15.6 [5] <2.6> For your sequence of instructions in 2.15.5, show the bit-level 
representation of each instruction.

Exercise 2.16 
For these problems, the table holds various binary values for register $t0. Given 
the value of $t0, you will be asked to evaluate the outcome of different branches.

a. 0010 0100 1001 0010 0100 1001 0010 0100two

b. 0101 1111 1011 1110 0100 0000 0000 0000two

2.16.1 [5] <2.7> Suppose that register $t0 contains a value from above and $t1 
has the value

0011 1111 1111 1000 0000 0000 0000 0000two
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Note the result of executing these instructions on particular registers. What is the 
value of $t2 after the following instructions?

      slt  $t2, $t0, $t1 
      beq  $t2, $0, ELSE 
      j    DONE
ELSE: addi $t2, $0, 2
DONE:

2.16.2 [5] <2.7> Suppose that register $t0 contains a value from the table above 
and is compared against the value X, as used in the MIPS instruction below. Note 
the format of the slti instruction. For what values of X, if any, will $t2 be equal to 1?

slti $t2, $t0, X

2.16.3 [5] <2.7> Suppose the program counter (PC) is set to 0x0000 0020. Is it 
possible to use the jump MIPS assembly instruction to get set the PC to the address 
as shown in the data table above? Is it possible to use the branch-on-equal MIPS 
assembly instruction to get set the PC to the address as shown in the data table 
above?

For these problems, the table holds various binary values for register $t0. Given 
the value of $t0, you will be asked to evaluate the outcome of different branches.

a. 0x00101000

b. 0x80001000

2.16.4 [5] <2.7> Suppose that register $t0 contains a value from above. What is 
the value of $t2 after the following instructions?

      slt  $t2, $0,   $t0 
      bne  $t2, $0,   ELSE 
      j    DONE
ELSE: addi $t2, $t2,  2
DONE:

2.16.5 [5] <2.6, 2.7> Suppose that register $t0 contains a value from above.  
What is the value of $t2 after the following instructions?

sll $t0, $t0, 2
slt $t2, $t0, $0

2.16.6 [5] <2.7> Suppose the program counter (PC) is set to 0x2000 0000. Is 
it possible to use the jump (j) MIPS assembly instruction to get set the PC to the 



address as shown in the data table above? Is it possible to use the branch-on-equal 
(beq) MIPS assembly instruction to set the PC to the address as shown in the data 
table above? Note the format of the J-type instruction. 

Exercise 2.17 
For these problems, there are several instructions that are not included in the MIPS 
instruction set are shown. 

a. subi $t2, $t3, 5      # R[rt] = R[rs] – SignExtImm

b. rpt  $t2, loop        # if(R[rs]>0) R[rs]=R[rs]1, PC=PC+4+BranchAddr 

2.17.1 [5] <2.7> The table above contains some instructions not included in 
the MIPS instruction set and the description of each instruction. Why are these 
instructions not included in the MIPS instruction set?

2.17.2 [5] <2.7> The table above contains some instructions not included in the 
MIPS instruction set and the description of each instruction. If these instructions 
were to be implemented in the MIPS instruction set, what is the most appropriate 
instruction format? 

2.17.3 [5] <2.7> For each instruction in the table above, find the shortest 
sequence of MIPS instructions that performs the same operation. 

For these problems, the table holds MIPS assembly code fragments. You will be 
asked to evaluate each of the code fragments, familiarizing you with the different 
MIPS branch instructions.

a. LOOP:  addi $s2, $s2, 2
       subi $t1, $t1, 1
       bne  $t1, $0,  LOOP
DONE:

b. LOOP:  slt  $t2, $0,  $t1
       beq  $t2, $0,  DONE
       subi $t1, $t1, 1
       addi $s2, $s2, 2
       j    LOOP
DONE:

2.17.4 [5] <2.7> For the loops written in MIPS assembly above, assume that the 
register $t1 is initialized to the value 10. What is the value in register $s2 assuming 
the $s2 is initially zero?

2.17.5 [5] <2.7> For each of the loops above, write the equivalent C code rou-
tine. Assume that the registers $s1, $s2, $t1, and $t2 are integers A, B, i, and 
temp, respectively.
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2.17.6 [5] <2.7> For the loops written in MIPS assembly above, assume that the 
register $t1 is initialized to the value N. How many MIPS instructions are executed? 

Exercise 2.18 
For these problems, the table holds some C code. You will be asked to evaluate these 
C code statements in MIPS assembly code.

a. for(i=0; i<a; i++)
    a += b;

b. for(i=0; i<a; i++)
   for(j=0; j<b; j++)
       D[4*j] = i + j;

2.18.1 [5] <2.7> For the table above, draw a control-flow graph of the C code.

2.18.2 [5] <2.7> For the table above, translate the C code to MIPS assembly code. 
Use a minimum number of instructions. Assume that the values of a, b, i, and j 
are in registers $s0, $s1, $t0, and $t1, respectively. Also, assume that register $s2 
holds the base address of the array D.

2.18.3 [5] <2.7> How many MIPS instructions does it take to implement the 
C code? If the variables a and b are initialized to 10 and 1 and all elements of D 
are initially 0, what is the total number of MIPS instructions that is executed to 
complete the loop?

For these problems, the table holds MIPS assembly code fragments. You will be 
asked to evaluate each of the code fragments, familiarizing you with the different 
MIPS branch instructions.

a.       addi $t1, $0, 50
LOOP: lw   $s1, 0($s0)
      add  $s2, $s2, $s1
      lw   $s1, 4($s0)
      add  $s2, $s2, $s1
      addi $s0, $s0, 8
      subi $t1, $t1, 1
      bne  $t1, $0, LOOP

b.       addi $t1, $0, $0  
LOOP: lw   $s1, 0($s0)  
      add  $s2, $s2, $s1  
      addi $s0, $s0, 4  
      addi $t1, $t1, 1  
      slti $t2, $t1, 100 
      bne  $t2, $s0, LOOP 

2.18.4 [5] <2.7> What is the total number of MIPS instructions executed?



2.18.5 [5] <2.7> Translate the loops above into C. Assume that the C-level inte-
ger i is held in register $t1, $s2 holds the C-level integer called result, and $s0 
holds the base address of the integer MemArray.

2.18.6 [5] <2.7> Rewrite the loop to reduce the number of MIPS instructions 
executed.

Exercise 2.19
For the following problems, the table holds C code functions. Assume that the first 
function listed in the table is called first. You will be asked to translate these C code 
routines into MIPS assembly.

a. int fib(int n){
    if (n==0)
       return 0;
    else if (n == 1)
       return 1;
    else
       fib(n1) + fib(n–2);

b. int positive(int a, int b) {
    if (addit(a, b) > 0)
       return 1;
    else
       return 0;
    }
int addit(int a, int b) {
    return a+b;
    }

2.19.1 [15] <2.8> Implement the C code in the table in MIPS assembly. What is 
the total number of MIPS instructions needed to execute the function?

2.19.2 [5] <2.8> Functions can often be implemented by compilers “in-line.” An 
in-line function is when the body of the function is copied into the program space, 
allowing the overhead of the function call to be eliminated. Implement an “in-line” 
version of the the C code in the table in MIPS assembly. What is the reduction in 
the total number of MIPS assembly instructions needed to complete the function? 
Assume that the C variable n is initialized to 5.

2.19.3 [5] <2.8> For each function call, show the contents of the stack after the 
function call is made. Assume the stack pointer is originally at address 0x7ffffffc, 
and follow the register conventions as specified in Figure 2.11.

The following three problems in this Exercise refer to a function f that calls another 
function func. The code for C function func is already compiled in another  module 
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using the MIPS calling convention from Figure 2.14. The function declaration for 
func is “int func(int a, int b);”. The code for function f is as follows:

a. int f(int a, int b, int c, int d){
  return func(func(a,b),c+d);
}

b. int f(int a, int b, int c, int d){
  if(a+b>c+d)
    return func(a+b,c+d);
  return func(c+d,a+b);
}

2.19.4 [10] <2.8> Translate function f into MIPS assembly language, also using 
the MIPS calling convention from Figure 2.14. If you need to use registers $t0 
through $t7, use the lower-numbered registers first.

2.19.5 [5] <2.8> Can we use the tail-call optimization in this function? If no, 
explain why not. If yes, what is the difference in the number of executed instruc-
tions in f with and without the optimization?

2.19.6 [5] <2.8> Right before your function f from Problem 2.19.4 returns, what 
do we know about contents of registers $t5, $s3, $ra, and $sp? Keep in mind that 
we know what the entire function f looks like, but for function func we only know 
its declaration.

Exercise 2.20
This exercise deals with recursive procedure calls. For the following problems, 
the table has an assembly code fragment that computes the factorial of a number. 
However, the entries in the table have errors, and you will be asked to fix these 
errors. For number n, factorial of n = 1 x 2 x 3 x ..  .. x n.

a. FACT:  sw    $ra, 4($sp)
       sw    $a0, 0($sp)
       addi  $sp, $sp, 8
       slti  $t0, $a0, 1
       beq   $t0, $0, L1
       addi  $v0, $0, 1
       addi  $sp, $sp, 8
       jr    $ra

L1:    addi  $a0, $a0, 1
       jal   FACT
       addi  $sp, $sp, 8
       lw    $a0, 0($sp)
       lw    $ra, 4($sp)
       mul   $v0, $a0, $v0
       jr    $ra



b. FACT:  addi $sp, $sp, 8
       sw   $ra, 4($sp)
       sw   $a0, 0($sp)
       add  $s0, $0, $a0
       slti $t0, $a0, 2
       beq  $t0, $0, L1 
       mul  $v0, $s0, $v0
       addi $sp, $sp, 8 
       jr   $ra 

L1:    addi $a0, $a0, 1  
       jal  FACT  
       addi $v0, $0, 1  
       lw   $a0, 0($sp)  
       lw   $ra, 4($sp)  
       addi $sp, $sp, 8  
       jr   $ra

2.20.1 [5] <2.8> The MIPS assembly program above computes the factorial of a 
given input. The integer input is passed through register $a0, and the result is returned 
in register $v0. In the assembly code, there are a few errors. Correct the MIPS errors.

2.20.2 [10] <2.8> For the recursive factorial MIPS program above, assume that 
the input is 4. Rewrite the factorial program to operate in a non-recursive man-
ner. Restrict your register usage to registers $s0$s7. What is the total number of 
instructions used to execute your solution from 2.20.2 versus the recursive version 
of the factorial program?

2.20.3 [5] <2.8> Show the contents of the stack after each function call, assum-
ing that the input is 4. 

For the following problems, the table has an assembly code fragment that computes 
a Fibonacci number. However, the entries in the table have errors, and you will be 
asked to fix these errors. For number n, the Fibonacci of n is calculated as follows:

 n fibonacci of n

 1 1

 2 1

 3 2

 4 3

 5 5

 6 8

 7 13

 8 21
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a. FIB:  addi  $sp, $sp, –12
      sw    $ra, 0($sp)
      sw    $s1, 4($sp)
      sw    $a0, 8($sp)
      slti  $t0, $a0, 1
      beq   $t0, $0, L1
      addi  $v0, $a0, $0
      j     EXIT

L1:   addi  $a0, $a0, –1
      jal   FIB
      addi  $s1, $v0, $0
      addi  $a0, $a0, –1
      jal   FIB
      add   $v0, $v0, $s1 

EXIT: lw    $ra, 0($sp)
      lw    $a0, 8($sp)
      lw    $s1, 4($sp)
      addi  $sp, $sp, 12
      jr    $ra 

b. FIB:  addi  $sp, $sp, 12
      sw    $ra, 8($sp)
      sw    $s1, 4($sp)
      sw    $a0, 0($sp)
      slti  $t0, $a0, 3
      beq   $t0, $0, L1
      addi  $v0, $0, 1
      j     EXIT

L1:   addi  $a0, $a0, 1
      jal   FIB
      addi  $a0, $a0,  2
      jal   FIB
      add   $v0, $v0, $s1

EXIT: lw    $a0, 0($sp)
      lw    $s1, 4($sp)
      lw    $ra, 8($sp)
      addi  $sp, $sp, 12
      jr    $ra

2.20.4 [5] <2.8> The MIPS assembly program above computes the Fibonacci of 
a given input. The integer input is passed through register $a0, and the result is 
returned in register $v0. In the assembly code, there are a few errors. Correct the 
MIPS errors.

2.20.5 [10] <2.8> For the recursive Fibonacci MIPS program above, assume that 
the input is 4. Rewrite the Fibonacci program to operate in a non-recursive man-
ner. Restrict your register usage to registers $s0–$s7. What is the total number of 



instructions used to execute your solution from 2.20.2 versus the recursive version 
of the factorial program?

2.20.6 [5] <2.8> Show the contents of the stack after each function call, assum-
ing that the input is 4. 

Exercise 2.21 
Assume that the stack and the static data segments are empty and that the stack and 
global pointers start at address 0x7fff fffc and 0x1000 8000, respectively. Assume 
the calling conventions as specified in Figure 2.11 and that function inputs are 
passed using registers $a0–$a3 and returned in register $r0. Assume that leaf 
functions may only use saved registers.

a. int my_global = 100;
main()
{
    int x = 10;
    int y = 20;
    int z;
    z = my_function(x, y)
}
int my_function(int x, int y)
{
    return x – y + my_global;
}

b. int my_global = 100;
main()
{ 
    int z; 
    my_global += 1; 
    z = leaf_function(my_global); 
}
int leaf_function(int x) 
{ 
    return x + 1; 
}

2.21.1 [5] <2.8> Write MIPS assembly code for the code in the table above.

2.21.2 [5] <2.8> Show the contents of the stack and the static data segments after 
each function call.

2.21.3 [5] <2.8> If the leaf function could use temporary registers ($t0, $t1, 
etc.), write the MIPS code for the code in the table above.
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The following three problems in this Exercise refer to this function, written in 
MIPS assembly following the calling conventions from Figure 2.14:

a. f: add   $v0,$a1,$a0
   bnez  $a2,L 
   sub   $v0,$a0,$a1
L: jr    $v0

b. f: add   $a2,$a3,$a2
   slt   $a2,$a2,$a0
   move  $v0,$a1
   beqz  $a2, L
   jr    $ra
L: move  $a0,$a1
   jal   g       ; Tail call

2.21.4 [10] <2.8> This code contains a mistake that violates the MIPS calling 
convention. What is this mistake and how should it be fixed?

2.21.5 [10] <2.8> What is the C equivalent of this code? Assume that the func-
tion’s arguments are named a, b, c, etc. in the C version of the function.

2.21.6 [10] <2.8> At the point where this function is called register $a0, $a1, 
$a2, and $a3 have values 1, 100, 1000, and 30, respectively. What is the value 
returned by this function? If another function g is called from f, assume that the 
value returned from g is always 500.

Exercise 2.22 
This exercise explores ASCII and Unicode conversion.

The following table shows strings of characters.

a. hello world

b. 0123456789

2.22.1 [5] <2.9> Translate the strings into hexadecimal ASCII byte values.

2.22.2 [5] <2.9> Translate the strings into 16-bit Unicode (using hex notation 
and the Basic Latin character set).

The following table shows hexadecimal ASCII character values.

a. 41 44 44 

b. 4D 49 50 53



2.22.3 [5] <2.5, 2.9> Translate the hexadecimal ASCII values to text.

Exercise 2.23
In this exercise, you will be asked to write an MIPS assembly program that converts 
strings into the number format as specified in the table.

a. positive and negative integer decimal strings

b. positive hexadecimal integers

2.23.1 [10] <2.9> Write a program in MIPS assembly language to convert an 
ASCII number string with the conditions listed in the table above, to an integer. 
Your program should expect register $a0 to hold the address of a null-terminated 
string containing some combination of the digits 0 through 9. Your program 
should compute the integer value equivalent to this string of digits, then place the 
number in register $v0. If a non-digit character appears anywhere in the string, 
your program should stop with the value –1 in register $v0. For example, if register 
$a0 points to a sequence of three bytes 50ten, 52ten, 0ten (the null-terminated string 
“24”), then when the program stops, register $v0 should contain the value 24ten. 

Exercise 2.24
Assume that the register $t1 contains the address 0x1000 0000 and the register 
$t2 contains the address 0x1000 0010. Note the MIPS architecture utilizes big-
endian addressing.

a. lbu $t0, 0($t1)
sw  $t0, 0($t2)

b. lb  $t0, 0($t1)
sh  $t0, 0($t2)

2.24.1 [5] <2.9> Assume that the data (in hexadecimal) at address 0x1000 0000 is:

1000 0000 12 34 56 78

What value is stored at the address pointed to by register $t2? Assume that the 
memory location pointed to $t2 is initialized to 0xFFFF FFFF.

2.24.2 [5] <2.9> Assume that the data (in hexadecimal) at address 0x1000 0000 is:

1000 0000 80 80 80 80
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What value is stored at the address pointed to by register $t2? Assume that the 
memory location pointed to $t2 is initialized to 0x0000 0000.

2.24.3 [5] <2.9> Assume that the data (in hexadecimal) at address 0x1000 0000 is:

1000 0000 11 00 00 FF

What value is stored at the address pointed to by register $t2? Assume that the 
memory location pointed to $t2 is initialized to 0x5555 5555.

Exercise 2.25
In this exercise, you will explore 32-bit constants in MIPS. For the following prob-
lems, you will be using the binary data in the table below.

a. 0010 0000 0000 0001 0100 1001 0010 0100two

b. 0000 1111 1011 1110 0100 0000 0000 0000two

2.25.1 [10] <2.10> Write the MIPS assembly code that creates the 32-bit con-
stants listed above and stores that value to register $t1.

2.25.2 [5] <2.6, 2.10> If the current value of the PC is 0x00000000, can you use a 
single jump instruction to get to the PC address as shown in the table above?

2.25.3 [5] <2.6, 2.10> If the current value of the PC is 0x00000600, can you use 
a single branch instruction to get to the PC address as shown in the table above?

2.25.4 [5] <2.6, 2.10> If the current value of the PC is 0x1FFFf000, can you use 
a single branch instruction to get to the PC address as shown in the table above?

2.25.5 [10] <2.10> If the immediate field of an MIPS instruction was only 8 bits 
wide, write the MIPS code that creates the 32-bit constants listed above and stores 
that value to register $t1. Do not use the lui instruction.

For the following problems, you will be using the MIPS assembly code as listed in 
the table.

a. lui  $t0, 0x1234 
addi $t0, $t0, 0x5678

b. lui  $t0, 0x1234 
andi $t0, $t0, 0x5678



2.25.6 [5] <2.6, 2.10> What is the value of register $t0 after the sequence of code 
in the table above?

2.25.7 [5] <2.6, 2.10> Write C code that is equivalent to the assembly code in 
the table. Assume that the largest constant that you can load into a 32-bit integer is  
16 bits.

Exercise 2.26 
For this exercise, you will explore the range of branch and jump instructions in 
MIPS. For the following problems, use the hexadecimal data in the table below.

a. 0x00020000

b. 0xFFFFFF00

2.26.1 [10] <2.6, 2.10> If the PC is at address 0x00000000, how many branch (no 
jump instructions) do you need to get to the address in the table above?

2.26.2 [10] <2.6, 2.10> If the PC is at address 0x00000000, how many jump 
instructions (no jump register instructions or branch instructions) are required to 
get to the target address in the table above?

2.26.3 [10] <2.6, 2.10> In order to reduce the size of MIPS programs, MIPS 
designers have decided to cut the immediate field of I-type instructions from 16 
bits to 8 bits. If the PC is at address 0x0000000, how many branch instructions are 
needed to set the PC to the address in the table above?

For the following problems, you will be using making modifications to the MIPS 
instruction set architecture.

a. 128 registers

b. Four times as many different operations

2.26.4 [10] <2.6, 2.10> If the instruction set of the MIPS processor is modified, 
the instruction format must also be changed. For each of the suggested changes 
above, what is the impact on the range of addresses for a beq instruction? Assume 
that all instructions remain 32 bits long and any changes made to the instruction 
format of i-type instructions only increase/decrease the immediate field of the beq 
instruction.

2.26.5 [10] <2.6, 2.10> If the instruction set of the MIPS processor is modi-
fied, the instruction format must also be changed. For each of the  suggested 
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changes above, what is the impact on the range of addresses for a jump instruc-
tion? Assume that instructions remain 32 bits long and any changes made to the 
instruction format of J-type instructions only impact the address field of the 
jump instruction. 

2.26.6 [10] <2.6, 2.10> If the instruction set of the MIPS processor is modified, 
the instruction format must also be changed. For each of the suggested changes 
above, what is the impact on the range of addresses for a jump register instruction, 
assuming that each instruction must be 32 bits.

Exercise 2.27 
In the following problems, you will be exploring different addressing modes in the 
MIPS instruction set architecture. These different addressing modes are listed in 
the table below.

a. Base or Displacement Addressing

b. Pseudodirect Addressing 

2.27.1 [5] <2.10> In the table above are different addressing modes of the MIPS 
instruction set. Give an example MIPS instructios that shows the MIPS addressing 
mode.

2.27.2 [5] <2.10> For the instructions in 2.27.1, what is the instruction format 
type used for the given instruction?

2.27.3 [5] <2.10> List the benefits and drawbacks of a particular MIPS address-
ing mode. Write MIPS code that shows these benefits and drawbacks.

In the following problems, you will be using the MIPS assembly code as listed below 
to explore the trade-offs of the immediate field in the MIPS I-type instructions.

a. 0x00400000        beq  $s0, $0, FAR
... 
0x00403100 FAR:   addi $s0, $s0, 1

b. 0x00000100        j   AWAY
... 
0x04000010 AWAY:  addi $s0, $s0, 1

2.27.4 [15] <2.10> For the MIPS statements above, show the bit-level instruc-
tion representation of each of the instructions in hexadecimal.



2.27.5 [10] <2.10> By reducing the size of the immediate fields of the I-type 
and J-type instructions, we can save on the number of bits needed to represent 
these types of instructions. If the immediate field of I-type instructions were 8 bits 
and the immediate field of J-type instructions were 18 bits, rewrite the MIPS code 
above to reflect this change. Avoid using the lui instruction.

2.27.6 [5] <2.10> How many extra instructions are needed to do execute your 
code in 2.27.5 MIPS statements in the table versus the code shown in the table above? 

Exercise 2.28
The following table contains MIPS assembly code for a lock. Refer to the definition 
of the ll and sc pairs of MIPS instructions. 

a. try: MOV   R3,R4
     LL    R2,0(R2)
     ADDI  R2,R2, 1
     SC    R3,0(R1)
     BEQZ  R3,try
     MOV   R4,R2

2.28.1 [5] <2.11> For each test and fail of the store conditional, how many 
instructions need to be executed?

2.28.2 [5] <2.11> For the load locked/store conditional code above, explain why 
this code may fail.

2.28.3 [15] <2.11> Rewrite the code above so that the code may operate cor-
rectly. Be sure to avoid any race conditions.

Each entry in the following table has code and also shows the contents of various 
registers. The notation “($s1)” shows the contents of a memory location pointed 
to by register $s1. The assembly code in each table is executed in the cycle shown 
on parallel processors with a shared memory space.

a.

Processor 1 Processor 2 Cycle

Processor 1 Mem Processor 2

$t1 $t0 ($s1) $t1 $t0

0 1 2 99 30 40

ll $t1, 0($s1) 1

ll $t1, 0($s1) 2

sc $t0, 0($s1) 3

sc $t0, 0($s1) 4
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b.

Processor 1 Processor 2 Cycle

Processor 1 Mem Processor 2

$t1 $t0 ($s1) $t1 $t0

0 1 2 99 30 40

ll $t1,0($s1) 1

ll   $t1,0($s1) 2

addi $t1,$t1,1 3

sc   $t1,0($s1) 4

sc $t0,0($s1) 5

2.28.4 [5] <2.11> Fill out the table with the value of the registers for each given 
cycle. 

Exercise 2.29
The first three problems in this Exercise refer to a critical section of the form

lock(lk);
operation
unlock(lk);

where the “operation” updates the shared variable shvar using the local (non-
shared) variable x as follows:

Operation 

a. shvar=max(shvar,x);

b. 
if(shvar>0)
shvar=max(shvar,x);

2.29.1 [10] <2.11> Write the MIPS assembly code for this critical section, assum-
ing that the address of the lk variable is in $a0, the address of the shvar variable 
is in $a1, and the value of variable x is in $a2. Your critical section should not con-
tain any function calls, i.e., you should include the MIPS instructions for lock(), 
unlock(), max(), and min() operations. Use ll/sc instructions to implement 
the lock() operation, and the unlock() operation is simply an ordinary store 
instruction.

2.29.2 [10] <2.11> Repeat problem 2.29.1, but this time use ll/sc to per-
form an atomic update of the shvar variable directly, without using lock() and 
unlock(). Note that in this problem there is no variable lk.

2.29.3 [10] <2.11> Compare the best-case performance of your code from 2.29.1 
and 2.29.2, assuming that each instruction takes one cycle to execute. Note: best-case 



means that ll/sc always succeeds, the lock is always free when we want to lock(), 
and if there is a branch we take the path that completes the operation with fewer 
executed instructions.

2.29.4 [10] <2.11> Using your code from 2.29.2 as an example, explain what 
happens when two processors begin to execute this critical section at the same 
time, assuming that each processor executes exactly one instruction per cycle.

2.29.5 [10] <2.11> Explain why in your code from 2.29.2 register $a1 contains 
the address of variable shvar and not the value of that variable, and why register 
$a2 contains the value of variable x and not its address.

2.29.6 [10] <2.11> If we want to atomically perform the same operation on two 
shared variables (e.g., shvar1 and shvar2) in the same critical section, we can do 
this easily using the approach from 2.29.1 (simply put both updates between the 
lock operation and the corresponding unlock operation). Explain why we cannot 
do this using the approach from 2.29.2. i.e., why we cannot use ll/sc to access 
both shared variables in a way that guarantees that both updates are executed 
together as a single atomic operation.

Exercise 2.30
Assembler instructions are not a part of the MIPS instruction set, but often appear 
in MIPS programs. The table below contains some MIPS assembly instructions 
that get translated to actual MIPS instructions.

a. clear $t0

b. beq $t1, large, LOOP

2.30.1 [5] <2.12> For each assembly instruction in the table above, produce a 
minimal sequence of actual MIPS instructions to accomplish the same thing. You 
may need to use temporary registers in some cases. In the table large refers to a 
number that requires 32 bits to represent and small to a number that can fit into 
16 bits. 

The table below contains some MIPS assembly instructions that get translated to 
actual MIPS instructions.

a. bltu $s0, $t1, Loop

b. ulw $v0, v
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2.30.2 [5] <2.12> Does the instruction in the table above need to be edited dur-
ing the link phase? Why?

Exercise 2.31
The table below contains the link-level details of two different procedures. In this 
exercise, you will be taking the place of the linker.

a. Procedure A Procedure B 

Text 
Segment

Address Instruction Text 
Segment

Address Instruction

0 lbu $a0, 0($gp) 0 sw $a1, 0($gp) 

4 jal 0 4 jal 0

Data 
Segment

0 (X) Data 
Segment

0 (Y)

… … … …

Relocation 
Info

Address Instruction Type Dependency Relocation 
Info

Address Instruction Type Dependency

0 lbu X 0 sw Y

4 jal B 4 jal A

Symbol 
Table

Address Symbol Symbol 
Table

Address Symbol

— X — Y

— B — A

b. Procedure A Procedure B 

Text 
Segment

Address Instruction Text 
Segment

Address Instruction

0 lui $at, 0 0 sw $a0, 0($gp)

4 ori $a0, $at, 0 4 jmp 0

… … … … 

0x84  jr  $ra 0x180 jal 0

… … … …

Data 
Segment

0 (X) Data 
Segment

0 (Y)

… … … …

Relocation 
Info

Address Instruction Type Dependency Relocation 
Info

Address Instruction Type Dependency

0 lui X 0 sw Y

4 ori X 4 jmp FOO

0x180 jal A

Symbol 
Table

Address Symbol Symbol 
Table

Address Symbol

— X — Y

0x180 FOO

— A



2.31.1 [5] <2.12> Link the object files above to form the executable file header. 
Assume that Procedure A has a text size of 0x140 and data size of 0x40 and Pro-
cedure B has a text size of 0x300 and data size of 0x50. Also assume the memory 
allocation strategy as shown in Figure 2.13. 

2.31.2 [5] <2.12> What limitations, if any, are there on the size of an executable?

2.31.3 [5] <2.12> Given your understanding of the limitations of branch and 
jump instructions, why might an assembler have problems directly implementing 
branch and jump instructions an object file? 

Exercise 2.32 
The first three problems in this exercise assume that the function swap, instead of 
the code in Figure 2.24, is defined in C as follows:

a. void swap(int *p, int *q){
  int temp;
  temp=*p;
  *p=*q;
  *q=temp;
}

b. void swap(int *p, int *q){
  *p=*p+*q;
  *q=*p*q;
  *p=*p*q;
}

2.32.1 [10] <2.13> Translate this function into MIPS assembler code.

2.32.2 [5] <2.13> What needs to change in the sort function?

2.32.3 [5] <2.13> If we were sorting 8-bit bytes, not 32-bit words, how would 
your MIPS code for swap in 2.32.1 change?

For the remaining three problems in this Exercise, we assume that the sort func-
tion from Figure 2.27 is changed in the following way:

a. Use the swap function from the beginning of this exercise. 

b. Sort an array of n bytes instead of n words.

2.32.4 [5] <2.13> Does this change affect the code for saving and restoring reg-
isters in Figure 2.27?

2.32.5 [10] <2.13> When sorting a 10-element array that was already sorted, 
how many more (or fewer) instructions are executed as a result of this change?
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2.32.6 [10] <2.13> When sorting a 10-element array that was sorted in descend-
ing order (opposite of the order that sort() creates), how many more (or fewer) 
instructions are executed as a result of this change?

Exercise 2.33 
The problems in this Exercise refer to the following function, given as array code:

a. void copy(int a[], int b[], int n){
  int i;
  for(i=0;i!=n;i++)
  a[i]=b[i];
}

b. void shift(int a[], int n){
  int i;
  for(i=0;i!=n1;i++)
  a[i]=a[i+1];
}

2.33.1 [10] <2.14> Translate this function into MIPS assembly.

2.33.2 [10] <2.14> Convert this function into pointer-based code (in C).

2.33.3 [10] <2.14> Translate your pointer-based C code from 2.33.2 into MIPS 
assembly.

2.33.4 [5] <2.14> Compare the worst-case number of executed instructions 
per non-last loop iteration in your array-based code from 2.33.1 and your 
pointer-based code from 2.33.3. Note: the worst case occurs when branch con-
ditions are such that the longest path through the code is taken, i.e., if there 
is an if statement, the result of the condition check is such that the path with 
more instructions is taken. However, if the result of the condition check would 
cause the loop to exit, then we assume that the path that keeps us in the loop 
is taken.

2.33.5 [5] <2.14> Compare the number of temporary registers (t-registers) 
needed for your array-based code from 2.33.1 and for your pointer-based code 
from 2.33.3.

2.33.6 [5] <2.14> What would change in your answer from 2.33.4 if registers 
$t0–$t7 and $a0–$a3 in the MIPS calling convention were all callee-saved, just 
like $s0–$s7?



Exercise 2.34 
The table below contains ARM assembly code. In the following problems, you will 
translate ARM assembly code to MIPS.

a. ADD   r0, r1, r2     ;r0 = r1 + r2
ADC   r0, r1, r2     ;r0 = r1 + r2 + Carrybit

b. CMP   r0, #4         ;if (r0 != 4) { 
ADDNE r1, r1, r0     ;r1 += r0 }

2.34.1 [5] <2.16> For the table above, translate this ARM assembly code to MIPS 
assembly code. Assume that ARM registers r0, r1, and r2 hold the same values 
as MIPS registers $s0, $s1, and $s2, respectively. Use MIPS temporary registers 
($t0, etc.) where necessary.

2.34.2 [5] <2.16> For the ARM assembly instructions in the table above, show 
the bit fields that represent the ARM instructions.

The table below contains MIPS assembly code. In the following problems, you will 
translate MIPS assembly code to ARM.

a. nor $t0, #s0, 0
and $s1, $s1, $t0

b. sll $s1, $s2, 16
srl $s2, $s2, 16
or  $s1, $s1, $s2

2.34.3 [5] <2.16> For the table above, find the ARM assembly code that corre-
sponds to the sequence of MIPS assembly code.

2.34.4 [5] <2.16> Show the bit fields that represent the ARM assembly code.

Exercise 2.35 
The ARM processor has a few different addressing modes that are not supported in 
MIPS. The following problems explore these new addressing modes.

a.  LDR   r0,  [r1, #4]  ; r0 = memory[r1+4],   r1 += 4

b.  LDMIA r0!, {r1r3}   ; r1 = memory[r0],     r2 = memory[r0+4] 
                      ; r3 = memory[r0+8],   r0 += 3*4

2.35.1 [5] <2.16> Identify the type of addressing mode of the ARM assembly 
instructions in the table above.
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2.35.2 [5] <2.16> For the ARM assembly instructions above, write a sequence of 
MIPS assembly instructions to accomplish the same data transfer.

In the following problems, you will compare code written using the ARM and 
MIPS instruction sets. The following table shows code written in the ARM instruc-
tion set.

a.        MOV   r0, #10         ;init loop counter to 10
LOOP:  ADD   r0, r1          ;add r1 to r0
       SUBS  r0, 1           ;decrement counter
       BNE   LOOP            ;if Z=0 repeat loop

b.        ADD   r0, r1          ;r0 = r0 + r1  
       ADC   r2, r3          ;r2 = r2 + r3 + carry                   

2.35.3 [10] <2.16> For the ARM assembly code above, write an equivalent MIPS 
assembly code routine. 

2.35.4 [5] <2.16> What is the total number of ARM assembly instructions 
required to execute the code? What is the total number of MIPS assembly instruc-
tions required to execute the code? 

2.35.5 [5] <2.16> Assuming that the average CPI of the MIPS assembly routine 
is the same as the average CPI of the ARM assembly routine, and the MIPS proces-
sor has an operation frequency that is 1.5 times that of the ARM processor, how 
much faster is the ARM processor than the MIPS processor?

Exercise 2.36 
The ARM processor has an interesting way of supporting immediate constants. 
This exercise investigates those differences.

The following table contains ARM instructions.

a.  ADD, r3, r2, r1, LSR #4  ;r3 = r2 + (r1 >> 4)

b.  ADD, r3, r2, r2          ;r3 = r2 + r1

2.36.1 [5] <2.16> Write the equivalent MIPS code for the ARM assembly code above.

2.36.2 [5] <2.16> If the register R1 had the constant value of 8, rewrite your 
MIPS code to minimize the number of MIPS assembly instructions needed.

2.36.3 [5] <2.16> If the register R1 had the constant value of 0x06000000, rewrite 
your MIPS code to minimize the number of MIPS assembly instructions needed.



The following table contains MIPS instructions.

a. addi r3, r2, 0x2

b. addi r3, r2, –1

2.36.4 [5] <2.16> For the MIPS assembly code above, write the equivalent ARM 
assembly code.

Exercise 2.37 
This exercise explores the differences between the MIP and x86 instruction sets. 
The following table contains x86 assembly code.

a. START: mov  eax, 3 
       push eax 
       mov  eax, 4 
       mov  ecx, 4 
       add  eax, ecx 
       pop  ecx 
       add  eax, ecx

b. START: mov  ecx, 100
       mov  eax, 0
LOOP:  add  eax, ecx
       dec  ecx
       cmp  ecx, 0
       jne  LOOP
DONE:

2.37.1 [10] <2.17> Write pseudo code for the given routine.

2.37.2 [10] <2.17> For the code in the table above, what is the equivalent MIPS 
for the given routine?

The following table contains x86 assembly instructions.

a. push eax

b. test eax, 0x00200010

2.37.3 [5] <2.17> For each assembly instruction, show the size of each of the 
bit fields that represent the instruction. Treat the label MY_FUNCTION as a 32-bit 
constant.

2.37.4 [10] <2.17> Write equivalent MIPS assembly statements.
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Exercise 2.38 
The x86 instruction set includes the REP prefix that causes the instruction to be 
repeated a given number of times or until a condition is satisfied. Note that x86 
instructions refer to 8 bits as a byte, 16 bits as a word, and 32 bits as a double word. 
The first three problems in this Exercise refer to the following x86 instruction:

Instruction Interpretation 

a. REP MOVSW Repeat until ECX is zero: 
Mem16[EDI]=Mem16[ESI], EDI=EDI+2, ESI=ESI+2, ECX=ECX1

b. REPNE SCASB Repeat until ECX is zero: 
If Mem8[EDI] == AL then go to next instruction, 
otherwise EDI=EDI+1, ECX=ECI+1. Note: AL is the least
significant byte of the EAX register.

2.38.1 [5] <2.17> What would be a typical use for this instruction?

2.38.2 [5] <2.17> Write MIPS code that performs the same operation, assuming 
that $a0 corresponds to ECX, $a1 to EDI, $a2 to ESI, and $a3 to EAX.

2.38.3 [5] <2.17> If the x86 instruction takes one cycle to read memory, one 
cycle to write memory, and one cycle for each register update, and if MIPS takes 
one cycle per instruction, what is the speedup of using this x86 instruction instead 
of the equivalent MIPS code when ECX is very large? Assume that the clock cycle 
time for x86 and MIPS is the same.

The remaining three problems in this exercise refer to the following function, given 
in both C and x86 assembly. For each x86 instruction, we also show its length in the 
x86 variable-length instruction format and the interpretation (what the instruc-
tion does). Note that the x86 architecture has very few registers compared to MIPS, 
and as a result the x86 calling convention is to push all arguments onto the stack. 
The return value of an x86 function is passed back to the caller in the EAX register.

C Code x86 Code 

a. int f(int a, int b, int c, int d){ 
 if(a>b) 
  return c; 
 return d; 
}

f: push %ebp            ; 1B, push %ebp to stack 
   mov  %esp,%ebp       ; 2B, move %esp to %ebp 
   mov  12(%ebp),%eax   ; 3B, load 2nd arg into %eax
   cmp  %eax,8(%ebp)    ; 3B, compare %eax w/ 1st arg
   mov  16(%ebp),%edx   ; 3B, load 3rd arg into %edx
   jle  S               ; 2B, jump if cmp result is <= 
   pop  %ebp            ; 1B, restore %ebp 
   mov  %edx,%eax       ; 2B, move %edx into %eax 
   ret                  ; 1B, return 
S: mov  20(%ebp),%edx   ; 3B, load 4th arg into %edx
   pop  %ebp            ; 1B, restore %ebp 
   mov  %edx,%eax       ; 2B, move %edx into %eax 
   ret                  ; 1B, return



b. void f(int a[], int n){ 
  int i; 
for(i=0;i!=n;i++) 
  a[i]=0; 
}

f: push %ebp            ; 1B, push %ebp to stack 
   mov  %esp,%ebp       ; 2B, move %esp to %ebp 
   mov  12(%ebp),%edx   ; 3B, move 2nd arg into %edx
   mov  8(%ebp),%ecx    ; 3B, move 1st arg into %ecx
   test %edx,%edx       ; 2B, set flags based on %edx 
   jz   D               ; 2B, jump if %edx was 0 
   xor  %eax,%eax       ; 2B, zero into %eax 
L: movl 0,(%ecx,%eax,4) ; 7B, Mem[%ecx+4*%eax]=0 
   add  1,%eax          ; 3B, add 1 to %eax 
   cmp  %edx,%eax       ; 2B, compare %edx and %eax 
   jne  L               ; 2B, jump if cmp was != 
D: pop  %ebp            ; 1B, restore %ebp 
   ret                  ; 1B, return 
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2.38.4 [5] <2.17> Translate this function into MIPS assembly. Compare the size 
(how many bytes of instruction memory are needed) for this x86 code and for your 
MIPS code.

2.38.5 [5] <2.17> If the processor can execute two instructions per cycle, it must 
at least be able to read two consecutive instructions in each cycle. Explain how it 
would be done in MIPS and how it would be done in x86.

2.38.6 [5] <2.17> If each MIPS instruction takes one cycle, and if each x86 
instruction takes one cycle plus a cycle for each memory read or write it has to 
perform, what is the speedup of using x86 instead of MIPS? Assume that the clock 
cycle time is the same in both x86 and MIPS, and that the execution takes the short-
est possible path through the function (i.e., every loop is exited immediately and 
every if statement takes the direction that leads toward the return from the func-
tion). Note that the x86 ret instruction reads the return address from the stack.

Exercise 2.39
The CPI of the different instruction types is given in the following table.

 Arithmetic Load/Store Branch

a. 1 10 3

b. 4 40 3

2.39.1 [5] <2.18> Assume the following instruction breakdown given for execut-
ing a given program:

Instructions (in millions) 

Arithmetic 500

Load/Store 300

Branch 100

What is the execution time for the processor if the operation frequency is 5 GHz?
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2.39.2 [5] <2.18> Suppose that new, more powerful arithmetic instructions are 
added to the instruction set. On average, through the use of these more power-
ful arithmetic instructions, we can reduce the number of arithmetic instructions 
needed to execute a program by 25%, and the cost of increasing the clock cycle time 
by only 10%. Is this a good design choice? Why?

2.39.3 [5] <2.18> Suppose that we find a way to double the performance of 
arithmetic instructions. What is the overall speedup of our machine? What if we 
find a way to improve the performance of arithmetic instructions by 10 times?

The following table shows the proportions of instruction execution for the differ-
ent instruction types.

 Arithmetic Load/Store Branch

a. 70% 10% 20%

b. 50% 40% 10%

2.39.4 [5] <2.18> Given the instruction mix above and the assumption that an 
arithmetic instruction requires 2 cycles, a load/store instruction takes 6 cycles, and 
a branch instruction takes 3 cycles, find the average CPI.

2.39.5 [5] <2.18> For a 25% improvement in performance, how many cycles, on 
average, may an arithmetic instruction take if load/store and branch instructions 
are not improved at all? 

2.39.6 [5] <2.18> For a 50% improvement in performance, how many cycles, on 
average, may an arithmetic instruction take if load/store and branch instructions 
are not improved at all?

Exercise 2.40
The first three problems in this Exercise refer to the following function, given in 
MIPS assembly. Unfortunately, the programmer of this function has fallen prey to 
the pitfall of assuming that MIPS is a word-addressed machine, but in fact MIPS 
is byte-addressed.

a. ; int f(int *a, int n, int x);
f: move $v0,$0      ; ret=0
   move $t0,$a0     ; ptr=a
   add  $t1,$a1,$a0 ; &(a[n])
L: lw   $t2,0($t0)  ; read *p
   bne  $t2,$a2,S   ; if(*p==x)
   addi $v0,$v0,1   ;  ret++;
S: addi $t0,$t0,1   ; p=p+1
   bne  $t0,$t1,L   ; repeat if p!=&(a[n])
   jr   $ra         ; return ret



b. ; void f(int a[], int n);
f: move $t0,$0      ; i=0;
   addi $t1,$a1,1  ; n1
L: add $t2,$t0,$a0  ; address of a[i]
   lw  $t3,1($t2)   ; read a[i+1]
   sw  $t3,0($t2)   ; a[i]=a[i+1]
   addi $t0,$t0,1   ; i=i+1
   bne $t0,$t1,L    ; repeat if i!=n1
   jr $ra           ; return

Note that in MIPS assembly the “;” character denotes that the remainder of the line 
is a comment.

2.40.1 [5] <2.18> The MIPS architecture requires word-sized accesses (lw and 
sw) to be word-aligned, i.e., the lowermost 2 bits of the address must both be zero. 
If an address is not word-aligned, the processor raises a “bus error” exception. 
Explain how this alignment requirement affects the execution of this function.

2.40.2 [5] <2.18> If “a” was a pointer to the beginning of an array of 1-byte 
elements, and if we replaced lw and sw with lb (load byte) and sb (store byte), 
respectively, would this function be correct? Note: lb reads a byte from memory, 
sign-extends it, and places it into the destination register, while sb stores the least-
significant byte of the register into memory.

2.40.3 [5] <2.18> Change this code to make it correct for 32-bit integers.

The remaining three problems in this exercise refer to a program that allocates 
memory for an array, fills the array with some numbers, calls the sort function 
from Figure 2.27, and then prints out the array. The main function of the program 
is as follows (given as both C and MIPS code):

Main Code in C MIPS Version of the Main Code

main(){
  int *v;
  int n=5;
  v=my_alloc(5);
  my_init(v,n);
sort(v,n);
. 
. 
.

main: 
li    $s0,5 
move  $a0,$s0 
jal   my_alloc 
move  $s1,$v0 
move  $a0,$s1 
move  $a1,$s0 
jal   my_init 
move  $a0,$s1 
move  $a1,$s0 
jal   sort

The my_alloc function is defined as follows (given as both C and MIPS code). 
Note that the programmer of this function has fallen prey to the pitfall of 
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using a pointer to an automatic variable arr outside the function in which it 
is defined.

my_alloc in C MIPS Code for my_alloc

int *my_alloc(int n){
  int arr[n];
  return arr;
}

my_alloc: 
  addu   $sp,$sp,4  ; Push 
  sw     $fp,0($sp)  ; $fp to stack 
  move   $fp,$sp     ; Save $sp in $fp 
  sll    $t0,$a0,2   ; We need 4*n bytes 
  sub    $sp,$sp,$t0 ; Make room for arr 
  move   $v0,$sp     ; Return address of arr 
  move   $sp,$fp     ; Restore $sp from $fp 
  lw     $fp,0(sp)   ; Pop $fp 
  addiu  $sp,$sp,4   ; from stack 
  jr     ra

The my_init function is defined as follows (MIPS code):

a. my_init: 
   move   $t0,$0      ; i=0 
   move   $t1,$a0 
L: addi   $t2,$t0,10  
   sw     $t2,0($t1)  ; v[i]=i+10 
   addiu  $t1,$t1,4 
   addiu  $t0,$t0,1   ; i=i+1 
   bne    $t0,$a1,L   ; until i==n 
   jr     $ra 

b. my_init: 
   move   $t0,$0      ; i=0
   move   $t1,$a0
L: sll    $t2,$t0,1
   addi   $t2,$t2,100
   sw     $t2,0($t1)  ; a[i]=100+2*i;
   addiu  $t1,$t1,4
   addiu  $t0,$t0,1   ; i=i+1
   bne    $t0,$a1,L   ; until i==n
   jr     $ra

2.40.4 [5] <2.18> What are the contents (values of all five elements) of array v 
right before the “jal sort” instruction in the main code is executed?

2.40.5 [15] <2.18, 2.13> What are the contents of array v right before the sort 
function enters its outer loop for the first time? Assume that registers $sp, $s0, 
$s1, $s2, and $s3 have values of 0x1000, 20, 40, 7, and 1, respectively, at the begin-
ning of the main code (right before “li $s0, 5” is executed).

2.40.6 [10] <2.18, 2.13> What are the contents of the 5-element array pointed by 
v right after “jal sort” returns to the main code?



§2.2, page 80: MIPS, C, Java
§2.3, page 87: 2) Very slow
§2.4, page 93: 3) –8ten
§2.5, page 101: 4) sub $s2, $s0, $s1
§2.6, page 105: Both. AND with a mask pattern of 1s will leaves 0s everywhere but 
the desired field. Shifting left by the right amount removes the bits from the left of 
the field. Shifting right by the appropriate amount puts the field into the right most 
bits of the word, with 0s in the rest of the word. Note that AND leaves the field 
where it was originally, and the shift pair moves the field into the rightmost part 
of the word.
§2.7, page 111: I. All are true. II. 1).
§2.8, page 122: Both are true.
§2.9, page 127: I. 2) II. 3)
§2.10, page 136: I. 4) +-128K. II. 6) a block of 256M. III. 4) sll
§2.11, page 139: Both are true.
§2.12, page 148: 4) Machine independence.

Answers to  
Check Yourself
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 3.1 Introduction

Computer words are composed of bits; thus, words can be represented as binary 
numbers. Chapter 2 shows that integers can be represented either in decimal 
or binary form, but what about the other numbers that commonly occur? For 
example:

 ■ What about fractions and other real numbers?

 ■ What happens if an operation creates a number bigger than can be 
represented?

 ■ And underlying these questions is a mystery: How does hardware really 
multiply or divide numbers? 

The goal of this chapter is to unravel these mysteries including representation of 
real numbers, arithmetic algorithms, hardware that follows these algorithms, and 
the implications of all this for instruction sets. These insights may explain quirks 
that you have already encountered with computers. 

 3.2 Addition and Subtraction

Addition is just what you would expect in computers. Digits are added bit by bit 
from right to left, with carries passed to the next digit to the left, just as you would 
do by hand. Subtraction uses addition: the appropriate operand is simply negated 
before being added.

Binary Addition and Subtraction

Let’s try adding 6ten to 7ten in binary and then subtracting 6ten from 7ten in 
binary.

	 0000	0000	0000	0000	0000	0000	0000	0111two	=	7ten

	+	 0000	0000	0000	0000	0000	0000	0000	0110two	=	6ten
	=	 0000	0000	0000	0000	0000	0000	0000	1101two	=	13ten

The 4 bits to the right have all the action; Figure 3.1 shows the sums and carries. 
The carries are shown in parentheses, with the arrows showing how they are 
passed.

Subtraction: Addition’s 
Tricky Pal

No. 10, Top Ten Courses 
for Athletes at a Football 
Factory, David Letterman 
et al., Book of Top Ten 
Lists, 1990

EXAMPLE



 3.2 Addition and Subtraction 225

Subtracting 6ten from 7ten can be done directly:

	 0000	0000	0000	0000	0000	0000	0000	0111two	=	7ten
–	 0000	0000	0000	0000	0000	0000	0000	0110two	=	6ten

=	 0000	0000	0000	0000	0000	0000	0000	0001two	=	1ten

or via addition using the two’s complement representation of -6:

	 0000	0000	0000	0000	0000	0000	0000	0111two	=	7ten
+	 1111	1111	1111	1111	1111	1111	1111	1010two	=	–6ten

=	 0000	0000	0000	0000	0000	0000	0000	0001two	=	1ten

ANSWER

Recall that overflow occurs when the result from an operation cannot be 
represented with the available hardware, in this case a 32-bit word. When can 
overflow occur in addition? When adding operands with different signs, overflow 
cannot occur. The reason is the sum must be no larger than one of the operands. 
For example, -10 + 4 = -6. Since the operands fit in 32 bits and the sum is no larger 
than an operand, the sum must fit in 32 bits as well. Therefore, no overflow can 
occur when adding positive and negative operands.

There are similar restrictions to the occurrence of overflow during subtract, but 
it’s just the opposite principle: when the signs of the operands are the same, overflow 
cannot occur. To see this, remember that x - y = x + (-y) because we subtract by 
negating the second operand and then add. Therefore, when we subtract operands 
of the same sign we end up by adding operands of different signs. From the prior 
paragraph, we know that overflow cannot occur in this case either.

Knowing when overflow cannot occur in addition and subtraction is all well and 
good, but how do we detect it when it does occur? Clearly, adding or subtracting 
two 32-bit numbers can yield a result that needs 33 bits to be fully expressed.  

FIGURE 3.1 Binary addition, showing carries from right to left. The rightmost bit adds 
1 to 0, resulting in the sum of this bit being 1 and the carry out from this bit being 0. Hence, the operation 
for the second digit to the right is 0 + 1 + 1. This generates a 0 for this sum bit and a carry out of 1. 
The third digit is the sum of 1 + 1 + 1, resulting in a carry out of 1 and a sum bit of 1. The fourth bit is 
1 + 0 + 0, yielding a 1 sum and no carry. 

(0)
0
0
0 (0)

(0)
0
0
0 (0)

(1)
0
0
1 (1)

(1)
1
1
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(0)
1
1
0 (0)
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. . .

. . .
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The lack of a 33rd bit means that when overflow occurs, the sign bit is set with the 
value of the result instead of the proper sign of the result. Since we need just one 
extra bit, only the sign bit can be wrong. Hence, overflow occurs when adding two 
positive numbers and the sum is negative, or vice versa. This means a carry out 
occurred into the sign bit.

Overflow occurs in subtraction when we subtract a negative number from a 
positive number and get a negative result, or when we subtract a positive number 
from a negative number and get a positive result. This means a borrow occurred 
from the sign bit. Figure 3.2 shows the combination of operations, operands, and 
results that indicate an overflow. 

We have just seen how to detect overflow for two’s complement numbers in 
a computer. What about overflow with unsigned integers? Unsigned integers are 
commonly used for memory addresses where overflows are ignored.

The computer designer must therefore provide a way to ignore overflow in 
some cases and to recognize it in others. The MIPS solution is to have two kinds of 
arithmetic instructions to recognize the two choices:

 ■ Add (add), add immediate (addi), and subtract (sub) cause exceptions on 
overflow.

 ■ Add unsigned (addu), add immediate unsigned (addiu), and subtract 
unsigned (subu) do not cause exceptions on overflow.

Because C ignores overflows, the MIPS C compilers will always generate the 
unsigned versions of the arithmetic instructions addu, addiu, and subu, no 
matter what the type of the variables. The MIPS Fortran compilers, however, pick 
the appropriate arithmetic instructions, depending on the type of the operands.

Operation Operand A Operand B
Result 

indicating overflow

A + B ≥ 0 ≥ 0 < 0

A + B < 0 < 0 ≥ 0
A – B ≥ 0 < 0 < 0

A – B < 0 ≥ 0 ≥ 0

FIGURE 3.2 Overflow conditions for addition and subtraction. 

 Appendix C describes the hardware that performs addition and subtraction, 
which is called an Arithmetic Logic Unit or ALU.

Arithmetic Logic Unit 
(ALU) Hardware that 
performs addition, 
subtraction, and usually 
logical operations such as 
AND and OR.
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The computer designer must decide how to handle arithmetic overflows. Although 
some languages like C and Java ignore integer overflow, languages like Ada and 
Fortran require that the program be notified. The programmer or the programming 
environment must then decide what to do when overflow occurs. 

MIPS detects overflow with an exception, also called an interrupt on many 
computers. An exception or interrupt is essentially an unscheduled procedure 
call. The address of the instruction that overflowed is saved in a register, and the 
computer jumps to a predefined address to invoke the appropriate routine for that 
exception. The interrupted address is saved so that in some situations the program 
can continue after corrective code is executed. (Section 4.9 covers exceptions in 
more detail; Chapters 5 and 6 describe other situations where exceptions and 
interrupts occur.)

MIPS includes a register called the exception program counter (EPC) to contain 
the address of the instruction that caused the exception. The instruction move from 
system control (mfc0) is used to copy EPC into a general-purpose register so that 
MIPS software has the option of returning to the offending instruction via a jump 
register instruction.

Arithmetic for Multimedia
Since every desktop microprocessor by definition has its own graphical displays, 
as transistor budgets increased it was inevitable that support would be added for 
graphics operations. 

Many graphics systems originally used 8 bits to represent each of the three 
primary colors plus 8 bits for a location of a pixel. The addition of speakers and 
microphones for teleconferencing and video games suggested support of sound as 
well. Audio samples need more than 8 bits of precision, but 16 bits are sufficient. 

Every microprocessor has special support so that bytes and halfwords take up 
less space when stored in memory (see Section 2.9), but due to the infrequency 
of arithmetic operations on these data sizes in typical integer programs, there is 
little support beyond data transfers. Architects recognized that many graphics 
and audio applications would perform the same operation on vectors of this 
data. By partitioning the carry chains within a 64-bit adder, a processor could 
perform simultaneous operations on short vectors of eight 8-bit operands, four 
16-bit operands, or two 32-bit operands. The cost of such partitioned adders was 
small. These extensions have been called vector or SIMD, for single instruction, 
multiple data (see Section 2.17 and Chapter 7). 

One feature not generally found in general-purpose microprocessors is saturating 
operations. Saturation means that when a calculation overflows, the result is set 

Hardware/ 
Software 
Interface
exception Also 
called interrupt. An 
unscheduled event 
that disrupts program 
execution; used to detect 
overflow.

interrupt An exception 
that comes from outside 
of the processor. (Some 
architectures use the 
term interrupt for all 
exceptions.)
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to the largest positive number or most negative number, rather than a modulo 
calculation as in two’s complement arithmetic. Saturation is likely what you want 
for media operations. For example, the volume knob on a radio set would be 
frustrating if, as you turned, it would get continuously louder for a while and then 
immediately very soft. A knob with saturation would stop at the highest volume no 
matter how far you turned it. Figure 3.3 shows arithmetic and logical operations 
found in many multimedia extensions to modern instruction sets.

Instruction category Operands

Unsigned add/subtract Eight 8-bit or Four 16-bit

Saturating add/subtract Eight 8-bit or Four 16-bit

Max/min/minimum Eight 8-bit or Four 16-bit

Average Eight 8-bit or Four 16-bit 

Shift right/left Eight 8-bit or Four 16-bit

FIGURE 3.3 Summary of multimedia support for  
desktop computers. 

Elaboration: MIPS can trap on overflow, but unlike many other computers, there is 
no conditional branch to test overflow. A sequence of MIPS instructions can discover 
overflow. For signed addition, the sequence is the following (see the Elaboration on 
page 104 in Chapter 2 for a description of the xor instruction):

addu	$t0,	$t1,	$t2	#	$t0	=	sum,	but	don’t	trap	
xor		$t3,	$t1,	$t2	#	Check	if	signs	differ	
slt		$t3,	$t3,	$zero	#	$t3	=	1	if	signs	differ	
bne		$t3,	$zero,	No_overflow	#	$t1,	$t2	signs	≠,	
																												#	so	no	overflow	
xor		$t3,	$t0,	$t1	#	signs	=;	sign	of	sum	match	too?	
																			#	$t3	negative	if	sum	sign	different	
slt		$t3,	$t3,	$zero	#	$t3	=	1	if	sum	sign	different	
bne		$t3,	$zero,	Overflow	#	All	3	signs	≠;	go	to	overflow

For unsigned addition ($t0 = $t1 + $t2), the test is

addu	$t0,	$t1,	$t2				#	$t0	=	sum	
nor		$t3,	$t1,	$zero		#	$t3	=	NOT	$t1		
																						#	(2’s	comp	–	1:	232	–	$t1	–	1)
sltu	$t3,	$t3,	$t2				#	(232	–	$t1	–	1)	<	$t2	
	 #	⇒	232	–	1	<	$t1	+	$t2
bne	$t3,$zero,Overflow	#	if(232–1<$t1+$t2)	goto	overflow
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Summary
A major point of this section is that, independent of the representation, the finite 
word size of computers means that arithmetic operations can create results that 
are too large to fit in this fixed word size. It’s easy to detect overflow in unsigned 
numbers, although these are almost always ignored because programs don’t want to 
detect overflow for address arithmetic, the most common use of natural numbers. 
Two’s complement presents a greater challenge, yet some software systems require 
detection of overflow, so today all computers have a way to detect it. 

The rising popularity of multimedia applications led to arithmetic instructions 
that support narrower operations that can easily operate in parallel.

Some programming languages allow two’s complement integer arithmetic on 
variables declared byte and half. What MIPS instructions would be used?

1. Load with lbu, lhu; arithmetic with add, sub, mult, div; then store using 
sb, sh.

2. Load with lb, lh; arithmetic with add, sub, mult, div; then store using 
sb, sh.

3. Load with lb, lh; arithmetic with add, sub, mult, div, using AND to mask 
result to 8 or 16 bits after each operation; then store using sb, sh.

Elaboration:  In the preceding text, we said that you copy EPC into a register via mfc0 and 
then return to the interrupted code via jump register. This leads to an interesting question: 
since you must first transfer EPC to a register to use with jump register, how can jump 
register return to the interrupted code and restore the original values of all registers? Either 
you restore the old registers first, thereby destroying your return address from EPC, which 
you placed in a register for use in jump register, or you restore all registers but the one with 
the return address so that you can jump—meaning an exception would result in changing 
that one register at any time during program execution! Neither option is satisfactory. 

To rescue the hardware from this dilemma, MIPS programmers agreed to reserve 
registers $k0 and $k1 for the operating system; these registers are not restored on 
exceptions. Just as the MIPS compilers avoid using register $at so that the assembler 
can use it as a temporary register (see Hardware/Software Interface in Section 2.10), 
compilers also abstain from using registers $k0 and $k1 to make them available for the 
operating system. Exception routines place the return address in one of these registers 
and then use jump register to restore the instruction address.

Elaboration: The speed of addition is increased by determining the carry in to the 
high-order bits sooner. There are a variety of schemes to anticipate the carry so that 
the worst-case scenario is a function of the log   2 of the number of bits in the adder. 
These anticipatory signals are faster because they go through fewer gates in sequence, 
but it takes many more gates to anticipate the proper carry. The most popular is carry 
lookahead, which Section C.6 in  Appendix C on the CD describes.

Check  
Yourself
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 3.3 Multiplication

Now that we have completed the explanation of addition and subtraction, we are 
ready to build the more vexing operation of multiplication.

First, let’s review the multiplication of decimal numbers in longhand to remind 
ourselves of the steps of multiplication and the names of the operands. For reasons 
that will become clear shortly, we limit this decimal example to using only the 
digits 0 and 1. Multiplying 1000ten by 1001ten:

Multiplication is 
vexation, Division is 
as bad; The rule of 
three doth puzzle me, 
And practice drives 
me mad.

Anonymous, 
Elizabethan manuscript, 
1570

Multiplicand 1000ten
Multiplier x	 1001ten
 1000
 0000
 0000

	 1000
Product 1001000ten

The first operand is called the multiplicand and the second the multiplier. 
The final result is called the product. As you may recall, the algorithm learned in 
grammar school is to take the digits of the multiplier one at a time from right to 
left, multiplying the multiplicand by the single digit of the multiplier, and shifting 
the intermediate product one digit to the left of the earlier intermediate products. 

The first observation is that the number of digits in the product is considerably 
larger than the number in either the multiplicand or the multiplier. In fact, if we 
ignore the sign bits, the length of the multiplication of an n-bit multiplicand and 
an m-bit multiplier is a product that is n + m bits long. That is, n + m bits are 
required to represent all possible products. Hence, like add, multiply must cope with 
overflow because we frequently want a 32-bit product as the result of multiplying 
two 32-bit numbers.

In this example, we restricted the decimal digits to 0 and 1. With only two 
choices, each step of the multiplication is simple: 

1. Just place a copy of the multiplicand (1 × multiplicand) in the proper place 
if the multiplier digit is a 1, or 

2. Place 0 (0 × multiplicand) in the proper place if the digit is 0. 

Although the decimal example above happens to use only 0 and 1, multiplication 
of binary numbers must always use 0 and 1, and thus always offers only these two 
choices.



Now that we have reviewed the basics of multiplication, the traditional next 
step is to provide the highly optimized multiply hardware. We break with tradition 
in the belief that you will gain a better understanding by seeing the evolution of 
the multiply hardware and algorithm through multiple generations. For now, let’s 
assume that we are multiplying only positive numbers.

Sequential Version of the Multiplication Algorithm  
and Hardware
This design mimics the algorithm we learned in grammar school; Figure 3.4 shows 
the hardware. We have drawn the hardware so that data flows from top to bottom 
to resemble more closely the paper-and-pencil method. 

Let’s assume that the multiplier is in the 32-bit Multiplier register and that the 
64-bit Product register is initialized to 0. From the paper-and-pencil example 
above, it’s clear that we will need to move the multiplicand left one digit each step, 
as it may be added to the intermediate products. Over 32 steps, a 32-bit multipli-
cand would move 32 bits to the left. Hence, we need a 64-bit Multiplicand register, 
initialized with the 32-bit multiplicand in the right half and zero in the left half. 
This register is then shifted left 1 bit each step to align the multiplicand with the 
sum being accumulated in the 64-bit Product register.

Figure 3.5 shows the three basic steps needed for each bit. The least significant 
bit of the multiplier (Multiplier0) determines whether the multiplicand is added to 

FIGURE 3.4 First version of the multiplication hardware. The Multiplicand register, ALU, and 
Product register are all 64 bits wide, with only the Multiplier register containing 32 bits. (

 
Appendix C 

describes ALUs.) The 32-bit multiplicand starts in the right half of the Multiplicand register and is shifted 
left 1 bit on each step. The multiplier is shifted in the opposite direction at each step. The algorithm starts 
with the product initialized to 0. Control decides when to shift the Multiplicand and Multiplier registers and 
when to write new values into the Product register. 

Multiplicand
Shift left

64 bits

64-bit ALU

Product
Write

64 bits

Control test

Multiplier
Shift right

32 bits
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the Product register. The left shift in step 2 has the effect of moving the intermediate 
operands to the left, just as when multiplying with paper and pencil. The shift 
right in step 3 gives us the next bit of the multiplier to examine in the following 
iteration. These three steps are repeated 32 times to obtain the product. If each step 
took a clock cycle, this algorithm would require almost 100 clock cycles to multiply 

FIGURE 3.5 The first multiplication algorithm, using the hardware shown in Figure 3.4. If the 
least significant bit of the multiplier is 1, add the multiplicand to the product. If not, go to the next step. Shift 
the multiplicand left and the multiplier right in the next two steps. These three steps are repeated 32 times. 

32nd repetition?

1a.  Add multiplicand to product and
place the result in Product register

Multiplier0 = 01.  Test
Multiplier0

Start

Multiplier0 = 1

2.  Shift the Multiplicand register left 1 bit

3.  Shift the Multiplier register right 1 bit

No: < 32 repetitions

Yes: 32 repetitions

Done



two 32-bit numbers. The relative importance of arithmetic operations like multiply 
varies with the program, but addition and subtraction may be anywhere from 5 to 
100 times more popular than multiply. Accordingly, in many applications, multiply 
can take multiple clock cycles without significantly affecting performance. Yet 
Amdahl’s law (see Section 1.8) reminds us that even a moderate frequency for a 
slow operation can limit performance.

This algorithm and hardware are easily refined to take 1 clock cycle per step. 
The speed-up comes from performing the operations in parallel: the multiplier 
and multiplicand are shifted while the multiplicand is added to the product if the 
multiplier bit is a 1. The hardware just has to ensure that it tests the right bit of 
the multiplier and gets the preshifted version of the multiplicand. The hardware is 
usually further optimized to halve the width of the adder and registers by noticing 
where there are unused portions of registers and adders. Figure 3.6 shows the 
revised hardware.

Replacing arithmetic by shifts can also occur when multiplying by constants. Some 
compilers replace multiplies by short constants with a series of shifts and adds. 
Because one bit to the left represents a number twice as large in base 2, shifting 
the bits left has the same effect as multiplying by a power of 2. As mentioned in 
Chapter 2, almost every compiler will perform the strength reduction optimization 
of substituting a left shift for a multiply by a power of 2.

Hardware/ 
Software 
Interface

FIGURE 3.6 Refined version of the multiplication hardware. Compare with the first version in 
Figure 3.4. The Multiplicand register, ALU, and Multiplier register are all 32 bits wide, with only the Product 
register left at 64 bits. Now the product is shifted right. The separate Multiplier register also disappeared. The 
multiplier is placed instead in the right half of the Product register. These changes are highlighted in color. 
(The Product register should really be 65 bits to hold the carry out of the adder, but it’s shown here as 64 bits 
to highlight the evolution from Figure 3.4.) 

Multiplicand

32 bits

32-bit ALU

Product
Write

64 bits

Control
test

Shift right
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A Multiply Algorithm

Using 4-bit numbers to save space, multiply 2ten × 3ten, or 0010two × 0011two. 

Figure 3.7 shows the value of each register for each of the steps labeled 
according to Figure 3.5, with the final value of 0000 0110two or 6ten. Color is 
used to indicate the register values that change on that step, and the bit circled 
is the one examined to determine the operation of the next step.

Signed Multiplication
So far, we have dealt with positive numbers. The easiest way to understand how 
to deal with signed numbers is to first convert the multiplier and multiplicand to 
positive numbers and then remember the original signs. The algorithms should 
then be run for 31 iterations, leaving the signs out of the calculation. As we learned 
in grammar school, we need negate the product only if the original signs disagree.

It turns out that the last algorithm will work for signed numbers, provided that 
we remember that we are dealing with numbers that have infinite digits, and we are 
only representing them with 32 bits. Hence, the shifting steps would need to extend 
the sign of the product for signed numbers. When the algorithm completes, the 
lower word would have the 32-bit product.

EXAMPLE

ANSWER

Iteration Step Multiplier Multiplicand Product

0  Initial values 0011 0000 0010 0000 0000
1 1a: 1 ⇒	Prod = Prod + Mcand 0011 0000 0010 0000 0010

2: Shift left Multiplicand 0011 0000 0100 0000 0010
3: Shift right Multiplier 0001 0000 0100 0000 0010

2 1a: 1 ⇒ Prod = Prod + Mcand 0001 0000 0100 0000 0110

2: Shift left Multiplicand 0001 0000 1000 0000 0110
3: Shift right Multiplier 0000 0000 1000 0000 0110

3 1: 0 ⇒	No operation 0000 0000 1000 0000 0110
2: Shift left Multiplicand 0000 0001 0000 0000 0110
3: Shift right Multiplier 0000 0001 0000 0000 0110

4 1: 0 ⇒	No operation 0000 0001 0000 0000 0110
2: Shift left Multiplicand 0000 0010 0000 0000 0110
3: Shift right Multiplier 0000 0010 0000 0000 0110

FIGURE 3.7 Multiply example using algorithm in Figure 3.5. The bit examined to determine the 
next step is circled in color. 



Faster Multiplication
Moore’s law has provided so much more in resources that hardware designers can 
now build much faster multiplication hardware. Whether the multiplicand is to be 
added or not is known at the beginning of the multiplication by looking at each of 
the 32 multiplier bits. Faster multiplications are possible by essentially providing 
one 32-bit adder for each bit of the multiplier: one input is the multiplicand ANDed 
with a multiplier bit, and the other is the output of a prior adder. 

A straightforward approach would be to connect the outputs of adders on the 
right to the inputs of adders on the left, making a stack of adders 32 high. An 
alternative way to organize these 32 additions is in a parallel tree, as Figure 3.8 
shows. Instead of waiting for 32 add times, we wait just the log2 (32) or five 32-bit 
add times. Figure 3.8 shows how this is a faster way to connect them.

In fact, multiply can go even faster than five add times because of the use of 
carry save adders (see Section C.6 in 

 
Appendix C) and because it is easy to 

pipeline such a design to be able to support many multiplies simultaneously (see 
Chapter 4).

Multiply in MIPS
MIPS provides a separate pair of 32-bit registers to contain the 64-bit product, 
called Hi and Lo. To produce a properly signed or unsigned product, MIPS has 
two instructions: multiply (mult) and multiply unsigned (multu). To fetch the 
integer 32-bit product, the programmer uses move from lo (mflo). The MIPS 
assembler generates a pseudoinstruction for multiply that specifies three general-
purpose registers, generating mflo and mfhi instructions to place the product into 
registers.

Summary
Multiplication hardware is simply shifts and add, derived from the paper-and-
pencil method learned in grammar school. Compilers even use shift instructions 
for multiplications by powers of 2.

Both MIPS multiply instructions ignore overflow, so it is up to the software to 
check to see if the product is too big to fit in 32 bits. There is no overflow if Hi is 
0 for multu or the replicated sign of Lo for mult. The instruction move from hi 
(mfhi) can be used to transfer Hi to a general-purpose register to test for overflow.

Hardware/ 
Software 
Interface
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 3.4 Division

The reciprocal operation of multiply is divide, an operation that is even less frequent 
and even more quirky. It even offers the opportunity to perform a mathematically 
invalid operation: dividing by 0.

Let’s start with an example of long division using decimal numbers to recall the 
names of the operands and the grammar school division algorithm. For reasons 
similar to those in the previous section, we limit the decimal digits to just 0 or 1. 
The example is dividing 1,001,010ten by 1000ten:

 1001ten Quotient 

 Divisor 1000ten 1001010ten Dividend
 -1000
 10
 101
 1010
 -1000
 10ten Remainder

Divide et impera.

Latin for “Divide and 
rule,” ancient political 
maxim cited by 
Machiavelli, 1532

FIGURE 3.8 Fast multiplication hardware. Rather than use a single 32-bit adder 31 times, this hardware “unrolls the loop” to use 31 
adders and then organizes them to minimize delay. 

Product1 Product0Product63 Product62 Product47..16
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Divide’s two operands, called the dividend and divisor, and the result, called 
the quotient, are accompanied by a second result, called the remainder. Here is 
another way to express the relationship between the components:

Dividend = Quotient × Divisor + Remainder

where the remainder is smaller than the divisor. Infrequently, programs use the 
divide instruction just to get the remainder, ignoring the quotient.

The basic grammar school division algorithm tries to see how big a number 
can be subtracted, creating a digit of the quotient on each attempt. Our carefully 
selected decimal example uses only the numbers 0 and 1, so it’s easy to figure out 
how many times the divisor goes into the portion of the dividend: it’s either 0 times 
or 1 time. Binary numbers contain only 0 or 1, so binary division is restricted to 
these two choices, thereby simplifying binary division.

Let’s assume that both the dividend and the divisor are positive and hence the 
quotient and the remainder are nonnegative. The division operands and both 
results are 32-bit values, and we will ignore the sign for now. 

A Division Algorithm and Hardware
Figure 3.9 shows hardware to mimic our grammar school algorithm. We start with 
the 32-bit Quotient register set to 0. Each iteration of the algorithm needs to move 
the divisor to the right one digit, so we start with the divisor placed in the left half 
of the 64-bit Divisor register and shift it right 1 bit each step to align it with the 
dividend. The Remainder register is initialized with the dividend.

dividend A number 
being divided.

divisor A number that 
the dividend is divided by.

quotient The primary 
result of a division; 
a number that when 
multiplied by the 
divisor and added to the 
remainder produces the 
dividend.

remainder The secondary 
result of a division; a 
number that when added 
to the product of the 
quotient and the divisor 
produces the dividend.

FIGURE 3.9 First version of the division hardware. The Divisor register, ALU, and Remainder 
register are all 64 bits wide, with only the Quotient register being 32 bits. The 32-bit divisor starts in the 
left half of the Divisor register and is shifted right 1 bit each iteration. The remainder is initialized with 
the dividend. Control decides when to shift the Divisor and Quotient registers and when to write the new 
value into the Remainder register. 

Divisor
Shift right

64 bits

64-bit ALU

Remainder
Write

64 bits

Control
test

Quotient
Shift left

32 bits
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33rd repetition?

.  Shift the Quotient register to the left,
setting the new rightmost bit to 1

Remainder < 0Remainder ≥ 0
Test Remainder

Start

3.  Shift the Divisor register right 1 bit

No: < 33 repetitions

Yes: 33 repetitions

Done

1.  Subtract the Divisor register from the
Remainder register and place the 

result in the Remainder register

2b.  Restore the original value by adding
the Divisor register to the Remainder
register and placing the sum in the
Remainder register. Also shift the

Quotient register to the left, setting the
new least significant bit to 0

2a

FIGURE 3.10 A division algorithm, using the hardware in Figure 3.9. If the remainder is 
positive, the divisor did go into the dividend, so step 2a generates a 1 in the quotient. A negative remainder 
after step 1 means that the divisor did not go into the dividend, so step 2b generates a 0 in the quotient and 
adds the divisor to the remainder, thereby reversing the subtraction of step 1. The final shift, in step 3, aligns 
the divisor properly, relative to the dividend for the next iteration. These steps are repeated 33 times. 



Figure 3.10 shows three steps of the first division algorithm. Unlike a human, 
the computer isn’t smart enough to know in advance whether the divisor is smaller 
than the dividend. It must first subtract the divisor in step 1; remember that this is 
how we performed the comparison in the set on less than instruction. If the result 
is positive, the divisor was smaller or equal to the dividend, so we generate a 1 in 
the quotient (step 2a). If the result is negative, the next step is to restore the original 
value by adding the divisor back to the remainder and generate a 0 in the quotient 
(step 2b). The divisor is shifted right and then we iterate again. The remainder 
and quotient will be found in their namesake registers after the iterations are 
complete.

A Divide Algorithm

Using a 4-bit version of the algorithm to save pages, let’s try dividing 7ten by 
2ten, or 0000 0111two by 0010two.

Figure 3.11 shows the value of each register for each of the steps, with the 
quotient being 3ten and the remainder 1ten. Notice that the test in step 2 of 
whether the remainder is positive or negative simply tests whether the sign 
bit of the Remainder register is a 0 or 1. The surprising requirement of this 
algorithm is that it takes n + 1 steps to get the proper quotient and remainder.

This algorithm and hardware can be refined to be faster and cheaper. The speed-
up comes from shifting the operands and the quotient simultaneously with the 
subtraction. This refinement halves the width of the adder and registers by  noticing 
where there are unused portions of registers and adders. Figure 3.12 shows the 
revised hardware. 

Signed Division
So far, we have ignored signed numbers in division. The simplest solution is to 
remember the signs of the divisor and dividend and then negate the quotient if the 
signs disagree.

Elaboration: The one complication of signed division is that we must also set the 
sign of the remainder. Remember that the following equation must always hold:

Dividend = Quotient × Divisor + Remainder

To understand how to set the sign of the remainder, let’s look at the example of 
dividing all the combinations of ±7ten by ±2ten. The first case is easy:

+7 ÷ +2: Quotient = +3, Remainder = +1

EXAMPLE

ANSWER
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Checking the results:

7 = 3 × 2 + (+1) = 6 + 1

If we change the sign of the dividend, the quotient must change as well:

–7 ÷ +2: Quotient = –3

Iteration Step Quotient Divisor Remainder

0 Initial values 0000 0010 0000 0000 0111

1

1: Rem = Rem – Div 0000 0010 0000 1110 0111

2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0 0000 0010 0000 0000 0111

3: Shift Div right 0000 0001 0000 0000 0111

2

1: Rem = Rem – Div 0000 0001 0000 1111 0111

2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0 0000 0001 0000 0000 0111
3: Shift Div right 0000 0000 1000 0000 0111

3

1: Rem = Rem – Div 0000 0000 1000 1111 1111

2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0 0000 0000 1000 0000 0111
3: Shift Div right 0000 0000 0100 0000 0111

4

1: Rem = Rem – Div 0000 0000 0100 0000 0011

2a: Rem ≥ 0 ⇒ sll Q, Q0 = 1 0001 0000 0100 0000 0011
3: Shift Div right 0001 0000 0010 0000 0011

5

1: Rem = Rem – Div 0001 0000 0010 0000 0001

2a: Rem ≥ 0 ⇒ sll Q, Q0 = 1 0011 0000 0010 0000 0001
3: Shift Div right 0011 0000 0001 0000 0001

FIGURE 3.11 Division example using the algorithm in Figure 3.10. The bit examined to 
determine the next step is circled in color. 

FIGURE 3.12 An improved version of the division hardware. The Divisor register, ALU, and 
Quotient register are all 32 bits wide, with only the Remainder register left at 64 bits. Compared to Figure 3.9, 
the ALU and Divisor registers are halved and the remainder is shifted left. This version also combines the 
Quotient register with the right half of the Remainder register. (As in Figure 3.6, the Remainder register 
should really be 65 bits to make sure the carry out of the adder is not lost.)

Divisor

32 bits

32-bit ALU

Remainder
Write

64 bits

Control
testShift left

Shift right



Rewriting our basic formula to calculate the remainder:

Remainder = (Dividend – Quotient × Divisor) = –7 – (–3 × +2) = –7–(–6) = –1

So,

–7 ÷ +2: Quotient = –3, Remainder = –1

Checking the results again:

–7 = –3 × 2 + (–1) = – 6 – 1

The reason the answer isn’t a quotient of –4 and a remainder of +1, which would also 
fit this formula, is that the absolute value of the quotient would then change depending 
on the sign of the dividend and the divisor! Clearly, if

–(x ÷ y)	≠	(–x) ÷ y 

programming would be an even greater challenge. This anomalous behavior is avoided 
by following the rule that the dividend and remainder must have the same signs, no 
matter what the signs of the divisor and quotient.

We calculate the other combinations by following the same rule:

+7 ÷ –2: Quotient = –3, Remainder = +1
–7 ÷ –2: Quotient = +3, Remainder = –1

Thus the correctly signed division algorithm negates the quotient if the signs of the 
operands are opposite and makes the sign of the nonzero remainder match the dividend. 

Faster Division
We used many adders to speed up multiply, but we cannot do the same trick for 
divide. The reason is that we need to know the sign of the difference before we can 
perform the next step of the algorithm, whereas with multiply we could calculate 
the 32 partial products immediately. 

There are techniques to produce more than one bit of the quotient per step. 
The SRT division technique tries to guess several quotient bits per step, using a 
table lookup based on the upper bits of the dividend and remainder. It relies on 
subsequent steps to correct wrong guesses. A typical value today is 4 bits. The key 
is guessing the value to subtract. With binary division, there is only a single choice. 
These algorithms use 6 bits from the remainder and 4 bits from the divisor to index 
a table that determines the guess for each step. 

The accuracy of this fast method depends on having proper values in the lookup 
table. The fallacy on page 276 in Section 3.8 shows what can happen if the table is 
incorrect.

Divide in MIPS
You may have already observed that the same sequential hardware can be used for 
both multiply and divide in Figures 3.6 and 3.12. The only requirement is a 64-bit 
register that can shift left or right and a 32-bit ALU that adds or subtracts. Hence, 
MIPS uses the 32-bit Hi and 32-bit Lo registers for both multiply and divide.  
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As we might expect from the algorithm above, Hi contains the remainder, and Lo 
contains the quotient after the divide instruction completes. 

To handle both signed integers and unsigned integers, MIPS has two instruc-
tions: divide (div) and divide unsigned (divu). The MIPS assembler allows divide 
instructions to specify three registers, generating the mflo or mfhi instructions to 
place the desired result into a general-purpose register.    

Summary
The common hardware support for multiply and divide allows MIPS to provide a 
single pair of 32-bit registers that are used both for multiply and divide. Figure 3.13 
summarizes the additions to the MIPS architecture for the last two sections. 

MIPS divide instructions ignore overflow, so software must determine whether the 
quotient is too large. In addition to overflow, division can also result in an improper 
calculation: division by 0. Some computers distinguish these two anomalous events. 
MIPS software must check the divisor to discover division by 0 as well as overflow.

Elaboration: An even faster algorithm does not immediately add the divisor back if 
the remainder is negative. It simply adds the dividend to the shifted remainder in the 
following step, since (r + d ) × 2 – d = r × 2 + d × 2 – d = r × 2 + d. This nonrestoring division 
algorithm, which takes 1 clock cycle per step, is explored further in the exercises; the 
algorithm here is called restoring division. A third algorithm that doesn’t save the result 
of the subtract if its negative is called a nonperforming division algorithm. It averages 
one-third fewer arithmetic operations.

 3.5 Floating Point

Going beyond signed and unsigned integers, programming languages support 
numbers with fractions, which are called reals in mathematics. Here are some 
examples of reals:

3.14159265 . . .ten (pi)

2.71828 . . .ten (e)

0.000000001ten or 1.0ten × 10-9 (seconds in a nanosecond)

3,155,760,000ten or 3.15576ten × 109 (seconds in a typical century)

Hardware/ 
Software 
Interface

Speed gets you nowhere 
if you’re headed the 
wrong way.

American proverb



MIPS assembly language

Category Instruction Example Meaning Comments

Arithmetic

add add					$s1,$s2,$s3 $s1 = $s2 + $s3 Three operands; overflow detected
subtract sub					$s1,$s2,$s3 $s1 = $s2 – $s3 Three operands; overflow detected
add immediate addi				$s1,$s2,100 $s1 = $s2 + 100 + constant; overflow detected
add unsigned addu				$s1,$s2,$s3 $s1 = $s2 + $s3 Three operands; overflow undetected
subtract unsigned subu				$s1,$s2,$s3 $s1 = $s2 – $s3 Three operands; overflow undetected
add immediate unsigned addiu			$s1,$s2,100 $s1 = $s2 + 100 + constant; overflow undetected
move from coprocessor 
register 

mfc0				$s1,$epc $s1 = $epc Copy Exception PC + special regs

multiply mult				$s2,$s3 Hi, Lo = $s2 × $s3 64-bit signed product in Hi, Lo
multiply unsigned multu			$s2,$s3 Hi, Lo = $s2 × $s3 64-bit unsigned product in Hi, Lo
divide div					$s2,$s3 Lo = $s2 / $s3, 

Hi = $s2 mod $s3
Lo = quotient, Hi = remainder

divide unsigned divu				$s2,$s3 Lo = $s2 / $s3,	
Hi = $s2 mod $s3

Unsigned quotient and remainder

move from Hi mfhi				$s1 $s1 = Hi Used to get copy of Hi
move from Lo mflo					$s1 $s1 = Lo Used to get copy of Lo

Data 
transfer

load word lw						$s1,20($s2) $s1	=	Memory[$s2 +	20] Word from memory to register

store word sw						$s1,20($s2) Memory[$s2	+ 20]	=	$s1 Word from register to memory

load half unsigned lhu					$s1,20($s2) $s1 = Memory[$s2 + 20] Halfword memory to register

store half sh						$s1,20($s2) Memory[$s2 + 20] = $s1 Halfword register to memory

load byte unsigned lbu					$s1,20($s2) $s1 = Memory[$s2 + 20] Byte from memory to register

store byte sb						$s1,20($s2) Memory[$s2 + 20] = $s1 Byte from register to memory

load linked word ll						$s1,20($s2) $s1 = Memory[$s2 + 20] Load word as 1st half of atomic swap 

store conditional word sc						$s1,20($s2) Memory[$s2+20]=$s1;$s1=0	
or	1

Store word as 2nd half atomic swap 

load upper immediate lui					$s1,100 $s1	=	100 * 216 Loads constant in upper 16 bits

Logical

AND AND					$s1,$s2,$s3 $s1	=	$s2	&	$s3 Three reg. operands; bit-by-bit AND

OR OR						$s1,$s2,$s3 $s1	=	$s2	|	$s3 Three reg. operands; bit-by-bit OR

NOR NOR					$s1,$s2,$s3 $s1	=	~	($s2	|$s3) Three reg. operands; bit-by-bit NOR

AND immediate ANDi				$s1,$s2,100 $s1	=	$s2	&	100 Bit-by-bit AND with constant

OR immediate ORi					$s1,$s2,100 $s1	=	$s2	|	100 Bit-by-bit OR with constant

shift left logical sll					$s1,$s2,10 $s1	=	$s2	<<	10 Shift left by constant

shift right logical srl					$s1,$s2,10 $s1	=	$s2	>>	10 Shift right by constant

Condi- 
tional 
branch

branch on equal beq					$s1,$s2,25 if ($s1 == $s2) go to PC + 4 + 100 Equal test; PC-relative branch

branch on not equal bne					$s1,$s2,25 if ($s1 !=  $s2) go to PC + 4 + 100 Not equal test; PC-relative 

set on less than slt					$s1,$s2,$s3 if ($s2 < $s3)  $s1 = 1;
else $s1 = 0

Compare less than; two’s 
complement

set less than immediate slti				$s1,$s2,100 if ($s2 < 100)  $s1 = 1; 
else $s1=0

Compare < constant; two’s 
complement

set less than unsigned sltu				$s1,$s2,$s3 if ($s2 < $s3)  $s1 = 1; 
else $s1=0

Compare less than; natural numbers

set less than immediate 
unsigned

sltiu			$s1,$s2,100 if ($s2 < 100)  $s1 = 1; 
else $s1 = 0

Compare < constant; natural numbers

Uncondi- 
tional  
jump

jump j							2500 go to 10000 Jump to target address
jump register jr						$ra go to $ra For switch, procedure return
jump and link jal					2500 $ra = PC + 4; go to 10000 For procedure call

FIGURE 3.13 MIPS core architecture. The memory and registers of the MIPS architecture are not included for space reasons, but this 
section added the Hi and Lo registers to support multiply and divide. MIPS machine language is listed in the MIPS Reference Data Card at the 
front of this book. 
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Notice that in the last case, the number didn’t represent a small fraction, but it 
was bigger than we could represent with a 32-bit signed integer. The alternative 
notation for the last two numbers is called scientific notation, which has a single 
digit to the left of the decimal point. A number in scientific notation that has no 
leading 0s is called a normalized number, which is the usual way to write it. For 
example, 1.0ten × 10-9 is in normalized scientific notation, but 0.1ten  ×  10-8 and 
10.0ten  ×  10 -10 are not. 

Just as we can show decimal numbers in scientific notation, we can also show 
binary numbers in scientific notation:

1.0two × 2-1

To keep a binary number in normalized form, we need a base that we can increase 
or decrease by exactly the number of bits the number must be shifted to have one 
nonzero digit to the left of the decimal point. Only a base of 2 fulfills our need. 
Since the base is not 10, we also need a new name for decimal point; binary point 
will do fine.

Computer arithmetic that supports such numbers is called floating point 
because it represents numbers in which the binary point is not fixed, as it is for 
integers. The programming language C uses the name float for such numbers. Just 
as in scientific notation, numbers are represented as a single nonzero digit to the 
left of the binary point. In binary, the form is

1.xxxxxxxxxtwo × 2yyyy

(Although the computer represents the exponent in base 2 as well as the rest of the 
number, to simplify the notation we show the exponent in decimal.)

A standard scientific notation for reals in normalized form offers three advantages. 
It simplifies exchange of data that includes floating-point numbers; it simplifies the 
floating-point arithmetic algorithms to know that numbers will always be in this 
form; and it increases the accuracy of the numbers that can be stored in a word, since 
the unnecessary leading 0s are replaced by real digits to the right of the binary point.

Floating-Point Representation
A designer of a floating-point representation must find a compromise between the 
size of the fraction and the size of the exponent, because a fixed word size means 
you must take a bit from one to add a bit to the other. This tradeoff is between 
precision and range: increasing the size of the fraction enhances the precision 
of the fraction, while increasing the size of the exponent increases the range of 
numbers that can be represented. As our design guideline from Chapter 2 reminds 
us, good design demands good compromise.

Floating-point numbers are usually a multiple of the size of a word. The 
representation of a MIPS floating-point number is shown below, where s is the 
sign of the floating-point number (1 meaning negative), exponent is the value of 
the 8-bit exponent field (including the sign of the exponent), and fraction is the 

scientific notation 
A notation that renders 
numbers with a single 
digit to the left of the 
decimal point.

normalized A number 
in floating-point notation 
that has no leading 0s.

floating point Computer 
arithmetic that represents 
numbers in which the 
binary point is not fixed.

fraction The value, 
generally between 0 and 1,  
placed in the fraction 
field.

exponent In the 
numerical representation 
system of floating-point 
arithmetic, the value that 
is placed in the exponent 
field.



23-bit number. This representation is called sign and magnitude, since the sign is a 
separate bit from the rest of the number.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s exponent fraction

1 bit 8 bits 23 bits

In general, floating-point numbers are of the form

(-1)S × F × 2E

F involves the value in the fraction field and E involves the value in the exponent 
field; the exact relationship to these fields will be spelled out soon. (We will shortly 
see that MIPS does something slightly more sophisticated.)

These chosen sizes of exponent and fraction give MIPS computer arithmetic 
an extraordinary range. Fractions almost as small as 2.0ten × 10-38 and numbers 
almost as large as 2.0ten × 1038 can be represented in a computer. Alas, extraordinary 
differs from infinite, so it is still possible for numbers to be too large. Thus, overflow 
interrupts can occur in floating-point arithmetic as well as in integer arithmetic. 
Notice that overflow here means that the exponent is too large to be represented 
in the exponent field.

Floating point offers a new kind of exceptional event as well. Just as programmers 
will want to know when they have calculated a number that is too large to be 
represented, they will want to know if the nonzero fraction they are calculating 
has become so small that it cannot be represented; either event could result in 
a program giving incorrect answers. To distinguish it from overflow, we call this 
event underflow. This situation occurs when the negative exponent is too large to 
fit in the exponent field. 

One way to reduce chances of underflow or overflow is to offer another format 
that has a larger exponent. In C this number is called double, and operations on 
doubles are called double precision floating-point arithmetic; single precision 
floating point is the name of the earlier format. 

The representation of a double precision floating-point number takes two MIPS 
words, as shown below, where s is still the sign of the number, exponent is the value 
of the 11-bit exponent field, and fraction is the 52-bit number in the fraction field. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s exponent fraction

1 bit 11 bits 20 bits

fraction (continued)

32 bits

MIPS double precision allows numbers almost as small as 2.0ten × 10-308 and 
almost as large as 2.0ten × 10308. Although double precision does increase the 

overflow (floating-
point) A situation in 
which a positive exponent 
becomes too large to fit in 
the exponent field.

underflow (floating-
point) A situation in 
which a negative exponent 
becomes too large to fit in 
the exponent field.

double precision 
A floating-point value 
represented in two 32-bit 
words.

single precision 
A floating-point value 
represented in a single   
32-bit word.
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exponent range, its primary advantage is its greater precision because of the much 
larger significand.

These formats go beyond MIPS. They are part of the IEEE 754 floating-point 
standard, found in virtually every computer invented since 1980. This standard has 
greatly improved both the ease of porting floating-point programs and the quality 
of computer arithmetic.

To pack even more bits into the significand, IEEE 754 makes the leading 1-bit 
of normalized binary numbers implicit. Hence, the number is actually 24 bits long 
in single precision (implied 1 and a 23-bit fraction), and 53 bits long in double 
precision (1 + 52). To be precise, we use the term significand to represent the 24- or 
53-bit number that is 1 plus the fraction, and fraction when we mean the 23- or 
52-bit number. Since 0 has no leading 1, it is given the reserved exponent value 0 so 
that the hardware won’t attach a leading 1 to it. 

Thus 00 . . . 00two represents 0; the representation of the rest of the numbers uses 
the form from before with the hidden 1 added:

(-1)S × (1 + Fraction) × 2E

where the bits of the fraction represent a number between 0 and 1 and E specifies 
the value in the exponent field, to be given in detail shortly. If we number the bits 
of the fraction from left to right s1, s2, s3, . . . , then the value is

(-1)S × (1 + (s1 × 2-1) + (s2 × 2-2) + (s3 × 2-3) + (s4 × 2-4) + …) × 2E

Figure 3.14 shows the encodings of IEEE 754 floating-point numbers. Other 
features of IEEE 754 are special symbols to represent unusual events. For example, 
instead of interrupting on a divide by 0, software can set the result to a bit pattern 
representing +∞ or -∞; the largest exponent is reserved for these special symbols. 
When the programmer prints the results, the program will print an infinity symbol. 
(For the mathematically trained, the purpose of infinity is to form topological 
closure of the reals.)

Single precision Double precision Object represented

Exponent Fraction Exponent Fraction

0 0 0 0 0

0  Nonzero 0  Nonzero ± denormalized number

1–254 Anything 1–2046 Anything ± floating-point number

255 0 2047 0 ± infinity

255 Nonzero 2047 Nonzero NaN (Not a Number)

FIGURE 3.14 IEEE 754 encoding of floating-point numbers. A separate sign bit determines the 
sign. Denormalized numbers are described in the Elaboration on page 270. This information is also found in 
Column 4 of the MIPS Reference Data Card at the front of this book. 



IEEE 754 even has a symbol for the result of invalid operations, such as 0/0 
or subtracting infinity from infinity. This symbol is NaN, for Not a Number. The 
purpose of NaNs is to allow programmers to postpone some tests and decisions to 
a later time in the program when they are convenient. 

The designers of IEEE 754 also wanted a floating-point representation that could 
be easily processed by integer comparisons, especially for sorting. This desire is why 
the sign is in the most significant bit, allowing a quick test of less than, greater than, 
or equal to 0. (It’s a little more complicated than a simple integer sort, since this 
notation is essentially sign and magnitude rather than two’s complement.)

Placing the exponent before the significand also simplifies the sorting of   
floating-point numbers using integer comparison instructions, since numbers with 
bigger exponents look larger than numbers with smaller exponents, as long as both 
exponents have the same sign. 

Negative exponents pose a challenge to simplified sorting. If we use two’s 
complement or any other notation in which negative exponents have a 1 in the 
most significant bit of the exponent field, a negative exponent will look like a big 
number. For example, 1.0two × 2-1 would be represented as

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

(Remember that the leading 1 is implicit in the significand.) The value 1.0two × 2+1 
would look like the smaller binary number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

The desirable notation must therefore represent the most negative exponent as 
00 . . . 00two and the most positive as 11 . . . 11two. This convention is called biased 
notation, with the bias being the number subtracted from the normal, unsigned 
representation to determine the real value. 

IEEE 754 uses a bias of 127 for single precision, so an exponent of -1 is 
represented by the bit pattern of the value -1 + 127ten, or 126ten = 0111 1110two, 
and +1 is represented by 1 + 127, or 128ten = 1000 0000two. The exponent bias for 
double precision is 1023. Biased exponent means that the value represented by a 
floating-point number is really

(-1)S × (1 + Fraction) × 2(Exponent -	Bias)

The range of single precision numbers is then from as small as
±1.0000 0000 0000 0000 0000 000two × 2-126

to as large as
±1.1111 1111 1111 1111 1111 111two × 2+127. 

 3.5 Floating Point 247



248 Chapter 3 Arithmetic for Computers

Let’s show the representation.

Floating-Point Representation

Show the IEEE 754 binary representation of the number -0.75ten in single and 
double precision.

The number -0.75ten is also

-3/4ten or -3/22
ten 

It is also represented by the binary fraction

-11two/22
ten or -0.11two 

In scientific notation, the value is 

-0.11two × 20 

and in normalized scientific notation, it is

-1.1two × 2-1

The general representation for a single precision number is

(-1)S × (1 + Fraction) × 2(Exponent - 127)

Subtracting the bias 127 from the exponent of -1.1two ×	2-1 yields

(-1)1 × (1 + .1000 0000 0000 0000 0000 000two) × 2(126-127)

The single precision binary representation of -0.75ten is then

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 bit 8 bits 23 bits

EXAMPLE

ANSWER



The double precision representation is 

(-1)1 × (1 + .1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000two) × 2(1022-1023)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 bit 11 bits 20 bits

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 bits

Now let’s try going the other direction.

Converting Binary to Decimal Floating Point

What decimal number is represented by this single precision float?

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

The sign bit is 1, the exponent field contains 129, and the fraction field contains 
1	× 2-2 = 1/4, or 0.25. Using the basic equation,

(-1)S × (1 + Fraction) × 2(Exponent - Bias) = (-1)1 × (1 + 0.25) × 2(129-127)

 = -1 × 1.25 × 22

 = -1.25 × 4
 = -5.0

In the next subsections, we will give the algorithms for floating-point addition 
and multiplication. At their core, they use the corresponding integer operations 

EXAMPLE

ANSWER
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on the significands, but extra bookkeeping is necessary to handle the exponents 
and normalize the result. We first give an intuitive derivation of the algorithms in 
decimal and then give a more detailed, binary version in the figures.

Elaboration: In an attempt to increase range without removing bits from the signifi-
cand, some computers before the IEEE 754 standard used a base other than 2. For 
example, the IBM 360 and 370 mainframe computers use base 16. Since changing 
the IBM exponent by one means shifting the significand by 4 bits, “normalized” base 
16 numbers can have up to 3 leading bits of 0s! Hence, hexadecimal digits mean that 
up to 3 bits must be dropped from the significand, which leads to surprising problems 
in the accuracy of floating-point arithmetic. Recent IBM mainframes support IEEE 754 
as well as the hex format.

Floating-Point Addition
Let’s add numbers in scientific notation by hand to illustrate the problems in 
floating-point addition: 9.999ten × 101 + 1.610ten × 10-1. Assume that we can 
store only four decimal digits of the significand and two decimal digits of the 
exponent. 

 Step 1. To be able to add these numbers properly, we must align the decimal point 
of the number that has the smaller exponent. Hence, we need a form of 
the smaller number, 1.610ten × 10-1, that matches the larger exponent. 
We obtain this by observing that there are multiple representations of an 
unnormalized floating-point number in scientific notation:

1.610ten × 10-1 = 0.1610ten × 100 = 0.01610ten × 101

The number on the right is the version we desire, since its exponent 
matches the exponent of the larger number, 9.999ten × 101. Thus, the 
first step shifts the significand of the smaller number to the right until 
its corrected exponent matches that of the larger number. But we can 
represent only four decimal digits so, after shifting, the number is really

0.016ten × 101

Step 2. Next comes the addition of the significands:

 9.999ten
 + 0.016ten

 
10.015ten

The sum is 10.015ten × 101.



Step 3. This sum is not in normalized scientific notation, so we need to adjust it:

10.015ten × 101 = 1.0015ten × 102

Thus, after the addition we may have to shift the sum to put it into 
normalized form, adjusting the exponent appropriately. This example 
shows shifting to the right, but if one number were positive and the other 
were negative, it would be possible for the sum to have many leading 0s, 
requiring left shifts. Whenever the exponent is increased or decreased, we 
must check for overflow or underflow—that is, we must make sure that 
the exponent still fits in its field.

Step 4. Since we assumed that the significand can be only four digits long 
(excluding the sign), we must round the number. In our grammar school 
algorithm, the rules truncate the number if the digit to the right of the 
desired point is between 0 and 4 and add 1 to the digit if the number to the 
right is between 5 and 9. The number

1.0015ten × 102

is rounded to four digits in the significand to 

1.002ten × 102

since the fourth digit to the right of the decimal point was between 5 and 9.  
Notice that if we have bad luck on rounding, such as adding 1 to a string of 
9s, the sum may no longer be normalized and we would need to perform 
step 3 again.

Figure 3.15 shows the algorithm for binary floating-point addition that 
follows this decimal example. Steps 1 and 2 are similar to the example just 
discussed: adjust the significand of the number with the smaller exponent and 
then add the two significands. Step 3 normalizes the results, forcing a check for 
overflow or underflow. The test for overflow and underflow in step 3 depends 
on the precision of the operands. Recall that the pattern of all 0 bits in the 
exponent is reserved and used for the floating-point representation of zero. 
Moreover, the pattern of all 1 bits in the exponent is reserved for indicating 
values and situations outside the scope of normal floating-point numbers (see 
the Elaboration on page 270). Thus, for single precision, the maximum exponent 
is 127, and the minimum exponent is -126. The limits for double precision are 
1023 and -1022.
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Still normalized?

4. Round the significand to the appropriate
number of bits

YesOverflow or
underflow?

Start

No

Yes

Done

1.  Compare the exponents of the two numbers;
shift the smaller number to the right until its
exponent would match the larger exponent

2. Add the significands

3. Normalize the sum, either shifting right and
incrementing the exponent or shifting left

and decrementing the exponent

No Exception

FIGURE 3.15 Floating-point addition. The normal path is to execute steps 3 and 4 once, but if 
rounding causes the sum to be unnormalized, we must repeat step 3. 



Binary Floating-Point Addition

Try adding the numbers 0.5ten and -0.4375ten in binary using the algorithm in 
Figure 3.15.

Let’s first look at the binary version of the two numbers in normalized scien-
tific notation, assuming that we keep 4 bits of precision:

 0.5ten = 1/2ten  = 1/21
ten

 = 0.1two = 0.1two × 20 = 1.000two × 2-1

-0.4375ten = -7/16ten = -7/24
ten

 = -0.0111two = -0.0111two × 20 = -1.110two × 2-2

Now we follow the algorithm:

 Step 1. The significand of the number with the lesser exponent (-1.11two × 
2-2) is shifted right until its exponent matches the larger number:

-1.110two × 2-2 = -0.111two × 2-1

 Step 2. Add the significands:

1.000two × 2-1 + (-0.111two	× 2-1) = 0.001two × 2-1

 Step 3. Normalize the sum, checking for overflow or underflow:

0.001two × 2-1 = 0.010two × 2-2	= 0.100two × 2-3

 =	1.000two × 2-4

Since 127	≥ -4 ≥ -126, there is no overflow or underflow. (The biased 
exponent would be -4 + 127, or 123, which is between 1 and 254, the 
smallest and largest unreserved biased exponents.)

 Step 4. Round the sum:

1.000two × 2-4

The sum already fits exactly in 4 bits, so there is no change to the bits 
due to rounding. 

This sum is then

1.000two × 2-4 = 0.0001000two = 0.0001two

 = 1/24
ten = 1/16ten = 0.0625ten

This sum is what we would expect from adding 0.5ten to -0.4375ten.

EXAMPLE

ANSWER
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Compare
exponents

Small ALU

Exponent
difference

Control

ExponentSign Fraction

Big ALU

ExponentSign Fraction

0 1 0 1 0 1

Shift right

0 1 0 1

Increment or
decrement

Shift left or right

Rounding hardware

ExponentSign Fraction

Shift smaller
number right

Add

Normalize

Round

FIGURE 3.16 Block diagram of an arithmetic unit dedicated to floating-point addition. The steps of Figure 3.15 correspond 
to each block, from top to bottom. First, the exponent of one operand is subtracted from the other using the small ALU to determine which is 
larger and by how much. This difference controls the three multiplexors; from left to right, they select the larger exponent, the significand of the 
smaller number, and the significand of the larger number. The smaller significand is shifted right, and then the significands are added together 
using the big ALU. The normalization step then shifts the sum left or right and increments or decrements the exponent. Rounding then creates 
the final result, which may require normalizing again to produce the final result. 

Many computers dedicate hardware to run floating-point operations as fast as 
possible. Figure 3.16 sketches the basic organization of hardware for floating-point 
addition.



Floating-Point Multiplication
Now that we have explained floating-point addition, let’s try floating-point 
multiplication. We start by multiplying decimal numbers in scientific notation by 
hand: 1.110ten × 1010 × 9.200ten × 10-5. Assume that we can store only four digits 
of the significand and two digits of the exponent.

 Step 1. Unlike addition, we calculate the exponent of the product by simply 
adding the exponents of the operands together:

New exponent = 10 + (-5) = 5

Let’s do this with the biased exponents as well to make sure we obtain 
the same result: 10 + 127 = 137, and -5 + 127 = 122, so 

New exponent = 137 + 122 = 259

This result is too large for the 8-bit exponent field, so something is 
amiss! The problem is with the bias because we are adding the biases 
as well as the exponents:

New exponent = (10 + 127) + (-5 +	127) = (5 + 2 × 127) = 259

Accordingly, to get the correct biased sum when we add biased numbers, 
we must subtract the bias from the sum:

New exponent = 137 + 122 - 127 = 259 - 127 = 132 = (5 + 127)

and 5 is indeed the exponent we calculated initially.

 Step 2. Next comes the multiplication of the significands:
	 1.110ten
	 x	9.200ten

 0000
 0000
 2220
 9990 
	 10212000ten

There are three digits to the right of the decimal point for each 
operand, so the decimal point is placed six digits from the right in the 
product significand:

10.212000ten
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Assuming that we can keep only three digits to the right of the decimal 
point, the product is 10.212 × 105.

 Step 3. This product is unnormalized, so we need to normalize it:

10.212ten × 105 = 1.0212ten × 106

Thus, after the multiplication, the product can be shifted right one 
digit to put it in normalized form, adding 1 to the exponent. At this 
point, we can check for overflow and underflow. Underflow may 
occur if both operands are small—that is, if both have large negative 
exponents.

 Step 4. We assumed that the significand is only four digits long (excluding the 
sign), so we must round the number. The number

1.0212ten × 106

is rounded to four digits in the significand to 

1.021ten × 106

 Step 5. The sign of the product depends on the signs of the original operands. 
If they are both the same, the sign is positive; otherwise, it’s negative. 
Hence, the product is

+1.021ten × 106

The sign of the sum in the addition algorithm was determined by 
addition of the significands, but in multiplication, the sign of the 
product is determined by the signs of the operands.

Once again, as Figure 3.17 shows, multiplication of binary floating-point 
numbers is quite similar to the steps we have just completed. We start with 
calculating the new exponent of the product by adding the biased exponents, 
being sure to subtract one bias to get the proper result. Next is multiplication 
of significands, followed by an optional normalization step. The size of the 
exponent is checked for overflow or underflow, and then the product is 
rounded. If rounding leads to further normalization, we once again check for 
exponent size. Finally, set the sign bit to 1 if the signs of the operands were 
different (negative product) or to 0 if they were the same (positive product).   

Binary Floating-Point Multiplication

Let’s try multiplying the numbers 0.5ten and -0.4375ten, using the steps in 
Figure 3.17.EXAMPLE



In binary, the task is multiplying 1.000two × 2-1 by - 1.110two × 2-2.

 Step 1. Adding the exponents without bias:

-1 + (-2) = -3

or, using the biased representation:

(-1 + 127) + (-2 + 127) - 127 = (-1 - 2) + (127 + 127 - 127) 
= -3 + 127 = 124 

 Step 2. Multiplying the significands: 
	 1.000two
	 x	 1.110two

	 0000
 1000
	 1000
	 1000 

	 1110000two

The product is 1.110000two × 2-3, but we need to keep it to 4 bits, so 
it is 1.110two × 2-3.

 Step 3. Now we check the product to make sure it is normalized, and then 
check the exponent for overflow or underflow. The product is already 
normalized and, since 127	 ≥ -3 ≥ -126, there is no overflow or 
underflow. (Using the biased representation, 254	 ≥ 124 ≥ 1, so the 
exponent fits.)

 Step 4. Rounding the product makes no change:

1.110two × 2-3

 Step 5. Since the signs of the original operands differ, make the sign of the 
product negative. Hence, the product is

-1.110two × 2-3

Converting to decimal to check our results:

-1.110two × 2-3 = -0.001110two = -0.00111two
 = -7/25

ten = -7/32ten = -0.21875ten

The product of 0.5ten and - 0.4375ten is indeed - 0.21875ten.

ANSWER
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5. Set the sign of the product to positive if the
signs of the original operands are the same;

if they differ make the sign negative

Still normalized?

4. Round the significand to the appropriate
number of bits

YesOverflow or
underflow?

Start

No

Yes

Done

1.  Add the biased exponents of the two
numbers, subtracting the bias from the sum

to get the new biased exponent

2. Multiply the significands

3. Normalize the product if necessary, shifting
it right and incrementing the exponent

No Exception

FIGURE 3.17 Floating-point multiplication. The normal path is to execute steps 3 and 4 once, but if 
rounding causes the sum to be unnormalized, we must repeat step 3. 



Floating-Point Instructions in MIPS
MIPS supports the IEEE 754 single precision and double precision formats with 
these instructions:

 ■ Floating-point addition, single (add.s) and addition, double (add.d)

 ■ Floating-point subtraction, single (sub.s) and subtraction, double (sub.d)

 ■ Floating-point multiplication, single (mul.s) and multiplication, double 
(mul.d)

 ■ Floating-point division, single (div.s) and division, double (div.d)

 ■ Floating-point comparison, single (c.x.s) and comparison, double (c.x.d), 
where x may be equal (eq), not equal (neq), less than (lt), less than or equal 
(le), greater than (gt), or greater than or equal (ge)

 ■ Floating-point branch, true (bc1t) and branch, false (bc1f)

Floating-point comparison sets a bit to true or false, depending on the comparison 
condition, and a floating-point branch then decides whether or not to branch, 
depending on the condition.

The MIPS designers decided to add separate floating-point registers—called 
$f0, $f1, $f2, . . .—used either for single precision or double precision. Hence, 
they included separate loads and stores for floating-point registers: lwc1 and 
swc1. The base registers for floating-point data transfers remain integer registers. 
The MIPS code to load two single precision numbers from memory, add them, and 
then store the sum might look like this:

lwc1						$f4,x($sp)		#	Load	32-bit	F.P.	number	into	F4	
lwc1						$f6,y($sp)		#	Load	32-bit	F.P.	number	into	F6	
add.s					$f2,$f4,$f6	#	F2	=	F4	+	F6	single	precision	
swc1						$f2,z($sp)		#	Store	32-bit	F.P.	number	from	F2

A double precision register is really an even-odd pair of single precision registers, 
using the even register number as its name. Thus, the pair of single precision 
registers $f2 and $f3	also form the double precision register named $f2.

Figure 3.18 summarizes the floating-point portion of the MIPS architecture 
revealed in this chapter, with the additions to support floating point shown in 
color. Similar to Figure 2.19 in Chapter 2, Figure 3.19 shows the encoding of these 
instructions. 
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MIPS floating-point operands

Name Example Comments

32 floating- 
point registers

$f0,	$f1,	$f2, . . . ,	$f31 MIPS floating-point registers are used in pairs for double precision numbers.

230	memory words Memory[0],  
Memory[4], . . . , 
Memory[4294967292]

Accessed only by data transfer instructions. MIPS uses byte addresses, so 
sequential word addresses differ by 4. Memory holds data structures, such 
as arrays, and spilled registers, such as those saved on procedure calls. 

MIPS floating-point assembly language

Category Instruction Example Meaning Comments

Arithmetic

FP add single add.s			$f2,$f4,$f6 $f2	=	$f4	+	$f6 FP add (single precision)

FP subtract single sub.s			$f2,$f4,$f6 $f2	=	$f4	–	$f6 FP sub (single precision)

FP multiply single mul.s			$f2,$f4,$f6 $f2	=	$f4	×	$f6 FP multiply (single precision)

FP divide single div.s			$f2,$f4,$f6 $f2	=	$f4	/	$f6 FP divide (single precision)

FP add double add.d			$f2,$f4,$f6 $f2	=	$f4	+	$f6 FP add (double precision)

FP subtract double sub.d			$f2,$f4,$f6 $f2	=	$f4	–	$f6 FP sub (double precision)

FP multiply double mul.d			$f2,$f4,$f6 $f2	=	$f4	×	$f6 FP multiply (double 
precision)

FP divide double div.d			$f2,$f4,$f6 $f2	=	$f4	/	$f6 FP divide (double precision)

Data 
transfer

load word copr. 1 lwc1				$f1,100($s2) $f1	=	Memory[$s2	+	100] 32-bit data to FP register

store word copr. 1 swc1				$f1,100($s2) Memory[$s2 + 100] = $f1 32-bit data to memory

Condi- 
tional 
branch

branch on FP true bc1t				25 if (cond == 1) go to PC + 4 
+ 100

PC-relative branch if FP  
cond.

branch on FP false bc1f				25 if (cond == 0) go to PC + 4 
+ 100

PC-relative branch if not  
cond.

FP compare single 
(eq,ne,lt,le,gt,ge)

c.lt.s	$f2,$f4 if ($f2	<	$f4) 
    cond = 1; else cond = 0

FP compare less than 
single precision

FP compare double 
(eq,ne,lt,le,gt,ge)

c.lt.d	$f2,$f4 if ($f2	<	$f4) 
    cond = 1; else cond = 0

FP compare less than 
double precision

MIPS floating-point machine language

Name Format Example Comments

add.s	 R 17 16 6 4 2 0 add.s		$f2,$f4,$f6

sub.s	 R 17 16 6 4 2 1 sub.s		$f2,$f4,$f6

mul.s	 R 17 16 6 4 2 2 mul.s		$f2,$f4,$f6

div.s	 R 17 16 6 4 2 3 div.s		$f2,$f4,$f6

add.d	 R 17 17 6 4 2 0 add.d		$f2,$f4,$f6

sub.d	 R 17 17 6 4 2 1 sub.d		$f2,$f4,$f6

mul.d	 R 17 17 6 4 2 2 mul.d		$f2,$f4,$f6

div.d	 R 17 17 6 4 2 3 div.d		$f2,$f4,$f6

lwc1	 I 49 20 2 100 lwc1			$f2,100($s4)

swc1	 I 57 20 2 100 swc1			$f2,100($s4)

bc1t	 I 17 8 1 25 bc1t			25

bc1f	 I 17 8 0 25 bc1f			25

c.lt.s R 17 16 4 2 0 60 c.lt.s	$f2,$f4

c.lt.d R 17 17 4 2 0 60 c.lt.d	$f2,$f4

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits

FIGURE 3.18 MIPS floating-point architecture revealed thus far. See Appendix B, Section B.10, for more detail. This information 
is also found in column 2 of the MIPS Reference Data Card at the front of this book.   



op(31:26):

28–26

31–29

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(000) Rfmt Bltz/gez j jal beq bne blez bgtz

1(001) addi addiu slti sltiu ANDi ORi	 xORi lui
2(010) TLB FlPt

3(011)

4(100) lb lh lwl lw lbu lhu lwr

5(101) sb sh swl sw swr

6(110) lwc0 lwc1

7(111) swc0 swc1

op(31:26) = 010001 (FlPt), (rt(16:16) = 0 => c = f, rt(16:16) = 1 => c = t), rs(25:21):

23–21

25–24

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(00) mfc1 cfc1 mtc1 ctc1

1(01) bc1.c
2(10) f	=	single f	=	double
3(11)

op(31:26) = 010001 (FlPt), (f above: 10000 => f = s, 10001 => f = d), funct(5:0):

2–0

5–3

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(000) add.f sub.f mul.f div.f abs.f mov.f neg.f
1(001)

2(010)

3(011)

4(100) cvt.s.f cvt.d.f cvt.w.f
5(101)

6(110) c.f.f c.un.f c.eq.f c.ueq.f c.olt.f c.ult.f	 c.ole.f c.ule.f
7(111) c.sf.f c.ngle.f c.seq.f c.ngl.f c.lt.f c.nge.f c.le.f c.ngt.f

 

FIGURE 3.19 MIPS floating-point instruction encoding. This notation gives the value of a field by row and by column. For example, 
in the top portion of the figure, lw is found in row number 4 (100two for bits 31–29 of the instruction) and column number 3 (011two for bits 
28–26 of the instruction), so the corresponding value of the op field (bits 31–26) is 100011two. Underscore means the field is used elsewhere. 
For example, FlPt in row 2 and column 1 (op = 010001two) is defined in the bottom part of the figure. Hence sub.f in row 0 and column 1 of 
the bottom section means that the funct field (bits 5–0) of the instruction) is 000001two and the op field (bits 31–26) is 010001two. Note that the 
5-bit rs field, specified in the middle portion of the figure, determines whether the operation is single precision (f = s, so rs = 10000) or double 
precision (f = d, so rs = 10001). Similarly, bit 16 of the instruction determines if the bc1.c instruction tests for true (bit 16 = 1 =>bc1.t) 
or false (bit 16 = 0 =>bc1.f). Instructions in color are described in Chapter 2 or this chapter, with Appendix B covering all instructions. This 
information is also found in column 2 of the MIPS Reference Data Card at the front of this book. 
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One issue that architects face in supporting floating-point arithmetic is whether 
to use the same registers used by the integer instructions or to add a special set 
for floating point. Because programs normally perform integer operations and 
floating-point operations on different data, separating the registers will only 
slightly increase the number of instructions needed to execute a program. The 
major impact is to create a separate set of data transfer instructions to move data 
between floating-point registers and memory. 

The benefits of separate floating-point registers are having twice as many 
registers without using up more bits in the instruction format, having twice the 
register bandwidth by having separate integer and floating-point register sets, and 
being able to customize registers to floating point; for example, some computers 
convert all sized operands in registers into a single internal format.

Compiling a Floating-Point C Program into MIPS Assembly Code

Let’s convert a temperature in Fahrenheit to Celsius:

float	f2c	(float	fahr)	
	 {
	 	 return	((5.0/9.0)	*	(fahr	–	32.0));
	 }

Assume that the floating-point argument fahr is passed in $f12 and the 
result should go in $f0. (Unlike integer registers, floating-point register 0 can 
contain a number.) What is the MIPS assembly code?

We assume that the compiler places the three floating-point constants in 
memory within easy reach of the global pointer $gp. The first two instruc-
tions load the constants 5.0 and 9.0 into floating-point registers:

f2c:

						lwc1	$f16,const5($gp) #	$f16	=	5.0	(5.0	in	memory)
						lwc1	$f18,const9($gp)	 #	$f18	=	9.0	(9.0	in	memory)

They are then divided to get the fraction 5.0/9.0:

						div.s	$f16,	$f16,	$f18	#	$f16	=	5.0	/	9.0	

Hardware/ 
Software 
Interface

EXAMPLE

ANSWER



(Many compilers would divide 5.0 by 9.0 at compile time and save the single 
constant 5.0/9.0 in memory, thereby avoiding the divide at runtime.) Next, we 
load the constant 32.0 and then subtract it from fahr ($f12):

						lwc1	$f18,	const32($gp)#	$f18	=	32.0		
						sub.s	$f18,	$f12,	$f18	#	$f18	=	fahr	–	32.0

Finally, we multiply the two intermediate results, placing the product in $f0 
as the return result, and then return

														mul.s	$f0,		$f16,	$f18	#	$f0	=	(5/9)*(fahr	–	32.0)
														jr		$ra	 #	return

Now let’s perform floating-point operations on matrices, code commonly found 
in scientific programs.

Compiling Floating-Point C Procedure with Two-Dimensional 
Matrices into MIPS

Most floating-point calculations are performed in double precision. Let’s per-
form matrix multiply of X = X + Y * Z. Let’s assume X, Y, and Z are all square 
matrices with 32 elements in each dimension.

void	mm	(double	x[][],	double	y[][],	double	z[][])	
{	
	 int	i,	j,	k;

	 for	(i	=	0;	i	!=	32;	i	=	i	+	1)
	 for	(j	=	0;	j	!=	32;	j	=	j	+	1)
	 for	(k	=	0;	k	!=	32;	k	=	k	+	1)
	 		x[i][j]	=	x[i][j]	+	y[i][k]	*	z[k][j];
}

The array starting addresses are parameters, so they are in $a0, $a1, and $a2. 
Assume that the integer variables are in $s0, $s1, and $s2, respectively. What 
is the MIPS assembly code for the body of the procedure?

Note that x[i][j] is used in the innermost loop above. Since the loop index 
is k, the index does not affect x[i][j], so we can avoid loading and storing 
x[i][j] each iteration. Instead, the compiler loads x[i][j] into a register 
outside the loop, accumulates the sum of the products of y[i][k] and 
z[k][j] in that same register, and then stores the sum into x[i][j] upon 
termination of the innermost loop.

 We keep the code simpler by using the assembly language pseudoinstructions 
li (which loads a constant into a register), and l.d and s.d (which the 
assembler turns into a pair of data transfer instructions, lwc1 or swc1, to a 
pair of floating-point registers). 

EXAMPLE

ANSWER
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The body of the procedure starts with saving the loop termination value of 
32 in a temporary register and then initializing the three for loop variables:

mm:...
	 li	 $t1,	32		#	$t1	=	32	(row	size/loop	end)	
	 li	 $s0,	0				#	i	=	0;	initialize	1st	for	loop
L1:	 li	 $s1,	0			#	j	=	0;	restart	2nd	for	loop	
L2:	 li	 $s2,	0			#	k	=	0;	restart	3rd	for	loop

To calculate the address of x[i][j], we need to know how a 32 × 32, two-
dimensional array is stored in memory. As you might expect, its layout is the same 
as if there were 32 single-dimension arrays, each with 32 elements. So the first 
step is to skip over the i “single-dimensional arrays,” or rows, to get the one 
we want. Thus, we multiply the index in the first dimension by the size of the 
row, 32. Since 32 is a power of 2, we can use a shift instead:

sll		$t2,	$s0,	5	 #	$t2	=	i	*	25	(size	of	row	of	x)

Now we add the second index to select the jth element of the desired row:

addu		$t2,	$t2,	$s1 #	$t2	=	i	*	size(row)	+	j

To turn this sum into a byte index, we multiply it by the size of a matrix 
element in bytes. Since each element is 8 bytes for double precision, we can 
instead shift left by 3:

sll		$t2,	$t2,	3 #	$t2	=	byte	offset	of	[i][j]

Next we add this sum to the base address of x, giving the address of	
x[i][j], and then load the double precision number x[i][j] into $f4:

addu		$t2,	$a0,	$t2 #	$t2	=	byte	address	of	x[i][j]
l.d			$f4,	0($t2) #	$f4	=	8	bytes	of	x[i][j]

The following five instructions are virtually identical to the last five: calcu-
late the address and then load the double precision number z[k][j].

L3:			sll	$t0,	$s2,	5 #	$t0	=	k	*	25	(size	of	row	of	z)
						addu	$t0,	$t0,	$s1				#				$t0	=	k	*	size(row)	+	j
						sll	$t0,	$t0,	3	 #	$t0				=	byte	offset	of	[k][j]	
						addu	$t0,	$a2,	$t0	#	$t0	=	byte	address	of	z[k][j]
						l.d	$f16,	0($t0) #	$f16	=	8	bytes	of	z[k][j]

Similarly, the next five instructions are like the last five: calculate the address 
and then load the double precision number y[i][k].



sll	 $t0,	$s0,	5	 #	$t0	=	i	*	25	(size	of	row	of	y)
addu	 $t0,	$t0,	$s2 #	$t0	=	i	*	size(row)	+	k
sll	 $t0,	$t0,	3	 #	$t0	=	byte	offset	of	[i][k]
addu	 $t0,	$a1,	$t0 #	$t0	=	byte	address	of	y[i][k]
l.d	 $f18,	0($t0) #	$f18	=	8	bytes	of	y[i][k]

Now that we have loaded all the data, we are finally ready to do some 
floating-point operations! We multiply elements of y and z located in registers 
$f18 and $f16, and then accumulate the sum in $f4.

mul.d	$f16,	$f18,	$f16 #	$f16	=	y[i][k]	*	z[k][j]
add.d	$f4,	$f4,	$f16	 #	f4	=	x[i][j]+	y[i][k]	*	z[k][j]

The final block increments the index k and loops back if the index is not 32. 
If it is 32, and thus the end of the innermost loop, we need to store the sum 
accumulated in $f4 into x[i][j].

addiu		$s2,	$s2,	1 #	$k	k	+	1
bne				$s2,	$t1,	L3 #	if	(k	!=	32)	go	to	L3
s.d				$f4,	0($t2) #	x[i][j]	=	$f4

Similarly, these final four instructions increment the index variable of the 
middle and outermost loops, looping back if the index is not 32 and exiting if 
the index is 32.

addiu		$s1,	$s1,	1	 #	$j	=	j	+	1
bne				$s1,	$t1,	L2	 #	if	(j	!=	32)	go	to	L2
addiu		$s0,	$s0,	1	 #	$i	=	i	+	1		
bne				$s0,	$t1,	L1	 #	if	(i	!=	32)	go	to	L1
...

Elaboration: The array layout discussed in the example, called row-major order, is 
used by C and many other programming languages. Fortran instead uses column-major 
order, whereby the array is stored column by column. 

Elaboration: Only 16 of the 32 MIPS floating-point registers could originally be used 
for double precision operations: $f0,	$f2,	$f4,	...,	$f30. Double precision is 
computed using pairs of these single precision registers. The odd-numbered floating-
point registers were used only to load and store the right half of 64-bit floating-point 
numbers. MIPS-32 added l.d and s.d to the instruction set. MIPS-32 also added 
“paired single” versions of all floating-point instructions, where a single instruction 
results in two parallel floating-point operations on two 32-bit operands inside 64-bit 
registers. For example, add.ps	$f0,	$f2,	$f4 is equivalent to add.s	$f0,	$f2,	
$f4	followed by add.s	$f1,	$f3,	$f5.
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Elaboration: Another reason for separate integers and floating-point registers is that 
microprocessors in the 1980s didn’t have enough transistors to put the floating-point unit 
on the same chip as the integer unit. Hence, the floating-point unit, including the floating-
point registers, was optionally available as a second chip. Such optional accelerator 
chips are called coprocessors, and explain the acronym for floating-point loads in MIPS: 
lwc1 means load word to coprocessor 1, the floating-point unit. (Coprocessor 0 deals 
with virtual memory, described in Chapter 5.) Since the early 1990s, microprocessors 
have integrated floating point (and just about everything else) on chip, and hence the 
term coprocessor joins accumulator and core memory as quaint terms that date the 
speaker.

Elaboration: As mentioned in Section 3.4, accelerating division is more challenging 
than multiplication. In addition to SRT, another technique to leverage a fast multiplier 
is Newton’s iteration, where division is recast as finding the zero of a function to find 
the reciprocal 1/x, which is then multiplied by the other operand. Iteration techniques 
cannot be rounded properly without calculating many extra bits. A TI chip solves this 
problem by calculating an extra-precise reciprocal.

Elaboration: Java embraces IEEE 754 by name in its definition of Java floating-point 
data types and operations. Thus, the code in the first example could have well been 
generated for a class method that converted Fahrenheit to Celsius. 

The second example uses multiple dimensional arrays, which are not explicitly 
supported in Java. Java allows arrays of arrays, but each array may have its own length, 
unlike multiple dimensional arrays in C. Like the examples in Chapter 2, a Java version 
of this second example would require a good deal of checking code for array bounds, 
including a new length calculation at the end of row access. It would also need to check 
that the object reference is not null.

Accurate Arithmetic
Unlike integers, which can represent exactly every number between the smallest and 
largest number, floating-point numbers are normally approximations for a number 
they can’t really represent. The reason is that an infinite variety of real numbers 
exists between, say, 0 and 1, but no more than 253 can be represented exactly in 
double precision floating point. The best we can do is getting the floating-point 
representation close to the actual number. Thus, IEEE 754 offers several modes of 
rounding to let the programmer pick the desired approximation.

Rounding sounds simple enough, but to round accurately requires the hardware 
to include extra bits in the calculation. In the preceding examples, we were vague 
on the number of bits that an intermediate representation can occupy, but clearly, 
if every intermediate result had to be truncated to the exact number of digits, there 
would be no opportunity to round. IEEE 754, therefore, always keeps two extra bits 
on the right during intermediate additions, called guard and round, respectively. 
Let’s do a decimal example to illustrate their value.

guard The first of two 
extra bits kept on the 
right during intermediate 
calculations of floating-
point numbers; used 
to improve rounding 
accuracy.

round Method to 
make the intermediate 
floating-point result fit the 
floating-point format; the 
goal is typically to find 
the nearest number that 
can be represented in the 
format.



Rounding with Guard Digits

Add 2.56ten × 100 to 2.34ten × 102, assuming that we have three significant 
decimal digits. Round to the nearest decimal number with three significant 
decimal digits, first with guard and round digits, and then without them.

First we must shift the smaller number to the right to align the exponents, so 
2.56ten × 100 becomes 0.0256ten × 102. Since we have guard and round digits, 
we are able to represent the two least significant digits when we align expo-
nents. The guard digit holds 5 and the round digit holds 6. The sum is

	 	 2.3400ten
 + 0.0256ten

  2.3656ten

Thus the sum is 2.3656ten × 102. Since we have two digits to round, we want values 
0 to 49 to round down and 51 to 99 to round up, with 50 being the tiebreaker. 
Rounding the sum up with three significant digits yields	2.37ten	× 102.

Doing this without guard and round digits drops two digits from the 
calculation. The new sum is then

	 	 2.34ten
 + 0.02ten

  2.36ten

The answer is 2.36ten × 102, off by 1 in the last digit from the sum above.

Since the worst case for rounding would be when the actual number is halfway 
between two floating-point representations, accuracy in floating point is normally 
measured in terms of the number of bits in error in the least significant bits of the 
significand; the measure is called the number of units in the last place, or ulp. If 
a number were off by 2 in the least significant bits, it would be called off by 2 ulps. 
Provided there is no overflow, underflow, or invalid operation exceptions, IEEE 754 
guarantees that the computer uses the number that is within one-half ulp.

Elaboration: Although the example above really needed just one extra digit, multiply 
can need two. A binary product may have one leading 0 bit; hence, the normalizing step 
must shift the product one bit left. This shifts the guard digit into the least significant bit 
of the product, leaving the round bit to help accurately round the product. 

EXAMPLE

ANSWER

units in the last place 
(ulp) The number of 
bits in error in the least 
significant bits of the 
significand between 
the actual number and 
the number that can be 
represented.
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IEEE 754 has four rounding modes: always round up (toward +∞), always round down 
(toward – ∞), truncate, and round to nearest even. The final mode determines what to 
do if the number is exactly halfway in between. The U.S. Internal Revenue Service (IRS) 
always rounds 0.50 dollars up, possibly to the benefit of the IRS. A more equitable way 
would be to round up this case half the time and round down the other half. IEEE 754 
says that if the least significant bit retained in a halfway case would be odd, add one; 
if it’s even, truncate. This method always creates a 0 in the least significant bit in the 
tie-breaking case, giving the rounding mode its name. This mode is the most commonly 
used, and the only one that Java supports.

The goal of the extra rounding bits is to allow the computer to get the same results 
as if the intermediate results were calculated to infinite precision and then rounded. To 
support this goal and round to the nearest even, the standard has a third bit in addition 
to guard and round; it is set whenever there are nonzero bits to the right of the round 
bit. This sticky bit allows the computer to see the difference between 0.50  . . . 00 ten 
and 0.50  . . . 01ten when rounding. 

The sticky bit may be set, for example, during addition, when the smaller number is 
shifted to the right. Suppose we added 5.01ten × 10–1 to 2.34ten × 102 in the example 
above. Even with guard and round, we would be adding 0.0050 to 2.34, with a sum of 
2.3450. The sticky bit would be set, since there are nonzero bits to the right. Without the 
sticky bit to remember whether any 1s were shifted off, we would assume the number is 
equal to 2.345000 . . . 00 and round to the nearest even of 2.34. With the sticky bit to 
remember that the number is larger than 2.345000 . . . 00, we round instead to 2.35.

Elaboration: PowerPC, SPARC64, and AMD SSE5 architectures provide a single 
instruction that does a multiply and add on three registers: a = a + (b × c). Obviously, this 
instruction allows potentially higher floating-point performance for this common operation. 
Equally important is that instead of performing two roundings—-after the multiply and then 
after the add—which would happen with separate instructions, the multiply add instruction 
can perform a single rounding after the add. A single rounding step increases the precision 
of multiply add. Such operations with a single rounding are called fused multiply add. It 
was added to the revised IEEE 754 standard (see  Section 3.10 on the CD).

Summary
The Big Picture that follows reinforces the stored-program concept from Chapter 2; 
the meaning of the information cannot be determined just by looking at the bits, for 
the same bits can represent a variety of objects. This section shows that computer 
arithmetic is finite and thus can disagree with natural arithmetic. For example, the 
IEEE 754 standard floating-point representation

(-1)S × (1 + Fraction) × 2(Exponent - Bias)

is almost always an approximation of the real number. Computer systems must 
take care to minimize this gap between computer arithmetic and arithmetic in the 
real world, and programmers at times need to be aware of the implications of this 
approximation.

sticky bit A bit used in 
rounding in addition to 
guard and round that is 
set whenever there are 
nonzero bits to the right 
of the round bit.

fused multiply add 
A floating-point 
instruction that performs 
both a multiply and an 
add, but rounds only once 
after the add.



Bit patterns have no inherent meaning. They may represent signed integers, 
unsigned integers, floating-point numbers, instructions, and so on. What 
is represented depends on the instruction that operates on the bits in  
the word.

The major difference between computer numbers and numbers in the 
real world is that computer numbers have limited size and hence limited 
precision; it’s possible to calculate a number too big or too small to be 
represented in a word. Programmers must remember these limits and 
write programs accordingly.

C type Java type Data transfers Operations

int int lw,	sw,	lui addu,	addiu,	subu,	mult,	div,		
AND,	ANDi,	OR,	ORi,	NOR,	slt,	slti

unsigned	int — lw,	sw,	lui addu,	addiu,	subu,	multu,	divu,		
AND,	ANDi,	OR,	ORi,	NOR,	sltu,	sltiu	

char — lb,	sb,	lui add,	addi,	sub,	mult,	div		
AND,	ANDi,	OR,	ORi,	NOR,	slt,	slti

— char lh,	sh,	lui addu,	addiu,	subu,	multu,	divu,		
AND,	ANDi,	OR,	ORi,	NOR,	sltu,	sltiu

float float lwc1,	swc1 add.s,	sub.s,	mult.s,	div.s,		
c.eq.s,	c.lt.s,	c.le.s

double double l.d,	s.d add.d,	sub.d,	mult.d,	div.d,		
c.eq.d,	c.lt.d,	c.le.d

In the last chapter, we presented the storage classes of the programming language C 
(see the Hardware/Software Interface section in Section 2.7). The table above 
shows some of the C and Java data types, the MIPS data transfer instructions, and 
instructions that operate on those types that appear in Chapter 2 and this chapter. 
Note that Java omits unsigned integers.

Suppose there was a 16-bit IEEE 754 floating-point format with five exponent bits. 
What would be the likely range of numbers it could represent?

1.    1.0000  0000  00 ×	20     to   1.1111  1111  11 ×	231, 0

2. ±1.0000  0000  0 × 2-14    to ±1.1111  1111  1 ×	215, ±0, ±∞, NaN

3. ±1.0000  0000  00 × 2-14 to ±1.1111  1111  11 ×	215, ±0, ±∞, NaN

4. ±1.0000  0000  00 ×	2-15 to ±1.1111  1111  11 × 214, ±0, ±∞, NaN

The BIG 
Picture

Hardware/ 
Software 
Interface

Check  
Yourself
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Elaboration: To accommodate comparisons that may include NaNs, the standard includes 
ordered and unordered as options for compares. Hence, the full MIPS instruction set has 
many flavors of compares to support NaNs. (Java does not support unordered compares.)

In an attempt to squeeze every last bit of precision from a floating-point operation, 
the standard allows some numbers to be represented in unnormalized form. Rather than 
having a gap between 0 and the smallest normalized number, IEEE allows denormalized 
numbers (also known as denorms or subnormals). They have the same exponent as 
zero but a nonzero fraction. They allow a number to degrade in significance until it 
becomes 0, called gradual underflow. For example, the smallest positive single precision 
normalized number is 

1.0000 0000 0000 0000 0000 000two × 2–126

but the smallest single precision denormalized number is 

0.0000 0000 0000 0000 0000 001two × 2–126, or 1.0two × 2–149

For double precision, the denorm gap goes from 1.0 × 2–1022 to 1.0 × 2–1074.
The possibility of an occasional unnormalized operand has given headaches to floating-

point designers who are trying to build fast floating-point units. Hence, many computers 
cause an exception if an operand is denormalized, letting software complete the operation. 
Although software implementations are perfectly valid, their lower performance has 
lessened the popularity of denorms in portable floating-point software. Moreover, if 
programmers do not expect denorms, their programs may surprise them.

 3.6  
Parallelism and Computer Arithmetic: 
Associativity

Programs have typically been written first to run sequentially before being rewritten 
to run concurrently, so a natural question is, “do the two versions get the same 
answer?” If the answer is no, you presume there is a bug in the parallel version that 
you need to track down.

This approach assumes that computer arithmetic does not affect the results when 
going from sequential to parallel. That is, if you were to add a million numbers together, 
you would get the same results whether you used 1 processor or 1000 processors. This 
assumption holds for two’s complement integers, even if the computation overflows. 
Another way to say this is that integer addition is associative. 

Alas, because floating-point numbers are approximations of real numbers and 
because computer arithmetic has limited precision, it does not hold for floating-
point numbers. That is, floating-point addition is not associative.

Testing Associativity of Floating-Point Addition

See if x + (y + z)	 =	 (x + y) + z. For example, suppose x = -1.5ten × 1038, 
y = 1.5ten × 1038, and z = 1.0, and that these are all single precision numbers. EXAMPLE



Given the great range of numbers that can be represented in floating point, 
problems occur when adding two large numbers of opposite signs plus a small 
number, as we shall see:

x + (y + z) = -1.5ten × 1038 + (1.5ten × 1038 + 1.0) 
 = -1.5ten × 1038 + (1.5ten × 1038) = 0.0
(x + y) + z = (-1.5ten × 1038 + 1.5ten × 1038) + 1.0 
 = (0.0ten) + 1.0 
 = 1.0

Therefore x + (y + z) ≠ (x + y) + z, so floating-point addition is not 
associative.

Since floating-point numbers have limited precision and result in 
approximations of real results, 1.5ten × 1038 is so much larger than 1.0ten that 
1.5ten × 1038 + 1.0 is still 1.5ten	× 1038. That is why the sum of x, y, and z is 
0.0 or 1.0, depending on the order of the floating-point additions, and hence 
floating-point add is not associative.

A more vexing version of this pitfall occurs on a parallel computer where the 
operating system scheduler may use a different number of processors depending 
on what other programs are running on a parallel computer. The unaware parallel 
programmer may be flummoxed by his or her program getting slightly different 
answers each time it is run for the same identical code and the same identical input, 
as the varying number of processors from each run would cause the floating-point 
sums to be calculated in different orders.

Given this quandary, programmers who write parallel code with floating-point 
numbers need to verify whether the results are credible even if they don’t give the 
same exact answer as the sequential code. The field that deals with such issues is 
called numerical analysis, which is the subject of textbooks in its own right. Such 
concerns are one reason for the popularity of numerical libraries such as LAPACK 
and SCALAPAK, which have been validated in both their sequential and parallel 
forms.

Elaboration: A subtle version of the associativity issue occurs when two processors 
perform a redundant computation that is executed in different order so they get slightly 
different answers, although both answers are considered accurate. The bug occurs if 
a conditional branch compares to a floating-point number and the two processors take 
different branches when common sense reasoning suggests they should take the same 
branch.

ANSWER
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 3.7 Real Stuff: Floating Point in the x86

The x86 has regular multiply and divide instructions that operate entirely on its 
normal registers, unlike the reliance on separate Hi and Lo registers in MIPS.  
(In fact, later versions of the MIPS instruction set have added similar instructions.) 

The main differences are found in floating-point instructions. The x86 floating-
point architecture is different from all other computers in the world.

The x86 Floating-Point Architecture
The Intel 8087 floating-point coprocessor was announced in 1980. This architecture 
extended the 8086 with about 60 floating-point instructions. 

Intel provided a stack architecture with its floating-point instructions: loads 
push numbers onto the stack, operations find operands in the two top elements of 
the stacks, and stores can pop elements off the stack. Intel supplemented this stack 
architecture with instructions and addressing modes that allow the architecture 
to have some of the benefits of a register-memory model. In addition to finding 
operands in the top two elements of the stack, one operand can be in memory or in 
one of the seven registers on-chip below the top of the stack. Thus, a complete stack 
instruction set is supplemented by a limited set of register-memory instructions.

This hybrid is still a restricted register-memory model, however, since loads 
always move data to the top of the stack while incrementing the top-of-stack pointer, 
and stores can only move the top of stack to memory. Intel uses the notation ST 
to indicate the top of stack, and ST(i) to represent the ith register below the top 
of stack.

Another novel feature of this architecture is that the operands are wider in the 
register stack than they are stored in memory, and all operations are performed at this 
wide internal precision. Unlike the maximum of 64 bits on MIPS, the x86 floating-
point operands on the stack are 80 bits wide. Numbers are automatically converted 
to the internal 80-bit format on a load and converted back to the appropriate size on 
a store. This double extended precision is not supported by programming languages, 
although it has been useful to programmers of mathematical software.

Memory data can be 32-bit (single precision) or 64-bit (double precision) 
 floating-point numbers. The register-memory version of these instructions will 
then convert the memory operand to this Intel 80-bit format before perform-
ing the operation. The data transfer instructions also will automatically convert  
16- and 32-bit integers to floating point, and vice versa, for integer loads and stores.



The x86 floating-point operations can be divided into four major classes:

1. Data movement instructions, including load, load constant, and store

2. Arithmetic instructions, including add, subtract, multiply, divide, square 
root, and absolute value

3. Comparison, including instructions to send the result to the integer processor 
so that it can branch

4. Transcendental instructions, including sine, cosine, log, and exponentiation

Figure 3.20 shows some of the 60 floating-point operations. Note that we get even 
more combinations when we include the operand modes for these operations. 
Figure 3.21 shows the many options for floating-point add.

Data transfer Arithmetic Compare Transcendental

F{I}LD	mem/ST(i) F{I}ADD{P}	mem/ST(i) F{I}COM{P} FPATAN
F{I}ST{P}	mem/
ST(i)

F{I}SUB{R}{P}	mem/ST(i) F{I}UCOM{P}{P} F2XM1

FLDPI F{I}MUL{P}	mem/ST(i) FSTSW	AX/mem FCOS
FLD1 F{I}DIV{R}{P}	mem/ST(i) FPTAN

FLDZ FSQRT FPREM

FABS FSIN

FRNDINT FYL2X

FIGURE 3.20 The floating-point instructions of the x86. We use the curly brackets {} to show 
optional variations of the basic operations: {I} means there is an integer version of the instruction, {P} 
means this variation will pop one operand off the stack after the operation, and {R} means reverse the order 
of the operands in this operation. The first column shows the data transfer instructions, which move data 
to memory or to one of the registers below the top of the stack. The last three operations in the first column 
push constants on the stack: pi, 1.0, and 0.0. The second column contains the arithmetic operations described 
above. Note that the last three operate only on the top of stack. The third column is the compare instructions. 
Since there are no special floating-point branch instructions, the result of the compare must be transferred 
to the integer CPU via the FSTSW instruction, either into the AX register or into memory, followed by an 
SAHF instruction to set the condition codes. The floating-point comparison can then be tested using integer 
branch instructions. The final column gives the higher-level floating-point operations. Not all combinations 
suggested by the notation are provided. Hence, F{I}SUB{R}{P} operations represent these instructions 
found in the x86: FSUB, FISUB, FSUBR, FISUBR, FSUBP, FSUBRP. For the integer subtract instructions, 
there is no pop (FISUBP) or reverse pop (FISUBRP). 

The floating-point instructions are encoded using the ESC opcode of the 8086 
and the postbyte address specifier (see Figure 2.47). The memory operations reserve 
2 bits to decide whether the operand is a 32- or 64-bit floating point or a 16- or 
32-bit integer. Those same 2 bits are used in versions that do not access memory to 
decide whether the stack should be popped after the operation and whether the top 
of stack or a lower register should get the result.
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Instruction Operands Comment

FADD Both operands in stack; result replaces top of stack.

FADD ST(i) One source operand is ith register below the top of stack; result 
replaces the top of stack.

FADD ST(i),	ST One source operand is the top of stack; result replaces ith register 
below the top of stack.

FADD mem32 One source operand is a 32-bit location in memory; result replaces the 
top of stack.

FADD mem64 One source operand is a 64-bit location in memory; result replaces the 
top of stack.

FIGURE 3.21 The variations of operands for floating-point add in the x86. 

In the past, floating-point performance of the x86 family lagged far behind other 
computers. As a result, Intel created a more traditional floating-point architecture 
as part of SSE2.

The Intel Streaming SIMD Extension 2 (SSE2)  
Floating-Point Architecture
Chapter 2 notes that in 2001 Intel added 144 instructions to its architecture, 
including double precision floating-point registers and operations. It includes eight 
64-bit registers that can be used for floating-point operands, giving the compiler 
a different target for floating-point operations than the unique stack architecture. 
Compilers can choose to use the eight SSE2 registers as floating-point registers like 
those found in other computers. AMD expanded the number to 16 registers as part 
of AMD64, which Intel relabeled EM64T for its use. Figure 3.22 summarizes the 
SSE and SSE2 instructions.

In addition to holding a single precision or double precision number in a register, 
Intel allows multiple floating-point operands to be packed into a single 128-bit 
SSE2 register: four single precision or two double precision. Thus, the 16 floating-
point registers for SSE2 are actually 128 bits wide. If the operands can be arranged 
in memory as 128-bit aligned data, then 128-bit data transfers can load and store 
multiple operands per instruction. This packed floating-point format is supported 
by arithmetic operations that can operate simultaneously on four singles (PS) or 
two doubles (PD). This architecture more than doubles performance over the stack 
architecture.



Data transfer Arithmetic Compare

MOV{A/U}{SS/PS/SD/
PD}	xmm,	mem/xmm

ADD{SS/PS/SD/PD}	xmm,		
mem/xmm

CMP{SS/PS/SD/
PD}

SUB{SS/PS/SD/PD}	xmm,		
mem/xmm

MOV	{H/L}	{PS/PD}		
xmm,	mem/xmm	

MUL{SS/PS/SD/PD}	xmm,		
mem/xmm
DIV{SS/PS/SD/PD}	xmm,		
mem/xmm
SQRT{SS/PS/SD/PD}	mem/xmm

MAX	{SS/PS/SD/PD}	mem/xmm

MIN{SS/PS/SD/PD}	mem/xmm

FIGURE 3.22 The SSE/SSE2 floating-point instructions of the x86. xmm means one operand is 
a 128-bit SSE2 register, and mem/xmm means the other operand is either in memory or it is an SSE2 register. 
We use the curly brackets {} to show optional variations of the basic operations: {SS} stands for Scalar Single 
precision floating point, or one 32-bit operand in a 128-bit register; {PS} stands for Packed Single precision 
floating point, or four 32-bit operands in a 128-bit register; {SD} stands for Scalar Double precision floating  
point, or one 64-bit operand in a 128-bit register; {PD} stands for Packed Double precision floating point, or 
two 64-bit operands in a 128-bit register; {A} means the 128-bit operand is aligned in memory; {U} means 
the 128-bit operand is unaligned in memory; {H} means move the high half of the 128-bit operand; and {L} 
means move the low half of the 128-bit operand. 

 3.8 Fallacies and Pitfalls

Arithmetic fallacies and pitfalls generally stem from the difference between the 
limited precision of computer arithmetic and the unlimited precision of natural 
arithmetic.

Fallacy: Just as a left shift instruction can replace an integer multiply by a power of 
2, a right shift is the same as an integer division by a power of 2.

Recall that a binary number x, where xi means the ith bit, represents the number

. . . + (x3 × 23) + (x2 × 22) + (x1 × 21) + (x0 × 20)

Shifting the bits of x right by n bits would seem to be the same as dividing by 2n. 
And this is true for unsigned integers. The problem is with signed integers. For 
example, suppose we want to divide -5ten by 4ten; the quotient should be -1ten. The 
two’s complement representation of -5ten is

Thus mathematics 
may be defined as the 
subject in which we 
never know what 
we are talking about, 
nor whether what we 
are saying is true.

Bertrand Russell, Recent 
Words on the Principles 
of Mathematics, 1901
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	1111		1111		1111		1111		1111		1111		1111		1011two

According to this fallacy, shifting right by two should divide by 4ten (22):

	0011		1111		1111		1111		1111		1111		1111		1110two

With a 0 in the sign bit, this result is clearly wrong. The value created by the shift 
right is actually 1,073,741,822ten instead of -1ten.

A solution would be to have an arithmetic right shift that extends the sign bit 
instead of shifting in 0s. A 2-bit arithmetic shift right of -5ten produces

1111		1111		1111		1111		1111		1111		1111		1110two

The result is -2ten instead of -1ten; close, but no cigar. 

Pitfall: The MIPS instruction add immediate unsigned (addiu) sign-extends its 
16-bit immediate field.

Despite its name, add immediate unsigned (addiu) is used to add constants to 
signed integers when we don’t care about overflow. MIPS has no subtract immediate 
instruction, and negative numbers need sign extension, so the MIPS architects 
decided to sign-extend the immediate field.

Fallacy: Only theoretical mathematicians care about floating-point accuracy.

Newspaper headlines of November 1994 prove this statement is a fallacy (see 
Figure 3.23). The following is the inside story behind the headlines. 

The Pentium uses a standard floating-point divide algorithm that generates 
multiple quotient bits per step, using the most significant bits of divisor and 
dividend to guess the next 2 bits of the quotient. The guess is taken from a lookup 
table containing -2, -1, 0, +1, or +2. The guess is multiplied by the divisor and 
subtracted from the remainder to generate a new remainder. Like nonrestoring 
division, if a previous guess gets too large a remainder, the partial remainder is 
adjusted in a subsequent pass. 

Evidently, there were five elements of the table from the 80486 that Intel thought 
could never be accessed, and they optimized the PLA to return 0 instead of 2 in 
these situations on the Pentium. Intel was wrong: while the first 11 bits were always 
correct, errors would show up occasionally in bits 12 to 52, or the 4th to 15th 
decimal digits.

The following is a timeline of the Pentium bug morality play.

 ■ July 1994: Intel discovers the bug in the Pentium. The actual cost to fix the bug 
was several hundred thousand dollars. Following normal bug fix procedures, it 
will take months to make the change, reverify, and put the corrected chip into 
production. Intel planned to put good chips into production in January 1995, 
estimating that 3 to 5 million Pentiums would be produced with the bug.



 ■ September 1994: A math professor at Lynchburg College in Virginia, Thomas 
Nicely, discovers the bug. After calling Intel technical support and getting 
no official reaction, he posts his discovery on the Internet. It quickly gained 
a following, and some pointed out that even small errors become big when 
multiplied by big numbers: the fraction of people with a rare disease times 
the population of Europe, for example, might lead to the wrong estimate of 
the number of sick people.

 ■ November 7, 1994: Electronic Engineering Times puts the story on its front 
page, which is soon picked up by other newspapers.

 ■ November 22, 1994: Intel issues a press release, calling it a “glitch.” The Pentium 
“can make errors in the ninth digit. . . . Even most engineers and financial 
analysts require accuracy only to the fourth or fifth decimal point. Spreadsheet 

FIGURE 3.23 A sampling of newspaper and magazine articles from November 1994, 
including the New York Times, San Jose Mercury News, San Francisco Chronicle, and Infoworld. 
The Pentium floating-point divide bug even made the “Top 10 List” of the David Letterman Late Show on 
television. Intel eventually took a $300 million write-off to replace the buggy chips. 
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and word processor users need not worry. . . . There are maybe several dozen 
people that this would affect. So far, we’ve only heard from one. . . . [Only] 
theoretical mathematicians (with Pentium computers purchased before the 
summer) should be concerned.” What irked many was that customers were told 
to describe their application to Intel, and then Intel would decide whether or 
not their application merited a new Pentium without the divide bug.

 ■ December 5, 1994: Intel claims the flaw happens once in 27,000 years for the 
typical spreadsheet user. Intel assumes a user does 1000 divides per day and 
multiplies the error rate assuming floating-point numbers are random, which 
is one in 9 billion, and then gets 9 million days, or 27,000 years. Things begin 
to calm down, despite Intel neglecting to explain why a typical customer 
would access floating-point numbers randomly.

 ■ December 12, 1994: IBM Research Division disputes Intel’s calculation of the 
rate of errors (you can access this article by visiting www.mkp.com/books_ 
catalog/cod/links.htm). IBM claims that common spreadsheet programs, 
recalculating for 15 minutes a day, could produce Pentium-related errors 
as often as once every 24 days. IBM assumes 5000 divides per second, for 
15 minutes, yielding 4.2 million divides per day, and does not assume 
random distribution of numbers, instead calculating the chances as one in 
100 million. As a result, IBM immediately stops shipment of all IBM personal 
computers based on the Pentium. Things heat up again for Intel.

 ■ December 21, 1994: Intel releases the following, signed by Intel’s president, 
chief executive officer, chief operating officer, and chairman of the board:

“We at Intel wish to sincerely apologize for our handling of the recently 
publicized Pentium processor flaw. The Intel Inside symbol means that 
your computer has a microprocessor second to none in quality and 
performance. Thousands of Intel employees work very hard to ensure that 
this is true. But no microprocessor is ever perfect. What Intel continues to 
believe is technically an extremely minor problem has taken on a life of its 
own. Although Intel firmly stands behind the quality of the current version 
of the Pentium processor, we recognize that many users have concerns. 
We want to resolve these concerns. Intel will exchange the current version 
of the Pentium processor for an updated version, in which this floating-
point divide flaw is corrected, for any owner who requests it, free of charge 
anytime during the life of their computer.”

Analysts estimate that this recall cost Intel $500 million, and Intel engineers did not 
get a Christmas bonus that year.

This story brings up a few points for everyone to ponder. How much cheaper 
would it have been to fix the bug in July 1994? What was the cost to repair the 
damage to Intel’s reputation? And what is the corporate responsibility in disclosing 
bugs in a product so widely used and relied upon as a microprocessor?



 MIPS core instructions Name Format MIPS arithmetic core Name Format

add add R multiply mult R

add immediate addi I multiply unsigned multu R

add unsigned addu R divide div R

add immediate unsigned addiu I divide unsigned divu R

subtract sub R move from Hi mfhi R

subtract unsigned subu R move from Lo mflo R

AND AND R move from system control (EPC) mfc0 R

AND immediate ANDi I floating-point add single add.s R

OR OR R floating-point add double add.d R

OR immediate ORi I floating-point subtract single sub.s R

NOR NOR R floating-point subtract double sub.d R

shift left logical sll R floating-point multiply single mul.s R

shift right logical srl R floating-point multiply double mul.d R

load upper immediate lui I floating-point divide single div.s R

load word lw I floating-point divide double div.d R

store word sw I load word to floating-point single lwc1 I

load halfword unsigned lhu I store word to floating-point single swc1 I

store halfword sh I load word to floating-point double ldc1 I

load byte unsigned lbu I store word to floating-point double sdc1 I

store byte sb I branch on floating-point true bc1t I

load linked (atomic update) ll I branch on floating-point false bc1f I

store cond. (atomic update) sc I floating-point compare single c.x.s R

branch on equal beq I (x = eq, neq, lt, le, gt, ge)

branch on not equal bne I floating-point compare double c.x.d R

jump j J (x = eq, neq, lt, le, gt, ge)

jump and link jal J

jump register jr R

set less than slt R

set less than immediate slti I

set less than unsigned sltu R

set less than immediate unsigned sltiu I

FIGURE 3.24 The MIPS instruction set. This book concentrates on the instructions in the left column. This information is also found 
in columns 1 and 2 of the MIPS Reference Data Card at the front of this book. 

In April 1997, another floating-point bug was revealed in the Pentium Pro and 
Pentium II microprocessors. When the floating-point-to-integer store instructions 
(fist, fistp) encounter a negative floating-point number that is too large to fit 
in a 16- or 32-bit word after being converted to integer, they set the wrong bit in 
the FPO status word (precision exception instead of invalid operation exception). 
To Intel’s credit, this time they publicly acknowledged the bug and offered a software 
patch to get around it—quite a different reaction from what they did in 1994.
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 3.9 Concluding Remarks

A side effect of the stored-program computer is that bit patterns have no inherent 
meaning. The same bit pattern may represent a signed integer, unsigned integer, 
floating-point number, instruction, and so on. It is the instruction that operates on 
the word that determines its meaning. 

Computer arithmetic is distinguished from paper-and-pencil arithmetic by the 
constraints of limited precision. This limit may result in invalid operations through 
calculating numbers larger or smaller than the predefined limits. Such anomalies, 
called “overflow” or “underflow,” may result in exceptions or interrupts, emergency 
events similar to unplanned subroutine calls. Chapter 4 discusses exceptions in 
more detail. 

Floating-point arithmetic has the added challenge of being an approximation 
of real numbers, and care needs to be taken to ensure that the computer num-
ber selected is the representation closest to the actual number. The challenges of 
imprecision and limited representation are part of the inspiration for the field of 
numerical analysis. The recent switch to parallelism will shine the searchlight on 
numerical analysis again, as solutions that were long considered safe on sequential 
computers must be reconsidered when trying to find the fastest algorithm for par-
allel computers that still achieves a correct result.

Over the years, computer arithmetic has become largely standardized, greatly 
enhancing the portability of programs. Two’s complement binary integer arithme-
tic and IEEE 754 binary floating-point arithmetic are found in the vast majority of 
computers sold today. For example, every desktop computer sold since this book 
was first printed follows these conventions.

With the explanation of computer arithmetic in this chapter comes a description 
of much more of the MIPS instruction set. One point of confusion is the instructions 
covered in these chapters versus instructions executed by MIPS chips versus the 
instructions accepted by MIPS assemblers. Two figures try to make this clear.

Figure 3.24 lists the MIPS instructions covered in this chapter and Chapter 2. 
We call the set of instructions on the left-hand side of the figure the MIPS core. 
The instructions on the right we call the MIPS arithmetic core. On the left of 
Figure 3.25 are the instructions the MIPS processor executes that are not found 
in Figure 3.24. We call the full set of hardware instructions MIPS-32. On the right 
of Figure 3.25 are the instructions accepted by the assembler that are not part of 
MIPS-32. We call this set of instructions Pseudo MIPS.

Figure 3.26 gives the popularity of the MIPS instructions for SPEC CPU2006 
integer and floating-point benchmarks. All instructions are listed that were 
responsible for at least 0.2% of the instructions executed. 

Note that although programmers and compiler writers may use MIPS-32 to 
have a richer menu of options, MIPS core instructions dominate integer SPEC 



Remaining MIPS-32 Name Format Pseudo MIPS Name Format

exclusive or (rs ⊕	rt) xor R absolute value abs rd,rs
exclusive or immediate xori I negate (signed or unsigned) negs rd,rs

shift right arithmetic sra R rotate left rol rd,rs,rt
shift left logical variable sllv R rotate right ror rd,rs,rt
shift right logical variable srlv R multiply and don’t check oflw (signed or uns.) muls rd,rs,rt

shift right arithmetic variable srav R multiply and check oflw (signed or uns.) mulos rd,rs,rt

move to Hi mthi R divide and check overflow div rd,rs,rt
move to Lo mtlo R divide and don’t check overflow divu rd,rs,rt
load halfword lh I remainder (signed or unsigned) rems rd,rs,rt

load byte lb I load immediate li rd,imm
load word left (unaligned) lwl I load address la rd,addr
load word right (unaligned) lwr I load double ld rd,addr
store word left (unaligned) swl I store double sd rd,addr
store word right (unaligned) swr I unaligned load word ulw rd,addr
load linked (atomic update) ll I unaligned store word usw rd,addr
store cond. (atomic update) sc I unaligned load halfword (signed or uns.) ulhs rd,addr

move if zero movz R unaligned store halfword ush rd,addr
move if not zero movn R branch b Label
multiply and add (S or uns.) madds R branch on equal zero beqz rs,L

multiply and subtract (S or uns.) msubs I branch on compare (signed or unsigned) bxs rs,rt,L

branch on ≥ zero and link bgezal I (x = lt, le, gt, ge)

branch on < zero and link bltzal I set equal seq rd,rs,rt
jump and link register jalr R set not equal sne rd,rs,rt
branch compare to zero bxz I set on compare (signed or unsigned) sxs rd,rs,rt

branch compare to zero likely bxzl I (x = lt, le, gt, ge)

(x = lt, le, gt, ge) load to floating point (s or d) l.f rd,addr

branch compare reg likely bxl I store from floating point (s or d) s.f rd,addr
trap if compare reg tx R

trap if compare immediate txi I

(x = eq, neq, lt, le, gt, ge)

return from exception rfe R

system call syscall I

break (cause exception) break I

move from FP to integer mfc1 R

move to FP from integer mtc1 R

FP move (s or d) mov.f R

FP move if zero (s or d) movz.f R

FP move if not zero (s or d) movn.f R

FP square root (s or d) sqrt.f R

FP absolute value (s or d) abs.f R

FP negate (s or d) neg.f R

FP convert (w, s, or d) cvt.f.f R

FP compare un (s or d) c.xn.f R

FIGURE 3.25 Remaining MIPS-32 and Pseudo MIPS instruction sets. f means single (s) or double (d) precision floating-point 
instructions, and s means signed and unsigned (u) versions. MIPS-32 also has FP instructions for multiply and add/sub (madd.f/msub.f  ), 
ceiling (ceil.f    ), truncate (trunc.f  ), round (round.f  ), and reciprocal (recip.f  ). The underscore represents the letter to include to 
represent that datatype. 
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Core MIPS Name Integer Fl. pt. Arithmetic core + MIPS-32 Name Integer Fl. pt.

add add 0.0% 0.0% FP add double add.d 0.0% 10.6%

add immediate addi 0.0% 0.0% FP subtract double sub.d 0.0% 4.9%

add unsigned addu 5.2% 3.5% FP multiply double mul.d 0.0% 15.0%

add immediate unsigned addiu 9.0% 7.2% FP divide double div.d 0.0% 0.2%

subtract unsigned subu 2.2% 0.6% FP add single add.s 0.0% 1.5%

AND AND 0.2% 0.1% FP subtract single sub.s 0.0% 1.8%

AND immediate ANDi 0.7% 0.2% FP multiply single mul.s 0.0% 2.4%

OR OR 4.0% 1.2% FP divide single div.s 0.0% 0.2%

OR immediate ORi 1.0% 0.2% load word to FP double l.d 0.0% 17.5%

NOR NOR 0.4% 0.2% store word to FP double s.d 0.0% 4.9%

shift left logical sll 4.4% 1.9% load word to FP single l.s 0.0% 4.2%

shift right logical srl 1.1% 0.5% store word to FP single s.s 0.0% 1.1%

load upper immediate lui 3.3% 0.5% branch on floating-point true bc1t 0.0% 0.2%

load word lw 18.6% 5.8% branch on floating-point false bc1f 0.0% 0.2%

store word sw 7.6% 2.0% floating-point compare double c.x.d 0.0% 0.6%

load byte lbu 3.7% 0.1% multiply mul 0.0% 0.2%

store byte sb 0.6% 0.0% shift right arithmetic sra 0.5% 0.3%

branch on equal (zero) beq 8.6% 2.2% load half lhu 1.3% 0.0%

branch on not equal (zero) bne 8.4% 1.4% store half sh 0.1% 0.0%

jump and link jal 0.7% 0.2%

jump register jr 1.1% 0.2%

set less than slt 9.9% 2.3%

set less than immediate slti 3.1% 0.3%

set less than unsigned sltu 3.4% 0.8%

set less than imm. uns. sltiu 1.1% 0.1%

FIGURE 3.26 The frequency of the MIPS instructions for SPEC CPU2006 integer and floating point. All instructions that 
accounted for at least 0.2% of the instructions are included in the table. Pseudoinstructions are converted into MIPS-32 before execution, and 
hence do not appear here. 

CPU2006 execution, and the integer core plus arithmetic core dominate SPEC 
CPU2006 floating point, as the table below shows.

Instruction subset Integer Fl. pt.

MIPS core 98% 31%

MIPS arithmetic core 2% 66%

Remaining MIPS-32 0% 3%

For the rest of the book, we concentrate on the MIPS core instructions—the 
integer instruction set excluding multiply and divide—to make the explanation 
of computer design easier. As you can see, the MIPS core includes the most popu-
lar MIPS instructions; be assured that understanding a computer that runs the 
MIPS core will give you sufficient background to understand even more ambitious 
 computers.



   
Historical Perspective and Further 
Reading

This section surveys the history of the floating point going back to von Neumann, 
including the surprisingly controversial IEEE standards effort, plus the rationale 
for the 80-bit stack architecture for floating point in the x86. See  Section 3.10.

 3.11 Exercises
Contributed by Matthew Farrens, UC Davis

Exercise 3.1
The book shows how to add and subtract binary and decimal numbers. However, 
other numbering systems are also very popular when dealing with computers. The 
octal (base 8) numbering system is one of these. The following table shows pairs 
of octal numbers.

A B

a. 3174 0522

b. 4165 1654

3.1.1 [5] <3.2> What is the sum of A and B if they represent unsigned 12-bit 
octal numbers? The result should be written in octal. Show your work.

3.1.2 [5] <3.2> What is the sum of A and B if they represent signed 12-bit octal 
numbers stored in sign-magnitude format? The result should be written in octal. 
Show your work.

3.1.3 [10] <3.2> Convert A into a decimal number, assuming it is unsigned. 
 Repeat assuming it stored in sign-magnitude format. Show your work.

The following table also shows pairs of octal numbers.

A B

a. 7040 0444

b. 4365 3412

3.10
Gresham’s Law (“Bad 
money drives out 
Good”) for computers 
would say, “The Fast 
drives out the Slow 
even if the Fast is 
wrong.”

W. Kahan, 1992

Never give in, never 
give in, never, never, 
never—in nothing, 
great or small, large or 
petty—never give in.

Winston Churchill, 
address at Harrow 
School, 1941
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3.1.4 [5] <3.2> What is A – B if they represent unsigned 12-bit octal numbers? 
The result should be written in octal. Show your work.

3.1.5 [5] <3.2> What is A – B if they represent signed 12-bit octal numbers stored 
in sign-magnitude format? The result should be written in octal. Show your work.

3.1.6 [10] <3.2> Convert A into a binary number. What makes base 8 (octal) an 
attractive numbering system for representing values in computers?

Exercise 3.2
Hexadecimal (base 16) is also a commonly used numbering system for represent-
ing values in computers. In fact, it has become much more popular than octal. The 
following table shows pairs of hexadecimal numbers.

A B

a. 1446 672F

b. 2460 4935

3.2.1 [5] <3.2> What is the sum of A and B if they represent unsigned 
16-bit hexadecimal numbers? The result should be written in hexadecimal. Show 
your work.

3.2.2 [5] <3.2> What is the sum of A and B if they represent signed 16-bit hexa-
decimal numbers stored in sign-magnitude format? The result should be written 
in hexadecimal. Show your work.

3.2.3 [10] <3.2> Convert A into a decimal number, assuming it is unsigned. 
 Repeat assuming it stored in sign-magnitude format. Show your work.

The following table also shows pairs of hexadecimal numbers.

A B

a. C352 36AE

b. 5ED4 07A4

3.2.4 [5] <3.2> What is A – B if they represent unsigned 16-bit hexadecimal 
numbers? The result should be written in hexadecimal. Show your work.



3.2.5 [5] <3.2> What is A – B if they represent signed 16-bit hexadecimal 
 numbers stored in sign-magnitude format? The result should be written in hexa-
decimal. Show your work.

3.2.6 [10] <3.2> Convert A into a binary number. What makes base 16 (hexa-
decimal) an attractive numbering system for representing values in computers?

Exercise 3.3
Overflow occurs when a result is too large to be represented accurately given a 
finite word size. Underflow occurs when a number is too small to be represented 
correctly—a negative result when doing unsigned arithmetic, for example. (The 
case when a positive result is generated by the addition of two negative integers is 
also referred to as underflow by many, but in this textbook, that is considered an 
overflow.) The following table shows pairs of decimal numbers.

A B

a. 216 255

b. 185 122

3.3.1 [5] <3.2> Assume A and B are unsigned 8-bit decimal integers. Calculate 
A – B. Is there overflow, underflow, or neither?

3.3.2 [5] <3.2> Assume A and B are signed 8-bit decimal integers stored in sign-
magnitude format. Calculate A + B. Is there overflow, underflow, or neither?

3.3.3 [5] <3.2> Assume A and B are signed 8-bit decimal integers stored in sign-
magnitude format. Calculate A – B. Is there overflow, underflow, or neither?

The following table also shows pairs of decimal numbers.

A B

a. 15 139

b. 151 214

3.3.4 [10] <3.2> Assume A and B are signed 8-bit decimal integers stored in 
two’s complement format. Calculate A + B using saturating arithmetic. The result 
should be written in decimal. Show your work.

3.3.5 [10] <3.2> Assume A and B are signed 8-bit decimal integers stored in 
two’s complement format. Calculate A – B using saturating arithmetic. The result 
should be written in decimal. Show your work.
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3.3.6 [10] <3.2> Assume A and B are unsigned 8-bit integers. Calculate A + B
using saturating arithmetic. The result should be written in decimal. Show  
your work.

Exercise 3.4
Let’s look in more detail at multiplication. We will use the numbers in the follow-
ing table.

A B

a. 62 12

b. 35 26

3.4.1 [20] <3.3> Using a table similar to that shown in Figure 3.7, calculate the 
product of the octal unsigned 6-bit integers A and B using the hardware described 
in Figure 3.4. You should show the contents of each register on each step.

3.4.2 [20] <3.3> Using a table similar to that shown in Figure 3.7, calculate the 
product of the hexadecimal unsigned 8-bit integers A and B using the hardware 
described in Figure 3.6. You should show the contents of each register on each step.

3.4.3 [60] <3.3> Write an MIPS assembly language program to calculate the 
product of unsigned integers A and B, using the approach described in Figure 3.4.

The following table shows pairs of octal numbers.

A B

a. 41 33

b. 60 26

3.4.4 [30] <3.3> When multiplying signed numbers, one way to get the correct 
answer is to convert the multiplier and multiplicand to positive numbers, save the 
original signs, and then adjust the final value accordingly. Using a table similar 
to that shown in Figure 3.7, calculate the product of A and B using the hardware 
 described in Figure 3.4. You should show the contents of each register on each step, 
and include the step necessary to produce the correctly signed result. Assume A and 
B are stored in 6-bit sign-magnitude format.

3.4.5 [30] <3.3> When shifting a register one bit to the right, there are several 
ways to decide what the new entering bit should be. It can always be a zero, or 
always a one, or the incoming bit could be the one that is being pushed out of the 



right side (turning a shift into a rotate), or the value that is already in the leftmost 
bit can simply be retained (called an arithmetic shift right, because it preserves 
the sign of the number that is being shift). Using a table similar to that shown in 
Figure 3.7, calculate the product of the 6-bit two’s complement numbers A and B 
using the hardware described in Figure 3.6. The right shifts should be done using 
an arithmetic shift right. Note that the algorithm described in the text will need to 
be modified slightly to make this work—in particular, things must be done differ-
ently if the multiplier is negative. You can find details by searching the web. Show 
the contents of each register on each step.

3.4.6 [60] <3.3> Write an MIPS assembly language program to calculate the 
product of the signed integers A and B. State if you are using the approach given 
in 3.4.4 or 3.4.5.

Exercise 3.5
For many reasons, we would like to design multipliers that require less time. Many 
different approaches have been taken to accomplish this goal. In the following 
 table, A represents the bit width of an integer, and B represents the number of time 
units (tu) taken to perform a step of an operation.

A (bit width) B (time units)

a. 8 4tu

b. 64 8tu

3.5.1 [10] <3.3> Calculate the time necessary to perform a multiply using the 
approach given in Figures 3.4 and 3.5 if an integer is A bits wide and each step 
of the operation takes B time units. Assume that in step 1a an addition is always 
 performed—either the multiplicand will be added, or a zero will be. Also assume 
that the registers have already been initialized (you are just counting how long it 
takes to do the multiplication loop itself). If this is being done in hardware, the 
shifts of the multiplicand and multiplier can be done simultaneously. If this is being 
done in software, they will have to be done one after the other. Solve for each case.

3.5.2 [10] <3.3> Calculate the time necessary to perform a multiply using the 
approach described in the text (31 adders stacked vertically) if an integer is A bits 
wide and an adder takes B time units.

3.5.3 [20] <3.3> Calculate the time necessary to perform a multiply using 
the approach given in Figure 3.8 if an integer is A bits wide and an adder takes 
B time units.
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Exercise 3.6
In this exercise we will look at a couple of other ways to improve the performance 
of multiplication, based primarily on doing more shifts and fewer arithmetic 
 operations. The following table shows pairs of hexadecimal numbers.

A B

a. 33 55

b. 8a 6d

3.6.1 [20] <3.3> As discussed in the text, one possible performance enhancement 
is to do a shift and add instead of an actual multiplication. Since 9 × 6, for example, 
can be written (2 × 2 × 2 + 1) × 6, we can calculate 9 × 6 by shifting 6 to the left 3 
times and then adding 6 to that result. Show the best way to calculate A × B using 
shifts and adds/subtracts. Assume that A and B are 8-bit unsigned integers.

3.6.2 [20] <3.3> Show the best way to calculate A × B using shifts and add, if A 
and B are 8-bit signed integers stored in sign-magnitude format.

3.6.3 [60] <3.3> Write an MIPS assembly language program that performs a mul-
tiplication on signed integers using shifts and adds, using the approach  described 
in 3.6.1.

The following table shows further pairs of hexadecimal numbers.

A B

a. F6 7F

b. 08 55

3.6.4 [30] <3.3> Booth’s algorithm is another approach to reducing the number 
of arithmetic operations necessary to perform a multiplication. This algorithm has 
been around for years and involves identifying runs of ones and zeros and per-
forming only shifts instead of shifts and adds during the runs. Find a description 
of the algorithm on the web and explain in detail how it works.

3.6.5 [30] <3.3> Show the step-by-step result of multiplying A and B, using 
Booth’s algorithm. Assume A and B are 8-bit two’s complement integers, stored in 
hexadecimal format.

3.6.6 [60] <3.3> Write an MIPS assembly language program to perform the mul-
tiplication of A and B using Booth’s algorithm.



Exercise 3.7
Let’s look in more detail at division. We will use the octal numbers in the following 
table.

A B

a. 74 21

b. 76 52

3.7.1 [20] <3.4> Using a table similar to that shown in Figure 3.11, calculate A 
divided by B using the hardware described in Figure 3.9. You should show the con-
tents of each register on each step. Assume A and B are unsigned 6-bit integers.

3.7.2 [30] <3.4> Using a table similar to that shown in Figure 3.11, calculate A 
divided by B using the hardware described in Figure 3.12. You should show the con-
tents of each register on each step. Assume A and B are unsigned 6-bit integers. This 
algorithm requires a slightly different approach than that shown in Figure 3.10. You 
will want to think hard about this, do an experiment or two, or else go to the web 
to figure out how to make this work correctly. (Hint: one possible solution involves 
using the fact that Figure 3.12 implies the remainder register can be shifted either 
direction.)

3.7.3 [60] <3.4> Write an MIPS assembly language program to calculate A divided
by B, using the approach described in Figure 3.9. Assume A and B are unsigned 
6-bit integers.

The following table shows further pairs of octal numbers. 

A B

a. 72 07

b. 75 47

3.7.4 [30] <3.4> Using a table similar to that shown in Figure 3.11, calculate A 
divided by B using the hardware described in Figure 3.9. You should show the con-
tents of each register on each step. Assume A and B are 6-bit signed integers in 
sign-magnitude format. Be sure to include how you are calculating the signs of the 
quotient and remainder.

3.7.5 [30] <3.4> Using a table similar to that shown in Figure 3.11, calculate A 
divided by B using the hardware described in Figure 3.12. You should show the 
contents of each register on each step. Assume A and B are 6-bit signed integers in 
sign-magnitude format. Be sure to include how you are calculating the signs of the 
quotient and remainder.
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3.7.6 [60] <3.4> Write an MIPS assembly language program to calculate A 
 divided by B, using the approach described in Figure 3.12. Assume A and B are 
signed integers.

Exercise 3.8
Figure 3.10 describes a restoring division algorithm, because when subtracting the 
divisor from the remainder produces a negative result, the divisor is added back to 
the remainder (thus restoring the value). However, there are other algorithms that 
have been developed that eliminate the extra addition. Many references to these 
algorithms are easily found on the web. We will explore these algorithms using the 
pairs of octal numbers in the following table.

A B

a. 26 05

b. 37 15

3.8.1 [30] <3.4> Using a table similar to that shown in Figure 3.11, calculate 
A divided by B using non-restoring division. You should show the contents of each 
register on each step. Assume A and B are 6-bit unsigned integers.

3.8.2 [60] <3.4> Write an MIPS assembly language program to calculate A 
 divided by B using non-restoring division. Assume A and B are 6-bit signed (two’s 
complement) integers.

3.8.3 [60] <3.4> How does the performance of restoring and non-restoring 
division compare? Demonstrate by showing the number of steps necessary to 
calculate A divided by B using each method. Assume A and B are 6-bit signed 
(sign- magnitude) integers. Writing a program to perform the restoring and non- 
restoring divisions is acceptable.

The following table shows further pairs of octal numbers.

A B

a. 27 06

b. 54 12

3.8.4 [30] <3.4> Using a table similar to that shown in Figure 3.11, calculate A 
divided by B using non-performing division. You should show the contents of each 
register on each step. Assume A and B are 6-bit unsigned integers.



3.8.5 [60] <3.4> Write an MIPS assembly language program to calculate A 
 divided by B using nonperforming division. Assume A and B are 6-bit two’s com-
plement signed integers.

3.8.6 [60] <3.4> How does the performance of non-restoring and nonperform-
ing division compare? Demonstrate by showing the number of steps necessary to 
calculate A divided by B using each method. Assume A and B are signed 6-bit inte-
gers, stored in sign-magnitude format. Writing a program to perform the nonper-
forming and non-restoring divisions is acceptable.

Exercise 3.9
Division is so time-consuming and difficult that the CRAY T3E Fortran Optimiza-
tion guide states, “The best strategy for division is to avoid it whenever possible.” 
This exercise looks at the following different strategies for performing divisions.

a. non-restoring division

b. division by reciprocal multiplication

3.9.1 [30] <3.4> Describe the algorithm in detail.

3.9.2 [60] <3.4> Use a flow chart (or a high-level code snippet) to describe how 
the algorithm works.

3.9.3 [60] <3.4> Write an MIPS assembly language program to perform division 
using the algorithm.

Exercise 3.10
In a Von Neumann architecture, groups of bits have no intrinsic meanings by 
themselves. What a bit pattern represents depends entirely on how it is used. The 
following table shows bit patterns expressed in hexademical notation.

a. 0x0C000000

b. 0xC4630000

3.10.1 [5] <3.5> What decimal number does the bit pattern represent if it is a 
two’s complement integer? An unsigned integer?

3.10.2 [10] <3.5> If this bit pattern is placed into the Instruction Register, what 
MIPS instruction will be executed?
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3.10.3 [10] <3.5> What decimal number does the bit pattern represent if it is a 
floating point number? Use the IEEE 754 standard.

The following table shows decimal numbers.

a. 63.25

b. 146987.40625

3.10.4 [10] <3.5> Write down the binary representation of the decimal number, 
assuming the IEEE 754 single precision format.

3.10.5 [10] <3.5> Write down the binary representation of the decimal number, 
assuming the IEEE 754 double precision format.

3.10.6 [10] <3.5> Write down the binary representation of the decimal number 
assuming it was stored using the single precision IBM format (base 16, instead of 
base 2, with 7 bits of exponent).

Exercise 3.11
In the IEEE 754 floating point standard the exponent is stored in “bias” (also known 
as “Excess-N”) format. This approach was selected because we want an all-zero 
pattern to be as close to zero as possible. Because of the use of a hidden 1, if we were 
to represent the exponent in two’s complement format an all-zero pattern would 
actually be the number 1! (Remember, anything raised to the zeroth power is 1, so 
1.00 = 1.) There are many other aspects of the IEEE 754 standard that exist in order 
to help hardware floating point units work more quickly. However, in many older 
machines floating point calculations were handled in software, and therefore other 
formats were used. The following table shows decimal numbers.

a. –1.5625 × 10–1

b. 9.356875 × 102

3.11.1 [20] <3.5> Write down the binary bit pattern assuming a format similar 
to that employed by the DEC PDP-8 (the leftmost 12 bits are the exponent stored 
as a two’s complement number, and the rightmost 24 bits are the mantissa stored 
as a two’s complement number ). No hidden 1 is used. Comment on how the range 
and accuracy of this 36-bit pattern compares to the single and double precision 
IEEE 754 standards.

3.11.2 [20] <3.5> NVIDIA has a “half” format, which is similar to IEEE 754 
 except that it is only 16 bits wide. The leftmost bit is still the sign bit, the exponent 
is 5 bits wide and stored in excess-56 format, and the mantissa is 10 bits long.  



A hidden 1 is assumed. Write down the bit pattern assuming a modified version of 
this format, which uses an excess-16 format to store the exponent. Comment on 
how the range and accuracy of this 16-bit floating point format compares to the 
single precision IEEE 754 standard.

3.11.3 [20] <3.5> The Hewlett-Packard 2114, 2115, and 2116 used a format 
with the leftmost 16 bits being the mantissa stored in two’s complement format, 
followed by another 16-bit field which had the leftmost 8 bits as an extension of 
the mantissa (making the mantissa 24 bits long), and the rightmost 8 bits repre-
senting the exponent. However, in an interesting twist, the exponent was stored in 
sign-magnitude format with the sign bit on the far right! Write down the bit pat-
tern  assuming this format. No hidden 1 is used. Comment on how the range and 
 accuracy of this 32-bit pattern compares to the single precision IEEE 754 standard.

The following table shows pairs of decimal numbers.

A B

a.  2.6125 × 101  4.150390625 × 10–1

b. –4.484375 × 101  1.3953125 × 101

3.11.4 [20] <3.5> Calculate the sum of A and B by hand, assuming A and B are 
stored in the modified 16-bit NVIDIA format described in 3.11.2. Assume 1 guard, 
1 round bit, and 1 sticky bit, and round to the nearest even. Show all the steps.

3.11.5 [60] <3.5> Write an MIPS assembly language program to calculate the 
sum of A and B, assuming they are stored in the modified 16-bit NVIDIA format 
described in 3.11.2. Assume 1 guard, 1 round bit, and 1 sticky bit, and round to the 
nearest even.

3.11.6 [60] <3.5> Write an MIPS assembly language program to calculate the 
sum of A and B, assuming they are stored using the format described in 3.11.1. 
Now modify the program to calculate the sum assuming the format described 
in 3.11.3. Which format is easier for a programmer to deal with? How do they 
each compare to the IEEE 754 format? (Do not worry about sticky bits for this 
question.)

Exercise 3.12
Floating point multiplication is even more complicated and challenging than float-
ing point addition, and both pale in comparison to floating point division. The 
following table shows pairs of decimal numbers.
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A B

a. –8.0546875 × 100 –1.79931640625 × 10–1

b. 8.59375 × 10–2 8.125 × 10–1

3.12.1 [30] <3.5> Calculate the product of A and B by hand, assuming A and 
B are stored in the modified 16-bit NVIDIA format described in 3.11.2. Assume 
1 guard, 1 round bit, and 1 sticky bit, and round to the nearest even. Show all the 
steps; however, as is done in the example in the text, you can do the multiplication 
in human-readable format instead of using the techniques described in Exercises 
3.4 through 3.6. Indicate if there is overflow or underflow. Write your answer as a 
16-bit pattern, and also as a decimal number. How accurate is your result? How 
does it compare to the number you get if you do the multiplication on a calculator?

3.12.2 [60] <3.5> Write an MIPS assembly language program to calculate the 
product of A and B, assuming they are stored in IEEE 754 format. Indicate if there 
is overflow or underflow. (Remember, IEEE 754 assumes 1 guard, 1 round bit, and 
1 sticky bit, and rounds to the nearest even.)

3.12.3 [60] <3.5> Write an MIPS assembly language program to calculate the 
product of A and B, assuming they are stored using the format described in 3.11.1. 
Now modify the program to calculate the sum assuming the format described in 
3.11.3. Which format is easier for a programmer to deal with? How do they each 
compare to the IEEE 754 format? (Do not worry about sticky bits for this  question.)

The following table shows further pairs of decimal numbers.

A B

a. 8.625 × 101 –4.875 × 100

b. 1.84375 × 100 1.3203125 × 100

3.12.4 [30] <3.5> Calculate by hand A divided by B. Show all the steps neces-
sary to achieve your answer. Assume there is a guard, a round bit, and a sticky bit, 
and use them if necessary. Write the final answer in both the 16-bit floating point 
format described in 3.11.2 and in decimal and compare the decimal result to that 
which you get if you use a calculator.

The Livermore Loops are a set of floating point–intensive kernels taken from 
 scientific programs run at Lawrence Livermore Laboratory. The following table 
identifies individual kernels from the set.

a. Livermore Loop 3

b. Livermore Loop 9



3.12.5 [60] <3.5> Write the loop in MIPS assembly language.

3.12.6 [60] <3.5> Describe in detail one technique for performing floating point 
division in a digital computer. Be sure to include references to the sources you used.

Exercise 3.13
Operations performed on fixed-point integers behave the way one expects—the 
commutative, associative, and distributive laws all hold. This is not always the case 
when working with floating point numbers, however. Let’s first look at the associa-
tive law. The following table shows sets of decimal numbers.

A B C

a. 3.984375 × 10–1 3.4375 × 10–1 1.771 × 103

b. 3.96875 × 100 8.46875 × 100 2.1921875 × 101

3.13.1 [20] <3.2, 3.5, 3.6> Calculate (A + B) + C by hand, assuming A, B, and 
C are stored in the modified 16-bit NVIDIA format described in 3.11.2 (and also 
 described in the text). Assume 1 guard, 1 round bit, and 1 sticky bit, and round to 
the nearest even. Show all the steps, and write your answer in both the 16-bit float-
ing point format and in decimal.

3.13.2 [20] <3.2, 3.5, 3.6> Calculate A + (B + C) by hand, assuming A, B, and 
C are stored in the modified 16-bit NVIDIA format described in 3.11.2 (and also 
 described in the text). Assume 1 guard, 1 round bit, and 1 sticky bit, and round to 
the nearest even. Show all the steps, and write your answer in both the 16-bit float-
ing point format and in decimal.

3.13.3 [10] <3.2, 3.5, 3.6> Based on your answers to 3.13.1 and 3.13.2, does 
(A + B) + C = A + (B + C)?

The following table shows further sets of decimal numbers.

A B C

a. 3.41796875 10–3 6.34765625 × 10–3 1.05625 × 102

b. 1.140625 × 102 –9.135 × 102 9.84375 × 10–1

3.13.4 [30] <3.3, 3.5, 3.6> Calculate (A × B) × C by hand, assuming A, B, and 
C are stored in the modified 16-bit NVIDIA format described in 3.11.2 (and also 
 described in the text). Assume 1 guard, 1 round bit, and 1 sticky bit, and round to 
the nearest even. Show all the steps, and write your answer in both the 16-bit float-
ing point format and in decimal.
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3.13.5 [30] <3.3, 3.5, 3.6> Calculate A × (B × C) by hand, assuming A, B, and 
C are stored in the modified 16-bit NVIDIA format described in 3.11.2 (and also 
 described in the text). Assume 1 guard, 1 round bit, and 1 sticky bit, and round to 
the nearest even. Show all the steps, and write your answer in both the 16-bit float-
ing point format and in decimal.

3.13.6 [10] <3.3, 3.5, 3.6> Based on your answers to 3.13.4 and 3.13.5, does 
(A × B) × C = A × (B × C)?

Exercise 3.14
The Associative law is not the only one that does not always hold in dealing with 
floating point numbers. There are other oddities that occur as well. The following 
table shows sets of decimal numbers.

A B C

a. 1.666015625 × 100 1.9760 × 104 –1.9744 × 104

b. 3.48 × 102 6.34765625 × 10–2 –4.052734375 × 10–2

3.14.1 [30] <3.2, 3.3, 3.5, 3.6> Calculate A × (B + C) by hand, assuming A, B, and 
C are stored in the modified 16-bit NVIDIA format described in 3.11.2 (and also 
described in the text). Assume 1 guard, 1 round bit, and 1 sticky bit, and round to 
the nearest even. Show all the steps, and write your answer in both the 16-bit float-
ing point format and in decimal.

3.14.2 [30] <3.2, 3.3, 3.5, 3.6> Calculate (A × B) + (A × C) by hand, assuming A, 
B, and C are stored in the modified 16-bit NVIDIA format described in 3.11.2 (and 
also described in the text). Assume 1 guard, 1 round bit, and 1 sticky bit, and round 
to the nearest even. Show all the steps, and write your answer in both the 16-bit 
floating point format and in decimal.

3.14.3 [10] <3.2, 3.3, 3.5, 3.6> Based on your answers to 3.14.1. and 3.14.2, does 
(A × B) + (A × C) = A × (B + C)?

The following table shows pairs, each consisting of a fraction and an integer.

A B

a. –1/4 4

b. 1/10 10

3.14.4 [10] <3.5> Using the IEEE 754 floating point format, write down the bit 
pattern that would represent A. Can you represent A exactly?



3.14.5 [10] <3.2, 3.3, 3.5, 3.6> What do you get if you add A to itself B times? 
What is A × B? Are they the same? What should they be?

3.14.6 [60] <3.2, 3.3, 3.4, 3.5, 3.6> What do you get if you take the square root 
of B and then multiply that value by itself? What should you get? Do for both 
single and double precision floating point numbers. (Write a program to do these  
calculations.)

Exercise 3.15
Binary numbers are used in the mantissa field, but they do not have to be. IBM 
used base 16 numbers, for example, in some of their floating point formats. There 
are other approaches that are possible as well, each with their own particular 
 advantages and disadvantages. The following table shows fractions to be repre-
sented in various floating point formats.

a. 1/3

b. 1/10

3.15.1 [10] <3.5, 3.6> Write down the bit pattern in the mantissa assuming a 
floating point format that uses binary numbers in the mantissa (essentially what 
you have been doing in this chapter). Assume there are 24 bits, and you do not need 
to normalize. Is this representation exact?

3.15.2 [10] <3.5, 3.6> Write down the bit pattern in the mantissa assuming a 
floating point format that uses Binary Coded Decimal (base 10) numbers in the 
mantissa instead of base 2. Assume there are 24 bits, and you do not need to nor-
malize. Is this representation exact?

3.15.3 [10] <3.5, 3.6> Write down the bit pattern assuming that we are using 
base 15 numbers in the mantissa instead of base 2. (Base 16 numbers use the sym-
bols 0–9 and A–F. Base 15 numbers would use 0–9 and A–E.) Assume there are 24 
bits, and you do not need to normalize. Is this representation exact?

3.15.4 [20] <3.5, 3.6> Write down the bit pattern assuming that we are using 
base 30 numbers in the mantissa instead of base 2. (Base 16 numbers use the sym-
bols 0–9 and A–F. Base 30 numbers would use 0–9 and A–T.) Assume there are 20 
bits, and you do not need to normalize. Is this representation exact? Do you see any 
advantage to using this approach?

§3.2, page 229: 2.
§3.5, page 269: 3.
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 4.1 Introduction

Chapter 1 explains that the performance of a computer is determined by three key 
factors: instruction count, clock cycle time, and clock cycles per instruction (CPI). 
Chapter 2 explains that the compiler and the instruction set architec ture determine 
the instruction count required for a given program. However, the implementation 
of  the processor determines both  the clock cycle  time and  the number of  clock 
cycles per instruction. In this chapter, we construct the datapath and control unit 
for two different implementations of the MIPS instruction set. 

This chapter contains an explanation of the principles and techniques used in 
implementing a processor, starting with a highly abstract and simplified overview 
in this section. It is followed by a section that builds up a datapath and constructs a 
simple version of a processor sufficient to implement an instruction set like MIPS. 
The bulk of the chapter covers a more realistic pipelined MIPS implementation, 
followed  by  a  section  that  develops  the  concepts  necessary  to  implement  more 
complex instruction sets, like the x86.

For  the  reader  interested  in  understanding  the  high-level  interpretation  of 
instructions  and  its  impact  on  program  performance,  this  initial  section  and 
Section 4.5 present the basic concepts of pipelining. Recent trends are covered in 
Section 4.10, and Section 4.11 describes the recent AMD Opteron X4 (Barcelona) 
microprocessor.  These  sections  provide  enough  background  to  understand  the 
pipeline concepts at a high level.

For the reader interested in understanding the processor and its performance 
in more depth, Sections 4.3, 4.4, and 4.6 will be useful. Those interested in learn-
ing how to build a processor should also cover 4.2, 4.7, 4.8, and 4.9. For readers 
with an interest in modern hardware design,   Section 4.12 on the CD describes 
how hardware design languages and CAD tools are used to implement hardware, 
and then how to use a hardware design language to describe a pipelined imple-
mentation.  It  also  gives  several  more  illustrations  of  how  pipelining  hardware 
executes.

A Basic MIPS Implementation
We will be examining an implementation that includes a subset of the core MIPS 
instruction set:

■■ The memory-reference instructions load word (lw) and store word (sw)

■■ The arithmetic-logical instructions add, sub, AND, OR, and slt

■■ The instructions branch equal (beq) and jump (j), which we add last
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This subset does not include all the integer instructions (for example, shift,  multiply, 
and divide are missing), nor does it include any floating-point instructions. How-
ever, the key principles used in creating a datapath and designing the control are 
illustrated. The implementation of the remaining instructions is similar. 

In examining the implementation, we will have the opportunity to see how the 
instruction set architecture determines many aspects of the implementation, and 
how the choice of various implementation strategies affects the clock rate and CPI 
for the computer. Many of the key design principles introduced in Chapter 1 can 
be illustrated by looking at the implementation, such as the guidelines Make the 
com mon case fast and Simplicity favors regularity. In addition, most concepts used 
to implement the MIPS subset in this chapter are the same basic ideas that are used 
to construct a broad  spectrum of computers,  from high- performance  servers  to 
gen eral-purpose microprocessors to embedded processors. 

An Overview of the Implementation
In  Chapter 2,  we  looked  at  the  core  MIPS  instructions,  including  the  inte ger 
arithmetic-logical instructions, the memory-reference instructions, and the branch 
instructions. Much of what needs to be done to implement these instruc tions is the 
same, independent of the exact class of instruction. For every instruc tion, the first 
two steps are identical:

1.  Send the program counter (PC) to the memory that contains the code and 
fetch the instruction from that memory.

2.  Read one or two registers, using fields of the instruction to select the registers 
to read. For the load word instruction, we need to read only one regis ter, but 
most other instructions require that we read two registers.

After these two steps, the actions required to complete the instruction depend 
on  the  instruction  class.  Fortunately,  for  each  of  the  three  instruction  classes 
(memory-reference, arithmetic-logical, and branches), the actions are largely the 
same,  independent of  the exact  instruction. The simplicity and regularity of  the 
MIPS  instruction  set  simplifies  the  implementation by making  the execution of 
many of the instruction classes similar.

For example, all instruction classes, except jump, use the arithmetic-logical unit 
(ALU) after reading the registers. The memory-reference instructions use the ALU 
for  an  address  calculation,  the  arithmetic-logical  instructions  for  the  opera tion 
execution, and branches for comparison. After using the ALU, the actions required 
to complete various instruction classes differ. A memory-reference instruction will 
need to access the memory either to read data for a load or write data for a store. 
An arithmetic-logical  or  load  instruction  must  write  the  data  from  the ALU  or 
memory back into a register. Lastly, for a branch instruction, we may need to change 
the next instruction address based on the comparison; other wise, the PC should be 
incremented by 4 to get the address of the next instruction. 
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Figure 4.1  shows  the high-level  view of  a MIPS  implementation,  focusing on 
the various functional units and their interconnection. Although this figure shows 
most of the flow of data through the processor, it omits two important aspects of 
instruction execution. 

FIGURE 4.1 An abstract view of the implementation of the MIPS subset showing the 
major functional units and the major connections between them. All instructions start by using 
the pro gram counter to supply the instruction address to the instruction memory. After the instruction is 
fetched,  the  register operands used by an  instruction are  specified by fields of  that  instruction. Once  the 
register operands have been fetched, they can be operated on to compute a memory address (for a load or 
store), to compute an arithmetic result (for an integer arithmetic-logical instruction), or a compare (for a 
branch). If the instruction is an arithmetic-logical instruction, the result from the ALU must be written to 
a register. If the operation is a load or store, the ALU result is used as an address to either store a value from 
the registers or load a value from memory into the registers. The result from the ALU or memory is written 
back  into  the register file. Branches require  the use of  the ALU output  to determine  the next  instruction 
address, which comes either from the ALU (where the PC and branch offset are summed) or from an adder 
that increments the current PC by 4. The thick lines interconnecting the functional units represent buses, 
which consist of multiple signals. The arrows are used to guide the reader in knowing how information flows. 
Since signal lines may cross, we explicitly show when crossing lines are connected by the presence of a dot 
where the lines cross. 

Data

PC Address Instruction

Instruction
memory

Registers ALU Address

Data

Data
memory

AddAdd

4

Register #

Register #

Register #

First, in several places, Figure 4.1 shows data going to a particular unit as coming 
from two different sources. For example, the value written into the PC can come 
from one of two adders, the data written into the register file can come from either 
the ALU or  the data memory, and the second  input  to  the ALU can come from 
a  register  or  the  immediate  field  of  the  instruction.  In  practice,  these  data  lines 
can not simply be wired together; we must add a logic element that chooses from 
among the multiple sources and steers one of those sources to its destination. This 
selection is commonly done with a device called a multiplexor, although this device 



might better be called a data selector.   Appendix C describes  the multi plexor, 
which selects from among several inputs based on the setting of its con trol lines. 
The control lines are set based primarily on information taken from the instruction 
being executed. 

The second omission in Figure 4.1 is that several of the units must be con trolled 
depending on the type of  instruction. For example, the data memory must read 
on a load and write on a store. The register file must be written on a load and an 
arithmetic-logical instruction. And, of course, the ALU must perform one of several 
operations, as we saw in Chapter 2. (  Appendix C describes the detailed design 
of the ALU.) Like the multiplexors, these operations are directed by control lines 
that are set on the basis of various fields in the instruction. 

Figure 4.2 shows the datapath of Figure 4.1 with the three required multiplexors 
added, as well as control lines for the major functional units. A control unit, which 
has the instruction as an input, is used to determine how to set the control lines 
for  the  functional  units  and  two  of  the  multiplexors.  The  third  multiplexor, 
which  determines  whether  PC  +  4  or  the  branch  destination  address  is  written 
into the PC, is set based on the Zero output of the ALU, which is used to perform 
the comparison of a beq  instruction. The regularity and simplicity of the MIPS 
instruction set means that a simple decoding process can be used to determine how 
to set the control lines. 

In the remainder of the chapter, we refine this view to fill in the details, which 
requires that we add further functional units, increase the number of connections 
between units, and, of course, enhance a control unit to control what actions are 
taken for different instruction classes. Sections 4.3 and 4.4 describe a simple imple-
mentation that uses a single long clock cycle for every instruction and follows the 
gen eral  form of Figures 4.1 and 4.2. In this first design, every instruction begins 
execution on one clock edge and completes execution on the next clock edge. 

While easier to understand, this approach is not practical, since the clock cycle 
must  be  stretched  to  accommodate  the  longest  instruction.  After  designing  the 
control for this simple computer, we will look at pipelined implementation with all 
its complexities, including exceptions. 

How many of the five classic components of a computer—shown on page 299—do 
Figures 4.1 and 4.2 include? 

 4.2 Logic Design Conventions

To discuss the design of a computer, we must decide how the logic implementing 
the computer will operate and how the computer is clocked. This section reviews 
a  few  key  ideas  in  digital  logic  that  we  will  use  extensively  in  this  chapter.  If 

Check  
Yourself

 4.2 Logic Design Conventions 303
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you have  little or no background in digital  logic, you will find it helpful  to read 
 Appendix C before continuing. 
The  datapath  elements  in  the  MIPS  implementation  consist  of  two  different 

types of  logic elements:  elements  that operate on data values and elements  that 
contain  state.  The  elements  that  operate  on  data  values  are  all  combina tional, 
which means that their outputs depend only on the current inputs.  Given the same 
input, a combinational element always produces the same output. The ALU shown 
in Figure 4.1 and discussed in   Appendix C is an example of a combina tional 

combinational element 
An operational element, 
such as an AND gate or 
an ALU.

FIGURE 4.2 The basic implementation of the MIPS subset, including the necessary multiplexors and control lines. 
The top multiplexor (“Mux”) controls what value replaces the PC (PC + 4 or the branch destination address); the multi plexor is controlled 
by the gate that “ANDs” together the Zero output of the ALU and a control signal that indicates that the instruc tion is a branch. The middle 
multiplexor, whose output returns to the register file, is used to steer the output of the ALU (in the case of an arithmetic-logical instruction) 
or  the output of  the data memory (in  the case of a  load)  for writing  into  the register file. Finally,  the bottommost multiplexor  is used  to 
determine whether the second ALU input is from the registers (for an arithmetic-logical instruction OR a branch) or from the offset field of 
the instruction (for a load or store). The added control lines are straightforward and determine the operation performed at the ALU, whether 
the data memory should read or write, and whether the registers should perform a write operation. The control lines are shown in color to 
make them easier to see. 
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element. Given a set of inputs, it always produces the same output because it has 
no internal storage. 

Other elements in the design are not combinational, but instead contain state. 
An element contains state  if  it has some internal storage. We call  these elements 
state elements because,  if we pulled  the power plug on  the computer, we could 
restart  it by  loading the state elements with the values they contained before we 
pulled the plug. Furthermore, if we saved and restored the state elements, it would 
be as if the computer had never lost power. Thus, these state elements completely 
characterize  the  computer.  In  Figure 4.1,  the  instruction  and  data  memories,  as 
well as the registers, are all examples of state elements. 

A state element has at  least two inputs and one output. The required inputs 
are the data value to be written into the element and the clock, which determines 
when  the  data  value  is  written.  The  output  from  a  state  element  provides  the 
value that was written in an earlier clock cycle. For example, one of the logically 
sim plest  state  elements  is  a  D-type  flip-flop  (see    Appendix C),  which  has 
exactly  these  two  inputs  (a  value  and  a  clock)  and  one  output.  In  addition  to 
flip-flops, our MIPS implementation also uses two other types of state elements: 
memories and registers, both of which appear in Figure 4.1. The clock is used to 
determine when the state element should be written; a state  element can be read 
at any time. 

Logic  components  that  contain  state  are  also  called  sequential,  because  their 
outputs depend on both  their  inputs and  the contents of  the  internal  state. For 
example,  the output from the functional unit representing the registers depends 
both on the register numbers supplied and on what was written into the registers 
previously. The operation of both the combinational and sequential elements and 
their construction are discussed in more detail in   Appendix C.

We will use the word asserted to indicate a signal that is logically high and assert 
to specify that a signal should be driven logically high, and deassert or deas serted 
to represent logically low. 

Clocking Methodology

A clocking methodology defines when signals can be read and when they can be 
written. It is important to specify the timing of reads and writes, because if a signal 
is written at  the  same time  it  is  read,  the value of  the read could correspond to 
the old value,  the newly written value, or even some mix of  the  two! Computer 
designs cannot tolerate such unpredictability. A clocking methodology is designed 
to ensure predictability.

For  simplicity,  we  will  assume  an  edge-triggered  clocking  methodology.  An 
edge-triggered clocking methodology means that any values stored in a sequential 
logic element are updated only on a clock edge. Because only state elements can 
store a data value, any collection of combinational logic must have its inputs come 
from a set of  state elements and  its outputs written  into a  set of  state elements. 

state element  A memory 
element, such as a register 
or a memory.

asserted  The signal is 
logically high or true.

clocking methodology 
The approach used to 
determine when data is 
valid and stable rel ative to 
the clock.

edge-triggered clocking 
A clocking scheme in 
which all state changes 
occur on a clock edge.
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deasserted  The signal is 
logi cally low or false.
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The inputs are values that were written in a previous clock cycle, while the outputs 
are values that can be used in a following clock cycle.

Figure 4.3 shows the two state elements surrounding a block of combinational 
logic, which operates in a single clock cycle: all signals must propagate from state 
element 1, through the combinational logic, and to state element 2 in the time of 
one clock cycle. The time necessary for the signals to reach state element 2 defines 
the length of the clock cycle. 

FIGURE 4.3 Combinational logic, state elements, and the clock are closely related. In a 
synchronous digital system, the clock determines when elements with state will write values  into internal 
storage. Any inputs to a state element must reach a stable value (that is, have reached a value from which they 
will not change until after the clock edge) before the active clock edge causes the state to be updated. All state 
elements in this chapter, including memory, are assumed to be edge-triggered. 
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For simplicity, we do not show a write control signal when a state element is 
written on every active clock edge. In contrast, if a state element is not updated on 
every clock, then an explicit write control signal is required. Both the clock signal 
and the write control signal are inputs, and the state element is changed only when 
the write control signal is asserted and a clock edge occurs. 

An  edge-triggered  methodology  allows  us  to  read  the  contents  of  a  register, 
send the value  through some combinational  logic, and write  that register  in  the 
same clock cycle. Figure 4.4 gives a generic example. It doesn’t matter whether we 
assume that all writes  take place on the rising clock edge or on the falling clock 
edge, since the inputs to the combinational logic block cannot change except on 

control signal  A signal 
used for multiplexor 
selection or for directing 
the operation of a 
functional unit; contrasts 
with a data signal, which 
contains information 
that is operated on by a 
functional unit.

FIGURE 4.4 An edge-triggered methodology allows a state element to be read and writ-
ten in the same clock cycle without creating a race that could lead to indeterminate data 
values. Of course, the clock cycle still must be long enough so that the input values are stable when the 
active clock edge occurs. Feedback cannot occur within one clock cycle because of the edge-triggered update 
of  the  state  element.  If  feedback  were  possible,  this  design  could  not  work  properly.  Our  designs  in  this 
chapter and the next rely on the edge-triggered timing methodology and on structures like the one shown 
in this figure. 

State
element Combinational logic



the  chosen  clock  edge. With  an  edge-triggered  timing  methodology,  there  is  no 
feedback within a single clock cycle, and the logic in Figure 4.4 works correctly. In 

 Appendix C, we briefly discuss additional timing constraints (such as setup and 
hold times) as well as other timing methodologies.

For the 32-bit MIPS architecture, nearly all of these state and logic elements will 
have inputs and outputs that are 32 bits wide, since that is the width of most of the 
data handled by the processor. We will make it clear whenever a unit has an input 
or output that is other than 32 bits in width. The figures will indicate buses, which 
are signals wider than 1 bit, with thicker lines. At times, we will want to combine 
several buses to form a wider bus; for example, we may want to obtain a 32-bit bus 
by combining two 16-bit buses. In such cases, labels on the bus lines will make it 
clear that we are concatenating buses to form a wider bus. Arrows are also  added 
to help clarify  the direction of  the flow of data between elements. Finally,  color 
indicates a control signal as opposed to a signal that carries data; this distinction 
will become clearer as we proceed through this chapter.

True or false: Because the register file is both read and written on the same clock 
cycle,  any MIPS datapath using edge-triggered writes must have more  than one 
copy of the register file.

Elaboration: There is also a 64-bit version of the MIPS architecture, and, naturally 
enough, most paths in its implementation would be 64 bits wide. Also, we use the terms 
assert and deassert because at times 1 represents logically high and at times it can 
represent logically low.

 4.3 Building a Datapath 

A reasonable way to start a datapath design is to examine the major components 
required to execute each class of MIPS instructions. Let’s start by looking at which 
datapath elements each instruction needs. When we show the datapath elements, 
we will also show their control signals. 

Figure 4.5a  shows  the  first  element  we  need:  a  memory  unit  to  store  the 
instructions of a program and supply  instructions given an address. Figure 4.5b 
also shows the program counter (PC), which as we saw in Chapter 2 is a register 
that  holds  the  address  of  the  current  instruction.  Lastly,  we  will  need  an  adder 
to  increment the PC to the address of the next  instruction. This adder, which is 
combinational, can be built from the ALU described in detail in   Appendix C 
simply  by  wiring  the  control  lines  so  that  the  control  always  specifies  an  add 

Check  
Yourself

datapath element  A unit 
used to operate on 
or hold data within a 
processor. In the MIPS 
 implementation, the 
datapath elements include 
the instruc tion and data 
memories, the reg ister file, 
the ALU, and adders.

program counter (PC) 
The register containing the 
 address of the instruction 
in the program being 
 executed.
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operation. We will draw such an ALU with the label Add, as in Figure 4.5, to indicate 
that it has been permanently made an adder and cannot perform the other ALU 
functions. 

To  execute  any  instruction,  we  must  start  by  fetching  the  instruction  from 
memory. To prepare for executing the next instruction, we must also increment the 
program counter so that it points at the next instruction, 4 bytes later. Figure 4.6 
shows  how  to  combine  the  three  elements  from  Figure 4.5  to  form  a  datapath 
that fetches instructions and increments the PC to obtain the address of the next 
sequential instruction.  

Now let’s consider the R-format instructions (see Figure 2.20 on page 136). They 
all read two registers, perform an ALU operation on the contents of the registers, 
and write the result to a register. We call these instructions either R-type instruc-
tions  or   arithmetic-logical instructions (since  they  perform  arithmetic  or  logical 
operations).  This  instruction  class  includes add, sub, AND, OR,  and slt,  which 
were introduced in Chapter 2. Recall that a typical instance of such an instruction 
is add $t1,$t2,$t3, which reads $t2 and $t3 and writes $t1. 

The processor’s 32 general-purpose registers are stored in a structure called a 
register file. A register file is a collection of registers in which any register can be 
read or written by specifying the number of the register in the file. The register file 
contains the register state of  the computer.  In addition, we will need an ALU to 
operate on the values read from the registers. 

R-format  instructions  have  three  register  operands,  so  we  will  need  to  read 
two data words from the register file and write one data word into the register file 
for each instruction. For each data word to be read from the registers, we need an 

register file  A state 
element that consists 
of a set of  registers that 
can be read and written 
by supplying a register 
number to be accessed.

FIGURE 4.5 Two state elements are needed to store and access instructions, and an 
adder is needed to compute the next instruction address. The state elements are the instruction 
memory  and  the  program  counter.  The  instruction  memory  need  only  provide  read  access  because  the 
datapath does not write instructions. Since the instruction memory only reads, we treat it as combinational 
logic: the output at any time reflects the contents of the location specified by the address input, and no read 
control signal is needed. (We will need to write the instruction memory when we load the program; this is 
not hard to add, and we ignore it for simplicity.) The program counter is a 32-bit register that is written at the 
end of every clock cycle and thus does not need a write control signal. The adder is an ALU wired to always 
add its two 32-bit inputs and place the sum on its output. 
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input to the register file that specifies the register number to be read and an out put 
from the register file that will carry the value that has been read from the reg isters. 
To write a data word, we will need two inputs: one to specify the register number to 
be written and one to supply the data to be written into the register. The register file 
always outputs the contents of whatever register numbers are on the Read register 
inputs. Writes, however, are controlled by the write control sig nal, which must be 
asserted  for  a  write  to  occur  at  the  clock  edge.  Figure 4.7a  shows  the  result;  we 
need a total of four inputs (three for register numbers and one for data) and two 
outputs (both for data). The register number inputs are 5 bits wide to specify one 
of 32 registers (32 = 25), whereas the data input and two data output buses are each 
32 bits wide. 

Figure 4.7b shows the ALU, which takes two 32-bit inputs and produces a 32-bit 
result, as well as a 1-bit signal if the result is 0. The 4-bit control signal of the ALU is 
described in detail in   Appendix C; we will review the ALU control shortly when 
we need to know how to set it.

Next,  consider  the  MIPS  load  word  and  store  word  instructions,  which  have 
the  general  form lw $t1,offset_value($t2)  or sw $t1,offset_value 
($t2). These instructions compute a memory address by adding the base regis ter, 
which is $t2, to the 16-bit signed offset field contained in the instruction. If the 
instruction is a store, the value to be stored must also be read from the register file 
where it resides in $t1. If the instruction is a load, the value read from mem ory 
must be written into the register file in the specified register, which is $t1. Thus, we 
will need both the register file and the ALU from Figure 4.7. 

FIGURE 4.6 A portion of the datapath used for fetching instructions and incrementing 
the program counter. The fetched instruction is used by other parts of the datapath. 
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In  addition,  we  will  need  a  unit  to  sign-extend  the  16-bit  offset  field  in  the 
instruction to a 32-bit signed value, and a data memory unit to read from or write 
to. The data memory must be written on store instructions; hence, data memory 
has read and write control signals, an address input, and an input for the data to be 
written into memory. Figure 4.8 shows these two elements. 

The  beq  instruction  has  three  operands,  two  registers  that  are  compared 
for  equality,  and  a  16-bit  offset  used  to  compute  the  branch target address 
relative to the branch instruction address. Its form is beq $t1,$t2,offset. To 
implement this instruction, we must compute the branch target address by adding 
the sign-extended offset field of the instruction to the PC. There are two details 
in  the  definition  of  branch  instructions  (see  Chapter  2)  to  which  we  must  pay 
attention: 

■■ The instruction set architecture specifies that the base for the branch address 
calculation is the address of the instruction following the branch. Since we 
compute PC + 4 (the address of the next instruction) in the instruction fetch 
datapath,  it  is  easy  to use  this value as  the base  for computing  the branch 
target address. 

sign-extend  To increase 
the size of a data item by 
replicating the high-order 
sign bit of the original 
data item in the high-
order bits of the larger, 
destina tion data item.

branch target address 
The address specified in 
a branch, which becomes 
the new program counter 
(PC) if the branch is 
taken. In the MIPS 
architecture the branch 
target is given by the 
sum of the offset field of 
the instruction and the 
address of the instruction 
following the branch.

FIGURE 4.7 The two elements needed to implement R-format ALU operations are the 
register file and the ALU. The register file contains all the registers and has two read ports and one write 
port. The design of multiported register files is discussed in Section C.8 of   Appendix C. The register file 
always outputs the contents of the registers corresponding to the Read register  inputs on the outputs; no 
other control  inputs are needed.  In contrast, a register write must be explicitly  indicated by asserting the 
write control signal. Remember that writes are edge-t riggered, so that all the write inputs (i.e., the value to 
be written, the register number, and the write control signal) must be valid at the clock edge. Since writes to 
the register file are edge-t riggered, our design can legally read and write the same register within a clock cycle: 
the read will get the value written in an earlier clock cycle, while the value written will be available to a read in 
a subsequent clock cycle. The inputs carrying the register number to the register file are all 5 bits wide, whereas 
the lines carrying data values are 32 bits wide. The operation to be performed by the ALU is controlled with 
the ALU operation signal, which will be 4 bits wide, using the ALU designed  in   Appendix C. We will 
use the Zero detection output of the ALU shortly to implement branches. The overflow output will not be 
needed until Section 4.9, when we discuss exceptions; we omit it until then. 
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■■ The architecture also states that the offset field is shifted left 2 bits so that it 
is a word offset; this shift increases the effective range of the offset field by a 
factor of 4. 

To deal with the latter complication, we will need to shift the offset field by 2. 
As well as computing the branch target address, we must also determine whether 

the next instruction is the instruction that follows sequentially or the instruction 
at the  branch  target  address.  When  the  condition  is  true  (i.e.,  the   operands  are 
equal), the branch target address becomes the new PC, and we say that the branch 
is  taken.  If  the  operands  are  not  equal,  the  incremented  PC  should  replace  the 
current PC (just as for any other normal instruction); in this case, we say that the 
branch is not taken. 

Thus, the branch datapath must do two operations: compute the branch target 
address  and  compare  the  register  contents.  (Branches  also  affect  the  instruction 
fetch portion of  the datapath, as we will deal with shortly.) Figure 4.9  shows  the 
structure of the datapath segment that handles branches. To compute the branch 
target address, the branch datapath includes a sign extension unit, from Figure 4.8 
and an adder. To perform the compare, we need to use the register file shown in 
Figure 4.7a to supply the two register operands (although we will not need to write 
into the register file). In addition, the comparison can be done using the ALU we 
designed in   Appendix C. Since that ALU provides an output signal that indicates 
whether the result was 0, we can send the two register operands to the ALU with the 

branch taken  A branch 
where the branch 
condition is satisfied and 
the program counter (PC) 
becomes the branch target. 
All unconditional branches 
are taken branches.

branch not taken  or 
(untaken branch) 
A branch where the 
branch condition is false 
and the program counter 
(PC) becomes the address 
of the instruction that 
sequentially follows the 
branch.

FIGURE 4.8 The two units needed to implement loads and stores, in addition to the 
register file and ALU of Figure 4.7, are the data memory unit and the sign extension unit. 
The memory unit is a state element with inputs for the address and the write data, and a single output for 
the read result. There are separate read and write controls, although only one of these may be asserted on 
any given clock. The memory unit needs a read signal, since, unlike the register file, reading the value of an 
invalid address can cause problems, as we will see in Chapter 5. The sign extension unit has a 16-bit input that 
is sign-extended into a 32-bit result appearing on the output (see Chapter 2). We assume the data memory is 
edge-triggered for writes. Standard memory chips actually have a write enable signal that is used for writes. 
Although the write enable is not edge-triggered, our edge-triggered design could easily be adapted to work 
with  real  memory  chips.  See  Section  C.8  of    Appendix C  for  further  discussion  of  how  real  memory 
chips work. 
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FIGURE 4.9 The datapath for a branch uses the ALU to evaluate the branch condition 
and a separate adder to compute the branch target as the sum of the incremented PC 
and the sign-extended, lower 16 bits of the instruction (the branch displacement), shifted 
left 2 bits. The unit labeled Shift left 2 is simply a routing of the signals between input and output that 
adds 00two to the low-order end of the sign-extended offset field; no actual shift hardware is needed, since 
the amount of the “shift” is constant. Since we know that the offset was sign-extended from 16 bits, the shift 
will throw away only “sign bits.” Control logic is used to decide whether the incremented PC or branch target 
should replace the PC, based on the Zero output of the ALU. 
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control set to do a subtract. If the Zero  signal out of the ALU unit is asserted, we 
know that the two values are equal. Although the Zero output always signals if the 
result is 0, we will be using it only to implement the equal test of branches. Later, 
we will show exactly how to connect the control signals of the ALU for use in the 
datapath. 

The  jump  instruction operates by  replacing  the  lower 28 bits of  the PC with 
the lower 26 bits of the instruction shifted left by 2 bits. This shift is accomplished 
simply by concatenating 00 to the jump offset, as described in Chapter 2.



Elaboration: In the MIPS instruction set, branches are delayed, meaning that the 
instruc tion immediately following the branch is always executed, independent of whether 
the branch condition is true or false. When the condition is false, the execution looks 
like a nor mal branch. When the condition is true, a delayed branch first executes the 
instruction imme diately following the branch in sequential instruction order before 
jumping to the specified branch target address. The motivation for delayed branches 
arises from how pipelining affects branches (see Section 4.8). For simplicity, we generally 
ignore delayed branches in this chapter and implement a nondelayed beq instruction.

Creating a Single Datapath

Now that we have examined the datapath components needed for the individual 
instruction classes, we can combine them into a single datapath and add the control 
to complete  the  implementation. This  simplest datapath will attempt  to exe cute 
all instructions  in one clock cycle. This means  that no datapath resource can be 
used more than once per instruction, so any element needed more than once must 
be duplicated. We therefore need a memory for instructions separate from one for 
data. Although some of the functional units will need to be duplicated, many of the 
elements can be shared by different instruction flows. 

To share a datapath element between two different instruction classes, we may 
need to allow multiple connections to the input of an element, using a multi plexor 
and control signal to select among the multiple inputs.

Building a Datapath

The operations of arithmetic-logical (or R-type) instructions and the memory 
instructions datapath are quite similar. The key differences are the following:

■■ The arithmetic-logical instructions use the ALU, with the inputs coming 
from the two registers. The memory instructions can also use the ALU 
to  do  the  address  calculation,  although  the  second  input  is  the  sign- 
extended 16-bit offset field from the instruction.

■■ The value stored into a destination register comes from the ALU (for an 
R-type instruction) or the memory (for a load).

Show how to build a datapath for the operational portion of the memory-
reference  and  arithmetic-logical  instructions  that  uses  a  single  register  file 
and a single ALU to handle both types of instructions, adding any necessary 
multiplexors. 

delayed branch  A type 
of branch where the 
instruction immediately 
following the branch is 
always exe cuted, inde-
pendent of whether the 
branch condition is true 
or false.

EXAMPLE
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To create a datapath with only a single register file and a single ALU, we must 
support two different sources for the second ALU input, as well as two differ ent 
sources for the data stored into the register file. Thus, one multiplexor is placed 
at the ALU input and another at the data input to the register file. Figure 4.10 
shows the operational portion of the combined datapath.

ANSWER

FIGURE 4.10 The datapath for the memory instructions and the R-type instructions. This example shows how 
a single datapath can be assembled from the pieces in Figures 4.7 and 4.8 by adding multiplexors. Two multiplexors are needed, 
as described in the example. 
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Now we can combine all  the pieces  to make a  simple datapath  for  the MIPS 
architecture by adding the datapath for instruction fetch (Figure 4.6), the datapath 
from R-type and memory instructions (Figure 4.10), and the datapath for branches 
(Figure 4.9). Figure 4.11 shows the datapath we obtain by composing the  separate 
pieces. The branch instruction uses the main ALU for comparison of the register 
operands, so we must keep the adder from Figure 4.9 for computing the branch 
target address. An additional multiplexor is required to select either the sequen-
tially  following  instruction  address  (PC +  4)  or  the  branch  target  address  to  be 
written into the PC.

Now that we have completed this simple datapath, we can add the control unit. 
The control unit must be able to take inputs and generate a write signal for each 
state element, the selector control for each multiplexor, and the ALU control. The 



ALU control is different in a number of ways, and it will be useful to design it first 
before we design the rest of the control unit.

I. Which of the following is correct for a load instruction? Refer to Figure 4.10.

a.  MemtoReg should be set to cause the data from memory to be sent to the 
register file.

b.  MemtoReg should be set to cause the correct register destination to be sent to 
the register file. 

c.  We do not care about the setting of MemtoReg for loads.

II. The single-cycle datapath conceptually described in this section must have sepa-
rate instruction and data memories, because

a.  the formats of data and instructions are different in MIPS, and hence different 
memories are needed.

Check  
Yourself

FIGURE 4.11 The simple datapath for the MIPS architecture combines the elements required by different instruction 
classes. The components come from Figures 4.6, 4.9, and 4.10. This datapath can execute the basic  instructions (load-store word, ALU 
operations, and branches) in a single clock cycle. An additional multiplexor is needed to integrate branches. The support for jumps will be 
added later. 
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b.  having separate memories is less expensive.

c.  the processor operates in one cycle and cannot use a single-ported memory 
for two different accesses within that cycle

 4.4 A Simple Implementation Scheme

In this section, we look at what might be thought of as the simplest possible imple-
mentation  of  our  MIPS  subset. We  build  this  simple  implementation  using  the 
datapath  of  the  last  section  and  adding  a  simple  control  function.  This  simple 
implementation covers load word (lw), store word (sw), branch equal (beq), and 
the arithmetic-logical instructions add, sub, AND, OR, and set on less than. We 
will later enhance the design to include a jump instruction (j). 

The ALU Control

The MIPS ALU in   Appendix C defines the 6 following combinations of four 
control inputs:  

ALU control lines Function

0000 AND

0001 OR

0010 add

0110 subtract

0111 set on less than

1100 NOR

Depending on the instruction class, the ALU will need to perform one of these 
first five  functions.  (NOR  is needed  for other parts of  the MIPS  instruction  set 
not  found  in  the  subset  we  are  implementing.)  For  load  word  and  store  word 
instructions,  we  use  the ALU  to  compute  the  memory  address  by  addition.  For 
the R-type instructions, the ALU needs to perform one of the five actions (AND, 
OR, subtract, add, or set on less than), depending on the value of the 6-bit funct 
(or function)  field  in  the  low-order  bits  of  the  instruction  (see  Chapter  2).  For 
branch equal, the ALU must perform a subtraction.

We can generate the 4-bit ALU control input using a small control unit that has 
as inputs the function field of the instruction and a 2-bit control field, which we 
call ALUOp. ALUOp indicates whether the operation to be performed should be 
add (00) for loads and stores, subtract (01) for beq, or determined by the operation 
encoded in the funct field (10). The output of the ALU control unit is a 4-bit signal 



that directly controls the ALU by generating one of the 4-bit combinations shown 
previously. 

In Figure 4.12, we show how to set the ALU control inputs based on the 2-bit 
ALUOp control and the 6-bit function code. Later in this chapter we will see how 
the ALUOp bits are generated from the main control unit.  

Instruction 
opcode ALUOp

Instruction 
operation Funct field

Desired 
ALU action

ALU control 
input

LW 00 load word XXXXXX add 0010

SW 00 store word XXXXXX add 0010

Branch equal 01 branch equal XXXXXX subtract 0110

R-type 10 add 100000 add 0010

R-type 10 subtract 100010 subtract 0110

R-type 10 AND 100100 AND 0000

R-type 10 OR 100101 OR 0001

R-type 10 set on less than 101010 set on less than 0111

FIGURE 4.12 How the ALU control bits are set depends on the ALUOp control bits and 
the different function codes for the R-type instruction. The opcode, listed in the first column, 
determines the setting of the ALUOp bits. All the encodings are shown in binary. Notice that when the 
ALUOp code  is 00 or 01,  the desired ALU action does not depend on the  function code field;  in  this 
case, we say that we “don’t care” about the value of the function code, and the funct field is shown as 
XXXXXX. When the ALUOp value is 10, then the function code is used to set the ALU control input. 
See 

 
Appendix C. 

This style of using multiple levels of decoding—that is, the main control unit 
generates the ALUOp bits, which then are used as input to the ALU control that 
generates the actual signals to control the ALU unit—is a common implementation 
technique. Using multiple levels of control can reduce the size of the main control 
unit. Using several smaller control units may also potentially increase the speed of 
the control unit. Such optimizations are important, since the speed of the control 
unit is often critical to clock cycle time.

There  are  several  different  ways  to  implement  the  mapping  from  the  2-bit 
ALUOp  field  and  the  6-bit  funct  field  to  the  four  ALU  operation  control  bits. 
Because only a small number of the 64 possible values of the function field are of 
interest and the function field is used only when the ALUOp bits equal 10, we can 
use a small piece of logic that recognizes the subset of possible values and causes 
the correct setting of the ALU control bits. 

As a step in designing this logic, it is useful to create a truth table for the inter-
esting combinations of the function code field and the ALUOp bits, as we’ve done 
in Figure 4.13; this truth table shows how the 4-bit ALU control is set depending 
on these two input fields. Since the full truth table is very large (28 = 256 entries) 
and  we  don’t  care  about  the  value  of  the ALU  control  for  many  of  these  input 

truth table  From logic, 
a rep resentation of a 
logical opera tion by listing 
all the values of the inputs 
and then in each case 
showing what the resulting 
out puts should be.
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combinations, we show only the truth table entries for which the ALU control must 
have a specific value. Throughout this chapter, we will use this practice of showing 
only  the  truth  table  entries  for  outputs  that  must  be  asserted  and  not  showing 
those that are all deasserted or don’t care. (This practice has a disadvantage, which 
we discuss in Section D.2 of   Appendix D.) 

Because in many instances we do not care about the values of some of the inputs, 
and because we wish to keep the tables compact, we also include don’t-care terms. 
A don’t-care  term  in  this  truth  table  (represented by an X  in an  input column) 
indicates that the output does not depend on the value of the input corresponding 
to that column. For example, when the ALUOp bits are 00, as in the first row of 
Figure 4.13, we always set the ALU control to 0010, independent of the function 
code. In this case, then, the function code inputs will be don’t cares in this line of 
the truth table. Later, we will see examples of another type of don’t-care term. If 
you are unfamiliar with the concept of don’t-care terms, see   Appendix C for 
more information. 

Once the truth table has been constructed, it can be optimized and then turned 
into gates. This process is completely mechanical. Thus, rather than show the final 
steps here, we describe the process and the result in Section D.2 of   Appendix D.

Designing the Main Control Unit

Now that we have described how to design an ALU that uses the function code and 
a 2-bit signal as its control inputs, we can return to looking at the rest of the control. 
To start this process, let’s identify the fields of an instruction and the con trol lines 
that  are  needed  for  the  datapath  we  constructed  in  Figure 4.11.  To understand 
how to connect the fields of an instruction to the datapath, it is useful to review 
the  formats  of  the  three  instruction  classes:  the  R-type,  branch,  and  load-store 
instructions. Figure 4.14 shows these formats.

don’t-care term  An 
element of a logical 
function in which the 
output does not depend 
on the values of all the 
inputs. Don’t-care terms 
may be specified in 
different ways.

ALUOp Funct field

OperationALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 0010

0 1 X X X X X X 0110 

1 0 X X 0 0 0 0 0010 

1 X X X 0 0 1 0 0110 

1 0 X X 0 1 0 0 0000

1 0 X X 0 1 0 1 0001 

1 X X X 1 0 1 0 0111 

FIGURE 4.13 The truth table for the 4 ALU control bits (called Operation). The inputs are 
the ALUOp and function code field. Only the entries for which the ALU control is asserted are shown. Some 
don’t-care entries have been added. For example, the ALUOp does not use the encoding 11, so the truth table 
can contain entries 1X and X1, rather than 10 and 01. Note that when the function field is used, the first 
2 bits (F5 and F4) of these instructions are always 10, so they are don’t-care terms and are replaced with XX 
in the truth table. 



Field 0 rs rt rd shamt funct

Bit positions 31:26 25:21 20:16 15:11 10:6 5:0

a. R-type instruction

Field 35 or 43 rs rt address

Bit positions 31:26 25:21 20:16 15:0

b. Load or store instruction

Field 4 rs rt address

Bit positions 31:26 25:21 20:16 15:0

c. Branch instruction

FIGURE 4.14 The three instruction classes (R-type, load and store, and branch) use two 
different instruction formats. The jump instructions use another format, which we will discuss shortly. 
(a) Instruction format for R-format instructions, which all have an opcode of 0. These instructions have three 
register operands: rs, rt, and rd. Fields rs and rt are sources, and rd is the destination. The ALU function is 
in the funct field and is decoded by the ALU control design in the previous section. The R-type instructions 
that we implement are add, sub, AND, OR, and slt. The shamt field is used only for shifts; we will ignore 
it in this chapter. (b) Instruction format for load (opcode = 35ten) and store (opcode = 43ten) instructions. 
The register rs is the base register that is added to the 16-bit address field to form the memory address. For 
loads, rt is the destination register for the loaded value. For stores, rt is the source register whose value should 
be stored into memory. (c) Instruction format for branch equal (opcode = 4). The reg isters rs and rt are the 
source registers that are compared for equality. The 16-bit address field is sign-extended, shifted, and added 
to the PC+4 to compute the branch target address. 

There are several major observations about this instruction format that we will 
rely on:

■■ The op field, also called the opcode, is always contained in bits 31:26. We will 
refer to this field as Op[5:0].

■■ The  two registers  to be  read are always  specified by  the  rs and rt fields,  at 
positions 25:21 and 20:16. This  is  true  for  the R-type  instructions, branch 
equal, and store.

■■ The  base  register  for  load  and  store  instructions  is  always  in  bit  positions 
25:21 (rs).

■■ The  16-bit  offset  for  branch  equal,  load,  and  store  is  always  in  positions 
15:0.

■■ The destination register is in one of two places. For a load it is in bit  positions 
20:16  (rt), while  for an R-type  instruction  it  is  in bit positions 15:11  (rd). 
Thus, we will need to add a multiplexor to select which field of the instruction 
is used to indicate the register number to be written. 

The first design principle  from Chapter 2—simplicity favors regularity—pays off 
here in specifying control.

opcode  The field that 
denotes the operation and 
format of an instruction.
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Using this information, we can add the instruction labels and extra multiplexor 
(for  the Write register number  input of  the register file)  to  the simple datapath. 
Figure 4.15 shows these additions plus the ALU control block, the write signals for 
state elements, the read signal for the data memory, and the control signals for the 
multiplexors. Since all the multiplexors have two inputs, they each require a single 
control line. 

Figure 4.15 shows seven single-bit control lines plus the 2-bit ALUOp control 
signal. We  have  already  defined  how  the ALUOp  control  signal  works,  and  it  is 
useful to define what the seven other control signals do informally before we deter-
mine  how  to  set  these  control  signals  during  instruction  execution.  Figure 4.16 
describes the function of these seven control lines. 

FIGURE 4.15 The datapath of Figure 4.11 with all necessary multiplexors and all control lines identified. The control 
lines are shown in color. The ALU control block has also been added. The PC does not require a write control, since it is written once at the end 
of every clock cycle; the branch control logic determines whether it is written with the incremented PC or the branch target address. 

Read
register 1

Write
data

Registers

ALU

Add

Zero

MemRead

MemWrite

RegWrite

PCSrc

MemtoReg
Read

data 1

Read
data 2

Sign-
extend

16 32

Instruction
[31:0] ALU

result

Add

ALU
result

M
u
x

M
u
x

M
u
x

ALUSrc

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

M
u
x

0

1

ALU
control

ALUOp
Instruction [5:0]

Instruction [25:21]

Instruction [15:11]

Instruction [20:16]

Instruction [15:0]

RegDst

Read
register 2

Write
register

Write
data



Signal 
name Effect when deasserted Effect when asserted

RegDst The register destination number for the 
Write register comes from the rt field 
(bits 20:16).

The register destination number for the Write 
register comes from the rd field (bits 15:11).

RegWrite None. The register on the Write register input is 
written with the value on the Write data input. 

ALUSrc The second ALU operand comes from the 
second register file output (Read data 2).

The second ALU operand is the sign-
extended, lower 16 bits of the instruction.

PCSrc The PC is replaced by the output of the 
adder that computes the value of PC + 4.

The PC is replaced by the output of the adder 
that computes the branch target.

MemRead None. Data memory contents designated by the 
address input are put on the Read data output. 

MemWrite None. Data memory contents designated by the 
address input are replaced by the value on 
the Write data input.

MemtoReg The value fed to the register Write data 
input comes from the ALU.

The value fed to the register Write data input 
comes from the data memory.

FIGURE 4.16 The effect of each of the seven control signals. When the 1-bit control to a two-
way multiplexor is asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control 
is deasserted, the multiplexor selects the 0 input. Remember that the state elements all have the clock as an 
implicit input and that the clock is used in controlling writes. Gating the clock externally to a state element 
can create timing problems. (See   Appendix C for further discussion of this problem.) 

Now that we have looked at the function of each of the control signals, we can 
look at how to set them. The control unit can set all but one of the control signals 
based solely on the opcode field of the instruction. The PCSrc control line is the 
exception. That control line should be asserted if the instruction is branch on equal 
(a decision that the control unit can make) and the Zero output of the ALU, which 
is used for equality comparison, is asserted. To generate the PCSrc  signal, we will 
need to AND together a signal from the control unit, which we call Branch, with 
the Zero signal out of the ALU.

These nine control  signals  (seven  from Figure 4.16 and  two  for ALUOp) can 
now be set on the basis of six input signals to the control unit, which are the opcode 
bits 31 to 26. Figure 4.17 shows the datapath with the control unit and the control 
signals.

Before we try to write a set of equations or a truth table for the control unit, it 
will be useful to try to define the control function informally. Because the setting 
of the control lines depends only on the opcode, we define whether each control 
signal should be 0, 1, or don’t care (X) for each of the opcode values. Figure 4.18 
defines how  the control  signals  should be  set  for  each opcode;  this  information 
follows directly from Figures 4.12, 4.16, and 4.17.

Operation of the Datapath
With  the  information  contained  in  Figures 4.16  and 4.18,  we  can  design  the 
control unit logic, but before we do that, let’s look at how each instruction uses the 
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FIGURE 4.17 The simple datapath with the control unit. The input to the control unit is the 6-bit opcode field from the instruction. 
The outputs of the control unit consist of three 1-bit signals that are used to control multiplexors (RegDst, ALUSrc, and MemtoReg), three 
signals  for con trolling reads and writes  in the register file and data memory (RegWrite, MemRead, and MemWrite), a 1-bit signal used in 
determining whether to possibly branch (Branch), and a 2-bit control signal for the ALU (ALUOp). An AND gate is used to combine the 
branch control signal and the Zero output from the ALU; the AND gate output controls the selection of the next PC. Notice that PCSrc is now 
a derived signal, rather than one coming directly from the control unit. Thus, we drop the signal name in subsequent figures. 
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datapath. In the next few figures, we show the flow of three different instruction 
classes  through  the  datapath.  The  asserted  control  signals  and  active  datapath 
elements are highlighted in each of these. Note that a multiplexor whose control 
is 0 has a definite action, even  if  its  control  line  is not highlighted. Multiple-bit 
control signals are highlighted if any constituent  signal is asserted. 



Figure 4.19 shows the operation of the datapath for an R-type instruction, such 
as  add  $t1,$t2,$t3.  Although  everything  occurs  in  one  clock  cycle,  we  can 
think of four steps to execute the instruction; these steps are ordered by the flow 
of information: 

1.  The instruction is fetched, and the PC is incremented. 

2.  Two registers, $t2 and $t3, are read from the register file; also,  the main 
control unit computes the setting of the control lines during this step.

3.  The ALU operates on the data read from the register file, using the function 
code (bits 5:0, which  is  the  funct field, of  the  instruction)  to generate  the 
ALU function. 

4.  The result from the ALU is written into the register file using bits 15:11 of 
the instruction to select the destination register ($t1). 

Similarly, we can illustrate the execution of a load word, such as 

lw $t1,  offset($t2)

in a style similar to Figure 4.19. Figure 4.20 shows the active functional units and 
asserted control lines for a load. We can think of a load instruction as operating in 
five steps (similar to the R-type executed in four):

1.  An  instruction  is  fetched  from  the  instruction  memory,  and  the  PC  is 
incremented.

2.  A register ($t2) value is read from the register file.

Instruction RegDst ALUSrc
Memto- 

Reg
Reg- 
Write

Mem- 
Read

Mem- 
Write Branch ALUOp1 ALUOp0

R-format 1 0 0 1 0 0 0 1 0

lw 0 1 1 1 1 0 0 0 0

sw X 1 X 0 0 1 0 0 0

beq X 0 X 0 0 0 1 0 1

FIGURE 4.18 The setting of the control lines is completely determined by the opcode fields of the instruction. The first 
row of the table corresponds to the R-format instructions (add, sub, AND, OR, and slt). For all these instructions, the source register fields 
are rs and rt, and the destination register field is rd; this defines how the signals ALUSrc and RegDst are set. Furthermore, an R-type instruction 
writes a register (Reg Write = 1), but neither reads nor writes data memory. When the Branch control signal is 0, the PC is unconditionally 
replaced with PC + 4; otherwise, the PC is replaced by the branch target if the Zero output of the ALU is also high. The ALUOp field for R-type 
instructions is set to 10 to indicate that the ALU control should be generated from the funct field. The second and third rows of this table 
give the control signal settings for lw and sw. These ALUSrc and ALUOp fields are set to perform the address calculation. The MemRead and 
MemWrite are set to perform the memory access. Finally, RegDst and RegWrite are set for a load to cause the result to be stored into the rt 
register. The branch instruction is similar to an R-format operation, since it sends the rs and rt registers to the ALU. The ALUOp field for branch 
is set for a subtract (ALU control = 01), which is used to test for equality. Notice that the MemtoReg field is irrelevant when the RegWrite signal 
is 0: since the register is not being written, the value of the data on the register data write port is not used. Thus, the entry MemtoReg in the last 
two rows of the table is replaced with X for don’t care. Don’t cares can also be added to RegDst when RegWrite is 0. This type of don’t care must 
be added by the designer, since it depends on knowledge of how the datapath works. 
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3.  The ALU computes the sum of the value read from the register file and the 
sign-extended, lower 16 bits of the instruction (offset).

4.  The sum from the ALU is used as the address for the data memory.

5.  The data from the memory unit is written into the register file; the register 
destination is given by bits 20:16 of the instruction ($t1) . 

FIGURE 4.19 The datapath in operation for an R-type instruction, such as add $t1,$t2,$t3. The control lines, datapath 
units, and connections that are active are highlighted. 
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Finally, we can show the operation of the branch-on-equal instruction, such as 
beq $t1,$t2,offset,  in the same fashion. It operates much like an R-format 
instruction, but the ALU output is used to determine whether the PC is written 
with  PC  +  4  or  the  branch  target  address.  Figure 4.21  shows  the  four  steps  in 
execution:

1.  An  instruction  is  fetched  from  the  instruction  memory,  and  the  PC  is 
incremented.

2.  Two registers, $t1 and $t2, are read from the register file.

FIGURE 4.20 The datapath in operation for a load instruction. The control lines, datapath units, and connections that are active 
are high lighted. A store instruction would operate very similarly. The main difference would be that the memory control would indicate a write 
rather than a read, the second register value read would be used for the data to store, and the operation of writing the data memory value to 
the register file would not occur. 
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3.  The  ALU  performs  a  subtract  on  the  data  values  read  from  the  register 
file.  The  value  of  PC  +  4  is  added  to  the  sign-extended,  lower  16  bits  of 
the instruction (offset) shifted left by two; the result is the branch target 
address.

4.  The Zero result from the ALU is used to decide which adder result to store 
into the PC.

FIGURE 4.21 The datapath in operation for a branch-on-equal instruction. The control lines, datapath units, and connections 
that are active are highlighted. After using the register file and ALU to perform the compare, the Zero output is used to select the next program 
counter from between the two candidates. 
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Finalizing Control
Now that we have seen how the instructions operate in steps, let’s continue with the 
control implementation. The control function can be precisely defined using the 
contents of Figure 4.18. The outputs are the control lines, and the input is the 6-bit 
opcode field, Op [5:0]. Thus, we can create a truth table for each of the outputs 
based on the binary encoding of the opcodes.

Figure 4.22  shows  the  logic  in  the  control  unit  as  one  large  truth  table  that 
combines  all  the  outputs  and  that  uses  the  opcode  bits  as  inputs.  It  completely 
specifies  the  control  function,  and  we  can  implement  it  directly  in  gates  in  an 
automated fashion. We show this final step in Section D.2 in   Appendix D.

Now  that  we  have  a  single-cycle implementation  of  most  of  the  MIPS  core 
instruction set, let’s add the jump instruction to show how the basic datapath and 
control can be extended to handle other instructions in the instruction set. 

Input or output Signal name R-format lw sw beq

Inputs Op5 0 1 1 0
Op4 0 0 0 0
Op3 0 0 1 0
Op2 0 0 0 1
Op1 0 1 1 0
Op0 0 1 1 0

Outputs RegDst 1 0 X X
ALUSrc 0 1 1 0

MemtoReg 0 1 X X
RegWrite 1 1 0 0
MemRead 0 1 0 0
MemWrite 0 0 1 0

Branch 0 0 0 1
ALUOp1 1 0 0 0
ALUOp0 0 0 0 1

FIGURE 4.22 The control function for the simple single-cycle implementation is com-
pletely specified by this truth table. The top half of the table gives the combinations of input signals 
that correspond to the four opcodes, one per column, that determine the control output settings. (Remem-
ber that Op [5:0] corresponds to bits 31:26 of the instruction, which is the op field.) The bottom portion 
of the table gives the outputs for each of the four opcodes. Thus, the output RegWrite is asserted for two 
dif  ferent combinations of the inputs. If we consider only the four opcodes shown in this table, then we can 
simplify the truth table by using don’t cares in the input portion. For example, we can detect an R-format 
instruction with the expression Op5 • Op2, since this is sufficient to distinguish the  R-format instructions 
from lw, sw, and beq. We do not take advantage of this simplification, since the rest of the MIPS opcodes 
are used in a full implementation. 

single-cycle 
implementation  Also 
called single clock cycle 
implementa tion. An 
implementation in which 
an instruction is executed 
in one clock cycle.
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Implementing Jumps

Figure 4.17 shows the implementation of many of the instruc tions we looked at 
in Chapter 2. One class of instructions missing is that of the jump instruction. 
Extend the datapath and control of Figure 4.17 to in clude the jump instruction. 
Describe how to set any new control lines.

The  jump  instruction,  shown  in  Figure 4.23,  looks  somewhat  like  a  branch 
instruc tion but computes the target PC differently and is not conditional. Like 
a branch,  the  low-order 2 bits of a  jump address are always 00two. The next 
lower 26 bits of this 32-bit address come from the 26-bit immediate field in 
the instruction.  The  upper  4  bits  of  the  address  that  should  replace  the  PC 
come from the PC of the jump instruction plus 4. Thus, we can implement a 
jump by storing into the PC the concatenation of

■■ the upper 4 bits of the current PC + 4 (these are bits 31:28 of the sequen-
tially following instruction address)

■■ the 26-bit immediate field of the jump instruction

■■ the bits 00two

Figure 4.24 shows the addition of the control for jump added to Figure 4.17. 
An additional multiplexor is used to select the source for the new PC value, 
which is either the incremented PC (PC + 4), the branch target PC, or the jump 
target PC. One additional control  signal  is needed  for  the addi tional multi-
plexor. This control signal, called Jump, is asserted only when the instruction is 
a jump—that is, when the opcode is 2.

EXAMPLE

ANSWER

Field 000010 address
Bit positions 31:26 25:0

FIGURE 4.23 Instruction format for the jump instruction (opcode = 2). The destination address 
for a jump instruction is formed by concatenating the upper 4 bits of the current PC + 4 to the 26-bit address 
field in the jump instruction and adding 00 as the 2 low-order bits. 

Why a Single-Cycle Implementation Is Not Used Today

Although the single-cycle design will work correctly, it would not be used in modern 
designs because it is inefficient. To see why this is so, notice that the clock cycle must 
have the same length for every instruction in this single-cycle design. Of course,  



the clock cycle is determined by the longest possible path in the processor. This path 
is almost certainly a load instruction, which uses five functional units in series: the 
instruction memory, the register file, the ALU, the data memory, and the register 
file. Although the CPI is 1 (see Chapter 1), the overall performance of a  single-cycle 
implementation is likely to be poor, since the clock cycle is too long. 

FIGURE 4.24 The simple control and datapath are extended to handle the jump instruction. An additional multiplexor 
(at the upper right) is used to choose between the jump target and either the branch target or the sequential instruction following this one. This 
multiplexor is controlled by the jump control signal. The jump target address is obtained by shifting the lower 26 bits of the jump instruction 
left 2 bits, effectively adding 00 as the low-order bits, and then concatenating the upper 4 bits of PC + 4 as the high-order bits, thus yielding a 
32-bit address. 
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The penalty for using the single-cycle design with a fixed clock cycle is  signifi cant, 
but might be considered acceptable for this small instruction set. Histori cally, early 
computers with very simple instruction sets did use this implementation technique. 
However, if we tried to implement the floating-point unit or an instruction set with 
more complex instructions, this single-cycle design wouldn’t work well at all. 

Because we must assume that the clock cycle is equal to the worst-case delay for 
all instructions, it’s useless to try implementation techniques that reduce the delay 
of the common case but do not improve the worst-case cycle time. A single-cycle 
implementation thus violates our key design principle from Chapter 2 of making 
the common case fast.

In next section, we’ll look at another implementation technique, called pipelin-
ing, that uses a datapath very similar to the single-cycle datapath but is much more 
efficient by having a much higher throughput. Pipelining improves efficiency by 
executing multiple instructions simultaneously. 

Look at the control signals in Figure 4.22. Can you combine any together? Can any 
control signal output in the figure be replaced by the inverse of another? (Hint: take 
into account the don’t cares.) If so, can you use one signal for the other without 
adding an inverter?

 4.5 An Overview of Pipelining

Pipelining  is  an  implementation  technique  in  which  multiple  in structions  are 
overlapped in execution. Today, pipelining is nearly universal. 

This section relies heavily on one analogy to give an overview of the pipelining 
terms and issues. If you are interested in just the big picture, you should concen-
trate on this section and then skip to Sections 4.10 and 4.11 to see an introduction 
to  the  advanced  pipelining  techniques  used  in  recent  processors  such  as  the 
AMD Opteron X4 (Barcelona) or Intel Core. If you are interested in exploring the 
anatomy of a pipe lined computer, this section is a good introduction to Sections 4.6 
through 4.9.

Anyone who has done a lot of laundry has intuitively used pipelining. The non-
pipelined approach to laundry would be

1.  Place one dirty load of clothes in the washer.

2.  When the washer is finished, place the wet load in the dryer.

3.  When the dryer is finished, place the dry load on a table and fold. 

4.  When folding is finished, ask your roommate to put the clothes away.

When your roommate is done, then start over with the next dirty load.

Check  
Yourself

Never waste time.

American proverb

pipelining  An 
implementation 
technique in which 
multi ple instructions are 
overlapped in execution, 
much like an assembly 
line.



The  pipelined  approach  takes  much  less  time,  as  Figure  4.25  shows.  As  soon 
as the washer is finished with the first load and placed in the dryer, you load the 
washer with the second dirty load. When the first load is dry, you place it on the 
table to start folding, move the wet load to the dryer, and the next dirty load into 
the washer. Next you have your roommate put the first load away, you start fold-
ing the second load, the dryer has the third load, and you put the fourth load into 
the washer. At this point all steps—called stages in pipe lining—are operating con-
currently. As long as we have separate resources for each stage, we can pipeline the 
tasks.

The pipelining paradox is that the time from placing a single dirty sock in the 
washer until it is dried, folded, and put away is not shorter for pipelining; the reason 
pipelining is faster for many loads is that everything is working in parallel, so more 
loads are finished per hour. Pipelining improves throughput of our laundry system. 
Hence, pipelining would not decrease the time to complete one load of laundry, 
but when we have many loads of laundry to do, the improvement in throughput 
decreases the total time to complete the work.
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FIGURE 4.25 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty clothes 
to be washed, dried, folded, and put away. The washer, dryer, “folder,” and “storer” each take 30 minutes for 
their task. Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes just 3.5 hours. 
We  show  the  pipeline  stage  of  different  loads  over  time  by  showing  copies  of  the  four  resources  on  this 
two-dimensional time line, but we really have just one of each resource. 
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If all the stages take about the same amount of time and there is enough work 
to  do,  then  the  speed-up  due  to  pipelining  is  equal  to  the  number  of  stages  in 
the pipeline, in this case four: washing, drying, folding, and putting away. There-
fore, pipelined laundry is potentially four times faster than nonpipelined: 20 loads 
would take about 5 times as long as 1 load, while 20 loads of sequential laundry 
takes 20 times as  long as 1 load. It’s only 2.3 times faster in Figure 4.25, because 
we only show 4 loads. Notice that at the beginning and end of the workload in the 
pipelined version in Figure 4.25, the pipeline is not completely full; this start-up 
and wind-down affects performance when the number of tasks is not large com-
pared to the number of stages in the pipeline. If the number of loads is much larger 
than 4, then the stages will be full most of the time and the increase in throughput 
will be very close to 4. 

The same principles apply to processors where we pipeline instruction  execution. 
MIPS instructions classically take five steps: 

1.  Fetch instruction from memory.

2.  Read registers while decoding the instruction. The regular format of MIPS 
instructions allows reading and decoding to occur simultaneously. 

3.  Execute the operation or calculate an address.

4.  Access an operand in data memory.

5.  Write the result into a register.

Hence, the MIPS pipeline we explore in this chapter has five stages. The following 
example shows that pipelining speeds up instruction execution just as it speeds up 
the laundry.

Single-Cycle versus Pipelined Performance

To make this discussion concrete, let’s create a pipeline. In this example, and 
in the  rest of  this  chapter, we  limit our attention  to eight  instructions:  load 
word (lw), store word (sw), add (add), subtract (sub), AND (and), OR (or), 
set less than (slt), and branch on equal (beq).

Compare  the  average  time  between  instructions  of  a  single-cycle  imple-
mentation, in which all instructions take one clock cycle, to a pipelined imple-
mentation. The operation times for the major functional units in this ex ample 
are 200 ps for memory access, 200 ps for ALU operation, and 100 ps for register 
file read or write. In the single-cycle model, every instruction takes exact ly one 
clock cycle, so the clock cycle must be stretched to accommodate the slow est 
instruction. 

EXAMPLE



Figure  4.26  shows  the  time  required  for  each  of  the  eight  instructions.  The 
 single-cycle design must allow for the slowest instruction—in Figure 4.26 it is 
lw—so the time required for every instruction is 800 ps. Similarly to Figure 
4.25, Figure 4.27 compares nonpipelined and pipelined execution of three load 
word instructions. Thus, the time between the first and fourth instruc tions in 
the nonpipelined design is 3 × 800 ns or 2400 ps.

All the pipeline stages take a single clock cycle, so the clock cycle must be 
long enough  to accommodate  the slowest operation.  Just as  the  single-cycle 
design  must  take  the  worst-case  clock  cycle  of  800  ps,  even  though  some 
instructions can be as fast as 500 ps, the pipelined execution clock cycle must 
have the worst-case clock cycle of 200 ps, even though some stages take only 
100 ps. Pipelining still offers a fourfold performance improvement: the time 
between the first and fourth instructions is 3 × 200 ps or 600 ps. 

Instruction class
Instruction 

fetch
Register 

read
ALU 

operation
Data 

access
Register 

write
Total 
time

Load word (lw) 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps

Store word (sw) 200 ps 100 ps 200 ps 200 ps 700 ps

R-format (add, sub, AND, 
OR, slt)

200 ps 100 ps 200 ps 100 ps 600 ps

Branch (beq) 200 ps 100 ps 200 ps 500 ps

FIGURE 4.26 Total time for each instruction calculated from the time for each component. 
This calculation assumes that the multiplexors, control unit, PC accesses, and sign extension unit have no 
delay. 

We  can  turn  the  pipelining  speed-up  discussion  above  into  a  formula.  If  the 
stages are perfectly balanced, then the time between instructions on the pipelined 
processor—assuming ideal conditions—is equal to

Time between instructionspipelined =   
Time between instructionsnonpipelined

      
Number of pipe stages

  

Under ideal conditions and with a large number of instructions, the speed-up from 
pipelining is approximately equal to the number of pipe stages; a five-stage pipe line 
is nearly five times faster.

The  formula  suggests  that  a  five-stage  pipeline  should  offer  nearly  a  fivefold 
improvement  over  the  800  ps  nonpipelined  time,  or  a  160  ps  clock  cycle.  The 
example shows, however, that the stages may be imperfectly balanced. In addition, 
pipelining involves some overhead, the source of which will be more clear shortly. 
Thus, the time per instruction in the pipelined processor will exceed the mini mum 
possible, and speed-up will be less than the number of pipeline stages.

ANSWER
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Moreover,  even  our  claim  of  fourfold  improvement  for  our  example  is  not 
reflected in the total execution time for the three instructions: it’s 1400 ps versus 
2400 ps. Of course, this is because the number of instructions is not large. What 
would happen if we  increased the number of  instructions? We could extend the 
previous figures  to 1,000,003  instructions. We would add 1,000,000  instructions 
in the pipelined example; each instruction adds 200 ps to the total execution time. 
The total execution time would be 1,000,000 × 200 ps + 1400 ps, or 200,001,400 
ps. In the nonpipelined  example, we would add 1,000,000 instructions, each tak-
ing  800  ps,  so  total  execution  time  would  be  1,000,000  ×  800  ps  +  2400  ps,  or 
800,002,400 ps. Under these conditions, the ratio of total execution times for real 
programs on nonpipelined  to pipelined processors  is  close  to  the  ratio of  times 
between instructions:

  
800,002,400 ps

    
200,001,400 ps

   ≈   
800 ps

  
200 ps

   ≈ 4.00

FIGURE 4.27 Single-cycle, nonpipelined execution in top versus pipelined execution in 
bottom. Both use the same hardware components, whose time is listed in Figure 4.26. In this case, we see a 
fourfold speed-up on average time between instructions, from 800 ps down to 200 ps. Compare this figure 
to Figure 4.25. For the laundry, we assumed all stages were equal. If the dryer were slowest, then the dryer 
stage would set the stage time. The pipeline stage times of a computer are also limited by the slowest resource, 
either the ALU operation or the memory access. We assume the write to the register file occurs in the first 
half of the clock cycle and the read from the register file occurs in the second half. We use this assumption 
throughout this chapter. 
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Pipelining  improves  performance  by  increasing instruction throughput, as 
opposed to decreasing the execution time of an individual instruction, but instruction 
throughput  is  the  important  metric  because  real  programs  execute  billions  of 
instructions.

Designing Instruction Sets for Pipelining

Even with this simple explanation of pipelining, we can get insight into the design 
of the MIPS instruction set, which was designed for pipelined execution. 

First, all MIPS instructions are the same length. This restriction makes it much 
easier  to  fetch  instructions  in  the first pipeline  stage and  to decode  them in  the 
second stage. In an instruction set like the x86, where instructions vary from 1 byte 
to 17 bytes, pipelining is considerably more challenging. Recent implementa tions 
of the x86 architecture actually translate x86 instructions into simple opera tions 
that  look  like MIPS  instructions and  then pipeline  the  simple operations rather 
than the native x86 instructions! (See Section 4.10.)

Second, MIPS has only a few instruction formats, with the source register fields 
being located in the same place in each instruction. This symmetry means that the 
second stage can begin reading the register file at the same time that the hardware 
is determining what type of instruction was fetched. If MIPS instruction formats 
were not symmetric, we would need to split stage 2, resulting in six pipeline stages. 
We will shortly see the downside of longer pipelines.

Third, memory operands only appear in loads or stores in MIPS. This restric-
tion  means  we  can  use  the  execute  stage  to  calculate  the  memory  address  and 
then access memory in the following stage. If we could operate on the operands in 
memory, as in the x86, stages 3 and 4 would expand to an address stage, memory 
stage, and then execute stage. 

Fourth, as discussed in Chapter 2, operands must be aligned in memory. Hence, 
we  need  not  worry  about  a  single  data  transfer  instruction  requiring  two  data 
memory  accesses;  the  requested  data  can  be  transferred  between  processor  and 
memory in a single pipeline stage.

Pipeline Hazards

There are situations in pipelining when the next instruction cannot execute in the 
following clock cycle. These events are called hazards, and there are three different 
types.

Structural Hazards

The first hazard is called a structural hazard. It means that the hardware cannot 
support the combination of instructions that we want to execute in the same clock 
cycle. A structural hazard in the laundry room would occur if we used a washer-
dryer combination instead of a separate washer and dryer, or if our roommate was 
busy doing something else and wouldn’t put clothes away. Our carefully scheduled 
pipeline plans would then be foiled.

structural hazard  When 
a planned  instruction 
cannot exe cute in the 
proper clock cycle because 
the hardware does not 
support the combination 
of instructions that are set 
to exe cute.
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As we said above, the MIPS instruction set was designed to be pipelined, mak ing 
it fairly easy for designers to avoid structural hazards when designing a pipe line. 
Suppose, however, that we had a single memory instead of two memories. If the 
pipeline  in Figure 4.27 had a  fourth  instruction, we would  see  that  in  the  same 
clock cycle  the first  instruction  is accessing data  from memory while  the  fourth 
instruction is fetching an instruction from that same memory. Without two mem-
ories, our pipeline could have a structural hazard.

Data Hazards

Data hazards occur when the pipeline must be stalled because one step must wait 
for another to complete. Suppose you found a sock at the folding station for which 
no match existed. One possible strategy is to run down to your room and search 
through your clothes bureau to see if you can find the match. Obviously, while you 
are doing the search, loads that have completed drying and are ready to fold and 
those that have finished washing and are ready to dry must wait. 

In a computer pipeline, data hazards arise from the dependence of one instruc-
tion on an earlier one that is still in the pipeline (a relationship that does not really 
exist when doing laundry). For example, suppose we have an add instruction fol-
lowed immediately by a subtract instruction that uses the sum ($s0):

add    $s0, $t0, $t1 
sub    $t2, $s0, $t3

Without  intervention,  a  data  hazard  could  severely  stall  the  pipeline.  The  add 
instruction doesn’t write its result until the fifth stage, meaning that we would have 
to waste three clock cycles in the pipeline.

Although  we  could  try  to  rely  on  compilers  to  remove  all  such  hazards,  the 
results would not be satisfactory. These dependences happen just too often and the 
delay is just too long to expect the compiler to rescue us from this dilemma.

The primary solution is based on the observation that we don’t need to wait for 
the instruction to complete before trying to resolve the data hazard. For the code 
sequence above, as soon as the ALU creates the sum for the add, we can supply it as 
an input for the subtract. Adding extra hardware to retrieve the missing item early 
from the internal resources is called forwarding or bypassing.

Forwarding with Two Instructions

For the two instructions above, show what pipeline stages would be con nected 
by forwarding. Use the drawing in Figure 4.28 to represent the datap ath during 
the five stages of the pipeline. Align a copy of the datapath for each instruction, 
similar to the laundry pipeline in Figure 4.25.

data hazard  Also 
called a pipe line data 
hazard. When a planned 
instruction cannot exe-
cute in the proper clock 
cycle because data that 
is needed to execute the 
instruction is not yet 
available.

forwarding  Also called 
 bypassing. A method of 
 resolving a data hazard 
by retrieving the missing 
data  element from 
internal buffers rather 
than waiting for it to 
arrive from  programmer-
visible registers or 
memory.

EXAMPLE



Figure 4.29 shows the connection to forward the value in $s0 after the execu-
tion stage of  the add  instruction as  input to the execution stage of  the sub 
instruction. 

ANSWER

FIGURE 4.28 Graphical representation of the instruction pipeline, similar in spirit to the 
laundry pipeline in Figure 4.25. Here we use  symbols  representing  the physical  resources with  the 
abbreviations  for pipeline  stages used  throughout  the chapter. The symbols  for  the five  stages:  IF  for  the 
instruction fetch stage, with the box representing instruction memory; ID for the instruc tion decode/register 
file read stage, with the drawing showing the register file being read; EX  for the execu tion stage, with the 
drawing representing the ALU; MEM for the memory access stage, with the box representing data memory; 
and  WB  for  the  write-back  stage,  with  the  drawing  showing  the  register  file  being  written.  The  shading 
indicates the element is used by the instruction. Hence, MEM has a white back ground because add does not 
access the data memory. Shading on the right half of the register file or mem ory means the element is read 
in that stage, and shading of the left half means it is written in that stage. Hence the right half of ID is shaded 
in the second stage because the register file is read, and the left half of WB is shaded in the fifth stage because 
the register file is written. 

Time

add $s0, $t0, $t1 IF MEMID WBEX

200 400 600 800 1000

Time

add $s0, $t0, $t1

sub $t2, $s0, $t3 

IF MEMID WBEX

IF MEMID WBEX

Program
execution
order
(in instructions)

200 400 600 800 1000

FIGURE 4.29 Graphical representation of forwarding. The connection shows the forwarding path 
from the output of the EX stage of add to the input of the EX stage for sub, replacing the value from register 
$s0 read in the second stage of sub. 

In this graphical representation of events, forwarding paths are valid only if the 
destination stage is later in time than the source stage. For example, there cannot 
be a valid forwarding path from the output of the memory access stage in the first 
instruction to the input of the execution stage of the following, since that would 
mean going backward in time.

Forwarding works very well and is described in detail in Section 4.7. It cannot 
prevent all pipeline stalls, however. For example, suppose the first instruction was a 
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load of $s0 instead of an add. As we can imagine from looking at Figure 4.29, the 
desired data would be available only after the fourth stage of the first instruc tion 
in the dependence, which is too late for the input of the third stage of sub. Hence, 
even with forwarding, we would have to stall one stage for a load-use data hazard, 
as Figure 4.30 shows. This figure shows an important pipeline concept, officially 
called  a  pipeline stall,  but  often  given  the  nickname  bubble. We  shall  see  stalls 
elsewhere  in  the  pipeline.  Section  4.7  shows  how  we  can  handle  hard  cases  like 
these, using either hardware detection and stalls or software that reorders code to 
try to avoid load-use pipeline stalls, as this example illustrates. 

Reordering Code to Avoid Pipeline Stalls

Consider the following code segment in C:

a = b + e; 
c = b + f; 

Here is the generated MIPS code for this segment, assuming all variables are in 
memory and are addressable as offsets from $t0:

load-use data hazard 
A spe cific form of data 
hazard in which the data 
being loaded by a load 
instruction has not yet 
become available when 
it is needed by another 
instruction.

pipeline stall  Also called 

bub ble. A stall initiated in 
 order to resolve a hazard.

EXAMPLE

FIGURE 4.30 We need a stall even with forwarding when an R-format instruction follow ing 
a load tries to use the data. Without the stall, the path from memory access stage output to exe cution 
stage input would be going backward in time, which is impossible. This figure is actually a simplification, 
since we cannot know until after the subtract instruction is fetched and decoded whether or not a stall will be 
necessary. Section 4.7 shows the details of what really happens in the case of a hazard. 
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lw $s0, 20($t1)
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lw $t1, 0($t0) 
lw $t2, 4($t0) 
add $t3, $t1,$t2 
sw $t3, 12($t0) 
lw $t4, 8($t0) 
add $t5, $t1,$t4 
sw $t5, 16($t0)

Find the hazards in the preceding code segment and reorder the instructions to 
avoid any pipeline stalls.

Both add  instructions have a hazard because of their respective dependence 
on the immediately preceding lw instruction. Notice that bypassing elimi nates 
several other potential hazards, including the dependence of the first add on 
the first lw  and any hazards  for  store  instructions. Moving up  the  third lw 
instruction to become the third instruction eliminates both haz ards:

lw $t1, 0($t0) 
lw $t2, 4($t0) 
lw $t4, 8($t0)  
add $t3, $t1,$t2 
sw $t3, 12($t0) 
add $t5, $t1,$t4 
sw $t5, 16($t0)

On a pipelined processor with forwarding, the reordered sequence will com-
plete in two fewer cycles than the original version. 

Forwarding yields another insight into the MIPS architecture, in addition to the 
four mentioned on page 335. Each MIPS instruction writes at most one result and 
does this in the last stage of the pipeline. Forwarding is harder if there are multiple 
results to forward per instruction or they need to write a result early on in instruc-
tion execution.

Elaboration: The name “forwarding” comes from the idea that the result is passed 
forward from an earlier instruction to a later instruction. “Bypassing” comes from pass-
ing the result around the register file to the desired unit. 

Control Hazards

The third type of hazard is called a control hazard, arising from the need to make a 
decision based on the results of one instruction while others are executing. 

Suppose our laundry crew was given the happy task of cleaning the uniforms 
of a football team. Given how filthy the laundry is, we need to determine whether 
the detergent and water temperature setting we select is strong enough to get the 
uni forms clean but not so strong that the uniforms wear out sooner. In our laundry 

ANSWER

control hazard  Also 
called branch hazard. 
When the proper 
instruction cannot 
exe cute in the proper 
pipeline clock cycle 
because the instruction 
that was fetched is not the 
one that is needed; that 
is, the flow of instruction 
addresses is not what the 
pipeline expected.
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pipeline, we have to wait until the second stage to examine the dry uniform to see 
if we need to change the washer setup or not. What to do?

Here is the first of two solutions to control hazards in the laundry room and its 
computer equivalent.

Stall: Just operate sequentially until the first batch is dry and then repeat until 
you have the right formula. 

This conservative option certainly works, but it is slow. 
The equivalent decision task in a computer is the branch instruction. Notice that 

we must begin fetching the instruction following the branch on the very next clock 
cycle. Nevertheless, the pipeline cannot possibly know what the next instruction 
should be, since it only just received the branch instruction from mem ory! Just as 
with laundry, one possible solution is to stall immediately after we fetch a branch, 
waiting until the pipeline determines the outcome of the branch and knows what 
instruction address to fetch from. 

Let’s assume that we put in enough extra hardware so that we can test registers, 
calculate  the branch address,  and update  the PC during  the  second stage of  the 
pipeline (see Section 4.8 for details). Even with this extra hardware, the pipeline 
involving conditional branches would  look  like Figure 4.31. The lw  instruction, 
executed if the branch fails, is stalled one extra 200 ps clock cycle before starting. 

FIGURE 4.31 Pipeline showing stalling on every conditional branch as solution to control 
hazards. This example assumes the conditional branch is taken, and the instruction at the destina tion of 
the branch is the OR instruction. There is a one-stage pipeline stall, or bubble, after the branch. In reality, the 
process of creating a stall is slightly more complicated, as we will see in Section 4.8. The effect on performance, 
however, is the same as would occur if a bubble were inserted. 
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Performance of “Stall on Branch” 

Estimate  the  impact on the clock cycles per  instruction (CPI) of stalling on 
branches. Assume all other instructions have a CPI of 1.

Figure  3.27  in  Chapter  3  shows  that  branches  are  17%  of  the  instructions 
executed in SPECint2006. Since the other instructions run have a CPI of 1, and 
branches took one extra clock cycle for the stall, then we would see a CPI of 
1.17 and hence a slowdown of 1.17 versus the ideal case. 

If we cannot resolve the branch in the second stage, as is often the case for longer 
pipelines, then we’d see an even larger slowdown if we stall on branches. The cost of 
this option is too high for most computers to use and motivates a second solution 
to the control hazard:

Predict: If you’re pretty sure you have the right formula to wash uniforms, then 
just predict that it will work and wash the second load while waiting for the first 
load to dry. 

This option does not slow down the pipeline when you are correct. When you are 
wrong,  however,  you  need  to  redo  the  load  that  was  washed  while  guessing  the 
decision.

Computers do indeed use prediction to handle branches. One simple approach 
is to predict always that branches will be untaken. When you’re right, the pipeline 
proceeds  at  full  speed.  Only  when  branches  are  taken  does  the  pipeline  stall. 
Figure 4.32 shows such an example. 

A more sophisticated version of branch prediction would have some branches 
predicted as  taken and some as untaken. In our analogy,  the dark or home uni-
forms might take one formula while the light or road uniforms might take another. 
In the case of programming, at the bottom of loops are branches that jump back to 
the top of the loop. Since they are likely to be taken and they branch backward, we 
could always predict taken for branches that jump to an earlier address.

Such rigid approaches to branch prediction rely on stereotypical behavior and 
don’t account for the individuality of a specific branch instruction. Dynamic hard-
ware predictors, in stark contrast, make their guesses depending on the behavior of 
each branch and may change predictions for a branch over the life of a pro gram. 
Following our analogy, in dynamic prediction a person would look at how dirty the 
uniform was and guess at the formula, adjusting the next guess depend ing on the 
success of recent guesses. 

EXAMPLE

ANSWER

branch prediction 
A method of resolving 
a branch  hazard that 
assumes a given outcome 
for the branch and 
proceeds from that 
assumption rather than 
 waiting to ascertain the 
actual outcome.
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One popular approach to dynamic prediction of branches is keeping a history 
for each branch as taken or untaken, and then using the recent past behavior to 
predict the future. As we will see later, the amount and type of history kept have 
become extensive, with the result being that dynamic branch predictors can cor-
rectly predict branches with more than 90% accuracy (see Section 4.8). When the 
guess  is wrong,  the pipeline control must ensure  that  the  instructions  following 
the wrongly guessed branch have no effect and must restart the pipeline from the 
proper branch address. In our laundry analogy, we must stop taking new loads so 
that we can restart the load that we incorrectly predicted.

As in the case of all other solutions to control hazards, longer pipelines exacer-
bate  the problem,  in  this  case by  raising  the  cost of misprediction. Solutions  to 
control hazards are described in more detail in Section 4.8.

FIGURE 4.32 Predicting that branches are not taken as a solution to control hazard. The 
top drawing shows the pipeline when the branch is not taken. The bottom drawing shows the pipeline when 
the branch  is  taken. As we noted  in Figure 4.31,  the  insertion of a bubble  in  this  fashion simplifies what 
actually happens, at least during the first clock cycle immediately following the branch. Section 4.8 will reveal 
the details. 
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Elaboration: There is a third approach to the control hazard, called delayed decision 
mentioned above. In our analogy, whenever you are going to make such a decision about 
laundry, just place a load of nonfootball clothes in the washer while waiting for football 
uniforms to dry. As long as you have enough dirty clothes that are not affected by the 
test, this solution works fine.

Called the delayed branch in computers, this is the solution actually used by the 
MIPS architecture. The delayed branch always executes the next sequential instruc-
tion, with the branch taking place after that one instruction delay. It is hidden from the 
MIPS assembly lan guage programmer because the assembler can automatically arrange 
the instructions to get the branch behavior desired by the programmer. MIPS software 
will place an instruction immedi ately after the delayed branch instruction that is not 
affected by the branch, and a taken branch changes the address of the instruction that 
follows this safe instruction. In our example, the add instruction before the branch in 
Figure 4.31 does not affect the branch and can be moved after the branch to fully hide 
the branch delay. Since delayed branches are useful when the branches are short, no 
processor uses a delayed branch of more than one cycle. For longer branch delays, 
 hardware-based branch prediction is usually used. 

Pipeline Overview Summary

Pipelining  is  a  technique  that  exploits  parallelism  among  the  instructions  in a 
sequential  instruction  stream.  It  has  the  substantial  ad vantage  that,  unlike  pro-
gramming a multiprocessor, it is fundamentally invisible to the programmer.

In the next sections of this chapter, we cover the concept of pipelining using the 
MIPS instruction subset from the single-cycle implementation in Section 4.4 and 
show a simplified version of its pipeline. We then look at the problems that pipe-
lining introduces and the performance attainable under typical sit uations.

If you wish to  focus more on the software and the performance  implications 
of pipelining, you now have sufficient background to skip to Section 4.10. Section 
4.10  introduces  advanced  pipelining  concepts,  such  as  superscalar  and  dynamic 
scheduling, and Section 4.11 examines the pipelines of recent microprocessors. 

Alternatively,  if  you are  interested  in understanding how pipelining  is  imple-
mented and the challenges of dealing with hazards, you can proceed to examine the 
design of a pipelined datapath and the basic control, explained in Section 4.6. You 
can then use this understanding to explore the implementation of forwarding and 
stalls in Section 4.7. You can then read Section 4.8 to learn more about solu tions to 
branch hazards, and then see how exceptions are handled in Section 4.9.

For each code sequence below, state whether  it must  stall, can avoid stalls using 
only forwarding, or can execute without stalling or forwarding.

Check  
Yourself

Sequence 1 Sequence 2 Sequence 3

lw   $t0,0($t0)
add  $t1,$t0,$t0

add   $t1,$t0,$t0
addi  $t2,$t0,#5
addi  $t4,$t1,#5

addi  $t1,$t0,#1
addi  $t2,$t0,#2
addi  $t3,$t0,#2
addi  $t3,$t0,#4
addi  $t5,$t0,#5
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Outside  the  memory  system,  the  effective  operation  of  the  pipeline  is  usually 
the most important factor in determining the CPI of the processor and hence its 
performance. As we will see in Section 4.10, understanding the performance of a 
modern multiple-issue pipelined processor is complex and requires understand ing 
more than just the issues that arise in a simple pipelined processor. Nonethe less, 
structural, data, and control hazards remain  important  in both simple pipelines 
and more sophisticated ones.

For modern pipelines, structural hazards usually revolve around the floating-
point unit, which may not be fully pipelined, while control hazards are usually more 
of a problem in integer programs, which tend to have higher branch frequencies 
as well as less predictable branches. Data hazards can be performance bottlenecks 
in both  integer and floating-point programs. Often  it  is easier  to deal with data 
hazards in floating-point programs because the lower branch frequency and more 
regular memory access patterns allow the compiler to try to schedule instructions 
to  avoid  hazards.  It  is  more  difficult  to  perform  such  optimizations  in  integer 
programs  that have  less  regular memory access,  involving more use of pointers. 
As we will see in Section 4.10, there are more ambitious compiler and hardware 
techniques for reducing data dependences through scheduling.

Pipelining increases the number of simultaneously executing instructions 
and the rate at which instructions are started and completed. Pipelining 
does not reduce the time it takes to complete an individual instruction, also 
called the latency. For example, the five-stage pipeline still takes 5 clock 
cycles  for  the  instruction  to  complete.  In  the  terms  used  in  Chapter 1, 
pipelining  improves  instruction throughput  rather  than  individual 
instruction execution time or latency.

Instruction  sets  can  either  simplify  or  make  life  harder  for  pipeline 
designers, who must already cope with structural, control, and data hazards. 
Branch prediction and forwarding help make a computer  fast while still 
getting the right answers.

 4.6 Pipelined Datapath and Control

Figure 4.33  shows  the  single-cycle  datapath  from  Section  4.4  with  the  pipeline 
stages identified. The division of an instruction into five stages means a five-stage 
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pipeline,  which  in  turn  means  that  up  to  five  instructions  will  be  in  execution 
during any single clock cycle. Thus, we must separate the datapath into five pieces, 
with each piece named corresponding to a stage of instruction execution:

1.  IF:  Instruction fetch

2.  ID:  Instruction decode and register file read

3.  EX:  Execution or address calculation

4.  MEM:  Data memory access

5.  WB:  Write back

In Figure 4.33, these five components correspond roughly to the way the data -
path is drawn; instructions and data move generally from left to right through the 
five stages as they complete execution. Returning to our laundry analogy, clothes 
get cleaner, drier, and more organized as they move through the line, and they never 
move backward.

FIGURE 4.33 The single-cycle datapath from Section 4.4 (similar to Figure 4.17). Each step of the instruction can be mapped onto 
the datapath from left to right. The only exceptions are the update of the PC and the write-back step, shown in color, which sends either the ALU 
result or the data from memory to the left to be written into the register file. (Normally we use color lines for control, but these are data lines.) 
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There are, however, two exceptions to this left-to-right flow of instructions:

■■ The write-back stage, which places the result back into the register file in the 
middle of the datapath

■■ The selection of the next value of the PC, choosing between the incremented 
PC and the branch address from the MEM stage

Data flowing from right to left does not affect the current instruction; only later 
instructions in the pipeline are influenced by these reverse data movements. Note 
that the first right-to-left flow of data can lead to data hazards and the second leads 
to control hazards.

One way to show what happens in pipelined execution is to pretend that each 
instruction  has  its  own  datapath,  and  then  to  place  these  datapaths  on  a  time-
line to show their relationship. Figure 4.34 shows the execution of the instructions 
in   Figure  4.27  by  displaying  their  private  datapaths  on  a  common  timeline. We 
use a stylized version of the datapath in Figure 4.33 to show the relationships in 
Figure 4.34. 

Program
execution
order
(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

Time (in clock cycles)

IM DMReg RegALU

IM DMReg RegALU

IM DMReg RegALU

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

FIGURE 4.34 Instructions being executed using the single-cycle datapath in Figure 4.33, 
assuming pipelined execution.  Similar  to  Figures  4.28  through  4.30,  this  figure  pretends  that  each 
instruction has its own datapath, and shades each portion according to use. Unlike those figures, each stage 
is  labeled  by  the  physical  resource  used  in  that  stage,  corresponding  to  the  portions  of  the  datapath  in 
Figure 4.33.  IM  represents  the  instruction  memory  and  the  PC  in  the  instruction  fetch  stage,  Reg  stands 
for the register file and sign extender in the instruction decode/register file read stage (ID), and so on. To 
main tain proper  time order,  this  stylized datapath breaks  the  register file  into  two  logical parts:  registers 
read during register fetch (ID) and registers written during write back (WB). This dual use is represented 
by drawing the unshaded left half of the register file using dashed lines in the ID stage, when it is not being 
written, and the unshaded right half in dashed lines in the WB stage, when it is not being read. As before, 
we assume the register file is written in the first half of the clock cycle and the register file is read during the 
sec ond half. 



Figure 4.34  seems  to  suggest  that  three  instructions  need  three  datapaths. 
Instead, we add registers to hold data so that portions of a single datapath can be 
shared during instruction execution. 

For  example,  as  Figure 4.34  shows,  the  instruction  memory  is  used  during 
only one of the five stages of an instruction, allowing it to be shared by following 
instructions  during  the  other  four  stages.  To  retain  the  value  of  an  individual 
instruction for its other four stages, the value read from instruction memory must 
be saved in a register. Similar arguments apply to every pipeline stage, so we must 
place  registers  wherever  there  are  dividing  lines  between  stages  in  Figure 4.33. 
Returning to our  laundry analogy, we might have a basket between each pair of 
stages to hold the clothes for the next step. 

Figure 4.35 shows the pipelined datapath with the pipeline registers high lighted. 
All instructions advance during each clock cycle from one pipeline regis ter to the 
next.  The  registers  are  named  for  the  two  stages  separated  by  that  register.  For 
example, the pipeline register between the IF and ID stages is called IF/ID.

FIGURE 4.35 The pipelined version of the datapath in Figure 4.33. The pipeline registers, in color, separate each pipeline stage. 
They are labeled by the stages that they separate; for example, the first is labeled IF/ID because it separates the instruction fetch and instruction 
decode stages. The registers must be wide enough to store all the data corresponding to the lines that go through them. For example, the IF/ID 
register must be 64 bits wide, because it must hold both the 32-bit instruction fetched from memory and the incremented 32-bit PC address. 
We will  expand  these  regis ters over  the course of  this  chapter, but  for now  the other  three pipeline  registers  contain 128, 97,  and 64 bits, 
respectively. 
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Notice that there is no pipeline register at the end of the write-back stage. All 
instructions must update some state in the processor—the register file, memory, 
or the PC—so a separate pipeline register is redundant to the state that is updated. 
For example, a load instruction will place its result in 1 of the 32 registers, and any 
later instruction that needs that data will simply read the appropriate register. 

Of course, every instruction updates the PC, whether by incrementing it or by 
setting it to a branch destination address. The PC can be thought of as a pipeline 
register:  one  that  feeds  the  IF  stage  of  the  pipeline.  Unlike  the  shaded  pipeline 
registers  in Figure 4.35, however, the PC is part of the visible architectural state; 
its  contents must be  saved when an exception occurs, while  the  contents of  the 
pipe line  registers  can  be  discarded.  In  the  laundry  analogy,  you  could  think  of 
the PC as corresponding to the basket that holds the load of dirty clothes before 
the wash step.

To show how the pipelining works, throughout this chapter we show sequences 
of figures to demonstrate operation over time. These extra pages would seem to 
require much more time for you to understand. Fear not; the sequences take much 
less time than it might appear, because you can compare them to see what changes 
occur in each clock cycle. Section 4.7 describes what happens when there are data 
hazards between pipelined instructions; ignore them for now.

Figures 4.36 through 4.38, our first sequence, show the active portions of the 
datapath  highlighted  as  a  load  instruction  goes  through  the  five  stages  of  pipe-
lined execution. We show a  load first because  it  is  active  in all five  stages. As  in 
Figures 4.28 through 4.30, we highlight the right half of registers or memory when 
they are being read and highlight the left half when they are being written. 

We show the instruction abbreviation lw with the name of the pipe stage that is 
active in each figure. The five stages are the following:

1.  Instruction fetch: The top portion of Figure 4.36 shows the instruction being 
read from memory using the address in the PC and then being placed in the 
IF/ID pipeline register. The PC address is incremented by 4 and then written 
back  into  the  PC  to  be  ready  for  the  next  clock  cycle.  This  incre mented 
address is also saved in the IF/ID pipeline register in case it is needed later 
for an instruction, such as beq. The computer cannot know which type of 
instruction is being fetched, so it must prepare for any instruction, passing 
potentially needed information down the pipeline.

2.  Instruction decode and register file read: The bottom portion of Figure 4.36 
shows the instruction portion of the IF/ID pipeline register supplying the 
16-bit  immediate field, which  is  sign-extended to 32 bits, and the register 
numbers to read the two registers. All three values are stored in the ID/EX  
pipeline register, along with the incremented PC address. We again transfer 
everything  that  might  be  needed  by  any  instruction  during  a  later  clock 
cycle.



FIGURE 4.36 IF and ID: First and second pipe stages of an instruction, with the active portions of the datapath in 
Figure 4.35 highlighted. The highlighting convention is the same as that used in Figure 4.28. As in Section 4.2, there is no confusion when 
reading and writing registers, because the contents change only on the clock edge. Although the load needs only the top register in stage 2, 
the processor doesn’t know what instruction is being decoded, so it sign-extends the 16-bit constant and reads both registers into the ID/EX 
pipeline register. We don’t need all three operands, but it simplifies control to keep all three. 
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3.  Execute or address calculation: Figure 4.37 shows that  the  load  instruction 
reads the contents of register 1 and the sign-extended immediate from the 
ID/EX pipeline register and adds them using the ALU. That sum is placed in 
the EX/MEM pipeline register.

4.  Memory access: The top portion of Figure 4.38 shows the load instruction 
reading  the  data  memory  using  the  address  from  the  EX/MEM  pipeline 
register and loading the data into the MEM/WB pipeline register.

5.  Write-back: The bottom portion of Figure 4.38 shows the final step: reading 
the data from the MEM/WB pipeline register and writing it into the register 
file in the middle of the figure.

This walk-through of the load instruction shows that any information needed 
in a  later pipe stage must be passed to that stage via a pipeline register. Walking 
through a store instruction shows the similarity of instruction  execution, as well 
as passing the information for later stages. Here are the five pipe stages of the store 
instruction:

FIGURE 4.37 EX: The third pipe stage of a load instruction, highlighting the portions of the datapath in Figure 4.35 
used in this pipe stage. The register is added to the sign-extended immediate, and the sum is placed in the EX/MEM pipeline register. 
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FIGURE 4.38 MEM and WB: The fourth and fifth pipe stages of a load instruction, highlighting the portions of the 
datapath in Figure 4.35 used in this pipe stage. Data memory is read using the address in the EX/MEM pipeline registers, and the 
data is placed in the MEM/WB pipeline register. Next, data is read from the MEM/WB pipeline register and written into the register file in the 
middle of the datapath. Note: there is a bug in this design that is repaired in Figure 4.41. 
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1.  Instruction fetch: The  instruction  is  read  from memory using  the address 
in the PC and then is placed in the IF/ID pipeline register. This stage occurs 
before the instruction is identified, so the top portion of Figure 4.36 works 
for store as well as load.

2.  Instruction decode and register file read: The instruction in the IF/ID pipe line 
register supplies the register numbers for reading two registers and extends 
the  sign  of  the  16-bit  immediate.  These  three  32-bit  values  are  all  stored 
in the ID/EX pipeline register. The bottom portion of Figure 4.36 for load 
instructions also shows the operations of the second stage for stores. These 
first two stages are executed by all instructions, since it is too early to know 
the type of the instruction.

3.  Execute and address calculation: Figure 4.39 shows the third step; the effective 
address is placed in the EX/MEM pipeline register.

4.  Memory access: The top portion of Figure 4.40 shows the data being written 
to memory. Note that the register containing the data to be stored was read in 
an earlier stage and stored in ID/EX. The only way to make the data available 
during the MEM stage is to place the data into the EX/MEM pipe line register 
in the EX stage, just as we stored the effective address into EX/MEM.

5.  Write-back: The bottom portion of Figure 4.40 shows the final step of the 
store. For  this  instruction, nothing happens  in  the write-back stage. Since 
every instruction behind the store is already in progress, we have no way to 
accelerate those instructions. Hence, an instruction passes through a stage 
even if there is nothing to do, because later instructions are already progress-
ing at the maximum rate.

The store instruction again illustrates that to pass something from an early pipe 
stage to a later pipe stage, the information must be placed in a pipeline register; 
otherwise,  the  information is  lost when the next  instruction enters that pipeline 
stage. For the store instruction we needed to pass one of the registers read in the 
ID stage to the MEM stage, where it is stored in memory. The data was first placed 
in the ID/EX pipeline register and then passed to the EX/MEM pipeline register.

Load  and  store  illustrate  a  second  key  point:  each  logical  component  of  the 
datapath—such  as  instruction  memory,  register  read  ports, ALU,  data  memory, 
and register write port—can be used only within a single pipeline stage. Other wise, 
we would have a structural hazard (see page 335). Hence these components, and 
their control, can be associated with a single pipeline stage. 

Now we can uncover a bug in the design of the load instruction. Did you see it? 
Which register is changed in the final stage of the load? More specifically, which 
instruction supplies the write register number? The instruction in the IF/ID pipe-
line register supplies the write register number, yet this instruction occurs consid-
erably after the load instruction!



FIGURE 4.39 EX: The third pipe stage of a store instruction. Unlike the third stage of the load instruction in Figure 4.37, the 
second reg ister value is loaded into the EX/MEM pipeline register to be used in the next stage. Although it wouldn’t hurt to always write this 
second register  into the EX/MEM pipeline register, we write  the second register only on a store  instruction to make the pipeline easier  to 
understand. 
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Hence, we need to preserve the destination register number in the load instruc-
tion.  Just  as  store  passed  the  register  contents  from  the  ID/EX  to  the  EX/MEM 
pipeline  registers  for use  in  the MEM stage,  load must pass  the  register number 
from the ID/EX through EX/MEM to the MEM/WB pipeline register for use in the 
WB stage. Another way to think about the passing of the register number is that to 
share the pipelined datapath, we need to preserve the instruction read during the 
IF stage, so each pipeline register contains a portion of the instruction needed for 
that stage and later stages. 

Figure 4.41 shows the correct version of the datapath, passing the write register 
number first to the ID/EX register, then to the EX/MEM register, and finally to the 
MEM/WB register. The register number is used during the WB stage to specify the 
register  to be written. Figure 4.42  is  a  single drawing of  the corrected datapath, 
highlighting  the hardware used  in all five stages of  the  load word  instruction  in 
Figures 4.36 through 4.38. See Section 4.8 for an explanation of how to make the 
branch instruction work as expected.
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FIGURE 4.40 MEM and WB: The fourth and fifth pipe stages of a store instruction. In the fourth stage, the data is written into 
data memory for the store. Note that the data comes from the EX/MEM pipeline register and that nothing is changed in the MEM/WB pipeline 
register. Once the data is written in memory, there is nothing left for the store instruction to do, so nothing happens in stage 5. 
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FIGURE 4.41 The corrected pipelined datapath to handle the load instruction properly. The write register number now 
comes from the MEM/WB pipeline register along with the data. The register number is passed from the ID pipe stage until  it reaches the 
MEM/WB pipeline regis ter, adding five more bits to the last three pipeline registers. This new path is shown in color. 
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FIGURE 4.42 The portion of the datapath in Figure 4.41 that is used in all five stages of a load instruction. 

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register
Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign-
extend

PC

4

ID/EXIF/ID EX/MEM

16 32

0
M
u
x

1

0
M
u
x

1

1
M
u
x

0

MEM/WB

 4.6 Pipelined Datapath and Control 355



356 Chapter 4 The Processor

Graphically Representing Pipelines
Pipelining  can  be  difficult  to  understand,  since  many  instructions  are  simulta-
neously executing in a single datapath in every clock cycle. To aid understanding, 
there are two basic styles of pipeline figures: multiple-clock-cycle pipeline dia grams, 
such as Figure 4.34 on page 346, and single-clock-cycle pipeline diagrams, such as 
Figures 4.36 through 4.40. The multiple-clock-cycle diagrams are simpler but do 
not  contain  all  the  details.  For  example,  consider  the  following  five-instruction 
sequence:

lw     $10, 20($1) 
sub    $11, $2, $3  
add    $12, $3, $4 
lw     $13, 24($1) 
add    $14, $5, $6

Figure 4.43 shows the multiple-clock-cycle pipeline diagram for these instruc-
tions.  Time  advances  from  left  to  right  across  the  page  in  these  diagrams,  and 
instructions advance from the top to the bottom of the page, similar to the laun dry 
pipeline  in Figure 4.25. A representation of  the pipeline stages  is placed  in each 
portion along the instruction axis, occupying the proper clock cycles. These stylized 
datapaths  represent  the  five  stages  of  our  pipeline  graphically,  but  a  rectangle 
naming  each  pipe  stage  works  just  as  well.  Figure 4.44  shows  the  more  tradi-
tional version of the multiple-clock-cycle pipeline diagram. Note that Figure 4.43 
shows the physical resources used at each stage, while Figure 4.44 uses the name of 
each stage. 

Single-clock-cycle pipeline diagrams show the state of the entire datapath dur ing 
a single clock cycle, and usually all five instructions in the pipeline are identi fied by 
labels above their respective pipeline stages. We use this type of figure to show the 
details of what is happening within the pipeline during each clock cycle; typically, 
the  drawings  appear  in  groups  to  show  pipeline  operation  over  a  sequence  of 
clock cycles. We use multiple-clock-cycle  diagrams to give overviews of pipelining 
situations.  (   Section 4.12  gives  more  illustrations  of  single-clock diagrams 
if  you  would  like  to  see  more  details  about  Figure  4.43.)  A  single-clock-cycle 
diagram represents a vertical slice through a set of multiple-clock-cycle diagrams, 
showing the usage of  the datapath by each of  the  instructions  in the pipeline at 
the designated clock cycle. For exam ple, Figure 4.45 shows the single-clock-cycle 
diagram corresponding to clock cycle 5 of Figures 4.43 and 4.44. Obviously,  the 
single-clock-cycle  diagrams  have  more  detail  and  take  significantly  more  space 
to  show  the  same  number  of  clock  cycles.  The  exercises  ask  you  to  create  such 
diagrams for other code sequences.



FIGURE 4.43 Multiple-clock-cycle pipeline diagram of five instructions. This style of pipeline representation shows the complete 
execu tion of instructions in a single figure. Instructions are listed in instruction execution order from top to bottom, and clock cycles move 
from left to right. Unlike Figure 4.28, here we show the pipeline registers between each stage. Figure 4.44 shows the traditional way to draw 
this diagram. 
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A group of students were debating the efficiency of the five-stage pipeline when 
one student pointed out that not all  instructions are active  in every stage of  the 
pipeline. After deciding to ignore the effects of hazards, they made the following 
five statements. Which ones are correct? 

1.  Allowing jumps, branches, and ALU instructions to take fewer stages than 
the five required by the load instruction will increase pipeline performance 
under all circumstances.

2.  Trying to allow some instructions to take fewer cycles does not help, since 
the throughput is determined by the clock cycle; the number of pipe stages 
per instruction affects latency, not throughput. 

3.  You cannot make ALU instructions take fewer cycles because of the write-
back of the result, but branches and jumps can take fewer cycles, so there is 
some opportunity for improvement.

4.  Instead of trying to make instructions take fewer cycles, we should explore 
making  the pipeline  longer,  so  that  instructions  take more cycles, but  the 
cycles are shorter. This could improve performance.

Check  
Yourself

FIGURE 4.45 The single-clock-cycle diagram corresponding to clock cycle 5 of the pipeline in Figures 4.43 and 4.44. 
As you can see, a single-clock-cycle figure is a vertical slice through a multiple-clock-cycle diagram. 
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Pipelined Control

Just as we added control to the single-cycle datapath in Section 4.3, we now add 
control  to  the  pipelined  datapath. We  start  with  a  simple  design  that  views  the 
problem through rose-colored glasses; in Sections 4.7 through 4.9, we remove these 
glasses to reveal the pipeline hazards of the real world.

The first step is to label the control lines on the existing datapath. Figure 4.46 
shows those lines. We borrow as much as we can from the control for the simple 
datapath in Figure 4.17. In particular, we use the same ALU control logic, branch 
logic, destination-register-number multiplexor, and control lines. These functions 
are defined in Figures 4.12, 4.16, and 4.18. We reproduce the key information in 
Figures 4.47 through 4.49 on a single page to make the following discussion easier 
to follow.

In the 6600 Computer, 
perhaps even more 
than in any previous 
computer, the con trol 
system is the difference.

James Thornton,  
Design of a Computer: 
The Control Data 6600, 
1970

FIGURE 4.46 The pipelined datapath of Figure 4.41 with the control signals identified. This datapath borrows the control 
logic for PC source, register destination number, and ALU control from Section 4.4. Note that we now need the 6-bit funct field (function 
code) of the instruc tion in the EX stage as input to ALU control, so these bits must also be included in the ID/EX pipeline register. Recall that 
these 6 bits are also the 6 least significant bits of the immediate field in the instruction, so the ID/EX pipeline register can supply them from the 
immediate field since sign extension leaves these bits unchanged. 

MemWrite

PCSrc

MemtoReg

MemRead

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Instruction
(15–0)

Instruction
(20–16)

Instruction
(15–11)

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

AddAdd
result

Add ALU
result

Zero

Shift
left 2

Sign-
extend

PC

4

ID/EXIF/ID EX/MEM

16 32 6 ALU
control

RegDst

ALUOp

ALUSrc

RegWrite

Branch

MEM/WB

0
M
u
x

1

0
M
u
x

1

0
M
u
x

1

0

M
u
x

1

 4.6 Pipelined Datapath and Control 359



360 Chapter 4 The Processor

Instruction 
opcode ALUOp

Instruction 
operation Function code

Desired 
ALU action

ALU control 
input

LW 00 load word XXXXXX add 0010

SW 00 store word XXXXXX add 0010

Branch equal 01 branch equal XXXXXX subtract 0110

R-type 10 add 100000 add 0010

R-type 10 subtract 100010 subtract 0110

R-type 10 AND 100100 AND 0000

R-type 10 OR 100101 OR 0001

R-type 10 set on less than 101010 set on less than 0111

FIGURE 4.47 A copy of Figure 4.12. This figure shows how the ALU control bits are set depending on the ALUOp control bits and the 
different function codes for the R-type instruction. 

Signal name Effect when deasserted (0) Effect when asserted (1)

RegDst The register destination number for the Write 
register comes from the rt field (bits 20:16).

The register destination number for the Write register comes 
from the rd field (bits 15:11).

RegWrite None. The register on the Write register input is written with the value 
on the Write data input. 

ALUSrc The second ALU operand comes from the second 
register file output (Read data 2).

The second ALU operand is the sign-extended, lower 16 bits of 
the instruction.

PCSrc The PC is replaced by the output of the adder that 
computes the value of PC + 4.

The PC is replaced by the output of the adder that computes 
the branch target.

MemRead None. Data memory contents designated by the address input are 
put on the Read data output. 

MemWrite None. Data memory contents designated by the address input are 
replaced by the value on the Write data input.

MemtoReg The value fed to the register Write data input 
comes from the ALU.

The value fed to the register Write data input comes from the 
data memory.

FIGURE 4.48 A copy of Figure 4.16. The function of each of seven control signals is defined. The ALU control lines (ALUOp) are 
defined in the second column of Figure 4.47. When a 1-bit control to a 2-way multiplexor is asserted, the multiplexor selects the input corre-
sponding to 1. Otherwise, if the control is deasserted, the multiplexor selects the 0 input. Note that PCSrc is controlled by an AND gate in 
Figure 4.46. If the Branch signal and the ALU Zero signal are both set, then PCSrc is 1; otherwise, it is 0. Control sets the Branch signal only 
during a beq instruc tion; otherwise, PCSrc is set to 0. 

Instruction

Execution/address calculation stage 
control lines

Memory access stage 
control lines

Write-back stage 
control lines

RegDst ALUOp1 ALUOp0 ALUSrc  Branch
 Mem- 
Read

Mem- 
Write

Reg- 
Write

Memto- 
Reg

R-format 1 1 0 0 0 0 0 1 0

lw 0 0 0 1 0 1 0 1 1

sw X 0 0 1 0 0 1 0 X

beq X 0 1 0 1 0 0 0 X

FIGURE 4.49 The values of the control lines are the same as in Figure 4.18, but they have been shuffled into three 
groups corresponding to the last three pipeline stages. 



As  was  the  case  for  the  single-cycle  implementation,  we  assume  that  the  PC 
is written on each clock cycle, so there is no separate write signal for the PC. By 
the same argument,  there are no separate write  signals  for  the pipeline registers  
(IF/ID,  ID/EX,  EX/MEM,  and  MEM/WB),  since  the  pipeline  registers  are  also 
written during each clock cycle.

To specify control for the pipeline, we need only set the control values during 
each pipeline stage. Because each control line is associated with a component active 
in  only  a  single  pipeline  stage,  we  can  divide  the  control  lines  into  five  groups 
according to the pipeline stage. 

1.  Instruction fetch: The  control  signals  to  read  instruction  memory  and  to 
write the PC are always asserted, so there is nothing special to control in this 
pipeline stage.

2.  Instruction decode/register file read: As in the previous stage, the same thing 
happens at every clock cycle, so there are no optional control lines to set.

3.  Execution/address calculation: The signals to be set are RegDst, ALUOp, and 
ALUSrc  (see  Figures  4.47  and  4.48).  The  signals  select  the  Result  register, 
the ALU operation, and either Read data 2 or a sign-extended immedi ate for 
the ALU.

FIGURE 4.50 The control lines for the final three stages. Note that four of the nine control lines 
are used in the EX phase, with the remaining five control lines passed on to the EX/MEM pipeline register 
extended  to hold  the  control  lines;  three are used during  the MEM stage,  and  the  last  two are passed  to 
MEM/WB for use in the WB stage. 
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IF/ID ID/EX EX/MEM MEM/WB

Instruction
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4.  Memory access: The  control  lines  set  in  this  stage  are  Branch,  MemRead, 
and MemWrite. These signals are set by  the branch equal,  load, and store 
instructions,  respectively. Recall  that PCSrc  in Figure 4.48 selects  the next 
sequential address unless control asserts Branch and the ALU result was 0.

5.  Write-back:  The  two control  lines  are MemtoReg, which decides between 
sending the ALU result or the memory value to the register file, and Reg-
Write, which writes the chosen value.

Since pipelining the datapath leaves the meaning of the control lines unchanged, 
we can use the same control values. Figure 4.49 has the same values as in Section 4.4, 
but now the nine control lines are grouped by pipeline stage. 

FIGURE 4.51 The pipelined datapath of Figure 4.46, with the control signals connected to the control portions of the 
pipe line registers. The control values for the last three stages are created during the instruction decode stage and then placed in the ID/EX 
pipeline reg ister. The control lines for each pipe stage are used, and remaining control lines are then passed to the next pipeline stage. 
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Implementing control means  setting  the nine control  lines  to  these values  in 
each stage for each instruction. The simplest way to do this is to extend the pipe line 
registers to include control information.

Since the control lines start with the EX stage, we can create the control infor-
mation  during  instruction  decode.  Figure 4.50  above  shows  that  these  control 
signals  are  then used  in  the appropriate pipeline  stage as  the  instruction moves 
down the pipeline, just as the destination register number for loads moves down 
the  pipe line  in  Figure 4.41.  Figure 4.51  above  shows  the  full  datapath  with  the 
extended  pipeline  registers  and  with  the  control  lines  connected  to  the  proper 
stage. (  Section 4.12 gives more examples of MIPS code executing on pipelined 
hardware using single-clock diagrams, if you would like to see more details.)

 4.7 Data Hazards: Forwarding versus Stalling

The examples in the previous section show the power of pipelined execution and 
how  the  hardware  performs  the  task.  It’s  now  time  to  take  off  the  rose-colored 
glasses and look at what happens with real programs. The instructions in Figures 
4.43 through 4.45 were independent; none of them used the results calculated by 
any of the others. Yet in Section 4.5, we saw that data hazards are obstacles to pipe-
lined execution.

Let’s look at a sequence with many dependences, shown in color:

sub   $2, $1,$3 # Register $2 written by sub
and   $12,$2,$5 # 1st operand($2) depends on sub
or    $13,$6,$2 # 2nd operand($2) depends on sub
add   $14,$2,$2  # 1st($2) & 2nd($2) depend on sub
sw    $15,100($2) # Base ($2) depends on sub

The last four instructions are all dependent on the result in register $2 of the first 
instruction.  If  register $2  had  the  value  10  before  the  subtract  instruction  and 
-20  afterwards,  the  programmer  intends  that  -20  will  be  used  in  the  following 
instructions that refer to register $2.

How would this sequence perform with our pipeline? Figure 4.52 illustrates the 
execution of these instructions using a multiple-clock-cycle pipeline representation. 
To demonstrate the execution of this instruction sequence in our current pipeline, 
the  top of Figure 4.52  shows  the value of  register $2, which changes during  the 
middle of clock cycle 5, when the sub instruction writes its result.

The  last  potential  hazard  can  be  resolved  by  the  design  of  the  register  file 
hardware: What  happens  when  a  register  is  read  and  written  in  the  same  clock 
cycle? We assume that the write is in the first half of the clock cycle and the read 
is in the second half, so the read delivers what is written. As is the case for many 
implementations of register files, we have no data hazard in this case. 

What do you mean, 
why’s it got to be built? 
It’s a bypass. You’ve got 
to build bypasses.

Douglas Adams, The 
Hitchhiker’s Guide to 
the Galaxy, 1979
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Figure 4.52 shows that the values read for register $2 would not be the result of 
the sub instruction unless the read occurred during clock cycle 5 or later. Thus, the 
instructions that would get the correct value of -20 are add and sw; the AND and 
OR instructions would get the incorrect value 10! Using this style of drawing, such 
problems become apparent when a dependence line goes backward in time. 

As  mentioned  in  Section  4.5,  the  desired  result  is  available  at  the  end  of  the 
EX  stage or  clock  cycle  3. When  is  the data  actually needed by  the AND  and OR 
instructions? At the beginning of the EX stage, or clock cycles 4 and 5, respectively. 
Thus, we can exe cute this segment without stalls if we simply forward the data as 
soon as it is avail able to any units that need it before it is available to read from the 
register file. 

How does forwarding work? For simplicity in the rest of this section, we consider 
only the challenge of forwarding to an operation in the EX stage, which may be 
either an ALU operation or an effective address calculation. This means that when 

Program
execution
order
(in instructions)

sub $2, $1, $3

and $12, $2, $5 

or $13, $6, $2

add $14, $2,$2 

sw $15, 100($2)

Time (in clock cycles)
CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

10 10 10 10 
Value of
register $2: 10/–20 –20 –20 –20 –20

FIGURE 4.52 Pipelined dependences in a five-instruction sequence using simplified datapaths to show the dependences. 
All the dependent actions are shown in color, and “CC 1” at the top of the figure means clock cycle 1. The first instruction writes into $2, and 
all the following instructions read $2. This register is written in clock cycle 5, so the proper value is unavailable before clock cycle 5. (A read of a 
register dur ing a clock cycle returns the value written at the end of the first half of the cycle, when such a write occurs.) The colored lines from 
the top datapath to the lower ones show the dependences. Those that must go backward in time are pipeline data hazards. 



an instruction tries to use a register in its EX stage that an earlier instruction intends 
to write in its WB stage, we actually need the values as inputs to the ALU. 

A notation that names the fields of the pipeline registers allows for a more pre-
cise notation of dependences. For example, “ID/EX.RegisterRs” refers to the num-
ber of one register whose value is found in the pipeline register ID/EX; that is, the 
one from the first read port of the register file. The first part of the name, to the left 
of the period, is the name of the pipeline register; the second part is the name of the 
field in that register. Using this notation, the two pairs of hazard conditions are

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

The first hazard in the sequence on page 363 is on register $2, between the result 
of sub $2,$1,$3 and the first read operand of and $12,$2,$5. This hazard can 
be detected when the and instruction is in the EX stage and the prior instruction is 
in the MEM stage, so this is hazard 1a:

EX/MEM.RegisterRd = ID/EX.RegisterRs = $2

Dependence Detection

Classify the dependences in this sequence from page 363:

sub $2, $1, $3  # Register $2 set by sub
and $12, $2, $5  # 1st operand($2) set by sub
or $13, $6, $2  # 2nd operand($2) set by sub
add $14, $2, $2  # 1st($2) & 2nd($2) set by sub
sw $15, 100($2) # Index($2) set by sub

As mentioned above, the sub-and is a type 1a hazard. The remaining hazards 
are as follows:

■■ The sub-or is a type 2b hazard:

■ MEM/WB.RegisterRd = ID/EX.RegisterRt = $2

■■ The two dependences on sub-add are not hazards because the register 
file supplies the proper data during the ID stage of add.

■■ There is no data hazard between sub and sw because sw reads $2  the 
clock cycle after sub writes $2.

EXAMPLE

ANSWER
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Because  some  instructions  do  not  write  registers,  this  policy  is  inaccurate; 
sometimes  it  would  forward when  it  shouldn’t. One  solution  is  simply  to  check 
to see if the RegWrite signal will be active: examining the WB control field of the 
pipeline register during the EX and MEM stages determines whether RegWrite is 
asserted. Recall that MIPS requires that every use of $0 as an operand must yield 
an operand value of 0. In the event that an instruction in the pipeline has $0 as 
its destination (for example, sll $0, $1, 2), we want to avoid forwarding its pos-
sibly nonzero result value. Not forwarding results destined for $0 frees the assem bly 
programmer and the compiler of any requirement to avoid using $0 as a destination. 
The conditions above thus work properly as long we add EX/MEM.RegisterRd ≠ 0 
to the first hazard condition and MEM/WB.RegisterRd ≠ 0 to the second. 

Now that we can detect hazards, half of the problem is resolved—but we must 
still forward the proper data.

Figure 4.53 shows the dependences between the pipeline registers and the inputs 
to the ALU for the same code sequence as in Figure 4.52. The change is that the 
dependence begins from a pipeline register, rather than waiting for the WB stage to 
write the register file. Thus, the required data exists in time for later instructions, 
with the pipeline registers holding the data to be forwarded.

If we can take the inputs to the ALU from any pipeline register rather than just 
ID/EX, then we can forward the proper data. By adding multiplexors to the input 
of the ALU, and with the proper controls, we can run the pipeline at full speed in 
the presence of these data dependences. 

For now, we will assume the only instructions we need to forward are the four 
R-format instructions: add, sub, AND, and OR. Figure 4.54 shows a close-up of the 
ALU and pipeline register before and after adding forwarding. Figure 4.55 shows 
the values of the control lines for the ALU multiplexors that select either the register 
file values or one of the forwarded values.

This  forwarding control will be  in the EX stage, because the ALU forwarding 
multiplexors  are  found  in  that  stage.  Thus,  we  must  pass  the  operand  register 
numbers from the ID stage via the ID/EX pipeline register to determine whether 
to forward values. We already have the rt field (bits 20–16). Before forwarding, the 
ID/EX register had no need to  include space to hold the rs field. Hence, rs (bits 
25–21) is added to ID/EX. 

Let’s now write both the conditions for detecting hazards and the control sig nals 
to resolve them:

1.  EX hazard:

if (EX/MEM.RegWrite  
and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) ForwardA = 10

if (EX/MEM.RegWrite  
and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10



Note  that  the  EX/MEM.RegisterRd  field  is  the  register  destination  for  either 
an ALU instruction (which comes from the Rd field of the instruction) or a load 
(which comes from the Rt field).

This case forwards the result from the previous instruction to either input of the 
ALU. If the previous instruction is going to write to the register file, and the write 
register number matches the read register number of ALU inputs A or B, provided 

FIGURE 4.53 The dependences between the pipeline registers move forward in time, so it is possible to supply the 
inputs to the ALU needed by the AND instruction and OR instruction by forwarding the results found in the pipeline 
registers. The val ues in the pipeline registers show that the desired value is available before it is written into the register file. We assume that 
the register file forwards values that are read and written during the same clock cycle, so the add does not stall, but the values come from the 
register file instead of a pipeline register. Register file “forwarding”—that is, the read gets the value of the write in that clock cycle—is why clock 
cycle 5 shows register $2 having the value 10 at the beginning and -20 at the end of the clock cycle. As in the rest of this section, we handle all 
forwarding except for the value to be stored by a store instruction. 
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FIGURE 4.54 On the top are the ALU and pipeline registers before adding forwarding. On the bottom, the multiplexors have 
been expanded to add the forwarding paths, and we show the forwarding unit. The new hardware is shown in color. This figure is a stylized 
drawing, how ever, leaving out details from the full datapath such as the sign extension hardware. Note that the ID/EX.RegisterRt field is shown 
twice, once to con nect to the mux and once to the forwarding unit, but it is a single signal. As in the earlier discussion, this ignores forwarding 
of a store value to a store instruction. Also note that this mechanism works for slt instructions as well. 

Data
memory

Registers

M
u
x

ALU

ALU

ID/EX

a. No forwarding

b. With forwarding

EX/MEM MEM/WB

Data
memory

Registers

M
u
x

M
u
x

M
u
x

M
u
x

ID/EX EX/MEM MEM/WB

Forwarding
unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rs
Rt
Rt
Rd

ForwardB

ForwardA



it  is not register 0,  then steer  the multiplexor to pick the value  instead from the 
pipeline register EX/MEM.

2.  MEM hazard:

if (MEM/WB.RegWrite  
and (MEM/WB.RegisterRd ≠ 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01

if (MEM/WB.RegWrite  
and (MEM/WB.RegisterRd ≠ 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

As mentioned above, there is no hazard in the WB stage, because we assume that 
the register file supplies the correct result if the instruction in the ID stage reads 
the same register written by the  instruction in the WB stage. Such a register file 
performs another form of forwarding, but it occurs within the register file.

One complication is potential data hazards between the result of the instruc tion 
in  the WB stage,  the result of  the  instruction  in  the MEM stage, and the source 
operand of the instruction in the ALU stage. For example, when summing a vector 
of numbers in a single register, a sequence of instructions will all read and write to 
the same register: 

add $1,$1,$2 
add $1,$1,$3 
add $1,$1,$4 
. . .

In this case, the result is forwarded from the MEM stage because the result in the 
MEM stage is the more recent result. Thus, the control for the MEM hazard would 
be (with the additions highlighted):

if (MEM/WB.RegWrite  
and (MEM/WB.RegisterRd ≠ 0)
and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0))
 and (EX/MEM.RegisterRd ≠ ID/EX.RegisterRs)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01

if (MEM/WB.RegWrite  
and (MEM/WB.RegisterRd ≠ 0)
and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0))
 and (EX/MEM.RegisterRd ≠ ID/EX.RegisterRt)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

Figure 4.56  shows  the  hardware  necessary  to  support  forwarding  for  operations 
that use results during the EX stage. Note that the EX/MEM.RegisterRd field is the 
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register destination for either an ALU instruction (which comes from the Rd field 
of the instruction) or a load (which comes from the Rt field).

 Section 4.12 on the CD shows two pieces of MIPS code with hazards that 
cause forwarding, if you would like to see more illustrated examples using single-
cycle pipeline drawings.

Mux control Source Explanation

ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU result.

ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory or an earlier 
ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory or an 
earlier ALU result.

FIGURE 4.55 The control values for the forwarding multiplexors in Figure 4.54. The signed 
immediate that is another input to the ALU is described in the Elaboration at the end of this section. 

FIGURE 4.56 The datapath modified to resolve hazards via forwarding. Compared with the datapath in Figure 4.51, the additions 
are the multiplexors to the inputs to the ALU. This figure is a more stylized drawing, however, leaving out details from the full datapath, such 
as the branch hardware and the sign extension hardware. 
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Elaboration: Forwarding can also help with hazards when store instructions are 
dependent on other instructions. Since they use just one data value during the MEM 
stage, forwarding is easy. However, consider loads immediately followed by stores, useful 
when performing mem ory-to-memory copies in the MIPS architecture. Since copies are 
frequent, we need to add more forwarding hardware to make them run faster. If we were 
to redraw Figure 4.53, replacing the sub and AND instructions with lw and sw, we would 
see that it is possible to avoid a stall, since the data exists in the MEM/WB register of 
a load instruction in time for its use in the MEM stage of a store instruction. We would 
need to add forwarding into the memory access stage for this option. We leave this 
modification as an exercise to the reader.

In addition, the signed-immediate input to the ALU, needed by loads and stores, 
is missing from the datapath in Figure 4.56. Since central control decides between 
register and immediate, and since the forwarding unit chooses the pipeline register for 
a register input to the ALU, the easiest solution is to add a 2:1 multiplexor that chooses 
between the ForwardB multiplexor output and the signed immediate. Figure 4.57 shows 
this addition.

FIGURE 4.57 A close-up of the datapath in Figure 4.54 shows a 2:1 multi plexor, which has been added to select the 
signed immediate as an ALU input. 
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Data Hazards and Stalls

As we said in Section 4.5, one case where forwarding cannot save the day is when 
an  instruction  tries  to  read  a  register  following  a  load  instruction  that  writes 
the same register. Figure 4.58 illustrates the problem. The data is still being read 
from memory in clock cycle 4 while the ALU is performing the operation for the 
following  instruction. Something must  stall  the pipeline  for  the combination of 
load followed by an instruction that reads its result.

Hence,  in  addition  to  a  forwarding  unit,  we  need  a  hazard detection unit.  It 
operates during the ID stage so that it can insert the stall between the load and its 
use. Checking for load instructions, the control for the hazard detection unit is this 
single condition:

if (ID/EX.MemRead and  
   ((ID/EX.RegisterRt = IF/ID.RegisterRs) or 
     (ID/EX.RegisterRt = IF/ID.RegisterRt))) 
      stall the pipeline

If at first you don’t 
succeed, redefine 
success.

Anonymous

FIGURE 4.58 A pipelined sequence of instructions. Since the dependence between the load and the following instruction (and) goes 
back ward in time, this hazard cannot be solved by forwarding. Hence, this combination must result in a stall by the hazard detection unit. 
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The first line tests to see if the instruction is a load: the only instruction that reads 
data memory is a load. The next two lines check to see if the destination register 
field of the load in the EX stage matches either source register of the instruction 
in the ID stage. If the condition holds, the instruction stalls one clock cycle. After 
this 1-cycle stall,  the forwarding logic can handle the dependence and execution 
pro ceeds. (If there were no forwarding, then the instructions in Figure 4.58 would 
need another stall cycle.)

If the instruction in the ID stage is stalled, then the instruction in the IF stage 
must also be stalled; otherwise, we would lose the fetched instruction. Preventing 
these two instructions from making progress is accomplished simply by prevent-
ing the PC register and the IF/ID pipeline register from changing. Provided these 
registers are preserved, the instruction in the IF stage will continue to be read using 
the same PC, and the registers in the ID stage will continue to be read using the 
same  instruction  fields  in  the  IF/ID  pipeline  register.  Returning  to  our  favorite 
analogy,  it’s as  if you restart  the washer with  the  same clothes and  let  the dryer 
continue tumbling empty. Of course, like the dryer, the back half of the pipeline 
starting with the EX stage must be doing something; what it is doing is executing 
instructions that have no effect: nops.

How  can  we  insert  these  nops,  which  act  like  bubbles,  into  the  pipeline?  In 
 Figure 4.49, we see that deasserting all nine control signals (setting them to 0) in 
the EX, MEM, and WB stages will  create  a “do nothing” or nop  instruction. By 
identifying the hazard in the ID stage, we can insert a bubble into the pipeline by 
changing the EX, MEM, and WB control fields of the ID/EX pipe line register to 
0. These benign control values are percolated forward at each clock cycle with the 
proper effect: no registers or memories are written if the control values are all 0.

Figure 4.59 shows what really happens in the hardware: the pipeline execution 
slot associated with the AND instruction is turned into a nop and all instructions 
beginning with  the AND  instruction are delayed one cycle. Like an air bubble  in 
a  water  pipe,  a  stall  bubble  delays  everything  behind  it  and  proceeds  down  the 
instruction pipe one stage each cycle until it exits at the end. In this example, the 
hazard forces the AND and OR instructions to repeat in clock cycle 4 what they did in 
clock cycle 3: AND reads registers and decodes, and OR is refetched from instruc tion 
memory. Such repeated work is what a stall looks like, but its effect is to stretch the 
time of the AND and OR instructions and delay the fetch of the add instruction.

Figure 4.60 highlights  the pipeline connections  for both  the hazard detection 
unit  and  the  forwarding  unit.  As  before,  the  forwarding  unit  controls  the  ALU 
multiplexors  to replace the value from a general-purpose register with the value  
from the proper pipeline register. The hazard detection unit controls the writing 
of the PC and IF/ID registers plus the multiplexor that chooses between the real 
control values and all 0s. The hazard detection unit stalls and deasserts the control 
fields if the load-use hazard test above is true.   Section 4.12 on the CD gives an 
example of MIPS code with hazards that causes stalling, illustrated using single-
clock pipeline diagrams, if you would like to see more details.

nop  An instruction that 
does no operation to 
change state.
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FIGURE 4.59 The way stalls are really inserted into the pipeline. A bubble is inserted beginning in clock cycle 4, by changing the 
and instruction to a nop. Note that the and instruction is really fetched and decoded in clock cycles 2 and 3, but its EX stage is delayed until 
clock cycle 5 (versus the unstalled position in clock cycle 4). Likewise the OR instruction is fetched in clock cycle 3, but its ID stage is delayed 
until clock cycle 5 (ver sus the unstalled clock cycle 4 position). After insertion of the bubble, all the dependences go forward in time and no 
further hazards occur. 
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Although the compiler generally relies upon the hardware to resolve hazards 
and thereby ensure correct execution, the compiler must understand the 
pipeline to achieve the best performance. Otherwise, unexpected stalls will 
reduce the performance of the compiled code.
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FIGURE 4.60 Pipelined control overview, showing the two multiplexors for forwarding, the hazard detection unit, and 
the forwarding unit. Although the ID and EX stages have been simplified—the sign-extended immediate and branch logic are missing—
this drawing gives the essence of the forwarding hardware requirements. 
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writing registers or memory: only the signals RegWrite and MemWrite need be 0, while 
the other con trol signals can be don’t cares.

 4.8 Control Hazards

Thus far, we have limited our concern to hazards involving arithmetic operations 
and  data  transfers.  However,  as  we  saw  in  Section  4.5,  there  are  also  pipeline 
hazards involving branches. Figure 4.61 shows a sequence of instructions and indi-
cates when the branch would occur in this pipeline. An instruction must be fetched 

There are a thousand 
hack ing at the branches 
of evil to one who is 
striking at the root.

Henry David Thoreau, 
Walden, 1854

 4.8 Control Hazards 375



376 Chapter 4 The Processor

at every clock cycle  to sustain  the pipeline, yet  in our design the decision about 
whether  to  branch  doesn’t  occur  until  the  MEM  pipeline  stage.  As  mentioned 
in Section 4.5, this delay in determining the proper instruction to fetch is called 
a  control hazard  or  branch hazard,  in  contrast  to  the  data hazards  we  have  just 
examined.

This section on control hazards  is  shorter  than the previous sections on data 
hazards. The reasons are that control hazards are relatively simple to understand, 
they  occur  less  frequently  than  data  hazards,  and  there  is  nothing  as  effective 
against  control  hazards  as  forwarding  is  against  data  hazards.  Hence,  we  use 
simpler schemes. We look at two schemes for resolving control hazards and one 
optimization to improve these schemes.

FIGURE 4.61 The impact of the pipeline on the branch instruction. The numbers to the  left of  the  instruction (40, 44, . . . ) 
are the addresses of the instructions. Since the branch instruction decides whether to branch in the MEM stage—clock cycle 4 for the beq 
instruction above—the three sequential instructions that follow the branch will be fetched and begin execution. Without intervention, those 
three following instructions will begin execution before beq branches to lw at location 72. (Figure 4.31 assumed extra hardware to reduce the 
control hazard to one clock cycle; this figure uses the nonoptimized datapath.) 
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Assume Branch Not Taken
As we saw in Section 4.5, stalling until the branch is complete is too slow. A com-
mon improvement over branch stalling is to assume that the branch will not be 
taken and thus continue execution down the sequential instruction stream. If the 
branch is taken, the instructions that are being fetched and decoded must be dis-
carded. Execution continues at the branch target. If branches are untaken half the 
time, and if it costs little to discard the instructions, this optimization halves the 
cost of control hazards.

To discard instructions, we merely change the original control values to 0s, much 
as we did to stall  for a  load-use data hazard. The difference is that we must also 
change the three instructions in the IF, ID, and EX stages when the branch reaches 
the MEM stage; for load-use stalls, we just changed control to 0 in the ID stage and 
let them percolate through the pipeline. Discarding instructions, then, means we 
must be able to flush instructions in the IF, ID, and EX stages of the pipeline.

Reducing the Delay of Branches
One way to improve branch performance is to reduce the cost of the taken branch. 
Thus far, we have assumed the next PC for a branch is selected in the MEM stage, 
but  if we move  the branch execution earlier  in  the pipeline,  then  fewer  instruc-
tions need be flushed. The MIPS architecture was designed to support fast single-
cycle branches that could be pipelined with a small branch penalty. The designers 
observed that many branches rely only on simple tests (equality or sign, for exam-
ple) and that such tests do not require a full ALU operation but can be done with 
at most a few gates. When a more complex branch decision is required, a separate 
instruction  that uses  an ALU  to perform  a  comparison  is  required—a  situation 
that is similar to the use of condition codes for branches (see Chapter 2). 

Moving the branch decision up requires two actions to occur earlier: computing 
the  branch  target  address  and  evaluating  the  branch  decision.  The  easy  part  of 
this change is to move up the branch address calculation. We already have the PC 
value and the immediate field in the IF/ID pipeline register, so we just move the 
branch adder from the EX stage to the ID stage; of course, the branch target address 
calculation will be performed for all instructions, but only used when needed. 

The harder part is the branch decision itself. For branch equal, we would compare 
the two registers read during the ID stage to see if they are equal. Equality can be 
tested by first exclusive ORing their respective bits and then ORing all the results. 
Moving the branch test to the ID stage implies additional forwarding and hazard 
detection hardware, since a branch dependent on a result still in the pipe line must 
still work properly with this optimization. For example, to implement branch on 
equal (and its inverse), we will need to forward results to the equality test logic that 
operates during ID. There are two complicating factors: 

flush To dis card 
instructions in a pipeline, 
usually due to an 
unexpected event.
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1.  During ID, we must decode the instruction, decide whether a bypass to the 
equality unit is needed, and complete the equality comparison so that if the 
instruction is a branch, we can set the PC to the branch target address. For-
warding  for  the  operands  of  branches  was  formerly  handled  by  the ALU 
forwarding  logic, but  the  introduction of  the equality  test unit  in  ID will 
require new forwarding logic. Note that the bypassed source operands of a 
branch can come from either the ALU/MEM or MEM/WB pipeline latches.

2.  Because the values in a branch comparison are needed during ID but may 
be produced later in time, it is possible that a data hazard can occur and a 
stall will be needed. For example,  if an ALU instruction immediately pre-
ceding a branch produces one of  the operands  for  the comparison  in  the 
branch, a stall will be required, since the EX stage for the ALU instruction 
will occur after the ID cycle of the branch. By extension, if a load is immedi-
ately  followed by a conditional branch that  is on the  load result,  two stall 
cycles will be needed, as the result from the load appears at the end of the 
MEM cycle but is needed at the beginning of ID for the branch.

Despite  these  difficulties,  moving  the  branch  execution  to  the  ID  stage  is  an 
improvement, because it reduces the penalty of a branch to only one instruction if 
the branch is taken, namely, the one currently being fetched. The exercises explore 
the details of implementing the forwarding path and detecting the hazard.

To  flush  instructions  in  the  IF  stage,  we  add  a  control  line,  called  IF.Flush, 
that zeros the instruction field of the IF/ID pipeline register. Clearing the register 
transforms the fetched instruction into a nop, an instruction that has no action 
and changes no state.

Pipelined Branch

Show  what  happens  when  the  branch  is  taken  in  this  instruction  sequence, 
assuming the pipeline is optimized for branches that are not taken and that we 
moved the branch execution to the ID stage:

36 sub $10, $4, $8 
40 beq  $1, $3, 7 # PC-relative branch to 40 + 4 + 7 * 4 = 72 
44 and $12, $2, $5 
48 or  $13, $2, $6 
52 add $14, $4, $2 
56 slt $15, $6, $7 
. . . 
72 lw  $4,  50($7)

Figure 4.62 shows what happens when a branch is taken. Unlike Figure 4.61, 
there is only one pipeline bubble on a taken branch.

EXAMPLE

ANSWER



FIGURE 4.62 The ID stage of clock cycle 3 determines that a branch must be taken, so it selects 72 as the next PC 
address and zeros the instruction fetched for the next clock cycle. Clock cycle 4 shows the instruction at location 72 being 
fetched and the single bubble or nop instruction in the pipeline as a result of the taken branch. (Since the nop is really sll $0, $0, 0, it’s 
arguable whether or not the ID stage in clock 4 should be highlighted.) 
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Dynamic Branch Prediction

Assuming a branch is not taken is one simple form of branch prediction. In that case, 
we predict that branches are untaken, flushing the pipeline when we are wrong. For the 
simple five-stage pipeline, such an approach, possibly coupled with compiler-based 
prediction, is probably adequate. With deeper pipelines, the branch penalty increases 
when measured in clock cycles. Similarly, with multiple issue (see Section 4.10), the 
branch  penalty  increases  in  terms  of  instructions  lost.  This  combination  means 
that in an aggressive pipeline, a simple static prediction scheme will proba bly waste 
too much performance. As we mentioned in Section 4.5, with more hard ware it is 
possible to try to predict branch behavior during program execution.

One approach  is  to  look up  the address of  the  instruction  to  see  if  a branch 
was taken the last time this instruction was executed, and, if so, to begin fetching 
new  instructions  from  the  same  place  as  the  last  time.  This  technique  is  called 
dynamic branch prediction. 

One implementation of that approach is a branch prediction buffer or branch 
history table. A branch prediction buffer is a small memory indexed by the  lower 
por tion of the address of the branch instruction. The memory contains a bit that 
says whether the branch was recently taken or not. 

This is the simplest sort of buffer; we don’t know, in fact, if the pre diction is the 
right one—it may have been put there by an other branch that has the same low-
order address bits. However, this doesn’t affect correctness. Prediction is just a hint 
that we hope is correct, so fetching begins in the predicted direction. If the hint turns 
out to be wrong, the incorrectly predicted instructions are deleted, the prediction bit 
is inverted and stored back, and the proper sequence is fetched and executed. 

This simple 1-bit prediction scheme has a performance short coming: even if a 
branch is almost always taken, we can predict incor rectly twice, rather than once, 
when it is not taken. The following example shows this dilemma.

Loops and Prediction

Consider a loop branch that branches nine times in a row, then is not taken 
once. What is the prediction accuracy for this branch, assuming the predic tion 
bit for this branch remains in the prediction buffer?

The steady-state prediction behavior will mispredict on the first and  last  loop 
iterations. Mispredicting the last  iteration is  inevitable since the prediction bit 
will indicate taken, as the branch has been taken nine times in a row at that point. 
The misprediction on the first  iteration happens because  the bit  is flipped on 
prior execution of the last iteration of the loop, since the branch was not taken on 
that exiting iteration. Thus, the prediction accuracy for this branch that is taken 
90% of the time is only 80% (two incorrect predictions and eight correct ones).

dynamic branch 
prediction  Prediction of 
branches at runtime using 
run  time information.

branch prediction buffer 
Also called branch 
history  table. A small 
memory that is indexed 
by the lower portion of 
the address of the branch 
instruction and that 
contains one or more bits 
indicating whether the 
branch was recently taken 
or not.

EXAMPLE

ANSWER



Ideally, the accuracy of the predictor would match the taken branch  frequency for 
these highly regular branches. To remedy this weakness, 2-bit pre diction schemes 
are often used.  In a 2-bit  scheme, a prediction must be wrong  twice before  it  is 
changed. Figure 4.63 shows the finite-state machine for a 2-bit predic tion scheme.

A branch prediction buffer can be implemented as a small, special buffer accessed 
with the instruction address during the IF pipe stage. If the instruction is predicted 
as taken, fetching begins from the target as soon as the PC is known; as mentioned 
on page 377, it can be as early as the ID stage. Otherwise, sequential fetching and 
executing continue. If the pre diction turns out to be wrong, the pre diction bits are 
changed as shown in Figure 4.63.

FIGURE 4.63 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that 
strongly favors taken or not taken—as many branches do—will be mispredicted only once. The 2 bits are used 
to encode the four states in the system. The 2-bit scheme is a general instance of a counter-based pre dictor, 
which is incremented when the prediction is accurate and decremented otherwise, and uses the mid point of 
its range as the division between taken and not taken. 

Predict taken

Not taken

Not taken

Not taken

Not taken

Taken

Taken

Taken

Taken

Predict not takenPredict not taken

Predict taken

Elaboration: As we described in Section 4.5, in a five-stage pipeline we can make the 
con trol hazard a feature by redefining the branch. A delayed branch always executes the 
following instruction, but the second instruction following the branch will be affected by 
the branch. 

Compilers and assemblers try to place an instruction that always executes after 
the branch in the branch delay slot. The job of the software is to make the successor 
instructions valid and useful. Figure 4.64 shows the three ways in which the branch 
delay slot can be scheduled.

The limitations on delayed branch scheduling arise from (1) the restric tions on the 
instruc tions that are scheduled into the delay slots and (2) our ability to predict at 
compile time whether a branch is likely to be taken or not. 

branch delay slot  The 
slot directly after a delayed 
branch instruction, which 
in the MIPS architecture is 
filled by an instruction that 
does not affect the branch.
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Delayed branching was a simple and effective solution for a five-stage pipeline 
issuing one instruction each clock cycle. As processors go to both longer pipelines 
and issuing multiple instructions per clock cycle (see Section 4.10), the branch delay 
becomes longer, and a single delay slot is insufficient. Hence, delayed branching has 
lost popularity compared to more expensive but more flexible dynamic approaches. 
Simultaneously, the growth in available tran sistors per chip has made dynamic prediction 
relatively cheaper.

Elaboration: A branch predictor tells us whether or not a branch is taken, but still requires 
the calculation of the branch target. In the five-stage pipeline, this calculation takes one 
cycle, meaning that taken branches will have a 1-cycle penalty. Delayed branches are 

FIGURE 4.64 Scheduling the branch delay slot. The top box in each pair shows the code before 
scheduling; the bottom box shows the scheduled code. In (a), the delay slot is scheduled with an indepen dent 
instruction from before the branch. This is the best choice. Strategies (b) and (c) are used when (a) is not 
possible. In the code sequences for (b) and (c), the use of $s1  in the branch condition prevents the add 
instruction (whose des tination is $s1) from being moved into the branch delay slot. In (b) the branch delay 
slot is scheduled from the target of the branch; usually the target instruction will need to be copied because 
it can be reached by another path. Strategy (b) is preferred when the branch is taken with high probability, 
such as a loop branch. Finally, the branch may be scheduled from the not-taken fall-through as in (c). To 
make this optimization legal for (b) or (c), it must be OK to execute the sub instruction when the branch 
goes in the unexpected direction. By “OK” we mean that the work is wasted, but the program will still exe cute 
correctly. This is the case, for example, if $t4 were an unused tempo rary register when the branch goes in 
the unexpected direction. 

add $s1, $s2, $s3

if $s2 = 0 then

Delay slot

if $s2 = 0 then

add $s1, $s2, $s3

Becomes

a.  From before

sub $t4, $t5, $t6

. . .

add $s1, $s2, $s3

if $s1 = 0 then

Delay slot

add $s1, $s2, $s3

if $s1 = 0 then

sub $t4, $t5, $t6

Becomes

b.  From target

add $s1, $s2, $s3

if $s1 = 0 then

Delay slot

add $s1, $s2, $s3

if $s1 = 0 then

sub $t4, $t5, $t6

Becomes

c.  From fall-through

sub $t4, $t5, $t6



one approach to eliminate that penalty. Another approach is to use a cache to hold the 
destination program counter or destination instruction using a branch target buffer.

The 2-bit dynamic prediction scheme uses only information about a particular branch. 
Researchers noticed that using information about both a local branch, and the global 
behavior of recently executed branches together yields greater prediction accuracy for 
the same number of prediction bits. Such predictors are called correlating predictors. 
A typical correlating pre dictor might have two 2-bit predictors for each branch, with the 
choice between predictors made based on whether the last executed branch was taken 
or not taken. Thus, the global branch behav ior can be thought of as adding additional 
index bits for the prediction lookup.

A more recent innovation in branch prediction is the use of tournament predictors.  
A tour nament predictor uses multiple predictors, tracking, for each branch, which pre-
dictor yields the best results. A typical tournament predictor might contain two predic-
tions for each branch index: one based on local information and one based on global 
branch behavior. A selector would choose which predictor to use for any given prediction. 
The selector can operate simi larly to a 1- or 2-bit predictor, favoring whichever of the two 
predictors has been more accurate. Some recent microprocessors use such elaborate 
predictors.

Elaboration: One way to reduce the number of conditional branches is to add 
conditional move instructions. Instead of changing the PC with a conditional branch, the 
instruction condi tionally changes the destination register of the move. If the condition 
fails, the move acts as a nop. For example, one version of the MIPS instruction set 
architecture has two new instructions called movn (move if not zero) and movz (move 
if zero). Thus, movn $8, $11, $4 copies the contents of register 11 into register 8, 
provided that the value in register 4 is nonzero; other wise, it does nothing. 

The ARM instruction set has a condition field in most instructions. Hence, ARM 
programs could have fewer conditional branches than in MIPS programs.

Pipeline Summary

We started in the laundry room, showing principles of pipelining in an everyday 
setting. Using  that analogy as a guide, we explained  instruction pipelining step-
by-step, starting with the single-cycle datapath and then adding pipeline registers, 
forwarding paths, data hazard detection, branch prediction, and flushing instruc-
tions on exceptions. Figure 4.65 shows the final evolved datapath and control. We 
now are ready for yet another control hazard: the sticky issue of exceptions.

Consider three branch prediction schemes: branch not taken, predict taken, and 
dynamic  prediction.  Assume  that  they  all  have  zero  penalty  when  they  predict 
cor rectly  and  two  cycles  when  they  are  wrong. Assume  that  the  average  predict 
accuracy of the dynamic predictor is 90%. Which predictor is the best choice for 
the follow ing branches?

1.  A branch that is taken with 5% frequency

2.  A branch that is taken with 95% frequency

3.  A branch that is taken with 70% frequency

branch target buffer 
A struc ture that caches 
the destina tion PC or 
destination instruction 
for a branch. It is usually 
organized as a cache with 
tags, making it more 
costly than a simple 
prediction buffer.

correlating predictor 
A branch predictor that 
combines local behavior 
of a particular branch 
and global information 
about the behavior of 
some recent number of 
executed branches.

tournament branch  
predictor A branch 
predictor with multiple 
predictions for each 
branch and a selection 
mechanism that chooses 
which predictor to enable 
for a given branch.

Check  
Yourself
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 4.9 Exceptions

Control is the most challenging aspect of processor design: it is both the hardest 
part to get right and the hardest part to make fast. One of the hardest parts of con-
trol  is  implementing exceptions and  interrupts—events other than branches or 
jumps that change the normal flow of  instruction execution. They were  initially 
created  to  handle  unexpected  events  from  within  the  processor,  like  arithmetic 
overflow. The same basic mechanism was extended for I/O devices to communi-
cate with the processor, as we will see in Chapter 6. 

Many  architectures  and  authors  do  not  distinguish  between  interrupts  and 
exceptions, often using the older name interrupt to refer to both types of events. 
For example, the Intel x86 uses interrupt. We follow the MIPS convention, using 

To make a computer 
with automatic 
program- interruption 
facilities behave 
[sequentially] was 
not an easy matter, 
because the number of 
instructions in various 
stages of processing 
when an interrupt 
signal occurs may be 
large.

Fred Brooks, Jr., 
Planning a Computer 
System: Project Stretch, 
1962

FIGURE 4.65 The final datapath and control for this chapter. Note that this is a stylized figure rather than a detailed datapath, so 
it’s miss ing the ALUsrc mux from Figure 4.57 and the multiplexor controls from Figure 4.51. 
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the  term  exception  to  refer  to  any  unexpected  change  in  control  flow  without 
distinguishing whether the cause is internal or external; we use the term interrupt 
only when the event is externally caused. Here are five examples showing whether 
the situation is internally generated by the processor or externally generated:

Type of event From where? MIPS terminology

I/O device request External Interrupt

Invoke the operating system from user program Internal Exception

Arithmetic overflow Internal Exception

Using an undefined instruction Internal Exception

Hardware malfunctions Either Exception or interrupt

Many of the requirements to support exceptions come from the specific situation 
that  causes  an  exception  to  occur.  Accordingly,  we  will  return  to  this  topic  in 
Chapter 5, when we discuss memory hierarchies, and in Chapter 6, when we discuss 
I/O, and we will better understand the motivation for additional capabilities in the 
exception mechanism. In this section, we deal with the control implementa tion for 
detecting two types of exceptions that arise from the portions of the instruction set 
and implementation that we have already discussed. 

Detecting exceptional conditions and taking the appropriate action is often on the 
critical timing path of a processor, which determines the clock cycle time and thus 
performance. Without proper attention to exceptions during design of the control 
unit, attempts to add exceptions to a complicated implementation can significantly 
reduce performance, as well as complicate the task of getting the design correct.

How Exceptions Are Handled in the MIPS Architecture

The  two  types  of  exceptions  that  our  current  implementation  can  generate  are 
execution of an undefined instruction and an arithmetic overflow. We’ll use arith-
metic overflow  in  the  instruction add $1, $2, $1  as  the example exception  in 
the  next  few  pages.  The  basic  action  that  the  processor  must  perform  when  an 
exception occurs is to save the address of the offending instruction in the excep tion 
program counter (EPC) and then transfer control to the operating system at some 
specified address. 

The operating system can then take the appropriate action, which may involve 
providing  some  service  to  the  user  program,  taking  some  predefined  action  in 
response to an overflow, or stopping the execution of the program and reporting 
an error. After performing whatever action is required because of the exception, the 
operating system can terminate the program or may con tinue its execution, using 
the EPC to determine where to restart the execution of the program. In Chapter 5, 
we will look more closely at the issue of restart ing the execution. 

For the operating system to handle the exception, it must know the reason for 
the exception,  in addition  to  the  instruction  that  caused  it. There are  two main 

exception  Also 
called inter rupt. An 
unscheduled event 
that disrupts program 
execution; used to detect 
overflow.

interrupt  An exception 
that comes from outside 
of the processor. (Some 
architec tures use the 
term interrupt for all 
exceptions.)
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methods  used  to  communicate  the  reason  for  an  exception.  The  method  used 
in the MIPS architecture is to include a status register (called the Cause register), 
which holds a field that indicates the reason for the exception. 

A  second  method,  is  to  use  vectored interrupts.  In  a  vectored  interrupt,  the 
address to which control is transferred is determined by the cause of the exception. 
For  example,  to  accommodate  the  two  exception  types  listed  above,  we  might 
define the following two exception vector addresses:

Exception type Exception vector address (in hex)

Undefined instruction 8000 0000hex

Arithmetic overflow 8000 0180hex

The operating system knows the reason for the exception by the address at which 
it is initiated. The addresses are separated by 32 bytes or eight instructions, and the 
operating system must record the reason for the exception and may perform some 
limited processing in this sequence. When the exception is not vectored, a single 
entry point for all exceptions can be used, and the operating system decodes the 
status register to find the cause.

We can perform the processing required for exceptions by adding a few extra 
registers and control signals to our basic implementation and by slightly extend-
ing control. Let’s assume that we are implementing the exception system used in 
the MIPS architecture, with the single entry point being the address 8000 0180hex. 
(Implementing vectored exceptions is no more difficult.) We will need to add two 
additional registers to the MIPS implementation:

■■ EPC:  A 32-bit register used to hold the address of the affected instruction. 
(Such a register is needed even when exceptions are vectored.)

■■ Cause:  A  register  used  to  record  the  cause  of  the  exception.  In  the  MIPS 
architecture, this register is 32 bits, although some bits are currently unused. 
Assume  there  is  a  five-bit  field  that  encodes  the  two  possible  exception 
sources mentioned above, with 10 representing an undefined instruction and 
12 representing arithmetic overflow.

Exceptions in a Pipelined Implementation
A pipelined implementation treats exceptions as another form of control haz ard. 
For example, suppose there is an arithmetic overflow in an add instruction. Just as 
we did for the taken branch in the previous section, we must flush the instructions 
that follow the add instruction from the pipeline and begin fetching instructions 
from the new address. We will use the same mechanism we used for taken branches, 
but this time the exception causes the deasserting of control lines.

When  we  dealt  with  branch  mispredict,  we  saw  how  to  flush  the  instruction 
in the IF stage by turning it into a nop. To flush instructions in the ID stage, we 
use  the  multiplexor  already  in  the  ID  stage  that  zeros  control  signals  for  stalls.  

vectored interrupt  An 
inter rupt for which 
the address to which 
control is transferred is 
determined by the cause 
of the exception.



A new control signal, called ID.Flush, is ORed with the stall signal from the hazard 
detec tion unit to flush during ID. To flush the instruction in the EX phase, we use 
a new signal called EX.Flush to cause new multiplexors to zero the control lines. To 
start fetching instructions from  location 8000 0180hex, which is the MIPS exception 
address, we simply add an additional input to the PC multiplexor that sends 8000 
0180hex to the PC. Figure 4.66 shows these changes.

This example points out a problem with exceptions: if we do not stop execu tion 
in the middle of the instruction, the programmer will not be able to see the original 
value of register $1 that helped cause the overflow because it will be clobbered as 
the Destination register of  the add  instruction. Because of careful plan ning,  the 
overflow exception is detected during the EX stage; hence, we can use the EX.Flush 
signal to prevent the instruction in the EX stage from writing its result in the WB 
stage. Many exceptions  require  that we eventually  complete  the  instruc tion  that 
caused the exception as if it executed normally. The easiest way to do this is to flush 
the instruction and restart it from the beginning after the exception is handled.

FIGURE 4.66 The datapath with controls to handle exceptions. The key additions include a new input with the value 8000 0180hex 
in the multiplexor that supplies the new PC value; a Cause register to record the cause of the exception; and an Exception PC register to save 
the address of the instruction that caused the exception. The 8000 0180hex  input to the multiplexor is the initial address to begin fetching 
instructions in the event of an exception. Although not shown, the ALU overflow signal is an input to the control unit. 
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The final step is to save the address of the offending instruction in the excep tion 
program counter (EPC). In reality, we save the address + 4, so the exception handling 
routine must first subtract 4 from the saved value. Figure 4.66 shows a stylized version 
of the datapath, including the branch hardware and necessary accommodations to 
handle exceptions.

Exception in a Pipelined Computer

Given this instruction sequence,

40hex sub  $11, $2, $4
44hex and  $12, $2, $5
48hex or  $13, $2, $6
4Chex add  $1, $2, $1
50hex slt $15, $6, $7
54hex lw $16, 50($7)
. . .

assume the instructions to be invoked on an exception begin like this:

80000180hex sw $26, 1000($0)
80000184hex sw $27, 1004($0)
. . .

Show what happens in the pipeline if an overflow exception occurs in the add 
instruction.

Figure 4.67 shows the events, starting with the add instruction in the EX stage. 
The overflow is detected during that phase, and 8000 0180hex is forced into the 
PC. Clock cycle 7 shows that the add and following instructions are flushed, 
and the first instruction of the exception code is fetched. Note that the address 
of the instruction following the add is saved: 4Chex + 4 = 50hex.

We mentioned five examples of exceptions on page 385, and we will see others 
in Chapters 5 and 6. With five instructions active in any clock cycle, the challenge 
is to associate an exception with the appropriate instruction. Moreover, multiple 
exceptions  can  occur  simultaneously  in  a  single  clock  cycle.  The  solution  is  to 
prioritize the exceptions so that it is easy to determine which is serviced first. In 
most  MIPS  implementations,  the  hardware  sorts  exceptions  so  that  the  earliest 
instruction is interrupted.

I/O device requests and hardware malfunctions are not associated with a specific 
instruction, so the implementation has some flexibility as to when to interrupt the 
pipeline. Hence, the mechanism used for other exceptions works just fine.

EXAMPLE

ANSWER



FIGURE 4.67 The result of an exception due to arithmetic overflow in the add instruction. The overflow is detected during 
the EX stage of clock 6, saving the address following the add in the EPC register (4C + 4 = 50hex). Overflow causes all the Flush signals to be 
set near the end of this clock cycle, deasserting control values (setting them to 0) for the add. Clock cycle 7 shows the instructions converted 
to bubbles in the pipeline plus the fetching of the first instruction of the exception routine—sw $25,1000($0)—from instruction location 
8000 0180hex. Note that the AND and OR instructions, which are prior to the add, still complete. Although not shown, the ALU overflow signal 
is an input to the control unit. 
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390 Chapter 4 The Processor

The  EPC  captures  the  address  of  the  interrupted  instructions,  and  the  MIPS 
Cause  register  records  all  possible  exceptions  in  a  clock  cycle,  so  the  exception 
software must match the exception to the instruction. An important clue is know-
ing in which pipeline stage a type of exception can occur. For example, an unde-
fined instruction is discovered in the ID stage, and invoking the operating system 
occurs in the EX stage. Exceptions are collected in the Cause register in a pending 
exception field so that the hardware can interrupt based on later exceptions, once 
the earliest one has been serviced.

The hardware and the operating system must work in conjunction so that excep tions 
behave as you would expect. The hardware contract is normally to stop the offending 
instruction  in  midstream,  let  all  prior  instructions  complete,  flush  all  following 
instructions, set a register  to show the cause of  the exception, save the address of 
the offending instruction, and then jump to a prearranged address. The operating 
system contract is to look at the cause of the exception and act appro priately. For 
an  undefined  instruction,  hardware  failure,  or  arithmetic  overflow  exception,  the 
operating system normally kills the program and returns an indica tor of the reason. 
For an I/O device request or an operating system service call, the operating system 
saves the state of the program, performs the desired task, and, at some point in the 
future, restores the program to continue execution. In the case of I/O device requests, 
we may often choose to run another task before resuming the task that requested 
the I/O, since that task may often not be able to proceed until the I/O is complete. 
This is why the ability to save and restore the state of any task is critical. One of the 
most  important and  frequent uses of exceptions  is han dling page  faults and TLB 
exceptions; Chapter 5 describes these exceptions and their handling in more detail.

Elaboration: The difficulty of always associating the correct exception with the correct 
instruction in pipelined computers has led some computer designers to relax this 
requirement in noncritical cases. Such processors are said to have imprecise interrupts 
or imprecise excep tions. In the example above, PC would normally have 58hex at the 
start of the clock cycle after the exception is detected, even though the offending 
instruction is at address 4Chex. A processor with imprecise exceptions might put 58hex 
into EPC and leave it up to the operating system to determine which instruction caused 
the problem. MIPS and the vast majority of computers today support precise interrupts 
or precise exceptions. (One reason is to support virtual memory, which we shall see in 
Chapter 5.)

Elaboration: Although MIPS uses the exception entry address 8000 0180hex for 
almost all exceptions, it uses the address 8000 0000hex to improve performance of the 
exception handler for TLB-miss exceptions (see Chapter 5).

Hardware/ 
Software 
Interface

imprecise interrupt 
Also called imprecise 
exception.  Interrupts or 
exceptions in pipe lined 
computers that are not 
associated with the exact 
instruction that was the 
cause of the interrupt or 
exception.

precise interrupt  Also 
called precise exception. 
An interrupt or exception 
that is always associated 
with the correct 
instruc ion in pipelined 
 computers.



Which exception should be recognized first in this sequence?

1.  add $1, $2, $1   # arithmetic overflow

2.  XXX $1, $2, $1   # undefined instruction

3.  sub $1, $2, $1  # hardware error

 4.10  
Parallelism and Advanced Instruction-
Level Parallelism

Be  forewarned:  this  section  is  a  brief  overview  of  fascinating  but  advanced 
topics. If you want to learn more details, you should consult our more advanced 
book, Computer Architecture: A Quantitative Approach,  fourth edition, where the 
material covered in the next 13 pages is expanded to almost 200 pages (including 
Appendices)!

Pipelining exploits the potential parallelism among instructions. This parallelism 
is  called  instruction-level parallelism (ILP).  There  are  two  primary  methods 
for  increasing  the  potential  amount  of  instruction-level  parallelism.  The  first  is 
increasing the depth of the pipeline to overlap more instructions. Using our laundry 
analogy and assuming that the washer cycle was longer than the others were, we 
could divide our washer into three machines that perform the wash, rinse, and spin 
steps of a traditional washer. We would then move from a four-stage to a six-stage 
pipeline. To get the full speed-up, we need to rebalance the remaining steps so they 
are the same length, in processors or in laundry. The amount of parallelism being 
exploited is higher, since there are more operations being overlapped. Performance 
is potentially greater since the clock cycle can be shorter. 

Another approach is to replicate the internal components of the computer so 
that it can launch multiple instructions in every pipeline stage. The general name 
for this technique is multiple issue. A multiple-issue  laundry would replace our 
household washer and dryer with, say, three washers and three dryers. You would 
also have to recruit more assistants to fold and put away three times as much laun-
dry in the same amount of time. The downside is the extra work to keep all the 
machines busy and transferring the loads to the next pipeline stage.

Launching  multiple  instructions  per  stage  allows  the  instruction  execution 
rate  to exceed  the clock rate or,  stated alternatively,  the CPI  to be  less  than 1.  It 
is sometimes useful to flip the metric and use IPC, or instructions per clock cycle. 
Hence, a 4 GHz four-way multiple-issue microprocessor can execute a peak rate 
of 16 billion instructions per second and have a best-case CPI of 0.25, or an IPC 
of 4. Assuming a five-stage pipeline, such a processor would have 20 instructions 
in execution at any given time. Today’s high-end microprocessors attempt to issue 
from  three  to  six  instructions  in  every  clock  cycle.  There  are  typically,  however, 
many constraints on what types of instructions may be executed simultaneously 
and what happens when dependences arise.

Check  
Yourself

instruction-level 
parallelism  The 
parallelism among 
instructions.

multiple issue 
A scheme whereby 
multiple instructions are 
launched in one clock 
cycle.
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There  are  two  major  ways  to  implement  a  multiple-issue  processor,  with  the 
major difference being the division of work between the compiler and the hard ware. 
Because the division of work dictates whether decisions are being made stat ically 
(that is, at compile time) or dynamically (that is, during execution), the approaches 
are sometimes called static multiple issue and dynamic multiple issue. As we will 
see, both approaches have other, more commonly used names, which may be less 
precise or more restrictive. 

There are two primary and distinct responsibilities that must be dealt with in a 
multiple-issue pipeline:

1.  Packaging instructions into issue slots: how does the processor determine 
how  many  instructions  and  which  instructions  can  be  issued  in  a  given 
clock cycle? In most static issue processors, this process is at least partially 
handled by the compiler; in dynamic issue designs, it is normally dealt with 
at runtime by the processor, although the compiler will often have already 
tried to help improve the issue rate by placing the instructions in a benefi cial 
order. 

2.  Dealing with data and control hazards:  in static  issue processors,  some or 
all of the consequences of data and control hazards are handled statically by 
the compiler. In contrast, most dynamic issue processors attempt to allevi-
ate at least some classes of hazards using hardware techniques operating at 
execution time.

Although we describe these as distinct approaches, in reality techniques from one 
approach are often borrowed by the other, and neither approach can claim to be 
perfectly pure.

The Concept of Speculation

One  of  the  most  important  methods  for  finding  and  exploiting  more  ILP  is 
speculation. Speculation is an approach that allows the compiler or the processor 
to “guess” about the properties of an instruction, so as to enable execution to begin 
for other instructions that may depend on the speculated instruction. For example, 
we  might  speculate  on  the  outcome  of  a  branch,  so  that  instructions  after  the 
branch could be executed earlier. Another example is that we might speculate that 
a store that precedes a load does not refer to the same address, which would allow 
the load to be executed before the store. The difficulty with speculation is that it 
may  be  wrong.  So,  any  speculation  mechanism  must  include  both  a  method  to 
check if the guess was right and a method to unroll or back out the effects of the 
instructions that were executed speculatively. The implementation of this back-out 
capability adds complexity.

Speculation may be done in the compiler or by the hardware. For example, the 
compiler can use speculation to reorder instructions, moving an instruction across 

static multiple issue 
An approach to 
implementing a multiple-
issue processor where 
many decisions are made 
by the compiler before 
execution.

dynamic multiple 
issue  An approach to 
implementing a multiple-
issue processor where 
many decisions are made 
during execution by the 
processor.

issue slots  The positions 
from which instructions 
could issue in a given 
clock cycle; by analogy, 
these correspond to 
positions at the starting 
blocks for a sprint.

speculation  An 
approach whereby the 
compiler or proces sor 
guesses the outcome of an 
instruction to remove it as 
a dependence in executing 
other instructions.



a branch or a load across a store. The processor hardware can perform the same 
transformation at runtime using techniques we discuss later in this section.

The recovery mechanisms used for incorrect speculation are rather different. In 
the case of speculation in software, the compiler usually inserts additional instruc-
tions that check the accuracy of the speculation and provide a fix-up routine to use 
when the speculation is incorrect. In hardware speculation, the processor usu ally 
buffers the speculative results until it knows they are no longer speculative. If the 
speculation is correct, the instructions are completed by allowing the contents of 
the buffers to be written to the registers or memory. If the speculation is incor rect, 
the hardware flushes the buffers and re-executes the correct instruction sequence. 

Speculation  introduces  one  other  possible  problem:  speculating  on  certain 
instructions may introduce exceptions that were formerly not present. For exam-
ple, suppose a load instruction is moved in a speculative manner, but the address 
it uses is not legal when the speculation is incorrect. The result would be that an 
exception that should not have occurred will occur. The problem is complicated by 
the fact that if the load instruction were not speculative, then the exception must 
occur! In compiler-based speculation, such problems are avoided by adding spe-
cial speculation support that allows such exceptions to be ignored until it is clear 
that they really should occur. In hardware-based speculation, exceptions are simply 
buffered until it is clear that the instruction causing them is no longer speculative 
and is ready to complete; at that point the exception is raised, and nor mal excep-
tion handling proceeds.

Since speculation can improve performance when done properly and decrease 
performance  when  done  carelessly,  significant  effort  goes  into  deciding  when  it 
is appropriate to speculate. Later in this section, we will examine both static and 
dynamic techniques for speculation.

Static Multiple Issue
Static multiple-issue processors all use the compiler to assist with packaging instruc-
tions and handling hazards. In a static issue processor, you can think of the set of 
instructions issued in a given clock cycle, which is called an issue packet, as one 
large instruction with multiple operations. This view is more than an analogy. Since 
a static multiple-issue processor usually restricts what mix of instruc tions can be 
initiated in a given clock cycle, it is useful to think of the issue packet as a single 
instruction allowing several operations in certain predefined fields. This view led to 
the original name for this approach: Very Long Instruction Word (VLIW). 

Most static issue processors also rely on the compiler to take on some respon-
sibility for handling data and control hazards. The compiler’s responsibilities may 
include  static  branch  prediction  and  code  scheduling  to  reduce  or  prevent  all 
hazards. Let’s look at a simple static issue version of a MIPS processor, before we 
describe the use of these techniques in more aggressive processors. 

issue packet  The set of 
instruc tions that issues 
together in one clock 
cycle; the packet may be 
determined statically by 
the compiler or dynami-
cally by the processor.

Very Long Instruction 
Word (VLIW)  A style 
of instruction set archi-
tecture that launches 
many operations that are 
defined to be independent 
in a single wide instruc-
tion, typi cally with many 
separate opcode fields.
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An Example: Static Multiple Issue with the MIPS ISA
To give a flavor of static multiple issue, we consider a simple two-issue MIPS pro-
cessor, where one of the instructions can be an integer ALU opera tion or branch 
and  the  other  can  be  a  load  or  store.  Such  a  design  is  like  that  used  in  some 
embedded MIPS processors. Issuing two instructions per cycle will require fetch-
ing and decoding 64 bits of instructions. In many static multiple-issue processors, 
and essentially all VLIW processors, the layout of simultaneously issuing instruc-
tions  is restricted to simplify  the decoding and  instruction  issue. Hence, we will 
require that the instruc tions be paired and aligned on a 64-bit boundary, with the 
ALU or branch portion appearing first. Furthermore, if one instruction of the pair 
cannot be used, we require that it be replaced with a nop. Thus, the instructions 
always issue in pairs, possibly with a nop in one slot. Figure 4.68 shows how the 
instructions look as they go into the pipeline in pairs.

Instruction type Pipe stages

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

FIGURE 4.68 Static two-issue pipeline in operation. The ALU  and  data  transfer  instructions 
are is sued at the same time. Here we have assumed the same five-stage structure as used for the single-issue 
pipeline. Although this is not strictly necessary, it does have some advantages. In particular, keeping the reg-
ister writes at the end of the pipeline simplifies the handling of exceptions and the maintenance of a precise 
exception model, which become more difficult in multiple-issue processors. 

Static multiple-issue processors vary in how they deal with potential data and 
control hazards. In some designs, the compiler takes full responsibility for remov-
ing all hazards, scheduling the code and inserting no-ops so that the code executes 
without  any  need  for  hazard  detection  or  hardware-generated  stalls.  In  others, 
the hardware detects data hazards and generates stalls between two issue packets, 
while requiring that the compiler avoid all dependences within an instruction pair. 
Even so, a hazard generally forces the entire issue packet containing the dependent 
instruction to stall. Whether the software must handle all hazards or only try to 
reduce the fraction of hazards between separate issue packets, the appearance of 
having a  large  single  instruction with multiple operations  is  rein forced. We will 
assume the second approach for this example.

To  issue  an  ALU  and  a  data  transfer  operation  in  parallel,  the  first  need  for 
additional hardware—beyond the usual hazard detection and stall logic—is extra 
ports in the register file (see Figure 4.69). In one clock cycle we may need to read 



two registers for the ALU operation and two more for a store, and also one write 
port  for an ALU operation and one write port  for a  load. Since  the ALU is  tied 
up for the ALU operation, we also need a separate adder to calculate the effective 
address  for data  transfers. Without  these extra  resources, our  two-issue pipeline 
would be hindered by structural hazards.

Clearly,  this  two-issue  processor  can  improve  performance  by  up  to  a  factor 
of 2. Doing so, however,  requires  that  twice as many  instructions be overlapped 
in  execution,  and  this  additional overlap  increases  the  relative performance  loss 
from  data  and  control  hazards.  For  example,  in  our  simple  five-stage  pipeline, 
loads have a use la tency of one clock cycle, which prevents one instruction from 
using the result without stalling. In the two-issue, five-stage pipeline the result of 
a load instruction cannot be used on the next clock cycle. This means that the next 
two  instruc tions  cannot  use  the  load  result  without  stalling.  Furthermore, ALU 
instructions that had no use latency in the simple five-stage pipeline now have a 

use latency  Number of 
clock cycles between a 
load instruc tion and an 
instruction that can use 
the result of the load with-
out stalling the pipeline.

FIGURE 4.69 A static two-issue datapath. The additions needed for double issue are highlighted: another 32 bits from instruction 
memory,  two  more  read  ports  and  one  more  write  port  on  the  register  file,  and  another ALU. Assume  the  bottom ALU  handles  address 
calculations for data transfers and the top ALU handles everything else. 
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one-instruction use latency, since the results cannot be used in the paired load or 
store. To effectively exploit the parallelism available in a multiple-issue processor, 
more ambitious compiler or hardware scheduling techniques are needed, and static 
multiple issue requires that the compiler take on this role.

Simple Multiple-Issue Code Scheduling

How would this loop be scheduled on a static two-issue pipe line for MIPS?

Loop: lw  $t0, 0($s1)  # $t0=array element
 addu  $t0,$t0,$s2# add scalar in $s2
 sw  $t0, 0($s1)# store result
 addi  $s1,$s1,–4# decrement pointer 
 bne  $s1,$zero,Loop# branch $s1!=0

Reorder the instructions to avoid as many pipeline stalls as possible. Assume 
branches are predicted, so that control hazards are handled by the hardware. 

The  first  three  instructions  have  data  dependences,  and  so  do  the  last  two. 
Figure  4.70  shows  the  best  schedule  for  these  instructions.  Notice  that  just 
one pair of instructions has both issue slots used. It takes four clocks per loop 
iteration; at four clocks to execute five instructions, we get the disappointing 
CPI of 0.8 versus  the best  case of 0.5., or  an  IPC of 1.25 versus 2.0. Notice 
that in computing CPI or IPC, we do not count any nops executed as useful 
instructions. Doing so would improve CPI, but not performance!

ALU or branch instruction Data transfer instruction Clock cycle

Loop: lw $t0, 0($s1) 1

addi $s1,$s1,–4 2

addu $t0,$t0,$s2 3

bne $s1,$zero,Loop sw $t0, 4($s1) 4

FIGURE 4.70 The scheduled code as it would look on a two-issue MIPS pipeline. The empty 
slots are nops. 

EXAMPLE

ANSWER



An important compiler technique to get more performance from loops is loop 
unrolling, where multiple copies of the loop body are made. After unrolling, there 
is more ILP available by overlapping instructions from different iterations. 

Loop Unrolling for Multiple-Issue Pipelines

See how well loop unrolling and scheduling work in the example above. For 
simplicity assume that the loop index is a multiple of four.

To schedule  the  loop without any delays,  it  turns out  that we need to make 
four copies of the loop body. After unrolling and eliminating the unnecessary 
loop overhead instructions, the loop will contain four copies each of lw, add, 
and sw,  plus  one  addi  and  one  bne.  Figure 4.71  shows  the  unrolled  and 
scheduled code.

During the unrolling process, the compiler introduced additional registers 
($t1, $t2, $t3). The goal of this process, called register renaming, is to elim-
inate dependences that are not true data dependences, but could either lead to 
potential hazards or prevent the compiler from flexibly scheduling the code. 
Consider how the unrolled code would look using only $t0. There would be 
repeated instances of lw $t0,0($$s1), addu $t0,$t0,$s2 followed by sw 
t0,4($s1), but these sequences, despite using $t0, are actually completely 
independent—no data values flow between one pair of these instructions and 
the next pair. This is what is called an antidependence or name dependence, 
which is an ordering forced purely by the reuse of a name, rather than a real 
data dependence which is also called a true dependence.

Renaming the registers during the unrolling process allows the compiler to 
move these independent instructions subsequently so as to better schedule the 
code. The renaming process eliminates the name dependences, while preserv-
ing the true dependences.

Notice now that 12 of  the 14  instructions  in  the  loop execute as pairs.  It 
takes 8 clocks  for 4  loop  iterations, or 2  clocks per  iteration, which yields a 
CPI  of  8/14 =  0.57.  Loop  unrolling  and  scheduling  with  dual  issue  gave  us 
an  improvement  factor  of  almost  2,  partly  from  reducing  the  loop  control 
instructions and partly from dual issue execution. The cost of this performance 
improve ment  is using  four  temporary registers rather  than one, as well as a 
significant increase in code size.

Dynamic Multiple-Issue Processors

Dynamic multiple-issue processors are also known as superscalar processors, or 
simply  superscalars.  In  the  simplest  superscalar  processors,  instructions  issue  in 
order, and the processor decides whether zero, one, or more instructions can issue 

loop unrolling 
A technique to get more 
performance from loops 
that access arrays, in 
which multiple  copies of 
the loop body are made 
and instruc tions from 
different iterations are 
scheduled together.

EXAMPLE

ANSWER

register renaming  The 
renam ing of registers 
by the compiler or 
hardware to remove 
antide pendences.

antidependence  Also 
called name dependence. 
An order ing forced by the 
reuse of a name, typically 
a register, rather than by 
a true dependence that 
carries a value between 
two instructions.

superscalar  An advanced 
pipe lining technique that 
enables the processor to 
execute more than one 
instruction per clock cycle 
by selecting them during 
execu tion.
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in a given clock cycle. Obviously, achieving good performance on such a processor 
still  requires  the  compiler  to  try  to  schedule  instructions  to  move  dependences 
apart  and  thereby  improve  the  instruction  issue  rate.  Even  with  such  compiler 
scheduling, there is an important difference between this simple superscalar and 
a VLIW processor: the code, whether scheduled or not, is guaranteed by the hard-
ware  to execute correctly. Furthermore,  compiled code will  always  run correctly 
independent of the issue rate or pipeline structure of the processor. In some VLIW 
designs, this has not been the case, and recompilation was required when moving 
across different processor models; in other static issue processors, code would run 
correctly across different implementations, but often so poorly as to make compi-
lation effectively required. 

Many  superscalars  extend  the basic  framework of dynamic  issue decisions  to 
include  dynamic pipeline scheduling.  Dynamic  pipeline  scheduling  chooses 
which instructions to execute in a given clock cycle while trying to avoid hazards 
and stalls. Let’s start with a simple example of avoiding a data hazard. Consider the 
following code sequence:

lw $t0, 20($s2)
addu $t1, $t0, $t2
sub $s4, $s4, $t3 
slti $t5, $s4, 20

Even though the sub instruction is ready to execute, it must wait for the lw and 
addu  to  complete  first,  which  might  take  many  clock  cycles  if  memory  is  slow. 
(Chapter 5 explains cache misses, the reason that memory accesses are sometimes 
very slow.) Dynamic pipeline scheduling allows such hazards to be avoided either 
fully or partially.

dynamic pipeline 
scheduling  Hardware 
support for reordering 
the order of instruction 
execution so as to avoid 
stalls.

ALU or branch instruction Data transfer instruction Clock cycle

Loop: addi $s1,$s1,–16 lw $t0, 0($s1) 1

lw $t1,12($s1) 2

addu $t0,$t0,$s2 lw $t2, 8($s1) 3

addu $t1,$t1,$s2 lw $t3, 4($s1) 4

addu $t2,$t2,$s2 sw $t0, 16($s1) 5

addu $t3,$t3,$s2 sw $t1,12($s1) 6

sw $t2, 8($s1) 7

bne $s1,$zero,Loop sw $t3, 4($s1) 8

FIGURE 4.71 The unrolled and scheduled code of Figure 4.70 as it would look on a static 
two-issue MIPS pipeline. The empty slots are nops. Since the first instruction in the loop decrements $s1 
by 16, the addresses loaded are the original value of $s1, then that address minus 4, minus 8, and minus 12. 



Dynamic Pipeline Scheduling
Dynamic pipeline scheduling chooses which instructions to execute next, possibly 
reordering  them  to  avoid  stalls.  In  such  processors,  the  pipeline  is  divided  into 
three major units:  an  instruction  fetch and  issue unit, multiple  functional units 
(a dozen or more in high-end designs in 2008), and a commit unit. Figure 4.72 
shows the model. The first unit fetches instructions, decodes them, and sends each 
instruction  to  a  corresponding  functional  unit  for  execution.  Each  functional 
unit  has  buffers,  called  reservation stations,  which  hold  the  operands  and  the 
operation. (In the next section, we will discuss an alternative to reservation stations 
used by many recent processors.) As soon as the buffer contains all  its operands 
and the functional unit is ready to execute, the result is calculated. When the result 
is completed, it is sent to any reservation stations waiting for this particular result 
as well as  to  the commit unit, which buffers  the result until  it  is  safe  to put  the 
result into the register file or, for a store, into memory. The buffer in the commit 
unit, often called the reorder buffer, is also used to supply operands, in much the 
same way as forwarding logic does in a statically scheduled pipeline. Once a result 
is committed to the register file, it can be fetched directly from there, just as in a 
normal pipeline.

commit unit  The unit 
in a dynamic or out- 
of-order  execution 
pipeline that decides 
when it is safe to  release 
the result of an operation 
to  programmer- visible 
registers and memory.

reservation station 
A buffer within a 
functional unit that holds 
the operands and the 
operation.

reorder buffer  The 
buffer that holds results in 
a dynamically scheduled 
processor until it is safe 
to store the results to 
memory or a register.

FIGURE 4.72 The three primary units of a dynamically scheduled pipeline. The final step of 
updating the state is also called retirement or graduation. 
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The combination of buffering operands in the reservation stations and results 
in the reorder buffer provides a form of register renaming, just like that used by 
the compiler in our earlier loop-unrolling example on page 397. To see how this 
conceptually works, consider the following steps:

1.  When  an  instruction  issues,  it  is  copied  to  a  reservation  station  for  the 
appropriate functional unit. Any operands that are available in the register 
file or reorder buffer are also immediately copied into the reservation sta-
tion. The instruction is buffered in the reservation station until all the oper-
ands and the functional unit are available. For the issuing instruction, the 
register  copy  of  the  operand  is  no  longer  required,  and  if  a  write  to  that 
reg ister occurred, the value could be overwritten.

2.  If an operand is not in the register file or reorder buffer, it must be waiting to 
be produced by a functional unit. The name of the functional unit that will 
produce the result is tracked. When that unit eventually produces the result, 
it is copied directly into the waiting reservation station from the functional 
unit bypassing the registers. 

These steps effectively use the reorder buffer and the reservation stations to imple-
ment register renaming.     

Conceptually, you can think of a dynamically scheduled pipeline as analyzing 
the data flow structure of a program. The processor then executes the instructions 
in  some  order  that  preserves  the  data  flow  order  of  the  program.  This  style  of 
execution  is  called  an  out-of-order execution,  since  the  instructions  can  be 
executed in a different order than they were fetched.

To make programs behave as if they were running on a simple in-order pipe line, 
the  instruction  fetch  and  decode  unit  is  required  to  issue  instructions  in  order, 
which allows dependences to be tracked, and the commit unit is required to write 
results to registers and memory in  program fetch order. This conservative mode is 
called in-order commit. Hence, if an exception occurs, the computer can point to 
the last instruction executed, and the only registers updated will be those written 
by instructions before the instruction causing the exception. Although, the front 
end  (fetch  and  issue)  and  the  back  end  (commit)  of  the  pipeline  run  in  order, 
the functional units are free to initiate execution whenever the data they need is 
available. Today, all dynamically scheduled pipelines use in-order commit. 

Dynamic  scheduling  is  often  extended  by  including  hardware-based  specula-
tion,  especially  for  branch  outcomes.  By  predicting  the  direction  of  a  branch,  a 
dynamically  scheduled processor can continue  to  fetch and execute  instructions 
along the predicted path. Because the instructions are committed in order, we know 
whether or not the branch was correctly predicted before any instructions from the 
predicted path are committed. A speculative, dynamically scheduled pipeline can 
also  support  speculation  on  load  addresses,  allowing  load-store  reor dering,  and 
using the commit unit to avoid incorrect speculation. In the next sec tion, we will 
look at the use of dynamic scheduling with speculation in the AMD Opteron X4 
(Barcelona) design.

out-of-order execution 
A sit uation in pipelined 
execution when an instruc-
tion blocked from executing 
does not cause the follow-
ing instructions to wait.

in-order commit 
A commit in which 
the results of pipelined 
execution are written to 
the  programmer- visible 
state in the same order 
that instructions are 
fetched.



Given that compilers can also schedule code around data dependences, you might 
ask why a  superscalar processor would use dynamic scheduling. There are  three 
major reasons. First, not all stalls are predictable. In particular, cache misses (see 
Chapter 5) cause unpredictable stalls. Dynamic scheduling allows the processor to 
hide some of those stalls by continuing to execute instructions while waiting for 
the stall to end.

Second, if the processor speculates on branch outcomes using dynamic branch 
prediction, it cannot know the exact order of instructions at compile time, since 
it  depends  on  the  predicted  and  actual  behavior  of  branches.  Incorporating 
dynamic speculation to exploit more  instruction-level parallelism (ILP) without 
incorporating  dynamic  scheduling  would  significantly  restrict  the  benefits  of 
speculation.

Third, as the pipeline latency and issue width change from one implementation 
to another, the best way to compile a code sequence also changes. For example, how 
to schedule a sequence of dependent instructions is affected by both issue width 
and latency. The pipeline structure affects both the number of times a loop must be 
unrolled to avoid stalls as well as the process of compiler-based register renaming. 
Dynamic scheduling allows the hardware to hide most of these details. Thus, users 
and software distributors do not need to worry about having multiple versions of 
a program for different implementations of the same instruction set. Similarly, old 
legacy code will get much of the benefit of a new implementation without the need 
for recompilation.

Both  pipelining  and  multiple-issue  execution  increase  peak  instruction 
throughput  and  attempt  to  exploit  instruction-level  parallelism  (ILP). 
Data and control dependences in programs, however, offer an upper limit 
on sustained performance because the processor must sometimes wait for 
a dependence  to be  resolved. Software-centric  approaches  to  exploit ing 
ILP rely on the ability of  the compiler  to find and reduce the effects of 
such dependences, while hardware-centric approaches rely on extensions 
to  the  pipeline  and  issue  mechanisms.  Speculation,  performed  by  the 
compiler  or  the  hardware,  can  increase  the  amount  of  ILP  that  can  be 
exploited,  although  care  must  be  taken  since  speculating  incorrectly  is 
likely to reduce performance.

Understanding 
Program 
Performance

The BIG 
Picture
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Modern,  high-performance  microprocessors  are  capable  of  issuing  several 
instructions per clock; unfortunately, sustaining that issue rate is very difficult. For 
example, despite the existence of processors with four to six issues per clock, very 
few applications can sustain more than two instructions per clock. There are two 
primary reasons for this. 

First, within the pipeline, the major performance bottlenecks arise from depen-
dences  that  cannot  be  alleviated,  thus  reducing  the  parallelism  among  instruc-
tions  and  the  sustained  issue  rate.  Although  little  can  be  done  about  true  data 
 dependences, often the compiler or hardware does not know precisely whether a 
dependence exists or not, and so must conservatively assume the dependence exists. 
For example, code that makes use of pointers, particularly in ways that may lead to 
aliasing, will lead to more implied potential dependences. In contrast, the greater 
regularity of array accesses often allows a compiler to deduce that no dependences 
exist. Similarly, branches that cannot be accurately predicted whether at runtime 
or compile time will limit the ability to exploit ILP. Often, additional ILP is avail-
able, but the ability of the compiler or the hardware to find ILP that may be widely 
 separated (sometimes by the execution of thousands of instructions) is limited.

Second,  losses  in  the  memory  system  (the  topic  of  Chapter  5)  also  limit  the 
ability  to keep  the pipeline  full.  Some memory  system stalls  can be hidden, but 
limited amounts of ILP also limit the extent to which such stalls can be hidden.

Power Efficiency and Advanced Pipelining
The  downside  to  the  increasing  exploitation  of  instruction-level  parallelism  via 
dynamic  multiple  issue  and  speculation  is  power  efficiency.  Each  innovation 
was  able  to  turn  more  transistors  into  performance,  but  they  often  did  so  very 
inefficiently.  Now  that  we  have  hit  the  power  wall,  we  are  seeing  designs  with 
multiple proces sors per chip where the processors are not as deeply pipelined or as 
aggressively speculative as the predecessors. 

The belief is that while the simpler processors are not as fast as their sophisti-
cated brethren, they deliver better performance per watt, so that they can deliver 
more performance per chip when designs are constrained more by power than they 
are by number of transistors.

Figure 4.73 shows the number of pipeline stages, the issue width, speculation 
level, clock rate, cores per chip, and power of several past and recent microproces-
sors. Note the drop in pipeline stages and power as companies switch to multicore 
designs.

Elaboration: A commit unit controls updates to the register file and memory. Some 
dynam ically scheduled processors update the register file immediately during execution, 
using extra registers to implement the renaming function and preserving the older copy 

Hardware/ 
Software 
Interface



of a register until the instruction updating the register is no longer speculative. Other 
processors buffer the result, typically in a structure called a reorder buffer, and the 
actual update to the register file occurs later as part of the commit. Stores to memory 
must be buffered until commit time either in a store buffer (see Chapter 5) or in the 
reorder buffer. The commit unit allows the store to write to memory from the buffer when 
the buffer has a valid address and valid data, and when the store is no longer dependent 
on predicted branches. 

Elaboration: Memory accesses benefit from nonblocking caches, which continue 
servic ing cache accesses during a cache miss (see Chapter 5). Out-of-order execution 
processors need the cache design to allow instructions to execute during a miss.

State  whether  the  following  techniques  or  components  are  associated  primarily 
with a software- or hardware-based approach to exploiting ILP. In some cases, the 
answer may be both.

1.  Branch prediction

2.  Multiple issue

3.  VLIW

4.  Superscalar

5.  Dynamic scheduling

6.  Out-of-order execution

7.  Speculation

8.  Reorder buffer

9.  Register renaming

Check  
Yourself

FIGURE 4.73 Record of Intel and Sun Microprocessors in terms of pipeline complexity, number of cores, and power. 
The Pen tium 4 pipeline stages do not include the commit stages. If we included them, the Pentium 4 pipelines would be even deeper. 

Microprocessor Year Clock Rate
Pipeline 
Stages

Issue 
Width

Out-of-Order/ 
Speculation

Cores/ 
Chip Power

Intel 486 1989 25 MHz 5 1 No 1  5 W

Intel Pentium 1993 66 MHz 5 2 No 1  10 W

Intel Pentium Pro 1997 200 MHz 10 3 Yes 1  29 W

Intel Pentium 4 Willamette 2001 2000 MHz 22 3 Yes 1  75 W

Intel Pentium 4 Prescott 2004 3600 MHz 31 3 Yes 1  103 W

Intel Core 2006 2930 MHz 14 4 Yes 2  75 W

UltraSPARC IV+ 2005 2100 MHz 14 4 No 1 90 W

Sun UltraSPARC T1 (Niagara) 2005 1200 MHz 6 1 No 8 70 W
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 4.11 
 Real Stuff: the AMD Opteron X4 
(Barcelona) Pipeline

Like  most  modern  computers,  x86  microprocessors  employ  sophisticated 
pipelining approaches. These processors, however, are still faced with the challenge 
of  implementing  the  complex  x86  instruction  set,  described  in  Chapter  2.  Both 
AMD  and  Intel  fetch  x86  instructions  and  translate  them  internal  to  MIPS-like 
instructions,  which  AMD  calls  RISC operations (Rops)  and  Intel  calls  micro-
operations. The RISC operations are then executed by a sophisticated, dynamically 
scheduled,  speculative  pipeline  capable  of  sustaining  an  execution  rate  of  three 
RISC operations per clock cycle in the AMD Opteron X4 (Barcelona). This section 
focuses on that RISC operation pipeline.

When we consider the design of sophisticated, dynamically scheduled proces-
sors, the design of the functional units, the cache and register file, instruction issue, 
and overall pipeline control become intermingled, making it difficult to separate the 
datapath from the pipeline. Because of this, many engineers and researchers have 
adopted the term microarchitecture  to refer  to the detailed  internal architecture 
of a processor. Figure 4.74 shows the microarchitecture of the X4, focusing on the 
structures for executing the RISC operations.

Another way to look at the X4 is to see the pipeline stages that a typical instruc-
tion goes through. Figure 4.75 shows the pipeline structure and the typical number 
of clock cycles spent in each; of course, the number of clock cycles varies due to 
the nature of dynamic scheduling as well as the requirements of individual RISC 
operations.

Elaboration: Opteron X4 uses a scheme for resolving antidependences and incorrect 
specu lation that uses a reorder buffer together with register renaming. Register 
renaming explicitly renames the architectural registers in a processor (16 in the case of 
the 64-bit version of the x86 architecture) to a larger set of physical registers (72 in the 
X4). X4 uses register renaming to remove antidependences. Register renaming requires 
the processor to maintain a map between the architectural registers and the physical 
registers, indicating which physical register is the most current copy of an architectural 
register. By keeping track of the renamings that have occurred, register renaming offers 
another approach to recovery in the event of incor rect speculation: simply undo the 
mappings that have occurred since the first incorrectly specu lated instruction. This will 
cause the state of the processor to return to the last correctly executed instruction, 
keeping the correct mapping between the architectural and physical regis ters.

Are the following statements true or false?

1.  The Opteron X4 multiple-issue pipeline directly executes x86 instructions.

2.  X4 uses dynamic scheduling but no speculation.

microarchitecture  The 
orga nization of the 
processor, including the 
major functional units, 
their interconnection, and 
control.

architectural registers 
The instruction set of 
visible registers of a 
processor; for example, 
in MIPS, these are the 32 
integer and 16 floating-
point registers.

Check  
Yourself



3.  The X4 microarchitecture has many more registers than x86 requires.

4.  X4 uses less than half the pipeline stages of the earlier Pentium 4 Prescott 
(see Figure 4.73).

FIGURE 4.74 The microarchitecture of AMD Opteron X4. The extensive queues allow up to 106 RISC operations to be outstanding, 
includ ing 24 integer operations, 36 floating point/SSE operations, and 44 loads and stores. The load and store units are actually separated into 
two parts, with the first part handling address calculation in the Integer ALU units and the second part responsible for the actual memory 
reference. There is an extensive bypass network among the functional units; since the pipeline is dynamic rather than static, bypassing is done 
by tagging results and tracking source operands, so as to allow a match when a result is produced for an instruction in one of the queues that 
needs the result. 
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The  Opteron  X4  combines  a  12-stage  pipeline  and  aggressive  multiple  issue  to 
achieve high performance. By keeping  the  latencies  for back-to-back operations 
low, the impact of data dependences is reduced. What are the most serious potential 
per formance bottlenecks for programs running on this processor? The following 
list  includes  some  potential  performance  problems,  the  last  three  of  which  can 
apply in some form to any high-performance pipelined processor.

■■ The  use  of  x86  instructions  that  do  not  map  to  a  few  simple  RISC 
operations

■■ Branches that are difficult to predict, causing misprediction stalls and restarts 
when speculation fails

■■ Long dependences—typically  caused by  long-running  instructions or data 
cache misses—that lead to stalls

■■ Performance delays arising in accessing memory (see Chapter 5) that cause 
the processor to stall

 4.12   Advanced Topic: an Introduction to 
Digital Design Using a Hardware Design 
Language to Describe and Model a 
Pipeline and More Pipelining Illustrations

Modern digital design is done using hardware description languages and modern 
computer-aided synthesis tools that can create detailed hardware designs from the 
descriptions using both libraries and logic synthesis. Entire books are written on 
such languages and their use in digital design. This section, which appears on the 
CD, gives a brief introduction and shows how a hardware design language, Verilog 
in this case, can be used to describe the MIPS control both behaviorally and in a 

Understanding 
Program 

Performance

Number of
clock cycles

Reorder
buffer

allocation +
register

renaming

Instruction
Fetch

Scheduling
+ dispatch

unit 

Decode
and

translate
Execution Data Cache/

Commit

RISC-operation
queue

Reorder
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2 23 22 1

FIGURE 4.75 The Opteron X4 pipeline showing the pipeline flow for a typical instruction and the number of clock 
cycles for the major steps in the 12-stage pipeline for integer RISC-operations. The floating point execution queue is 17 stages 
long. The major buffers where RISC-operations wait are also shown. 



form suitable for hardware synthesis. It then provides a series of behavioral models 
in Verilog of the MIPS five-stage pipeline. The initial model ignores hazards, and 
additions to the model highlight the changes for forwarding, data hazards, and 
branch hazards.

We  then  provide  about  a  dozen  illustrations  using  the  single-cycle  graphical 
pipeline representation for readers who want to see more detail on how pipelines 
work for a few sequences of MIPS instructions.

 4.13 Fallacies and Pitfalls

Fallacy: Pipelining is easy. 

Our  books  testify  to  the  subtlety  of  correct  pipeline  execution.  Our  advanced 
book  had  a  pipeline  bug  in  its  first  edition,  despite  its  being  reviewed  by  more 
than 100 people and being class-tested at 18 universities. The bug was uncovered 
only when someone  tried  to build  the computer  in  that book. The  fact  that  the 
Verilog to describe a pipeline like that in Opteron X4 will be thousands of lines is 
an indication of the complexity. Beware!

Fallacy: Pipelining ideas can be implemented independent of technology. 

When the number of transistors on-chip and the speed of transistors made a five-
stage pipeline the best solution, then the delayed branch (see the first Elaboration 
on  page  381)  was  a  simple  solution  to  control  hazards.  With  longer  pipelines, 
superscalar  execution,  and  dynamic  branch  prediction,  it  is  now  redundant.  In 
the  early  1990s,  dynamic  pipeline  scheduling  took  too  many  resources  and  was 
not required for high performance, but as transistor budgets continued to double 
and logic became much faster than memory, then multiple functional units and 
dynamic pipelining made more sense. Today, concerns about power are leading to 
less aggressive designs.

Pitfall: Failure to consider instruction set design can adversely impact pipelining.

Many of the difficul ties of pipelining arise because of instruction set complica tions. 
Here are some examples:

■■ Widely variable instruction lengths and running times can lead to imbal ance 
among pipeline stages and severely compli cate hazard detection in a design 
pipelined at the instruction set level. This problem was overcome, initially in 
the DEC VAX 8500 in the late 1980s, using the micropipelined scheme that 
the Opteron X4 employs today. Of course, the overhead of translation and 
maintaining  correspondence between  the micro-operations and  the actual 
instructions remains. 

■■ Sophisticated  addressing  modes  can  lead  to  different  sorts  of  problems. 
Addressing modes that update registers complicate hazard detection. Other 
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addressing  modes  that  require  multiple  memory  accesses  sub stantially 
complicate pipeline control and make it difficult to keep the pipeline flowing 
smoothly. 

Perhaps the best example is the DEC Alpha and the DEC NVAX. In com parable 
technology, the newer instruction set architecture of the Alpha allowed an imple-
mentation  whose  performance  is  more  than  twice  as  fast  as  NVAX.  In  another 
example, Bhandarkar and Clark [1991] compared the MIPS M/2000 and the DEC 
VAX  8700  by  counting  clock  cycles  of  the  SPEC  benchmarks;  they   concluded 
that although the MIPS M/2000 executes more instructions, the VAX on average 
executes 2.7 times as many clock cycles, so the MIPS is faster.

 4.14 Concluding Remarks

As we have seen in this chapter, both the datapath and control for a processor can 
be designed starting with the instruction set architecture and an understanding of 
the basic characteristics of the technology. In Section 4.3, we saw how the datapath 
for a MIPS processor could be constructed based on the architecture and the deci-
sion to build a single-cycle implementation. Of course, the underlying technology 
also affects many design decisions by dictating what components can be used in the 
datapath, as well as whether a  single-cycle implementation even makes sense. 

Pipelining  improves  throughput  but  not  the  inherent  execution  time,  or  
instruction latency, of  instructions;  for some instructions,  the  latency  is similar 
in length to the single-cycle approach. Multiple instruction issue adds additional 
datapath hardware to allow multiple instructions to begin every clock cycle, but at 
an increase in effective latency. Pipelining was presented as reducing the clock cycle 
time of the simple single-cycle datapath. Multiple instruction issue, in com parison, 
clearly focuses on reducing clock cycles per instruction (CPI).

Pipelining and multiple issue both attempt to exploit instruction-level parallel-
ism. The presence of data and control dependences, which can become hazards, are 
the primary limitations on how much parallelism can be exploited. Scheduling and 
speculation, both in hardware and in software, are the primary techniques used to 
reduce the performance impact of dependences.

The switch to longer pipelines, multiple instruction issue, and dynamic sched-
uling in the mid-1990s has helped sustain the 60% per year processor perfor mance  
increase that started in the early 1980s. As mentioned in Chapter 1, these micro-
processors preserved the sequential programming model, but they eventu ally ran 
into  the  power  wall.  Thus,  the  industry  has  been  forced  to  try  multi processors, 
which exploit parallelism at much coarser levels (the subject of Chapter 7). This 
trend  has  also  caused  designers  to  reassess  the  power-performance  implications 

Nine-tenths of wisdom 
con sists of being wise 
in time.

American proverb

instruction latency  The 
inherent execution time 
for an instruction.



of  some  of  the  inventions  since  the  mid-1990s,  resulting  in  a  simplifi cation  of 
pipelines in the more recent versions of microarchitectures. 

To  sustain  the  advances  in  processing  performance  via  parallel  processors, 
Amdahl’s law suggests that another part of the system will become the bottleneck. 
That bottleneck is the topic of the next chapter: the memory system.

4.15    Historical Perspective and Further 
Reading

This section, which appears on the CD, discusses the history of the first pipelined 
processors,  the  earliest  superscalars,  and  the  development  of  out-of-order  and 
speculative  techniques,  as well  as  important developments  in  the accompanying 
compiler technology.

 4.16 Exercises
Contributed by Milos Prvulovic of Georgia Tech

Exercise 4.1
Different  instructions  utilize  different  hardware  blocks  in  the  basic  single-cycle 
implementation.  The  next  three  problems  in  this  exercise  refer  to  the  following 
instruction:

Instruction Interpretation 

a. AND Rd,Rs,Rt Reg[Rd] = Reg[Rs] AND Reg[Rt]

b. SW Rt,Offs(Rs) Mem[Reg[Rs] + Offs] = Reg[Rt]

4.1.1 [5] <4.1> What are the values of control signals generated by the control in 
Figure 4.2 for this instruction?

4.1.2 [5]  <4.1>  Which  resources  (blocks)  perform  a  useful  function  for  this 
instruction?

4.1.3 [10] <4.1> Which  resources  (blocks) produce outputs, but  their outputs 
are  not  used  for  this  instruction? Which  resources  produce  no  outputs  for  this 
instruction?
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Different execution units and blocks of digital logic have different latencies (time 
needed to do their work). In Figure 4.2 there are seven kinds of major blocks. Laten-
cies of blocks along the critical (longest-latency) path for an instruction determine 
the minimum latency of that instruction. For the remaining three problems in this 
exercise, assume the following resource latencies:

I-Mem Add Mux ALU Regs D-Mem Control 

a. 200ps 70ps 20ps 90ps 90ps 250ps 40ps

b. 750ps 200ps 50ps 250ps 300ps 500ps 300ps

4.1.4 [5] <4.1> What is the critical path for an MIPS AND instruction?

4.1.5 [5] <4.1> What is the critical path for an MIPS load (LD) instruction?

4.1.6 [10] <4.1> What is the critical path for an MIPS BEQ instruction?

Exercise 4.2
The  basic  single-cycle  MIPS  implementation  in  Figure  4.2  can  only  implement 
some instructions. New instructions can be added to an existing ISA, but the deci-
sion whether or not to do that depends, among other things, on the cost and com-
plexity such an addition introduces into the processor datapath and control. The 
first three problems in this exercise refer to this new instruction:

Instruction Interpretation 

a. SEQ Rd,Rs,Rt Reg[Rd] = Boolean value (0 or 1) of (Reg[Rs] == Reg[Rs])

b. LWI Rt,Rd(Rs) Reg[Rt] = Mem[Reg[Rd]+Reg[Rs]]

4.2.1 [10] <4.1> Which existing blocks (if any) can be used for this instruction?

4.2.2 [10]  <4.1>  Which  new  functional  blocks  (if  any)  do  we  need  for  this 
instruction?

4.2.3 [10] <4.1> What new signals do we need (if any) from the control unit to 
support this instruction?

When  processor  designers  consider  a  possible  improvement  to  the  processor 
datapath, the decision usually depends on the cost/performance trade-off. In the 
 following three problems, assume that we are starting with a datapath from Figure 
4.2, where I-Mem, Add, Mux, ALU, Regs, D-Mem, and Control blocks have laten-
cies of 400ps, 100ps, 30ps, 120ps, 200ps, 350ps, and 100ps, respectively, and costs of 
1000, 30, 10, 100, 200, 2000, and 500, respectively. The remaining three problems in 
this exercise refer to the following processor improvement:



Improvement Latency Cost Benefit 

a. Add Multiplier 
to ALU

+300ps for ALU +600 for ALU Lets us add MUL instruction. 
Allows us to execute 5% fewer 
instructions (MUL no longer 
emulated).

b. Simpler Control +100ps for Control –400 for Control Control becomes slower but 
cheaper logic.

4.2.4 [10] <4.1> What is the clock cycle time with and without this improvement?

4.2.5 [10] <4.1> What is the speedup achieved by adding this improvement?

4.2.6 [10]  <4.1>  Compare  the  cost/performance  ratio  with  and  without  this 
improvement.

Exercise 4.3
Problems in this exercise refer to the following logic block:

Logic Block 

a. Small Multiplexor (Mux) with four 8-bit data inputs

b. Small 8-bit ALU that can do either AND, OR, or NOT

4.3.1 [5] <4.1, 4.2> Does this block contain logic only, flip-flops only, or both?

4.3.2 [20] <4.1, 4.2> Show how this block can be implemented. Use only AND, 
OR, NOT, and D Flip-Flops.

4.3.3 [10] <4.1, 4.2> Repeat Problem 4.3.2, but the AND and OR gates you use 
must all be 2-input gates.

Cost  and  latency  of  digital  logic  depends  on  the  kinds  of  basic  logic  elements 
(gates) that are available and on the properties of these gates. The remaining three 
problems in this exercise refer to these gates, latencies, and costs:

NOT 
2-Input  

AND or OR 
Each Additional 

Input for AND/OR 
D-Element 

Latency Cost Latency Cost Latency Cost Latency Cost

a. 10ps 2 12ps 4 +2ps +1 30ps 10

b. 20ps 2 40ps 3 +30ps +1 80ps 9
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4.3.4 [5] <4.1, 4.2> What is the latency of your implementation from 4.3.2?

4.3.5 [5] <4.1, 4.2> What is the cost of your implementation from 4.3.2?

4.3.6 [20] <4.1, 4.2> Change your design to minimize the latency, then to mini-
mize the cost. Compare the cost and latency of these two optimized designs.

Exercise 4.4
When implementing a logic expression in digital logic, one must use the available 
logic gates to implement an operator for which a gate is not available. Problems in 
this exercise refer to the following logic expressions:

Control Signal 1 Control Signal 2

a. (((A AND B) XOR C) OR 
(A XOR C)) OR (A XOR B)

(A XOR B) OR (A XOR C)

b. (((A OR B) AND C) OR 
((A OR C) OR (A OR B))

(A AND C) OR (B AND C)

4.4.1 [5] <4.2> Implement the logic for the Control signal 1. Your circuit should 
directly implement the given expression (do not reorganize the expression to “opti-
mize” it), using NOT gates and 2-input AND, OR, and XOR gates.

4.4.2 [10]  Assuming  that  all  gates  have  equal  latencies,  what  is  the  length  (in 
gates) of the critical path in your circuit from 4.4.1?

4.4.3 [10] <4.2> When multiple logic expressions are implemented, it is possible 
to reduce implementation cost by using the same signals in more than one expres-
sion. Repeat 4.4.1, but implement both Control signal 1 and Control signal 2, and 
try to “share” circuitry between expressions whenever possible.

For the remaining three problems in this exercise, we assume that the following basic 
digital logic elements are available, and that their latency and cost are as follows:

NOT 2-Input AND 2-Input OR 2-Input XOR

Latency Cost Latency Cost Latency Cost Latency Cost

a. 10ps 2 12ps 4 20ps 5 30ps 10

b. 20ps 2 40ps 3 50ps 3 50ps 8

4.4.4 [10] <4.2> What is the length of the critical path in your circuit from 4.4.3?

4.4.5 [10] <4.2> What is the cost of your circuit from 4.4.3?



4.4.6 [10] <4.2> What fraction of the cost was saved in your circuit from 4.4.3 by 
implementing these two control signals together instead of separately?

Exercise 4.5
The goal of  this  exercise  is  to help you  familiarize yourself with  the design and 
operation of sequential logical circuits. Problems in this exercise refer to this ALU 
operation:

ALU Operation 

a. Add (X+Y)

b. Subtract-one (X–1) in 2’s complement

4.5.1 [20] <4.2> Design a circuit with 1-bit data inputs and a 1-bit data output 
that accomplishes this operation serially, starting with the least-significant bit. In a 
serial implementation, the circuit is processing input operands bit by bit, generat-
ing output bits one by one. For example, a serial AND circuit is simply an AND 
gate; in cycle N we give it the Nth bit from each of the operands and we get the Nth 
bit of the result. In addition to data inputs, the circuit has a Clk (clock) input and 
a “Start” input that is set to 1 only in the very first cycle of the operation. In your 
design, you can use D Flip-Flops and NOT, AND, OR, and XOR gates.

4.5.2 [20] <4.2> Repeat 4.5.1, but now design a  circuit  that  accomplishes  this 
operation 2 bits at a time.

In the rest of this exercise, we assume that the following basic digital logic elements 
are available, and that their latency and cost are as follows:

NOT AND OR XOR D-Element

Latency Cost Latency Cost Latency Cost Latency Cost Latency Cost

a. 10ps 2 12ps 4 12ps 4 14ps 6 30ps 10

b. 50ps 1 100ps 2 90ps 2 120ps 3 160ps 2

The time given for a D-element is its setup time. The data input of a flip-flop must 
have the correct value one setup-time before the clock edge (end of clock cycle) 
that stores that value into the flip-flop.

4.5.3 [10] <4.2> What is the cycle time for the circuit you designed in 4.5.1? How 
long does it take to perform the 32-bit operation?

4.5.4 [10]  <4.2> What  is  the  cycle  time  for  the  circuit  you  designed  in  4.5.2? 
What is the speedup achieved by using this circuit instead of the one from 4.5.1 for 
a 32-bit operation?
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4.5.5 [10] <4.2> Compute the cost for the circuit you designed in 4.5.1, and then 
for the circuit you designed in 4.5.2.

4.5.6 [5]  <4.2>  Compare  cost/performance  ratios  for  the  two  circuits  you 
designed in 4.5.1 and 4.5.2. For this problem, performance of a circuit is the inverse 
of the time needed to perform a 32-bit operation.

Exercise 4.6
Problems in this exercise assume that logic blocks needed to implement a proces-
sor’s datapath have the following latencies:

I-Mem Add Mux ALU Regs D-Mem Sign-Extend Shift-Left-2

a. 200ps 70ps 20ps 90ps 90ps 250ps 15ps 10ps

b. 750ps 200ps 50ps 250ps 300ps 500ps 100ps 0ps

4.6.1 [10] <4.3> If the only thing we need to do in a processor is fetch consecu-
tive instructions (Figure 4.6), what would the cycle time be?

4.6.2 [10] <4.3> Consider a datapath similar to the one in Figure 4.11, but for a 
processor that only has one type of instruction: unconditional PC-relative branch. 
What would the cycle time be for this datapath?

4.6.3 [10] <4.3> Repeat 4.6.2, but this time we need to support only conditional 
PC-relative branches.

The remaining  three problems  in  this exercise  refer  to  the  following  logic block 
(resource) in the datapath:

Resource 

a. Shift-left-2

b. Registers

4.6.4 [10] <4.3> Which kinds of instructions require this resource?

4.6.5 [20] <4.3> For which kinds of instructions (if any) is this resource on the 
critical path?

4.6.6 [10] <4.3> Assuming that we only support BEQ and ADD instructions, dis-
cuss how changes in the given latency of this resource affect the cycle time of the 
processor. Assume that the latencies of other resources do not change.



Exercise 4.7
In this exercise we examine how latencies of individual components of the data-
path affect the clock cycle time of the entire datapath, and how these components 
are  utilized  by  instructions.  For  problems  in  this  exercise,  assume  the  following 
latencies for logic blocks in the datapath:

I-Mem Add Mux ALU Regs D-Mem Sign-Extend Shift-Left-2

a. 200ps 70ps 20ps 90ps 90ps 250ps 15ps 10ps

b. 750ps 200ps 50ps 250ps 300ps 500ps 100ps 5ps

4.7.1 [10] <4.3> What is the clock cycle time if the only types of instructions we 
need to support are ALU instructions (ADD, AND, etc.)?

4.7.2 [10]  <4.3>  What  is  the  clock  cycle  time  if  we  only  have  to  support LW 
instructions?

4.7.3 [20] <4.3> What is the clock cycle time if we must support ADD, BEQ, LW, 
and SW instructions?

For the remaining problems in this exercise, assume that there are no pipeline stalls 
and that the breakdown of executed instructions is as follows:

ADD ADDI NOT BEQ LW SW 

a. 20% 20% 0% 25% 25% 10%

b. 30% 10% 0% 10% 30% 20%

4.7.4 [10] <4.3> In what fraction of all cycles is the data memory used?

4.7.5 [10] <4.3> In what fraction of all cycles is the input of the sign-extend 
circuit  needed?  What  is  this  circuit  doing  in  cycles  in  which  its  input  is  not 
needed?

4.7.6 [10] <4.3> If we can improve the latency of one of the given datapath com-
ponents by 10%, which component should it be? What is the speedup from this 
improvement?

Exercise 4.8
When silicon chips are fabricated, defects in materials (e.g., silicon) and manufac-
turing errors can result in defective circuits. A very common defect is for one wire 
to affect  the  signal  in another. This  is  called a cross-talk  fault. A  special  class of 
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cross-talk faults is when a signal is connected to a wire that has a constant logical 
value (e.g., a power supply wire). In this case we have a stuck-at-0 or a stuck-at-1 
fault, and the affected signal always has a logical value of 0 or 1, respectively.

The following problems refer to the following signal from Figure 4.24:

Signal 

a. Registers, input Write Register, bit 0

b. Add unit in upper right corner, ALU result, bit 0

4.8.1 [10] <4.3, 4.4> Let us assume that processor testing is done by filling the 
PC, registers, and data and instruction memories with some values (you can choose 
which values), letting a single instruction execute, then reading the PC, memories, 
and registers. These values are then examined to determine if a particular fault is 
present. Can you design a test (values for PC, memories, and registers) that would 
determine if there is a stuck-at-0 fault on this signal?

4.8.2 [10] <4.3, 4.4> Repeat 4.8.1 for a stuck-at-1 fault. Can you use a sin-
gle test for both stuck-at-0 and stuck-at-1? If yes, explain how; if no, explain 
why not.

4.8.3 [60] <4.3, 4.4> If we know that the processor has a stuck-at-1 fault on this 
signal, is the processor still usable? To be usable, we must be able to convert any 
program that executes on a normal MIPS processor into a program that works on 
this processor. You can assume that there is enough free instruction memory and 
data memory to let you make the program longer and store additional data. Hint: 
the processor is usable if every instruction “broken” by this fault can be replaced 
with a sequence of “working” instructions that achieve the same effect.

The following problems refer to the following fault:

Fault 

a. Stuck-at-0

b. Becomes 0 if RegDst control signal is 0, no fault otherwise

4.8.4 [10] <4.3, 4.4> Repeat 4.8.1, but now the  fault  to  test  for  is whether  the 
“MemRead” control signal has this fault.

4.8.5 [10] <4.3, 4.4> Repeat 4.8.1, but now the  fault  to  test  for  is whether  the 
“Jump” control signal has this fault.



4.8.6 [40] <4.3, 4.4> Using a single test described in 4.8.1, we can test for faults 
in several different signals, but typically not all of them. Describe a series of tests 
to  look  for  this  fault  in all Mux outputs (every output bit  from each of  the five 
Muxes). Try to do this with as few single-instruction tests as possible.

Exercise 4.9
In this exercise we examine the operation of the single-cycle datapath for a particu-
lar instruction. Problems in this exercise refer to the following MIPS instruction:

Instruction 

a. SW R4,–100(R16)

b. SLT R1,R2,R3

4.9.1 [10] <4.4> What is the value of the instruction word?

4.9.2 [10] <4.4> What is the register number supplied to the register file’s “Read 
register 1” input? Is this register actually read? How about “Read register 2”?

4.9.3 [10] <4.4> What is the register number supplied to the register file’s “Write 
register” input? Is this register actually written?

Different instructions require different control signals to be asserted in the data-
path. The remaining problems in this exercise refer to the following two control 
signals from Figure 4.24:

Control Signal 1 Control Signal 2 

a. ALUSrc Branch

b. Jump RegDst

4.9.4 [20] <4.4> What is the value of these two signals for this instruction?

4.9.5 [20] <4.4> For the datapath from Figure 4.24, draw the logic diagram for 
the part of the control unit that implements just the first signal. Assume that we 
only need to support LW, SW, BEQ, ADD, and J (jump) instructions.

4.9.6 [20] <4.4> Repeat 4.9.5, but now implement both of these signals. 
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Exercise 4.10
In this exercise we examine how the clock cycle time of the processor affects the 
design of the control unit, and vice versa. Problems in this exercise assume that the 
logic blocks used to implement the datapath have the following latencies:

I-Mem Add Mux ALU Regs D-Mem Sign-Extend Shift-Left-2 ALU Ctrl

a. 200ps 70ps 20ps 90ps 90ps 250ps 15ps 10ps 30ps

b. 750ps 200ps 50ps 250ps 300ps 500ps 100ps 5ps 70ps

4.10.1 [10]  <4.2,  4.4>  To  avoid  lengthening  the  critical  path  of  the  datapath 
shown  in Figure 4.24, how much time can  the control unit  take  to generate  the 
MemWrite signal?

4.10.2 [20] <4.2, 4.4> Which control signal in Figure 4.24 has the most slack and 
how much time does the control unit have to generate it if it wants to avoid being 
on the critical path?

4.10.3 [20] <4.2, 4.4> Which control signal in Figure 4.24 is the most critical to 
generate quickly and how much time does the control unit have to generate it if it 
wants to avoid being on the critical path?

The remaining problems in this exercise assume that the time needed by the con-
trol unit to generate individual control signals is as follows

RegDst Jump Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite 

a. 500ps 500ps 450ps 200ps 450ps 200ps 500ps 100ps 500ps 

b. 1100ps 1000ps 1100ps 800ps 1200ps 300ps 1300ps 400ps 1200ps 

4.10.4 [20] <4.4> What is the clock cycle time of the processor?

4.10.5 [20] <4.4> If you can speed up the generation of control signals, but the 
cost of  the  entire processor  increases by $1  for  each 5ps  improvement of  a  sin-
gle control  signal, which control  signals would you speed up and by how much 
to maximize performance? What  is  the cost (per processor) of this performance 
improvement?

4.10.6 [30] <4.4> If the processor is already too expensive, instead of paying to 
speed it up as we did in 4.10.5, we want to minimize its cost without further slow-
ing it down. If you can use slower logic to implement control signals, saving $1 of 
the processor cost for each 5ps you add to the  latency of a single control signal, 
which control signals would you slow down and by how much to reduce the pro-
cessor’s cost without slowing it down?



Exercise 4.11 
In this exercise we examine in detail how an instruction is executed in a single-cycle 
datapath. Problems  in  this exercise  refer  to a clock cycle  in which  the processor 
fetches the following instruction word:

Instruction word

a. 10101100011000100000000000010100

b. 00000000100000100000100000101010

4.11.1 [5] <4.4> What are the outputs of the sign-extend and the jump “Shift left 
2” unit (near the top of Figure 4.24) for this instruction word?

4.11.2 [10] <4.4> What are the values of the ALU control unit’s inputs for this 
instruction?

4.11.3 [10] <4.4> What is the new PC address after this instruction is executed? 
Highlight the path through which this value is determined.

The remaining problems in this exercise assume that data memory is all zeros and 
that the processor’s registers have the following values at the beginning of the cycle 
in which the above instruction word is fetched:

R0 R1 R2 R3 R4 R5 R6 R8 R12 R31

a. 0 –1 2 –3 –4 10 6 8 2 –16

b. 0 256 –128 19 –32 13 –6 –1 16 –2

4.11.4 [10] <4.4> For each Mux, show the values of its data output during the 
execution of this instruction and these register values.

4.11.5 [10] <4.4> For the ALU and the two add units, what are their data input values?

4.11.6 [10] <4.4> What are the values of all inputs for the “Registers” unit?

Exercise 4.12
In this exercise, we examine how pipelining affects the clock cycle time of the pro-
cessor. Problems in this exercise assume that individual stages of the datapath have 
the following latencies:

IF ID EX MEM WB

a. 250ps 350ps 150ps 300ps 200ps

b. 200ps 170ps 220ps 210ps 150ps
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4.12.1 [5] <4.5> What is the clock cycle time in a pipelined and non-pipelined 
processor?

4.12.2 [10] <4.5> What is the total latency of an LW  instruction in a pipelined 
and non-pipelined processor?

4.12.3 [10] <4.5> If we can split one stage of the pipelined datapath into two new 
stages, each with half the latency of the original stage, which stage would you split 
and what is the new clock cycle time of the processor?

The remaining problems in this exercise assume that instructions executed by the 
processor are broken down as follows:

ALU BEQ LW SW

a. 45% 20% 20% 15% 

b. 55% 15% 15% 15% 

4.12.4 [10] <4.5> Assuming there are no stalls or hazards, what is the utilization  
of the data memory?

4.12.5 [10] <4.5> Assuming there are no stalls or hazards, what is the utilization 
of the write-register port of the “Registers” unit?

4.12.6 [30]  <4.5>  Instead  of  a  single-cycle  organization,  we  can  use  a  multi-
cycle organization where each instruction takes multiple cycles but one instruction 
finishes before another  is  fetched.  In  this organization, an  instruction only goes 
through stages it actually needs (e.g., ST only takes 4 cycles because it does not need 
the WB stage). Compare clock cycle times and execution times with single-cycle, 
multi-cycle, and pipelined organization.

Exercise 4.13
In  this exercise, we examine how data dependences affect execution  in  the basic 
5-stage pipeline described in Section 4.5. Problems in this exercise refer to the fol-
lowing sequence of instructions:

Instruction Sequence

a. SW R16,–100(R6) 
LW R4,8(R16) 
ADD R5,R4,R4

b. OR R1,R2,R3 
OR R2,R1,R4 
OR R1,R1,R2



4.13.1 [10] <4.5> Indicate dependences and their type.

4.13.2 [10]  <4.5>  Assume  there  is  no  forwarding  in  this  pipelined  processor. 
Indicate hazards and add NOP instructions to eliminate them.

4.13.3 [10] <4.5> Assume there is full forwarding. Indicate hazards and add NOP 
instructions to eliminate them.

Without Forwarding With Full Forwarding With ALU-ALU Forwarding Only 

a. 250ps 300ps 290ps 

b. 180ps 240ps 210ps 

4.13.4 [10] <4.5> What is the total execution time of this instruction sequence 
without  forwarding  and  with  full  forwarding? What  is  the  speedup achieved  by 
adding full forwarding to a pipeline that had no forwarding?

4.13.5 [10] <4.5> Add NOP instructions to this code to eliminate hazards if there 
is ALU-ALU forwarding only (no forwarding from the MEM to the EX stage).

4.13.6 [10] <4.5> What is the total execution time of this instruction sequence 
with only ALU-ALU forwarding? What is the speedup over a no-forwarding pipe-
line?

Exercise 4.14 
In this exercise, we examine how resource hazards, control hazards, and ISA design 
can affect pipelined execution. Problems in this exercise refer to the following frag-
ment of MIPS code:

Instruction sequence

a.         SW R16,12(R6)
        LW R16,8(R6)
        BEQ R5,R4,Label ; Assume R5 != R4
        ADD R5,R1,R4
        SLT R5,R15,R4

b.         SW R2,0(R3)
        OR R1,R2,R3
        BEQ R2,R0,Label ; Assume R2 == R0
        OR R2,R2,R0
Label:  ADD R1,R4,R3

4.14.1 [10] <4.5> For this problem, assume that all branches are perfectly pre-
dicted (this eliminates all control hazards) and that no delay slots are used. If we 
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only have one memory (for both instructions and data), there is a structural haz-
ard every time we need to fetch an instruction in the same cycle in which another 
instruction accesses data. To guarantee forward progress, this hazard must always 
be resolved in favor of the instruction that accesses data. What is the total execution 
time of this instruction sequence in the 5-stage pipeline that only has one memory? 
We have seen that data hazards can be eliminated by adding NOPs to the code. Can 
you do the same with this structural hazard? Why?

4.14.2 [20] <4.5> For this problem, assume that all branches are perfectly pre-
dicted (this eliminates all control hazards) and that no delay slots are used. If we 
change load/store instructions to use a register (without an offset) as the address, 
these instructions no longer need to use the ALU. As a result, MEM and EX stages 
can be overlapped and the pipeline has only 4 stages. Change this code to accom-
modate this changed ISA. Assuming this change does not affect clock cycle time, 
what speedup is achieved in this instruction sequence?

4.14.3 [10] <4.5> Assuming stall-on-branch and no delay slots, what speedup is 
achieved on this code if branch outcomes are determined in the ID stage, relative to 
the execution where branch outcomes are determined in the EX stage?

The  remaining  problems  in  this  exercise  assume  that  individual  pipeline  stages 
have the following latencies:

IF ID EX MEM WB

a. 200ps 120ps 150ps 190ps 100ps

b. 150ps 200ps 200ps 200ps 100ps

4.14.4 [10] <4.5> Given these pipeline stage latencies, repeat the speedup cal-
culation from 4.14.2, but take into account the (possible) change in clock cycle 
time. When EX and MEM are done in a single stage, most of their work can be 
done in parallel. As a result, the resulting EX/MEM stage has a latency that is the 
larger of the original two, plus 20ps needed for the work that could not be done 
in parallel.

4.14.5 [10]  <4.5>  Given  these  pipeline  stage  latencies,  repeat  the  speedup 
calculation  from  4.14.3,  taking  into  account  the  (possible)  change  in  clock 
cycle time. Assume that the latency ID stage increases by 50% and the latency 
of  the EX stage decreases by 10ps when branch outcome resolution  is moved 
from EX to ID.

4.14.6 [10] <4.5> Assuming stall-on-branch and no delay slots, what is the new 
clock cycle  time and execution  time of  this  instruction  sequence  if BEQ  address 



computation is moved to the MEM stage? What is the speedup from this change? 
Assume  that  the  latency  of  the  EX  stage  is  reduced  by  20ps  and  the  latency  of 
the MEM stage is unchanged when branch outcome resolution is moved from EX 
to MEM.

Exercise 4.15 
In this exercise, we examine how the ISA affects pipeline design. Problems in this 
exercise refer to the following new instruction:

a. ADDM Rd,Rt+Offs(Rs) Rd=Rt+Mem[Offs+Rs]

b. BEQM Rd,Rt,Offs(Rs) if Rt=Mem[Offs+Rs] then PC = Rd

4.15.1 [20] <4.5> What must be changed in the pipelined datapath to add this 
instruction to the MIPS ISA?

4.15.2 [10]  <4.5> Which  new  control  signals  must  be  added  to  your  pipeline 
from 4.15.1?

4.15.3 [20] <4.5, 4.13> Does support for this instruction introduce any new haz-
ards? Are stalls due to existing hazards made worse?

4.15.4 [10] <4.5, 4.13> Give an example of where this instruction might be useful 
and a sequence of existing MIPS instructions that are replaced by this instruction.

4.15.5 [10]  <4.5,  4.11,  4.13>  If  this  instruction  already  exists  in  a  legacy  ISA, 
explain how it would be executed in a modern processor like AMD Barcelona.

The  last  problem  in  this  exercise  assumes  that  each  use  of  the  new  instruction 
replaces  the  given  number  of  original  instructions,  that  the  replacement  can  be 
made once  in the given number of original  instructions, and that each time the 
new instruction is executed the given number of extra stall cycles is added to the 
program’s execution time:

Replaces Once in every Extra Stall Cycles

a. 2 30 2

b. 3 40 1

4.15.6 [10] <4.5> What is the speedup achieved by adding this new instruction? 
In your calculation, assume that the CPI of the original program (without the new 
instruction) is 1.
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Exercise 4.16 
The first three problems in this exercise refer to the following MIPS instruction:

Instruction 

a. SW R16,–100(R6)

b. OR R2,R1,R0

4.16.1 [5] <4.6> As this instruction executes, what is kept in each register located 
between two pipeline stages?

4.16.2 [5] <4.6> Which registers need to be read, and which registers are actually 
read?

4.16.3 [5] <4.6> What does this instruction do in the EX and MEM stages?

The remaining three problems in this exercise refer to the following loop. Assume 
that perfect branch prediction is used (no stalls due to control hazards), that there 
are no delay slots, and that the pipeline has full forwarding support. Also assume 
that many iterations of this loop are executed before the loop exits.

Loop

a. Loop:   ADD R1,R2,R1
        LW R2,0(R1)
        LW R2,16(R2)
        SLT R1,R2,R4
        BEQ R1,R9,Loop

b. Loop:   LW  R1,0(R1)
        AND R1,R1,R2
        LW  R1,0(R1)
        LW  R1,0(R1)
        BEQ R1,R0,Loop

4.16.4 [10] <4.6> Show a pipeline execution diagram for the third iteration of 
this loop, from the cycle in which we fetch the first instruction of that iteration up 
to (but not including) the cycle in which we can fetch the first instruction of the 
next iteration. Show all instructions that are in the pipeline during these cycles (not 
just those from the third iteration).

4.16.5 [10] <4.6> How often (as a percentage of all cycles) do we have a cycle in 
which all five pipeline stages are doing useful work?

4.16.6 [10] <4.6> At the start of the cycle in which we fetch the first instruction 
of the third iteration of this loop, what is stored in the IF/ID register?



Exercise 4.17 
Problems in this exercise assume that instructions executed by a pipelined proces-
sor are broken down as follows:

ADD BEQ LW SW

a. 40% 30% 25% 5% 

b. 60% 10% 20% 10% 

4.17.1 [5] <4.6> Assuming  there are no stalls and  that 60% of all  conditional 
branches are taken, in what percentage of clock cycles does the branch adder in the 
EX stage generate a value that is actually used?

4.17.2 [5] <4.6> Assuming there are no stalls, how often (percentage of all cycles) 
do we actually need to use all three register ports (two reads and a write) in the 
same cycle?

4.17.3 [5] <4.6> Assuming there are no stalls, how often (percentage of all cycles) 
do we use the data memory?

Each  pipeline  stage  in  Figure  4.33  has  some  latency.  Additionally,  pipelining 
introduces registers between stages (Figure 4.35), and each of these adds an addi-
tional  latency.  The  remaining  problems  in  this  exercise  assume  the  following 
latencies for logic within each pipeline stage and for each register between two 
stages:

IF ID EX MEM WB Pipeline Register

a. 200ps 120ps 150ps 190ps 100ps 15ps

b. 150ps 200ps 200ps 200ps 100ps 15ps

4.17.4 [5] <4.6> Assuming there are no stalls, what is the speedup achieved by 
pipelining a single-cycle datapath?

4.17.5 [10] <4.6> We can convert all load/store instructions into register-based 
(no offset) and put the memory access in parallel with the ALU. What is the clock 
cycle time if this is done in the single-cycle and in the pipelined datapath? Assume 
that the latency of the new EX/MEM stage is equal to the longer of their latencies.

4.17.6 [10] <4.6> The change in 4.17.5 requires many existing LW/SW instruc-
tions  to  be  converted  into  two-instruction  sequences.  If  this  is  needed  for  50% 
of these instructions, what is the overall speedup achieved by changing from the 
5-stage pipeline to the 4-stage pipeline where EX and MEM are done in parallel?
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Exercise 4.18 
The  first  three  problems  in  this  exercise  refer  to  the  execution  of  the  following 
instruction in the pipelined datapath from Figure 4.51, and assume the following 
clock cycle time, ALU latency, and Mux latency:

Instruction Clock Cycle Time ALU Latency Mux Latency 

a. LW R1,32(R2) 50ps 30ps 15ps 

b. OR R1,R5,R6 200ps 170ps 25ps 

4.18.1 [10] <4.6> For each stage of the pipeline, what are the values of the control 
signals asserted by this instruction in that pipeline stage?

4.18.2 [10] <4.6, 4.7> How much time does the control unit have to generate the 
ALUSrc control signal? Compare this to a single-cycle organization.

4.18.3  What is the value of the PCSrc signal for this instruction? This signal is 
generated early in the MEM stage (only a single AND gate). What would be a rea-
son in favor of doing this in the EX stage? What is the reason against doing it in the 
EX stage?

The  remaining  problems  in  this  exercise  refer  to  the  following  signals  from 
 Figure 4.48:

Signal 1 Signal 2 

a. ALUSrc PCSrc

b. Branch RegWrite

4.18.4 [5] <4.6> For each of these signals, identify the pipeline stage in which it 
is generated and the stage in which it is used.

4.18.5 [5] <4.6> For which MIPS instruction(s) are both of these signals set to 1?

4.18.6 [10] <4.6> One of  these signals goes back through the pipeline. Which 
signal is it? Is this a time-travel paradox? Explain.

Exercise 4.19
This exercise is intended to help you understand the cost/complexity/performance 
trade-offs of  forwarding in a pipelined processor. Problems in this exercise refer 
to pipelined datapaths  from Figure 4.45. These problems assume that, of all  the 
instructions executed  in a processor,  the  following fraction of  these  instructions 



have a particular type of RAW data dependence. The type of RAW data dependence 
is identified by the stage that produces the result (EX or MEM) and the instruction 
that  consumes  the  result  (1st  instruction  that  follows  the  one  that  produces  the 
result, 2nd instruction that follows, or both). We assume that the register write is 
done in the first half of the clock cycle and that register reads are done in the second 
half of the cycle, so “EX to 3rd” and “MEM to 3rd” dependences are not counted 
because they cannot result in data hazards. Also, assume that the CPI of the proces-
sor is 1 if there are no data hazards.

EX to 1st 
Only 

MEM to 1st 
Only

EX to 2nd 
only 

MEM to 2nd 
Only

EX to 1st and 
MEM to 2nd

Other RAW 
Dependences

a. 5% 20% 5% 10% 10% 10%

b. 20% 10% 15% 10% 5% 0%

4.19.1 [10] <4.7> If we use no forwarding, what fraction of cycles are we stalling 
due to data hazards?

4.19.2 [5] <4.7> If we use full  forwarding (forward all results that can be for-
warded), what fraction of cycles are we staling due to data hazards?

4.19.3 [10] <4.7> Let us assume that we cannot afford to have three-input Muxes 
that  are  needed  for  full  forwarding. We  have  to  decide  if  it  is  better  to  forward 
only  from  the  EX/MEM  pipeline  register  (next-cycle  forwarding)  or  only  from 
the MEM/WB pipeline register (two-cycle forwarding). Which of the two options 
results in fewer data stall cycles?

The remaining three problems in this exercise refer to the following latencies for 
individual pipeline stages. For the EX stage, latencies are given separately for a pro-
cessor without forwarding and for a processor with different kinds of forwarding.

IF ID
EX  

(no FW)
EX (full FW)

EX (FW from 
EX/MEM only)

EX (FW from 
MEM/WB only)

MEM WB

a. 150ps 100ps 120ps 150ps 140ps 130ps 120ps 100ps 

b. 300ps 200ps 300ps 350ps 330ps 320ps 290ps 100ps 

4.19.4 [10] <4.7> For the given hazard probabilities and pipeline stage latencies, 
what is the speedup achieved by adding full forwarding to a pipeline that had no 
forwarding?

4.19.5 [10] <4.7> What would be the additional speedup (relative to a proces-
sor with forwarding) if we added time-travel  forwarding that eliminates all data 
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 hazards? Assume  that  the yet-to-be-invented  time-travel  circuitry adds 100ps  to 
the latency of the full-forwarding EX stage.

4.19.6 [20] <4.7> Repeat 4.19.3 but this time determine which of the two options 
results in shorter time per instruction.

Exercise 4.20
Problems in this exercise refer to the following instruction sequences:

Instruction Sequence

a. ADD R1,R2,R1 
LW  R2,0(R1) 
LW  R1,4(R1) 
OR  R3,R1,R2

b. LW  R1,0(R1) 
AND R1,R1,R2 
LW  R2,0(R1) 
LW  R1,0(R3)

4.20.1 [5] <4.7> Find all data dependences in this instruction sequence.

4.20.2 [10] <4.7> Find all hazards in this instruction sequence for a 5-stage pipe-
line with and then without forwarding.

4.20.3 [10] <4.7> To reduce clock cycle time, we are considering a split of the 
MEM stage into two stages. Repeat 4.20.2 for this 6-stage pipeline.

The remaining three problems in this exercise assume that, before any of the above 
is executed, all values in data memory are zeroes and that registers R0 through R3 
have the following initial values:

R0 R1 R2 R3

a. 0 –1 31 1500

b. 0 4 63 3000

4.20.4 [5] <4.7> Which value  is  the first one  to be  forwarded and what  is  the 
value it overrides?

4.20.5 [10] <4.7> If we assume forwarding will be implemented when we design 
the hazard detection unit, but then we forget to actually  implement forwarding, 
what are the final register values after this instruction sequence?



4.20.6 [10] <4.7> For the design described in 4.20.5, add NOPs to this instruction 
sequence to ensure correct execution in spite of missing support for forwarding.

Exercise 4.21
This exercise is intended to help you understand the relationship between forward-
ing, hazard detection, and ISA design. Problems in this exercise refer to the follow-
ing sequences of instructions, and assume that it is executed on a 5-stage pipelined 
datapath:

Instruction sequence

a. ADD R5,R2,R1 
LW  R3,4(R5) 
LW  R2,0(R2) 
OR  R3,R5,R3 
SW  R3,0(R5)

b. LW  R2,0(R1) 
AND R1,R2,R1 
LW  R3,0(R2) 
LW  R1,0(R1) 
SW  R1,0(R2)

4.21.1 [5] <4.7> If  there  is no forwarding or hazard detection,  insert NOPs  to 
ensure correct execution.

4.21.2 [10] <4.7> Repeat 4.21.1 but now use NOPs only when a hazard cannot be 
avoided by changing or rearranging these instructions. You can assume register R7 
can be used to hold temporary values in your modified code.

4.21.3 [10] <4.7> If the processor has forwarding, but we forgot to implement 
the hazard detection unit, what happens when this code executes?

4.21.4 [20] <4.7> If there is forwarding, for the first five cycles during the execu-
tion of this code, specify which signals are asserted in each cycle by hazard detec-
tion and forwarding units in Figure 4.60.

4.21.5 [10] <4.7> If there is no forwarding, what new inputs and output signals 
do we need  for  the hazard detection unit  in  Figure 4.60? Using  this  instruction 
sequence as an example, explain why each signal is needed.

4.21.6 [20] <4.7> For the new hazard detection unit from 4.21.5, specify which 
output signals it asserts in each of the first five cycles during the execution of this 
code.
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Exercise 4.22
This exercise  is  intended to help you understand the relationship between delay 
slots, control hazards, and branch execution in a pipelined processor. In this exer-
cise, we assume that the following MIPS code is executed on a pipelined processor 
with a 5-stage pipeline, full forwarding, and a predict-taken branch predictor: 

a. Label1: LW  R2,0(R2)
        BEQ R2,R0,Label ; Taken once, then not taken
        OR  R2,R2,R3
        SW  R2,0(R5)

b.         LW  R2,0(R1)
Label1: BEQ R2,R0,Label2 ; Not taken once, then taken
        LW  R3,0(R2)
        BEQ R3,R0,Label1 ; Taken
        ADD R1,R3,R1
Label2: SW  R1,0(R2)

4.22.1 [10] <4.8> Draw the pipeline execution diagram for this code, assuming 
there are no delay slots and that branches execute in the EX stage.

4.22.2 [10] <4.8> Repeat 4.22.1, but assume that delay slots are used. In the given 
code, the instruction that follows the branch is now the delay slot instruction for 
that branch.

4.22.3 [20] <4.8> One way  to move  the branch resolution one  stage earlier  is 
to not need an ALU operation in conditional branches. The branch instructions 
would be “BEZ Rd,Label” and “BNEZ Rd,Label”, and it would branch if the reg-
ister has and does not have a zero value, respectively. Change this code to use these 
branch instructions instead of BEQ. You can assume that register R8 is available for 
you to use as a temporary register, and that an SEQ (set if equal) R-type instruction 
can be used.

Section 4.8 describes how the severity of control hazards can be reduced by moving 
branch execution into the ID stage. This approach involves a dedicated comparator 
in the ID stage, as shown in Figure 4.62. However, this approach potentially adds 
to the latency of the ID stage, and requires additional forwarding logic and hazard 
detection.

4.22.4 [10]  <4.8>  Using  the  first  branch  instruction  in  the  given  code  as  an 
example, describe the hazard detection logic needed to support branch execution 
in the ID stage as in Figure 4.62. Which type of hazard is this new logic supposed 
to detect?



4.22.5 [10] <4.8> For the given code, what is the speedup achieved by moving 
branch execution into the ID stage? Explain your answer. In your speedup calcula-
tion, assume that the additional comparison in the ID stage does not affect clock 
cycle time.

4.22.6 [10]  <4.8>  Using  the  first  branch  instruction  in  the  given  code  as  an 
example, describe the forwarding support that must be added to support branch 
execution in the ID stage. Compare the complexity of this new forwarding unit to 
the complexity of the existing forwarding unit in Figure 4.62.

Exercise 4.23 
The importance of having a good branch predictor depends on how often condi-
tional  branches  are  executed.  Together  with  branch  predictor  accuracy,  this  will 
determine how much time is spent stalling due to mispredicted branches. In this 
exercise, assume that the breakdown of dynamic instructions into various instruc-
tion categories is as follows:

R-Type BEQ JMP LW SW 

a. 40% 25% 5% 25% 5% 

b. 60% 8% 2% 20% 10% 

Also, assume the following branch predictor accuracies:

Always-Taken Always-Not-Taken 2-Bit 

a. 45% 55% 85% 

b. 65% 35% 98% 

4.23.1 [10]  <4.8>  Stall  cycles  due  to  mispredicted  branches  increase  the  CPI. 
What is the extra CPI due to mispredicted branches with the always-taken predic-
tor? Assume that branch outcomes are determined in the EX stage, that there are 
no data hazards, and that no delay slots are used.

4.23.2 [10] <4.8> Repeat 4.23.1 for the “always-not-taken” predictor.

4.23.3 [10] <4.8> Repeat 4.23.1 for the 2-bit predictor.

4.23.4 [10] <4.8> With the 2-bit predictor, what speedup would be achieved if 
we could convert half of the branch instructions in a way that replaces a branch 
instruction with an ALU instruction? Assume that correctly and incorrectly pre-
dicted instructions have the same chance of being replaced.
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4.23.5 [10] <4.8> With the 2-bit predictor, what speedup would be achieved if 
we could convert half of the branch instructions in a way that replaced each branch 
instruction with two ALU instructions? Assume that correctly and incorrectly pre-
dicted instructions have the same chance of being replaced.

4.23.6 [10]  <4.8>  Some  branch  instructions  are  much  more  predictable  than 
others. If we know that 80% of all executed branch instructions are easy-to-predict 
loop-back branches that are always predicted correctly, what is the accuracy of the 
2-bit predictor on the remaining 20% of the branch instructions?

Exercise 4.24 
This exercise examines the accuracy of various branch predictors for the following 
repeating pattern (e.g., in a loop) of branch outcomes:

Branch Outcomes 

a. T, T, NT, NT

b. T, NT, T, T, NT

4.24.1 [5] <4.8> What is the accuracy of always-taken and always-not-taken pre-
dictors for this sequence of branch outcomes?

4.24.2 [5]  <4.8>  What  is  the  accuracy  of  the  two-bit  predictor  for  the  first  4 
branches in this pattern, assuming that the predictor starts off in the bottom left 
state from Figure 4.63 (predict not taken)?

4.24.3 [10] <4.8> What is the accuracy of the two-bit predictor if this pattern is 
repeated forever?

4.24.4 [30]  <4.8>  Design  a  predictor  that  would  achieve  a  perfect  accuracy  if 
this pattern is repeated forever. You predictor should be a sequential circuit with 
one output that provides a prediction (1 for taken, 0 for not taken) and no inputs 
other than the clock and the control signal that indicates that the instruction is a 
conditional branch.

4.24.5 [10] <4.8> What is the accuracy of your predictor from 4.24.4 if it is given 
a repeating pattern that is the exact opposite of this one?

4.24.6 [20] <4.8> Repeat 4.24.4, but now your predictor should be able to even-
tually (after a warm-up period during which it can make wrong predictions) start 
perfectly predicting both this pattern and its opposite. Your predictor should have 
an input that tells it what the real outcome was. Hint: this input lets your predictor 
determine which of the two repeating patterns it is given.



Exercise 4.25 
This  exercise  explores  how  exception  handling  affects  pipeline  design.  The  first 
three problems in this exercise refer to the following two instructions:

Instruction 1 Instruction 2 

a. BNE R1,R2,Label LW R1,0(R1)

b. JUMP Label SW R5,0(R1)

4.25.1 [5] <4.9> Which exceptions can each of  these  instructions  trigger? For 
each of these exceptions, specify the pipeline stage in which it is detected.

4.25.2 [10] <4.9> If there is a separate handler address for each exception, show 
how the pipeline organization must be changed to be able to handle this exception. 
You can assume that the addresses of these handlers are known when the processor 
is designed.

4.25.3 [10] <4.9> If the second instruction from this table is fetched right after 
the instruction from the first table, describe what happens in the pipeline when the 
first instruction causes the first exception you listed in 4.25.1. Show the pipeline 
execution diagram from the time the first instruction is fetched until the time the 
first instruction of the exception handler is completed.

The remaining three problems in this exercise assume that exception handlers are 
located at the following addresses:

 
Overflow 

Invalid Data 
Address 

Undefined 
Instruction 

Invalid Instruction 
Address 

Hardware 
Malfunction 

a. 0x1000CB05 0x1000D230 0x1000D780 0x1000E230 00x1000F254

b. 0x450064E8 0xC8203E20 0xC8203E20 0x678A0000 0x00000010

4.25.4 [5]  <4.9>  What  is  the  address  of  the  exception  handler  in  4.25.3? 
What happens if there is an invalid instruction at that address in instruction 
memory?

4.25.5 [20] <4.9> In vectored exception handling, the table of exception handler 
addresses  is  in data memory at a known (fixed) address. Change the pipeline to 
implement this exception handling mechanism. Repeat 4.25.3 using this modified 
pipeline and vectored exception handling.

4.25.6 [15] <4.9> We want to emulate vectored exception handling (described in 
4.25.5) on a machine that has only one fixed handler address. Write the code that 
should be at that fixed address. Hint: this code should identify the exception, get 
the right address  from the exception vector  table, and transfer execution to that 
handler.
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Exercise 4.26 
This exercise explores how exception handling affects control unit design and pro-
cessor clock cycle time. The first three problems in this exercise refer to the follow-
ing MIPS instruction that triggers an exception:

Instruction Exception 

a. BNE R1,R2,Label Invalid target address

b. SUB R2,R4,R5 Arithmetic overflow

4.26.1 [10] <4.9> For each stage of the pipeline, determine the values of excep-
tion-related control signals from Figure 4.66 as this instruction passes through that 
pipeline stage.

4.26.2 [5] <4.9> Some of the control signals generated in the ID stage are stored 
into the ID/EX pipeline register, and some go directly into the EX stage. Explain 
why, using this instruction as an example.

4.26.3 [10] <4.9> We can make  the EX stage  faster  if we check  for exceptions 
in  the  stage  after  the  one  in  which  the  exceptional  condition  occurs.  Using  this 
instruction as an example, describe the main disadvantage of this approach.

The remaining three problems in this exercise assume that pipeline stages have the 
following latencies:

IF ID EX MEM WB

a. 220ps 150ps 250ps 200ps 200ps 

b. 175ps 150ps 200ps 175ps 140ps 

4.26.4 [10] <4.9> If an overflow exception occurs once for every 100,000 instruc-
tions executed, what is the overall speedup if we move overflow checking into the 
MEM stage? Assume that this change reduces EX latency by 30ns and that the IPC 
achieved by the pipelined processor is 1 when there are no exceptions.

4.26.5 [20]  <4.9>  Can  we  generate  exception  control  signals  in  EX  instead 
of  in  ID?  Explain  how  this  will  work  or  why  it  will  not  work,  using  the “BNE 
R4,R5,Label” instruction and these pipeline stage latencies as an example.

4.26.6 [10] <4.9> Assuming that each Mux has a latency of 40ps, determine how 
much time does the control unit have to generate the flush signals? Which signal is 
the most critical?



Exercise 4.27 
This exercise examines how exception handling  interacts with branch and  load/
store instructions. Problems in this exercise refer to the following branch instruc-
tion and the corresponding delay slot instruction:

Branch and Delay Slot 

a. BEQ  R5,R4,Label 
SLT  R5,R15,R4

b. BEQ  R1,R0,Label 
LW   R1,0(R1)

4.27.1 [20] <4.9> Assume that  this branch  is correctly predicted as  taken, but 
then the instruction at “Label” is an undefined instruction. Describe what is done 
in each pipeline stage for each cycle, starting with the cycle in which the branch is 
decoded up to the cycle in which the first instruction of the exception handler is 
fetched.

4.27.2 [10] <4.9> Repeat 4.27.1, but this time assume that the instruction in the 
delay slot also causes a hardware error exception when it is in MEM stage.

4.27.3 [10] <4.9> What  is  the value  in  the EPC if  the branch  is  taken but  the 
delay slot causes an exception? What happens after the execution of the exception 
handler is completed?

The  remaining  three  problems  in  this  exercise  also  refer  to  the  following  store 
instruction:

Store Instruction 

a. SW   R5,–40(R15)

b. SW   R1,0(R1)

4.27.4 [10] <4.9> What happens if the branch is taken, the instruction at “Label” 
is an invalid instruction, the first instruction of the exception handler is the SW 
instruction given above, and this store accesses an invalid data address?

4.27.5 [10]  <4.9>  If  LD/ST  address  computation  can  overflow,  can  we  delay 
overflow exception detection into the MEM stage? Use the given store instruction 
to explain what happens.

4.27.6 [10] <4.9> For debugging,  it  is useful  to be able  to detect when a par-
ticular value is written to a particular memory address. We want to add two new 
registers, WADDR and WVAL. The processor should trigger an exception when the 
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value equal to WVAL is about to be written to address WADDR. How would you 
change the pipeline to implement this? How would this SW instruction be handled 
by your modified datapath?

Exercise 4.28
In this exercise we compare the performance of 1-issue and 2-issue processors, tak-
ing into account program transformations that can be made to optimize for 2-issue 
execution. Problems in this exercise refer to the following loop (written in C):

C Code

a. for(i=0;i!=j;i+=2) 
  a[i+1]=a[i];  

b. for(i=0;i!=j;i+=2) 
  b[i]=a[i]–a[i+1];

When writing MIPS code, assume that variables are kept in registers as follows, and 
that all registers except those indicated as Free are used to keep various variables, 
so they cannot be used for anything else.

i j a b c Free

a. R2 R8 R9 R10 R11 R3,R4,R5

b. R5 R6 R1 R2 R3 R10,R11,R12

4.28.1 [10] <4.10> Translate this C code into MIPS instructions. Your trans-
lation  should  be  direct,  without  rearranging  instructions  to  achieve  better 
 performance.

4.28.2 [10] <4.10> If the loop exits after executing only two iterations, draw a 
pipeline diagram for your MIPS code from 4.28.1 executed on a 2-issue processor 
shown in Figure 4.69. Assume the processor has perfect branch prediction and can 
fetch any two instructions (not just consecutive instructions) in the same cycle.

4.28.3 [10]  <4.10>  Rearrange  your  code  from  4.28.1  to  achieve  better  perfor-
mance on a 2-issue statically scheduled processor from Figure 4.69.

4.28.4 [10] <4.10> Repeat 4.28.2, but this time use your MIPS code from 4.28.3.

4.28.5 [10] <4.10> What is the speedup of going from a 1-issue processor to a 
2-issue processor  from Figure 4.69? Use your  code  from 4.28.1  for both 1-issue 
and 2-issue, and assume that 1,000,000 iterations of the loop are executed. As in 



4.28.2, assume that the processor has perfect branch predictions, and that a 2-issue 
processor can fetch any two instructions in the same cycle.

4.28.6 [10] <4.10> Repeat 4.28.5, but this time assume that in the 2-issue pro-
cessor one of the instructions to be executed in a cycle can be of any kind, and the 
other must be a non-memory instruction.

Exercise 4.29
In this exercise, we consider the execution of a loop in a statically scheduled super-
scalar processor. To simplify the exercise, assume that any combination of instruc-
tion  types  can execute  in  the  same cycle,  e.g.,  in  a 3-issue  superscalar,  the  three 
instructions can be 3 ALU operations, 3 branches, 3 load/store instructions, or any 
combination  of  these  instructions.  Note  that  this  only  removes  a  resource  con-
straint, but data and control dependences must still be handled correctly. Problems 
in this exercise refer to the following loop:

Loop

a. Loop:   ADDI R1,R1,4 
        LW R2,0(R1) 
        LW R3,16(R1) 
        ADD R2,R2,R1 
        ADD R2,R2,R3 
        BEQ R2,zero,Loop

b. Loop:   LW  R1,0(R1) 
        AND R1,R1,R2 
        LW  R2,0(R2) 
        BEQ R1,zero,Loop

4.29.1 [10] <4.10> If many (e.g., 1,000,000) iterations of this loop are executed, 
determine the fraction of all register reads that are useful in a 2-issue static super-
scalar processor.

4.29.2 [10]  <4.10>  If  many  (e.g.,  1,000,000)  iterations  of  this  loop  are  exe-
cuted,  determine  the  fraction  of  all  register  reads  that  are  useful  in  a  3-issue 
static superscalar processor. Compare this to your result for a 2-issue processor 
from 4.29.1.

4.29.3 [10] <4.10> If many (e.g., 1,000,000) iterations of this loop are executed, 
determine the fraction of cycles in which two or three register write ports are used 
in a 3-issue static superscalar processor. 

4.29.4 [20]  <4.10>  Unroll  this  loop  once  and  schedule  it  for  a  2-issue  static 
superscalar processor. Assume  that  the  loop always executes an even number of 

 4.16 Exercises 437



438 Chapter 4 The Processor

iterations. You can use registers R10 through R20 when changing the code to elimi-
nate dependences.

4.29.5 [20] <4.10> What is the speedup of using your code from 4.29.4 instead 
of  the original code with a 2-issue static superscalar processor? Assume that  the 
loop has many (e.g., 1,000,000) iterations.

4.29.6 [10] <4.10> What is the speedup of using your code from 4.29.4 instead 
of the original code with a pipelined (1-issue) processor? Assume that the loop has 
many (e.g., 1,000,000) iterations.

Exercise 4.30
In  this  exercise,  we  make  several  assumptions.  First,  we  assume  that  an  N-issue 
superscalar processor can execute any N instructions in the same cycle, regardless 
of their types. Second, we assume that every instruction is independently chosen, 
without regard for the instruction that precedes or follows it. Third, we assume that 
there are no stalls due to data dependences, that no delay slots are used, and that 
branches execute in the EX stage of the pipeline. Finally, we assume that instruc-
tions executed in the program are distributed as follows:

ALU Correctly Predicted BEQ Incorrectly Predicted BEQ LW SW 

a. 40% 20% 5% 25% 10% 

b. 45% 4% 1% 30% 20% 

4.30.1 [5] <4.10> What is the CPI achieved by a 2-issue static superscalar proces-
sor on this program?

4.30.2 [10] <4.10> In a 2-issue static superscalar whose predictor can only han-
dle one branch per cycle, what speedup is achieved by adding the ability to predict 
two branches per cycle? Assume a stall-on-branch policy for branches that the pre-
dictor cannot handle. 

4.30.3 [10] <4.10> In a 2-issue static superscalar processor that only has one reg-
ister write port, what speedup is achieved by adding a second register write port?

4.30.4 [5] <4.10> For a 2-issue static superscalar processor with a classic 5-stage 
pipeline, what speedup is achieved by making the branch prediction perfect?

4.30.5 [10] <4.10> Repeat 4.30.4, but for a 4-issue processor. What conclusion 
can  you  draw  about  the  importance  of  good  branch  prediction  when  the  issue 
width of the processor is increased?

4.30.6 <4.10> Repeat 4.30.5, but now assume that the 4-issue processor has 50 
pipeline stages. Assume that each of the original 5 stages is broken into 10 new 
stages,  and  that branches  are  executed  in  the first of  ten new EX  stages. What 



conclusion can you draw about the importance of good branch prediction when 
the pipeline depth of the processor is increased?

Exercise 4.31 
Problems in this exercise refer to the following loop, which is given as x86 code and also 
as an MIPS translation of that code. You can assume that this loop executes many itera-
tions before it exits. When determining performance, this means that you only need to 
determine what the performance would be in the “steady state,” not for the first few and 
the last few iterations of the loop. Also, you can assume full forwarding support and 
perfect branch prediction without delay slots, so the only hazards you have to worry 
about are resource hazards and data hazards. Note that most x86 instructions in this 
problem have two operands each. The last (usually second) operand of the instruction 
indicates both the first source data value and the destination. If the operation needs a 
second source data value, it is indicated by the other operand of the instruction. For 
example, “sub (edx),eax” reads the memory location pointed by register edx, subtracts 
that value from register eax, and puts the result back in register eax.

x86 Instructions MIPS-like Translation

a. Label:  mov   –4(esp), eax
        mov   –4(esp), edx
        add   (edi,eax,4),edx
        
        
        
        mov   edx, –4(esp)
        mov   –4(esp),eax
        cmp   0, (edi,eax,4) 

        jne   Label

Label:  lw    r2,–4(sp) 
        lw    r3,–4(sp) 
        sll   r2,r2,2 
        add   r2,r2,r4 
        lw    r2,0(r2) 
        add   r3,r3,r2 
        sw    r3,–4(sp) 
        lw    r2,–4(sp) 
        sll   r2,r2,2 
        add   r2,r2,r4 
        lw    r2,0(r2) 
        bne   r2,zero,Label

b. Label:  add   4, edx 
        mov   (edx), eax 
        add   4(edx), eax 
 
        add   8(edx), eax 
 
        mov   eax, –4(edx) 
        test  edx, edx 
        jl    Label

Label:  addi  r4,r4,4 
        lw    r3,0(r4) 
        lw    r2,4(r4) 
        add   r2,r2,r3 
        lw    r3,8(r4) 
        add   r2,r2,r3 
        sw    r2,–4(r4) 
        slt   r1,r4,zero 
        bne   r1,zero,Label

4.31.1 [20] <4.11> What CPI would be achieved if the MIPS version of this loop 
is executed on a 1-issue processor with static scheduling and a 5-stage pipeline? 

4.31.2 [20] <4.11> What CPI would be achieved if the X86 version of this loop 
is executed on a 1-issue processor with static  scheduling and a 7-stage pipeline? 
The stages of the pipeline are IF, ID, ARD, MRD, EXE, and WB. Stages IF and ID 
are similar  to those  in the 5-stage MIPS pipeline. ARD computes  the address of 
the memory location to be read, MRD performs the memory read, EXE executes 
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the operation, and WB writes the result to register or memory. The data memory 
has a read port (for instructions in the MRD stage) and a separate write port (for 
instructions in the WB stage).

4.31.3 [20] <4.11> What CPI would be achieved if the X86 version of this loop is 
executed on a processor that internally translates these instructions into MIPS-like 
micro-operations, then executes these micro-operations on a 1-issue 5-stage pipe-
line with static scheduling. Note that the instruction count used in CPI computa-
tion for this processor is the X86 instruction count.

4.31.4 [20] <4.11> What CPI would be achieved if the MIPS version of this loop 
is executed on a 1-issue processor with dynamic scheduling? Assume that our pro-
cessor  is not doing  register  renaming,  so you can only  reorder  instructions  that 
have no data dependences.

4.31.5 [30] <4.10, 4.11> Assuming that there are many free registers available, 
rename the MIPS version of this loop to eliminate as many data dependences as 
possible between instructions in the same iteration of the loop. Now repeat 4.31.4, 
using your new renamed code.

4.31.6 [20] <4.10, 4.11> Repeat 4.31.4, but this time assume that the processor 
assigns a new name to the result of each instruction as that instruction is decoded, 
and then renames registers used by subsequent instructions to use correct register 
values. 

Exercise 4.32
Problems  in  this  exercise  assume  that  branches  represent  the  following  fraction 
of all executed instructions, and the following branch predictor accuracy. Assume 
that the processor is never stalled by data and resource dependences, i.e., the pro-
cessor always fetches and executes the maximum number of instructions per cycle 
if there are no control hazards. For control dependences, the processor uses branch 
prediction and continues fetching from the predicted path. If the branch has been 
mispredicted, when the branch outcome is resolved the instructions fetched after 
the mispredicted branch are discarded, and in the next cycle the processor starts 
fetching from the correct path.

Branches as a % of All Executed Instructions Branch Prediction Accuracy 

a. 25 95%

b. 25 99%

4.32.1 [5] <4.11> How many instructions are expected to be executed between 
the time one branch misprediction is detected and the time the next branch mis-
prediction is detected?



The remaining problems in this exercise assume the following pipeline depth and 
that the branch outcome is determined in the following pipeline stage (counting 
from stage 1):

Pipeline Depth Branch Outcome Known in Stage 

a. 15 12

b. 30 20

4.32.2 [5]  <4.11>  In  a  4-issue  processor  with  these  pipeline  parameters,  how 
many branch instructions can be expected to be “in progress” (already fetched but 
not yet committed) at any given time?

4.32.3 [5] <4.11> How many instructions are fetched from the wrong path for 
each branch misprediction in a 4-issue processor?

4.32.4 [10] <4.11> What is the speedup achieved by changing the processor from 
4-issue to 8-issue? Assume that the 8-issue and the 4-issue processor differ only in 
the number of instructions per cycle, and are otherwise identical (pipeline depth, 
branch resolution stage, etc.).

4.32.5 [10] <4.11> What is the speedup of executing branches 1 stage earlier in 
a 4-issue processor?

4.32.6 [10] <4.11> What is the speedup of executing branches 1 stage earlier in 
an 8-issue processor? Discuss the difference between this result and the result from 
4.32.5.

Exercise 4.33
This exercise explores how branch prediction affects performance of a deeply pipe-
lined multiple-issue processor. Problems in this exercise refer to a processor with 
the following number of pipeline stages and instructions issued per cycle:

Pipeline Depth Issue Width 

a. 15 2

b. 30 8

4.33.1 [10] <4.11> How many register read ports should the processor have to 
avoid any resource hazards due to register reads?

4.33.2 [10] <4.11>  If  there are no branch mispredictions and no data depen-
dences, what is the expected performance improvement over a 1-issue processor 
with the classical 5-stage pipeline? Assume that the clock cycle time decreases in 
proportion to the number of pipeline stages.
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4.33.3 [10] <4.11> Repeat 4.33.2, but this  time every executed instruction has 
a  RAW  data  dependence  to  the  instruction  that  executes  right  after  it. You  can 
assume that no stall cycles are needed, i.e., forwarding allows consecutive instruc-
tions to execute in back-to-back cycles.

For the remaining three problems in this exercise, unless the problem specifies oth-
erwise, assume the following statistics about what percentage of instructions are 
branches, predictor accuracy, and performance loss due to branch mispredictions: 

Branches as a Fraction of 
All Executed Instructions 

Branches Execute 
in Stage 

Predictor Accuracy  Performance 
Loss 

a. 10% 9 96% 5%

b. 10% 5 98% 1%

4.33.4 [10]  <4.11>  If  we  have  the  given  fraction  of  branch  instructions  and 
branch prediction accuracy, what percentage of all cycles are entirely spent fetch-
ing wrong-path instructions? Ignore the performance loss number.

4.33.5 [20] <4.11> If we want to limit stalls due to mispredicted branches to no 
more than the given percentage of the ideal (no stalls) execution time, what should 
be our branch prediction accuracy? Ignore the given predictor accuracy number.

4.33.6 [10] <4.11> What should the branch prediction accuracy be if we are will-
ing to have a speedup of 0.5 (one half) relative to the same processor with an ideal 
branch predictor? 

Exercise 4.34
This exercise is designed to help you understand the discussion of the “Pipelining is 
easy” fallacy from Section 4.13. The first four problems in this exercise refer to the 
following MIPS instruction:

Instruction Interpretation 

a. AND Rd,Rs,Rt Reg[Rd]=Reg[Rs] AND Reg[Rt]

b. SW Rt,Offs(Rs) Mem[Reg[Rs]+Offs] = Reg[Rt]

4.34.1 [10] <4.13> Describe a pipelined datapath needed to support only  this 
instruction. Your datapath should be designed with the assumption that the only 
instructions that will ever be executed are instances of this instruction.

4.34.2 [10] <4.13> Describe the requirements of forwarding and hazard detec-
tion units for your datapath from 4.34.1.



4.34.3 [10]  <4.13>  What  needs  to  be  done  to  support  undefined  instruction 
exceptions  in  your  datapath  from  4.34.1?  Note  that  the  undefined  instruction 
exception should be triggered whenever the processor encounters any other kind 
of instruction.

The remaining two problems in this exercise also refer to this MIPS instruction:

Instruction Interpretation 

a. ADD Rd,Rs,Rt Reg[Rd] =Reg[Rs] +Reg[Rt] 

b. ADDI Rt,Rs,Imm Reg[Rt] =Reg[Rs] +Imm

4.34.4 [10] <4.13> Describe how to extend your datapath from 4.34.1 so it can 
also support this instruction. Your extended datapath should be designed to only 
support instances of these two instructions.

4.34.5 [10] <4.13> Repeat 4.34.2 for your extended datapath from 4.34.4.

4.34.6 [10] <4.13> Repeat 4.34.3 for your extended datapath from 4.34.4.

Exercise 4.35
This exercise is intended to help you better understand the relationship between 
ISA design and pipelining. Problems in this exercise assume that we have a mul-
tiple-issue  pipelined  processor  with  the  following  number  of  pipeline  stages, 
instructions  issued  per  cycle,  stage  in  which  branch  outcomes  are  resolved,  and 
branch predictor accuracy:

Pipeline 
Depth 

Issue 
Width 

Branches Execute 
in Stage 

Branch Predictor 
Accuracy 

Branches as a % of 
Instructions

a. 15 2 10 90% 25%

b. 25 4 15 96% 15%

4.35.1 [5] <4.8, 4.13> Control hazards can be eliminated by adding branch delay 
slots. How many delay slots must follow each branch if we want to eliminate all 
control hazards in this processor?

4.35.2 [10]  <4.8,  4.13> What  is  the  speedup  that  would  be  achieved  by  using 
four branch delay slots to reduce control hazards in this processor? Assume that 
there are no data dependences between instructions and that all  four delay slots 
can be filled with useful instructions without increasing the number of executed 
instructions. To make your computations easier, you can also assume that the mis-
predicted branch instruction is always the last instruction to be fetched in a cycle, 
i.e., no instructions that are in the same pipeline stage as the branch are fetched 
from the wrong path.
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4.35.3 [10]  <4.8,  4.13>  Repeat  4.35.2,  but  now  assume  that  10%  of  executed 
branches have all four delay slots filled with useful instruction, 20% have only three 
useful instructions in delay slots (the fourth delay slot is an NOP), 30% have only 
two useful instructions in delay slots, and 40% have no useful instructions in their 
delay slots.

The remaining four problems in this exercise refer to the following C loop:

a. for(i=0;i!=j;i++){ 
  c+=a[i]; 
}

b. for(i=0;i!=j;i+=2){ 
  c+=a[i]–a[i+1]; 
}

4.35.4 [10] <4.8, 4.13> Translate this C loop into MIPS instructions, assuming 
that our ISA requires one delay slot for every branch. Try to fill delay slots with 
non-NOP instructions when possible. You can assume that variables a, b, c, i, 
and j are kept in registers r1, r2, r3, r4, and r5.

4.35.5 [10] <4.7, 4.13> Repeat 4.35.4 for a processor that has two delay slots for 
every branch.

4.35.6 [10] <4.10, 4.13> How many iterations of your loop from 4.35.4 can be “in 
flight” within this processor’s pipeline? We say that an iteration is “in flight” when 
at least one of its instructions has been fetched and has not yet been committed.

Exercise 4.36
This exercise is intended to help you better understand the last pitfall from Section 
4.13—failure to consider pipelining in instruction set design. The first four prob-
lems in this exercise refer to the following new MIPS instruction:

Instruction Interpretation 

a. SWINC Rt,Offset(Rs) Mem[Reg[Rs] +Offset] =Reg[Rt] 
Reg[Rs] =Reg[Rs] +4

b. SWI    Rt,Rd(Rs) Mem[Reg[Rd] +Reg[Rs]]= Reg[Rt]

4.36.1 [10] <4.11, 4.13> Translate this instruction into MIPS micro-operations.

4.36.2 [10] <4.11, 4.13> How would you change the 5-stage MIPS pipeline to 
add support for micro-op translation needed to support this new instruction?



4.36.3 [20] <4.13> If we want to add this instruction to the MIPS ISA, discuss 
the changes to the pipeline (which stages, which structures in which stage) that are 
needed to directly (without micro-ops) support this instruction.

4.36.4 [10] <4.13> How often do you expect this  instruction can be used? Do 
you think that we would be justified if we added this instruction to the MIPS ISA?

The  remaining  two  problems  in  this  exercise  are  about  adding  a  new  ADDM 
instruction to the ISA. In a processor to which ADDM has been added, these prob-
lems assume the following breakdown of clock cycles according to which instruc-
tion is completed in that cycle (or which stall is preventing an instruction from 
completing):

ADD BEQ LW SW ADDM Control Stalls Data Stalls

a. 25% 20% 20% 10% 3% 10% 12%

b. 25% 10% 25% 20% 5% 10% 5%

4.36.5 [10]  <4.13>  Given  this  breakdown  of  execution  cycles  in  the  proces-
sor with direct support for the ADDM instruction, what speedup is achieved by 
replacing this instruction with a 3-instruction sequence (LW, ADD, and then SW)? 
Assume that the ADDM instruction is somehow (magically) supported with a classi-
cal 5-stage pipeline without creating resource hazards.

4.36.6 [10] <4.13> Repeat 4.36.5, but now assume that ADDM was supported by 
adding a pipeline stage. When ADDM is translated, this extra stage can be removed 
and, as a result, half of the existing data stalls are eliminated. Note that the data stall 
elimination applies only to stalls that existed before ADDM translation, not to stalls 
added by the ADDM translation itself. 

Exercise 4.37
This exercise explores some of the tradeoffs involved in pipelining, such as clock 
cycle time and utilization of hardware resources. The first three problems in this 
exercise refer to the following MIPS code. The code is written with an assumption 
that the processor does not use delay slots.

a.         SW R16,–100(R6) 
        LW R16,8(R6) 
        BEQ R5,R4,Label ; Assume R5 != R4 
        ADD R5,R16,R4 
        SLT R5,R15,R4

b.         OR R1,R2,R3 
        SW R1,0(R2) 
        BEQ R1,R0,Label ; Assume R1 == R0 
        OR R2,R1,R0 
Label:  ADD R1,R1,R3
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4.37.1 [5] <4.3, 4.14> Which parts of the basic single-cycle datapath are used by 
all of these instructions? Which parts are the least utilized?

4.37.2 [10] <4.6, 4.14> What is the utilization for the read and for the write port 
of the data memory unit?

4.37.3 [10] <4.6, 4.14> Assume that we already have a single-cycle design. How 
many bits  in  total do we need  for pipeline  registers  to  implement  the pipelined 
design?

The remaining three problems in this exercise assume that components of the dat-
apath have the following latencies:

I-Mem Add Mux ALU Regs D-Mem Sign-Extend Shift-Left-2

a. 200ps 70ps 20ps 90ps 90ps 250ps 15ps 10ps

b. 750ps 200ps 50ps 250ps 300ps 500ps 100ps 5ps

4.37.4 [10] <4.3, 4.5, 4.14> Given these latencies for individual elements of the 
datapath, compare clock cycle times of the single-cycle and the 5-stage pipelined 
datapath.

4.37.5 [10] <4.3, 4.5, 4.14> Repeat 4.37.4, but now assume that we only want to 
support ADD instructions.

4.37.6 [20] <4.3, 4.5, 4.14> If it costs $1 to reduce the latency of a single compo-
nent of the datapath by 1ps, what would it cost to reduce the clock cycle time by 
20% in the single-cycle and in the pipelined design?

Exercise 4.38
This  exercise  explores  energy  efficiency  and  its  relationship  with  performance. 
Problems in this exercise assume the following energy consumption for activity in 
Instruction memory, Registers, and Data memory. You can assume that the other 
components of the datapath spend a negligible amount of energy.

I-Mem 1 Register Read Register Write D-Mem Read D-Mem Write

a. 140pJ 70pJ 60pJ 140pJ 120pJ 

b. 70pJ 40pJ 40pJ 90pJ 100pJ 

4.38.1 [10] <4.3, 4.6, 4.14> How much energy is spent to execute an ADD instruc-
tion in a single-cycle design and in the 5-stage pipelined design?



4.38.2 [10]  <4.6,  4.14>  What  is  the  worst-case  MIPS  instruction  in  terms  of 
energy consumption, and what is the energy spent to execute it?

4.38.3 [10] <4.6, 4.14> If energy reduction is paramount, how would you change 
the pipelined design? What is the percentage reduction in the energy spent by an 
LW instruction after this change?

The remaining three problems in this exercise assume that components in the data-
path have the following latencies. You can assume that the other components of the 
datapath have negligible latencies.

I-Mem Control Register Read or Write ALU D-Mem Read or Write 

a. 200ps 150ps 90ps 90ps 250ps 

b. 750ps 500ps 300ps 250ps 500ps 

4.38.4 [10] <4.6, 4.14> What is the performance impact of your changes from 
4.38.3?

4.38.5 [10] <4.6, 4.14> We can eliminate the MemRead control signal and have 
the data memory be read in every cycle, i.e., we can permanently have MemRead=1. 
Explain why the processor still  functions correctly after this change. What  is  the 
effect of this change on clock frequency and energy consumption?

4.38.6 [10] <4.6, 4.14> If an idle unit spends 10% of the power it would spend 
if it were active, what is the energy spent by the instruction memory in each cycle? 
What percentage of the overall energy spent by the instruction memory does this 
idle energy represent?

Exercise 4.39
Problems in this exercise assume that, during an execution of the program, proces-
sor cycles are spent in the following way. A cycle is “spent” on an instruction if the 
processor completes that type of instruction in that cycle; a cycle is “spent” on a 
stall if the processor could not complete an instruction in that cycle because of a 
stall.

ADD BEQ LW SW Control Stalls Data Stalls

a. 25% 20% 20% 10% 10% 15%

b. 25% 10% 25% 20% 10% 10%

Problems  in  this  exercise  also  assume  that  individual  pipeline  stages  have  the 
 following latency and energy consumption. The stage expends this energy in order 
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to do its work within the given latency. Note that no energy is spent in the MEM 
stage during a cycle  in which there  is no memory access. Similarly, no energy  is 
spent in the WB stage in a cycle in which there is no register write. In several of 
the  following  problems,  we  make  assumptions  about  how  energy  consumption 
changes if a stage performs its work slower or faster than this.

IF ID EX MEM WB

a. 250ps/100pJ 350ps/45pJ 150ps/50pJ 300ps/150pJ 200ps/50pJ 

b. 200ps/75pJ 170ps/45pJ 220ps/100pJ 210ps/100pJ 150ps/35pJ 

4.39.1 [10] <4.14> What is the performance (in instructions per second)?

4.39.2 [10] <4.14> What is the power dissipated in watts (joules per second)?

4.39.3 [10] <4.6, 4.14> Which pipeline stages can you slow down and by how 
much, without affecting the clock cycle time?

4.39.4 [20] <4.6, 4.14> It is often possible to sacrifice some speed in a circuit in 
order to reduce its energy consumption. Assume that we can reduce energy con-
sumption by a factor of X (new energy is 1/X times the old energy) when we increase 
the  latency by a  factor of X  (new  latency  is X  times  the old  latency). Using  this  
tradeoff, we can adjust latencies of pipeline stages to minimize energy  consumption 
without sacrificing any performance. Repeat 4.39.2 for this adjusted processor.

4.39.5 [10] <4.6, 4.14> Repeat 4.39.4, but this time the goal is to minimize energy 
spent per instruction while increasing the clock cycle time by no more than 10%.

4.39.6 [10] <4.6, 4.14> Repeat 4.39.5, but now assume that energy consumption 
is  reduced by a  factor of X2 when  latency  is made X times  longer. What are  the 
power savings compared to what you computed for 4.39.2?

§4.1, page 303: 3 of 5: Control, Datapath, Memory. Input and Output are missing.
§4.2, page 307: false. Edge-triggered state elements make simultaneous reading and 
writing both possible and unambiguous.
§4.3, page 315: I. A. II. C.
§4.4, page 330: Yes, Branch and ALUOp0 are identical. In addition, MemtoReg and 
RegDst are inverses of one another. You don’t need an inverter; simply use the other 
signal and flip the order of the inputs to the multiplexor!
§4.5, page 343: 1. Stall on the LW result. 2. Bypass the first ADD result written into 
$t1. 3. No stall or bypass required.
§4.6, page 358: Statements 2 and 4 are correct; the rest are incorrect.
§4.8, page 383: 1. Predict not taken. 2. Predict taken. 3. Dynamic prediction. 
§4.9, page 391: The first instruction, since it is logically executed before the others.

Answers to 
Check Yourself



§4.10, page 403: 1. Both. 2. Both. 3. Software. 4. Hardware. 5. Hardware. 6. Hardware. 
7. Both. 8. Hardware. 9. Both.
§4.11, page 404: First two are false and last two are true.
§4.12,   page 4.12-3: Statements 1 and 3 are both true. 
§4.12,   page 4.12-5: The best answer is 2 (see the Elaboration on page 371)
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5
Ideally one would desire an 
indefinitely large memory 
capacity such that any 
particular . . . word would be 
im mediately available. . . . We 
are . . .  forced to recognize the 
possibility of constructing a 
hierarchy of memories, each 
of which has greater capacity 
than the preceding but which 
is less quickly accessible.

A. W. Burks, H. H. Goldstine, and J. von 
Neumann
Preliminary Discussion of the Logical Design of an 
Electronic Computing Instrument, 1946
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452 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

 5.1 Introduction

From the earliest days of computing, programmers have wanted unlimited 
amounts of fast memory. The topics in this chapter aid programmers by creating 
that illusion. Before we look at creating the illusion, let’s consider a simple analogy 
that illustrates the key principles and mechanisms that we use.

Suppose you were a student writing a term paper on important historical develop
ments in computer hardware. You are sitting at a desk in a library with a collection 
of books that you have pulled from the shelves and are examining. You find that 
several of the important computers that you need to write about are described in 
the books you have, but there is nothing about the EDSAC. There fore, you go back 
to the shelves and look for an additional book. You find a book on early  British 
computers that covers the EDSAC. Once you have a good selec tion of books on the 
desk in front of you, there is a good probability that many of the topics you need 
can be found in them, and you may spend most of your time just using the books 
on the desk without going back to the shelves. Having several books on the desk 
in front of you saves time compared to having only one book there and constantly 
having to go back to the shelves to return it and take out another. 

The same principle allows us to create the illusion of a large memory that we 
can access as fast as a very small memory. Just as you did not need to access all the 
books in the library at once with equal probability, a program does not access all 
of its code or data at once with equal probability. Otherwise, it would be impossi ble 
to make most memory accesses fast and still have large memory in computers, just 
as it would be impossible for you to fit all the  library books on your desk and still 
find what you wanted quickly. 

This principle of locality underlies both the way in which you did your work in 
the library and the way that programs operate. The principle of locality states that 
programs access a relatively small portion of their address space at any instant of 
time, just as you accessed a very small portion of the library’s collection. There are 
two different types of locality:

■	 Temporal locality (locality in time): if an item is referenced, it will tend to be 
referenced again soon. If you recently brought a book to your desk to look at, 
you will probably need to look at it again soon.

 ■ Spatial locality (locality in space): if an item is referenced, items whose 
addresses are close by will tend to be referenced soon. For example, when 

temporal locality The 
princi ple stating that if a 
data  location is referenced 
then it will tend to be 
referenced again soon.

spatial locality The 
locality principle stating 
that if a data location is 
referenced, data loca tions 
with nearby addresses 
will tend to be referenced 
soon.



you brought out the book on early English computers to find out about the 
EDSAC, you also noticed that there was another book shelved next to it about 
early mechanical computers, so you also brought back that book and, later 
on, found something useful in that book. Libraries put books on the same 
topic together on the same shelves to increase spatial locality. We’ll see how 
memory hierarchies use spatial locality in a little later in this chap ter.

Just as accesses to books on the desk naturally exhibit locality, locality in pro
grams arises from simple and natural program structures. For example, most 
pro grams contain loops, so instructions and data are likely to be accessed repeat
edly, showing high amounts of temporal locality. Since instructions are normally 
accessed sequentially, programs also show high spatial locality. Accesses to data also 
exhibit a natural spatial locality. For example, sequential accesses to elements of an 
array or a record will naturally have high degrees of spatial locality. 

We take advantage of the principle of locality by implementing the memory 
of a computer as a memory hierarchy. A memory hierarchy consists of multiple 
lev els of memory with different speeds and sizes. The faster memories are more 
expensive per bit than the slower memories and thus are smaller. 

Today, there are three primary technologies used in building memory hierar
chies. Main memory is implemented from DRAM (dynamic random access 
memory), while levels closer to the processor (caches) use SRAM (static random 
access memory). DRAM is less costly per bit than SRAM, although it is substan
tially slower. The price difference arises because DRAM uses significantly less area 
per bit of memory, and DRAMs thus have larger capacity for the same amount of 
silicon; the speed difference arises from several factors described in Section C.9 of 

 Appendix C. The third technology, used to implement the largest and slowest 
level in the hierarchy, is usually magnetic disk. (Flash mem ory is used instead of 
disks in many embedded devices; see Section 6.4.) The access time and price per 
bit vary widely among these technologies, as the table below shows, using typical 
values for 2008:

Memory technology Typical access time $ per GB in 2008

SRAM 0.5–2.5 ns $2000–$5000

DRAM 50–70 ns $20–$75

Magnetic disk 5,000,000–20,000,000 ns $0.20–$2

Because of these differences in cost and access time, it is advantageous to build 
memory as a hierarchy of levels. Figure 5.1 shows the faster memory is close to the 
processor and the slower, less expensive memory is below it. The goal is to present 
the user with as much memory as is available in the cheapest technology, while 
providing access at the speed offered by the fastest memory.

memory hierarchy 
A struc ture that uses 
multiple levels of 
memories; as the distance 
from the processor 
increases, the size of the 
memories and the access 
time both  increase.
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The data is similarly hierarchical: a level closer to the processor is generally a 
subset of any level further away, and all the data is stored at the lowest level. By 
analogy, the books on your desk form a subset of the library you are working in, 
which is in turn a subset of all the libraries on campus. Furthermore, as we move 
away from the processor, the levels take progressively longer to access, just as we 
might encounter in a hierarchy of campus libraries.

A memory hierarchy can consist of multiple levels, but data is copied between 
only two adjacent levels at a time, so we can focus our attention on just two levels. 
The upper level—the one closer to the processor—is smaller and faster than the 
lower level, since the upper level uses technology that is more expensive. Figure 5.2 
shows that the minimum unit of infor mation that can be either present or not 
present in the twolevel hierarchy is called a block or a line; in our library analogy, 
a block of information is one book. 

If the data requested by the processor appears in some block in the upper level, 
this is called a hit (analogous to your finding the information in one of the books 
on your desk). If the data is not found in the upper level, the request is called a miss. 
The lower level in the hierarchy is then accessed to retrieve the block con taining the 
requested data. (Continuing our analogy, you go from your desk to the shelves to 
find the desired book.) The hit rate, or hit ratio, is the fraction of mem ory ac cesses 
found in the upper level; it is often used as a measure of the perfor mance of the 
memory hierarchy. The miss rate (1 - hit rate) is the fraction of memory accesses 
not found in the  upper level.

block (or line) The 
minimum unit of 
information that can 
be  either present or not 
present in a cache.

hit rate The fraction of 
memory accesses found 
in a level of the memory 
hierarchy.

miss rate The fraction 
of mem ory accesses not 
found in a level of the 
memory hierarchy.

FIGURE 5.1 The basic structure of a memory hierarchy. By implementing the memory system 
as a hierarchy, the user has the illusion of a memory that is as large as the largest level of the hierarchy, but 
can be accessed as if it were all built from the fastest memory. Flash memory has replaced disks in many 
embedded devices, and may lead to a new level in the storage hierarchy for desktop and server computers; 
see Section 6.4. 

Speed
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Size Cost ($/bit)
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Since performance is the major reason for having a memory hierarchy, the time 
to service hits and misses is important. Hit time is the time to access the upper level 
of the memory hierarchy, which includes the time needed to determine whether 
the access is a hit or a miss (that is, the time needed to look through the books 
on the desk). The miss penalty is the time to replace a block in the upper level with 
the corresponding block from the lower level, plus the time to deliver this block to 
the processor (or the time to get another book from the shelves and place it on the 
desk). Because the upper level is smaller and built using faster memory parts, the 
hit time will be much smaller than the time to access the next level in the hierarchy, 
which is the major component of the miss penalty. (The time to examine the books 
on the desk is much smaller than the time to get up and get a new book from the 
shelves.)

As we will see in this chapter, the concepts used to build memory systems affect 
many other aspects of a computer, including how the operating system manages 
memory and I/O, how compilers generate code, and even how appli cations 
use the computer. Of course, because all programs spend much of their time 
accessing memory, the memory system is necessarily a major factor in determining 
performance. The reliance on memory hierarchies to achieve performance has 
meant that programmers, who used to be able to think of memory as a flat, 
random access storage device, now need to understand that memory is a hierarchy 
to get good performance. We show how important this understanding is in later 
examples, such as Figure 5.18 on page 490. 

Since memory systems are critical to performance, computer designers devote a 
great deal of attention to these systems and develop sophisticated mechanisms for 
improving the performance of the memory system. In this chapter, we discuss the 
major conceptual ideas, although we use many simplifications and abstractions to 
keep the material manageable in length and complexity.

hit time The time 
required to access a level 
of the  memory hierarchy, 
including the time needed 
to  determine whether the 
access is a hit or a miss.

miss penalty The time 
required to fetch a block 
into a level of the memory 
hierarchy from the lower 
level, including the time to 
access the block, transmit 
it from one level to the 
other, insert it in the level 
that experienced the miss, 
and then pass the block to 
the requestor.

FIGURE 5.2 Every pair of levels in the memory hierarchy can be thought of as having an 
upper and lower level. Within each level, the unit of information that is present or not is called a block 
or a line. Usually we transfer an entire block when we copy something between levels. 

Processor

Data is transferred
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Programs exhibit both temporal locality, the tendency to reuse recently 
accessed data items, and spatial locality, the tendency to reference data 
items that are close to other recently accessed items. Memory hierarchies 
take advantage of temporal locality by keeping more recently accessed 
data items closer to the processor. Memory hierarchies take advantage of 
spatial locality by moving blocks consisting of multiple contiguous words 
in memory to upper levels of the hierarchy. 

Figure 5.3 shows that a memory hierarchy uses smaller and faster 
memory technologies close to the processor. Thus, accesses that hit in the 
highest level of the hierarchy can be processed quickly. Accesses that miss 
go to lower levels of the hierarchy, which are larger but slower. If the hit 
rate is high enough, the memory hierarchy has an effective access time 
close to that of the highest (and fastest) level and a size equal to that of the 
lowest (and largest) level. 

In most systems, the memory is a true hierarchy, meaning that data 
cannot be present in level i unless it is also present in level i + 1.

The BIG
Picture

FIGURE 5.3 This diagram shows the structure of a memory hierarchy: as the distance 
from the processor increases, so does the size. This structure, with the appropriate operating 
mechanisms, allows the processor to have an access time that is determined primarily by level 1 of the hier
archy and yet have a memory as large as level n. Maintaining this illusion is the subject of this chapter. 
Although the local disk is normally the bottom of the hierarchy, some systems use tape or a file server over a 
local area network as the next levels of the hierarchy. 

CPU

Level 1

Level 2

Level n

Increasing distance

from the CPU in

access time
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Which of the following statements are generally true?

1. Caches take advantage of temporal locality.

2. On a read, the value returned depends on which blocks are in the cache.

3. Most of the cost of the memory hierarchy is at the highest level.

4. Most of the capacity of the memory hierarchy is at the lowest level.

  5.2 The Basics of Caches

In our library example, the desk acted as a cache—a safe place to store things 
(books) that we needed to examine. Cache was the name chosen to represent the 
level of the memory hierarchy between the processor and main memory in the first 
commercial computer to have this extra level. The memories in the datapath in 
Chapter 4 are simply replaced by caches. Today, although this remains the dominant 
use of the word cache, the term is also used to refer to any storage managed to take 
advantage of locality of access. Caches first appeared in research computers in the 
early 1960s and in production computers later in that same decade; every general
purpose computer built today, from servers to lowpower embedded pro cessors, 
includes caches. 

In this section, we begin by looking at a very simple cache in which the processor 
requests are each one word and the blocks also consist of a single word. (Readers 
already familiar with cache basics may want to skip to Section 5.3.) Figure 5.4 
shows such a simple cache, before and after requesting a data item that is not 
initially in the cache. Before the request, the cache contains a collection of recent 
references X1, X2, . . . , Xn - 1, and the processor requests a word Xn that is not in 
the cache. This request results in a miss, and the word Xn is brought from memory 
into the cache. 

In looking at the scenario in Figure 5.4, there are two questions to answer: How 
do we know if a data item is in the cache? Moreover, if it is, how do we find it? The 
answers are related. If each word can go in exactly one place in the cache, then it is 
straightforward to find the word if it is in the cache. The simplest way to assign a 
location in the cache for each word in memory is to assign the cache location based 
on the address of the word in memory. This cache structure is called direct mapped, 
since each memory location is mapped directly to exactly one location in the cache. 
The typical mapping between addresses and cache loca tions for a directmapped 
cache is usually simple. For example, almost all directmapped caches use this 
mapping to find a block:

(Block address) modulo (Number of blocks in the cache)

Check  
Yourself

Cache: a safe place 
for hid ing or storing 
things.

Webster’s New World 
Diction  ary of the 
American Language,  
Third College Edition, 
1988

direct-mapped cache 
A cache structure in which 
each memory location is 
mapped to exactly one 
location in the cache.
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If the number of entries in the cache is a power of 2, then modulo can be com puted  
simply by using the loworder log2 (cache size in blocks) bits of the address. 
Thus, an 8block cache uses the three lowest bits (8 = 23) of the block address. 
For example, Figure 5.5 shows how the memory addresses between 1ten (00001two) 
and 29ten (11101two) map to locations 1ten (001two) and 5ten (101two) in a direct
mapped cache of eight words. 

Because each cache location can contain the contents of a number of different 
memory locations, how do we know whether the data in the cache corresponds 
to a requested word? That is, how do we know whether a requested word is in the 
cache or not? We answer this question by adding a set of tags to the cache. The tags 
 contain the address information required to identify whether a word in the cache 
corresponds to the requested word. The tag needs only to contain the upper por
tion of the address, corresponding to the bits that are not used as an index into the 
cache. For example, in Figure 5.5 we need only have the upper 2 of the 5 address 
bits in the tag, since the lower 3bit index field of the address selects the block. 
Architects omit the index bits because they are redundant, since by defini tion the 
index field of any address of a cache block must be that block number. 

We also need a way to recognize that a cache block does not have valid infor
mation. For instance, when a processor starts up, the cache does not have good 
data, and the tag fields will be meaningless. Even after executing many instruc tions, 
some of the cache entries may still be empty, as in Figure 5.4. Thus, we need to 
know that the tag should be ignored for such entries. The most common method 
is to add a valid bit to indicate whether an entry contains a valid address. If the bit 
is not set, there cannot be a match for this block. 

tag A field in a table used 
for a memory hierarchy 
that contains the address 
information required 
to identify whether the 
associated block in the 
hierarchy corre sponds to 
a requested word.

valid bit A field in the 
tables of a memory 
hierarchy that indicates 
that the associated block 
in the hierarchy contains 
valid data.

FIGURE 5.4 The cache just before and just after a reference to a word Xn that is not 
 initially in the cache. This reference causes a miss that forces the cache to fetch Xn from memory and 
insert it into the cache. 
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For the rest of this section, we will focus on explaining how a cache deals with 
reads. In general, handling reads is a little simpler than handling writes, since reads 
do not have to change the contents of the cache. After seeing the basics of how 
reads work and how cache misses can be handled, we’ll examine the cache designs 
for real computers and detail how these caches handle writes. 

Accessing a Cache

Below is a sequence of nine memory references to an empty eightblock cache, 
including the action for each reference. Figure 5.6 shows how the contents of the 
cache change on each miss. Since there are eight blocks in the cache, the loworder 
three bits of an address give the block number:

FIGURE 5.5 A direct-mapped cache with eight entries showing the addresses of memory 
words between 0 and 31 that map to the same cache locations. Because there are eight words in 
the cache, an address X maps to the directmapped cache word X modulo 8. That is, the loworder log2(8) = 
3 bits are used as the cache index. Thus, addresses 00001two, 01001two, 10001two, and 11001two all map to entry 
001two of the cache, while addresses 00101two, 01101two, 10101two, and 11101two all map to entry 101two of 
the cache. 

Cache

Memory
00001 10001
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10
0

10
1
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1

11
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00
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00
1
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1

00101 01001 01101 10101 11001 11101

 5.2 The Basics of Caches 459



460 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Decimal address 
of reference

Binary address 
of reference

Hit or miss 
in cache

Assigned cache block 
(where found or placed)

22 10110two miss (5.6b) (10110two mod 8) = 110two

26 11010two miss (5.6c) (11010two mod 8) = 010two

22 10110two hit (10110two mod 8) = 110two

26 11010two hit (11010two mod 8) = 010two

16 10000two miss (5.6d) (10000two mod 8) = 000two

3 00011two miss (5.6e) (00011two mod 8) = 011two

16 10000two hit (10000two mod 8) = 000two

18 10010two miss (5.6f) (10010two mod 8) = 010two

16 10000two hit (10000two mod 8) = 000two

Since the cache is empty, several of the first references are misses; the caption 
of Figure 5.6 describes the actions for each memory reference. On the eighth refer
ence we have conflicting demands for a block. The word at address 18 (10010two) 
should be brought into cache block 2 (010two). Hence, it must replace the word at 
address 26 (11010two), which is already in cache block 2 (010two). This behavior 
allows a cache to take advantage of temporal locality: recently referenced words 
 replace less recently  referenced words. 

This situation is directly analogous to needing a book from the shelves and 
having no more space on your desk—some book already on your desk must be 
returned to the shelves. In a directmapped cache, there is only one place to put the 
newly requested item and hence only one choice of what to replace. 

We know where to look in the cache for each possible address: the low order bits 
of an address can be used to find the unique cache entry to which the address could 
map. Figure 5.7 shows how a referenced address is divided into 

 ■ A tag field, which is used to compare with the value of the tag field of the 
cache

 ■ A cache index, which is used to select the block

The index of a cache block, together with the tag contents of that block, uniquely 
specifies the memory address of the word contained in the cache block. Because 
the index field is used as an address to reference the cache, and because an nbit 
field has 2n values, the total number of entries in a directmapped cache must be 
a power of 2. In the MIPS architecture, since words are aligned to multiples of 
four bytes, the least significant two bits of every address specify a byte within a 
word. Hence, the least significant two bits are ignored when selecting a word in 
the block. 

The total number of bits needed for a cache is a function of the cache size and 
the address size, because the cache includes both the storage for the data and the 
tags. The size of the block above was one word, but normally it is several. For the 
following situation:



Index V Tag Data Index V Tag Data

000 N 000 N

001 N 001 N

010 N 010 N

011 N 011 N

100 N 100 N

101 N 101 N

110 N 110 Y 10two Memory (10110two)

111 N 111 N

a. The initial state of the cache after power-on b. After handling a miss of address (10110two)

Index V Tag Data Index V Tag Data

000 N 000 Y 10two Memory (10000two)

001 N 001 N

010 Y 11two Memory (11010two) 010 Y 11two Memory (11010two)

011 N 011 N

100 N 100 N

101 N 101 N

110 Y 10two Memory (10110two) 110 Y 10two Memory (10110two)

111 N 111 N

c. After handling a miss of address (11010two) d. After handling a miss of address (10000two)

Index V Tag Data Index V Tag Data

000 Y 10two Memory (10000two) 000 Y 10two Memory (10000two)

001 N 001 N

010 Y 11two Memory (11010two) 010 Y 10two Memory (10010two)

011 Y 00two Memory (00011two) 011 Y 00two Memory (00011two)

100 N 100 N

101 N 101 N

110 Y 10two Memory (10110two) 110 Y 10two Memory (10110two)

111 N 111 N

e. After handling a miss of address (00011two) f. After handling a miss of address (10010two)

FIGURE 5.6 The cache contents are shown after each reference request that misses, with the index and tag fields 
shown in binary for the sequence of addresses on page 460. The cache is initially empty, with all valid bits (V entry in cache) 
turned off (N). The processor requests the following addresses: 10110two (miss), 11010two (miss), 10110two (hit), 11010two (hit), 10000two 
(miss), 00011two (miss), 10000two (hit), 10010two (miss), and 10000two (hit). The figures show the cache contents after each miss in the 
sequence has been handled. When address 10010two (18) is referenced, the entry for address 11010two (26) must be replaced, and a reference to 
11010two will cause a subsequent miss. The tag field will contain only the upper portion of the address. The full address of a word contained in 
cache block i with tag field j for this cache is j × 8 + i, or equivalently the concatenation of the tag field j and the index i. For example, in cache f 
above, index 010two has tag 10two and corresponds to address 10010two. 
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 ■ 32bit byte addresses

 ■ A directmapped cache 

 ■ The cache size is 2n blocks, so n bits are used for the index

 ■ The block size is 2m words (2m+2 bytes), so m bits are used for the word within 
the block, and two bits are used for the byte part of the address

the size of the tag field is

32 - (n + m + 2).

FIGURE 5.7 For this cache, the lower portion of the address is used to select a cache 
entry consisting of a data word and a tag. This cache holds 1024 words or 4 KB. We assume 32bit 
addresses in this chapter. The tag from the cache is compared against the upper portion of the address to 
determine whether the entry in the cache corresponds to the requested address. Because the cache has 210 
(or 1024) words and a block size of one word, 10 bits are used to index the cache, leaving 32 - 10 - 2 = 20 bits 
to be compared against the tag. If the tag and upper 20 bits of the address are equal and the valid bit is on, 
then the request hits in the cache, and the word is supplied to the processor. Otherwise, a miss occurs. 

Address (showing bit positions)

Data

Hit

Data

Tag

Valid Tag

3220
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The total number of bits in a directmapped cache is 

2n × (block size + tag size + valid field size). 

Since the block size is 2m words (2m+5 bits), and we need 1 bit for the valid field, the 
number of bits in such a cache is 

2n × (2m × 32 + (32 - n - m - 2) + 1) = 2n × (2m × 32 + 31 - n - m). 

Although this is the actual size in bits, the naming convention is to exclude the size 
of the tag and valid field and to count only the size of the data. Thus, the cache in 
Figure 5.7 is called a 4 KB cache.

Bits in a Cache

How many total bits are required for a directmapped cache with 16 KB of data 
and 4word blocks, assuming a 32bit address?

We know that 16 KB is 4K (212) words. With a block size of 4 words (22), there 
are 1024 (210) blocks. Each block has 4 × 32 or 128 bits of data plus a tag, which 
is 32 – 10 – 2 – 2 bits, plus a valid bit. Thus, the total cache size is

210 × (4 × 32 + (32 - 10 - 2 - 2) + 1) = 210 × 147 = 147 Kbits

or 18.4 KB for a 16 KB cache. For this cache, the total number of bits in the 
cache is about 1.15 times as many as needed just for the storage of the data.

Mapping an Address to a Multiword Cache Block

Consider a cache with 64 blocks and a block size of 16 bytes. To what block 
number does byte address 1200 map?

We saw the formula on page 457. The block is given by

(Block address) modulo (Number of blocks in the cache) 

EXAMPLE

ANSWER

EXAMPLE

ANSWER
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where the address of the block is

  
Byte address

    
Bytes per block

  

Notice that this block address is the block containing all addresses between

    Byte address
    

Bytes per block
     × Bytes per block

and

    Byte address
    

Bytes per block
     × Bytes per block + (Bytes per block - 1)

Thus, with 16 bytes per block, byte address 1200 is block address

    1200 ____ 16     = 75

which maps to cache block number (75 modulo 64) = 11. In fact, this block 
maps all addresses between 1200 and 1215.

Larger blocks exploit spatial locality to lower miss rates. As Figure 5.8 shows, 
increasing the block size usually decreases the miss rate. The miss rate may go up 
eventually if the block size becomes a significant fraction of the cache size, because 
the number of blocks that can be held in the cache will become small, and there will 
be a great deal of competition for those blocks. As a result, a block will be bumped 
out of the cache before many of its words are accessed. Stated alterna tively, spatial 
locality among the words in a block decreases with a very large block; consequently, 
the benefits in the miss rate become smaller.

A more serious problem associated with just increasing the block size is that the 
cost of a miss increases. The miss penalty is determined by the time required to fetch 
the block from the next lower level of the hierarchy and load it into the cache. The 
time to fetch the block has two parts: the latency to the first word and the transfer 
time for the rest of the block. Clearly, unless we change the memory system, the 
transfer time—and hence the miss penalty—will likely increase as the block size 
increases. Furthermore, the improvement in the miss rate starts to decrease as the 
blocks become larger. The result is that the increase in the miss penalty overwhelms 
the decrease in the miss rate for blocks that are too large, and cache performance 
thus decreases. Of course, if we design the memory to transfer larger blocks more 
efficiently, we can increase the block size and  obtain further improvements in cache 
performance. We discuss this topic in the next section.



Elaboration: Although it is hard to do anything about the longer latency component of 
the miss penalty for large blocks, we may be able to hide some of the transfer time so 
that the miss penalty is effectively smaller. The simplest method for doing this, called 
early restart, is sim ply to resume execution as soon as the requested word of the block 
is returned, rather than wait for the entire block. Many processors use this technique 
for instruction access, where it works best. Instruction accesses are largely sequential, 
so if the memory system can deliver a word every clock cycle, the processor may be 
able to restart operation when the requested word is returned, with the memory system 
delivering new instruction words just in time. This technique is usually less effective 
for data caches because it is likely that the words will be requested from the block in a 
less predictable way, and the probability that the processor will need another word from 
a different cache block before the transfer completes is high. If the processor cannot 
access the data cache because a transfer is ongoing, then it must stall.

An even more sophisticated scheme is to organize the memory so that the requested 
word is transferred from the memory to the cache first. The remainder of the block 
is then transferred, starting with the address after the requested word and wrapping 
around to the beginning of the block. This technique, called requested word first or 
critical word first, can be slightly faster than early restart, but it is limited by the same 
properties that limit early restart. 

Handling Cache Misses

Before we look at the cache of a real system, let’s see how the control unit deals 
with cache misses. (We describe a cache controller in detail in Section 5.7). The 
control unit must detect a miss and process the miss by fetching the requested data 

cache miss A request for 
data from the cache that 
cannot be filled because 
the data is not present in 
the cache.

FIGURE 5.8 Miss rate versus block size. Note that the miss rate actually goes up if the block size is 
too large relative to the cache size. Each line represents a cache of different size. (This figure is independent 
of associativity, discussed soon.) Unfortunately, SPEC CPU2000 traces would take too long if block size were 
included, so this data is based on SPEC92. 
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from memory (or, as we shall see, a lowerlevel cache). If the cache reports a hit, the 
computer continues using the data as if nothing happened. 

Modifying the control of a processor to handle a hit is trivial;  misses, however, 
require some extra work. The cache miss handling is done in collaboration with 
the processor con trol unit and with a separate controller that initiates the memory 
access and refills the cache. The processing of a cache miss creates a pipeline stall 
(Chapter 4) as opposed to an interrupt, which would require saving the state of 
all registers. For a cache miss, we can stall the entire processor, essentially freezing 
the contents of the temporary and programmervisible registers, while we wait 
for memory. More sophisticated outoforder processors can allow execution of 
instructions while waiting for a cache miss, but we’ll assume inorder processors 
that stall on cache misses in this section.

Let’s look a little more closely at how instruction misses are handled; the same 
approach can be easily extended to handle data misses. If an instruction access 
results in a miss, then the content of the Instruction register is invalid. To get 
the proper instruction into the cache, we must be able to instruct the lower level 
in the memory hierarchy to perform a read. Since the program counter is incre
mented in the first clock cycle of execution, the address of the instruction that 
generates an instruction cache miss is equal to the value of the program counter 
minus 4. Once we have the address, we need to instruct the main memory to per
form a read. We wait for the memory to respond (since the access will take multi
ple clock cycles), and then write the words containing the desired instruction into 
the cache. 

We can now define the steps to be taken on an instruction cache miss:

1. Send the original PC value (current PC – 4) to the memory.

2. Instruct main memory to perform a read and wait for the memory to com
plete its access.

3. Write the cache entry, putting the data from memory in the data portion of 
the entry, writing the upper bits of the address (from the ALU) into the tag 
field, and turning the valid bit on.

4. Restart the instruction execution at the first step, which will refetch the 
instruction, this time finding it in the cache.

 The control of the cache on a data access is essentially identical: on a miss, we 
simply stall the processor until the memory responds with the data. 

Handling Writes

Writes work somewhat differently. Suppose on a store instruction, we wrote the 
data into only the data cache (without changing main memory); then, after the 
write into the cache, memory would have a different value from that in the cache. 
In such a case, the cache and memory are said to be inconsistent. The simplest way 



to keep the main memory and the cache consistent is always to write the data into 
both the memory and the cache. This scheme is called write-through. 

The other key aspect of writes is what occurs on a write miss. We first fetch the 
words of the block from memory. After the block is fetched and placed into the 
cache, we can overwrite the word that caused the miss into the cache block. We also 
write the word to main memory using the full address.

Although this design handles writes very simply, it would not provide very good 
performance. With a writethrough scheme, every write causes the data to be written 
to main memory. These writes will take a long time, likely at least 100 processor clock 
cycles, and could slow down the processor considerably. For example, suppose 10% 
of the instructions are stores. If the CPI without cache misses was 1.0, spending 100 
extra cycles on every write would lead to a CPI of 1.0 + 100 × 10% = 11, reducing 
performance by more than a factor of 10.

One solution to this problem is to use a write buffer. A write buffer stores the 
data while it is waiting to be written to memory. After writing the data into the 
cache and into the write buffer, the processor can continue execution. When a write 
to main memory completes, the entry in the write buffer is freed. If the write buffer 
is full when the processor reaches a write, the processor must stall until there is an 
empty position in the write buffer. Of course, if the rate at which the memory can 
complete writes is less than the rate at which the processor is gener ating writes, no 
amount of buffering can help, because writes are being generated faster than the 
memory system can accept them. 

The rate at which writes are generated may also be less than the rate at which the 
memory can accept them, and yet stalls may still occur. This can  happen when the 
writes occur in bursts. To reduce the occurrence of such stalls, processors usu ally 
increase the depth of the write buffer beyond a single entry.

The alternative to a writethrough scheme is a scheme called write-back or 
copy back. In a writeback scheme, when a write occurs, the new value is written 
only to the block in the cache. The modi fied block is written to the lower level of 
the hierarchy when it is re placed. Writeback schemes can improve performance, 
especially when processors can generate writes as fast or faster than the writes can 
be handled by main memory; a writeback scheme is, however, more complex to 
implement than writethrough.

In the rest of this section, we describe caches from real processors, and we 
examine how they handle both reads and writes. In Section 5.5, we will describe 
the handling of writes in more detail.

Elaboration: Writes introduce several complications into caches that are not present 
for reads. Here we discuss two of them: the policy on write misses and efficient 
implementation of writes in write-back caches. 

Consider a miss in a write-through cache. The most common strategy is to allocate a 
block in the cache, called write allocate. The block is fetched from memory and then the 
appropriate portion of the block is overwritten. An alternative strategy is to update the portion 
of the block in memory but not put it in the cache, called no write allocate. The motiva tion is 

write-through A scheme 
in which writes always 
update both the cache 
and the next lower level 
of the memory hierarchy, 
ensuring that data is 
always con sistent between 
the two.

write buffer A queue 
that holds data while 
the data is waiting to be 
written to memory.

write-back A scheme 
that han dles writes by 
updating values only to 
the block in the cache, 
then writing the modified 
block to the lower level 
of the hierar chy when the 
block is replaced.
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that some times programs write entire blocks of data, such as when the operating system 
zeros a page of memory. In such cases, the fetch associated with the initial write miss may 
be unnecessary. Some computers allow the write allocation policy to be changed on a per 
page basis.

Actually implementing stores efficiently in a cache that uses a write-back strategy is 
more complex than in a write-through cache. A write-through cache can write the data 
into the cache and read the tag; if the tag mismatches, then a miss occurs. Because the 
cache is write-through, the overwriting of the block in the cache is not catastrophic, since 
memory has the correct value. In a write-back cache, we must first write the block back 
to memory if the data in the cache is modified and we have a cache miss. If we simply 
overwrote the block on a store instruction before we knew whether the store had hit in 
the cache (as we could for a write-through cache), we would destroy the contents of the 
block, which is not backed up in the next lower level of the mem ory hierarchy. 

In a write-back cache, because we cannot overwrite the block, stores either require 
two cycles (a cycle to check for a hit followed by a cycle to actually perform the write) or 
require a write buffer to hold that data—effectively allowing the store to take only one 
cycle by pipelining it. When a store buffer is used, the processor does the cache lookup 
and places the data in the store buffer during the normal cache access cycle. Assuming 
a cache hit, the new data is written from the store buffer into the cache on the next 
unused cache access cycle. 

By comparison, in a write-through cache, writes can always be done in one cycle. 
We read the tag and write the data portion of the selected block. If the tag matches 
the address of the block being written, the processor can continue normally, since the 
correct block has been updated. If the tag does not match, the processor generates a 
write miss to fetch the rest of the block corresponding to that address. 

Many write-back caches also include write buffers that are used to reduce the miss 
penalty when a miss replaces a modified block. In such a case, the modified block is 
moved to a write-back buffer associated with the cache while the requested block is read 
from memory. The write-back buffer is later written back to mem ory. Assuming another 
miss does not occur immedi ately, this technique halves the miss penalty when a dirty 
block must be replaced.

An Example Cache: The Intrinsity FastMATH Processor

The Intrinsity FastMATH is a fast embedded microprocessor that uses the MIPS 
architecture and a simple cache implementation. Near the end of the chapter, we 
will examine the more complex cache design of the AMD Opteron X4 (Barcelona), 
but we start with this simple, yet real, example for pedagogical reasons. Figure 5.9 
shows the organization of the Intrinsity FastMATH data cache.

This processor has a 12stage pipeline, similar to that discussed late in Chapter 4. 
When operating at peak speed, the processor can request both an instruction word 
and a data word on every clock. To satisfy the demands of the pipeline with out 
stalling, separate instruction and data caches are used. Each cache is 16 KB, or 4K 
words, with 16word blocks. 

Read requests for the cache are straightforward. Because there are separate 
data and instruction caches, we need separate control signals to read and write 



each cache. (Remember that we need to update the instruction cache when a miss 
occurs.) Thus, the steps for a read request to either cache are as follows:

1. Send the address to the appropriate cache. The address comes either from 
the PC (for an instruction) or from the ALU (for data).

2. If the cache signals hit, the requested word is available on the data lines. 
Since there are 16 words in the desired block, we need to select the right one. 
A block index field is used to control the multiplexor (shown at the bottom 
of the figure), which selects the requested word from the 16 words in the 
indexed block.

FIGURE 5.9 The 16 KB caches in the Intrinsity FastMATH each contain 256 blocks with 16 words per block. The tag field 
is 18 bits wide and the index field is 8 bits wide, while a 4bit field (bits 5–2) is used to index the block and select the word from the block using 
a 16to1 multi plexor. In practice, to eliminate the multiplexor, caches use a separate large RAM for the data and a smaller RAM for the tags, 
with the block offset supply ing the extra address bits for the large data RAM. In this case, the large RAM is 32 bits wide and must have 16 times 
as many words as blocks in the cache. 
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3. If the cache signals miss, we send the address to the main memory. When the 
memory returns with the data, we write it into the cache and then read it to 
fulfill the request.

For writes, the Intrinsity FastMATH offers both writethrough and writeback, 
leaving it up to the operating system to decide which strategy to use for an appli
cation. It has a oneentry write buffer.

Instruction miss rate Data miss rate Effective combined miss rate

0.4% 11.4% 3.2%

FIGURE 5.10 Approximate instruction and data miss rates for the Intrinsity FastMATH 
processor for SPEC CPU2000 benchmarks. The combined miss rate is the effective miss rate seen for 
the combination of the 16 KB instruction cache and 16 KB data cache. It is obtained by weighting the instruc
tion and data individual miss rates by the frequency of instruction and data references. 

What cache miss rates are attained with a cache structure like that used by the 
Intrinsity FastMATH? Figure 5.10 shows the miss rates for the instruction and 
data caches. The combined miss rate is the effective miss rate per reference for 
each program after accounting for the differing frequency of instruction and data 
accesses.

Although miss rate is an important characteristic of cache designs, the ultimate 
measure will be the effect of the memory system on program execution time; we’ll 
see how miss rate and execution time are related shortly. 

Elaboration: A combined cache with a total size equal to the sum of the two split 
caches will usually have a better hit rate. This higher rate occurs because the combined 
cache does not rigidly divide the number of entries that may be used by instructions from 
those that may be used by data. Nonetheless, many processors use a split instruction 
and data cache to increase cache bandwidth. (There may also be fewer conflict misses; 
see Section 5.5.)

Here are miss rates for caches the size of those found in the Intrinsity FastMATH 
processor, and for a combined cache whose size is equal to the sum of the two caches:

 ■ Total cache size: 32 KB

 ■ Split cache effective miss rate: 3.24%

 ■ Combined cache miss rate: 3.18%

The miss rate of the split cache is only slightly worse.
The advantage of doubling the cache bandwidth, by supporting both an instruction and 

data access simultaneously, easily overcomes the disadvantage of a slightly increased 
miss rate. This observation cautions us that we cannot use miss rate as the sole 
measure of cache per formance, as Section 5.3 shows.

split cache A scheme 
in which a level of the 
memory  hierarchy 
is composed of two 
independent caches that 
operate in parallel with 
each other, with one 
 handling instructions and 
one handling data.



Designing the Memory System to Support Caches

Cache misses are satisfied from main memory, which is constructed from DRAMs. 
In Section 5.1, we saw that the primary emphasis with DRAMs is on cost and 
density. Although it is difficult to reduce the latency to fetch the first word from 
memory, we can reduce the miss penalty if we increase the bandwidth from the 
memory to the cache. This reduction allows larger block sizes to be used while still 
maintaining a low miss penalty, similar to that for a smaller block. 

The processor is traditionally connected to memory over a bus. (As we’ll see 
in Chapter 6, that tradition is changing, but the actual interconnect technology 
doesn’t matter in this chapter, so we’ll use the term bus.) The clock rate of the bus 
is usually much slower than the processor. The speed of this bus affects the miss 
penalty.

To understand the impact of different organizations of memory, let’s define a set 
of hypothetical memory access times. Assume 

 ■ 1 memory bus clock cycle to send the address

 ■ 15 memory bus clock cycles for each DRAM access initiated

 ■ 1 memory bus clock cycle to send a word of data

If we have a cache block of four words and a onewordwide bank of DRAMs, 
the miss penalty would be 1 + 4 × 15 + 4 × 1 = 65 memory bus clock cycles. Thus, 
the number of bytes transferred per bus clock cycle for a single miss would be

  4 × 4  
65

   = 0.25

Figure 5.11 shows three options for designing the memory system. The first 
option follows what we have been assuming: memory is one word wide, and all 
accesses are made sequentially. The second option increases the bandwidth to 
memory by widening the memory and the buses between the processor and mem
ory; this allows parallel access to multiple words of the block. The third option 
increases the bandwidth by widening the memory but not the interconnection 
bus. Thus, we still pay a cost to transmit each word, but we can avoid paying the 
cost of the access latency more than once. Let’s look at how much these other two 
options improve the 65cycle miss penalty that we would see for the first option in 
Figure 5.11(a). 

Increasing the width of the memory and the bus will increase the memory 
bandwidth proportionally, decreasing both the access time and transfer time 
portions of the miss penalty. With a main memory width of two words, the miss 
pen alty drops from 65 memory bus clock cycles to 1 + (2 × 15) + 2 × 1 = 33 memory 
bus clock cycles. The bandwidth for a  single miss is then 0.48 (almost twice as high) 
bytes per bus clock cycle for a memory that is two words wide. The major costs of 
this enhancement are the wider bus and the potential increase in cache access time 
due to the multiplexor and control logic between the processor and cache. 
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Instead of making the entire path between the memory and cache wider, the 
memory chips can be organized in banks to read or write multiple words in one 
access time rather than reading or writing a single word each time. Each bank could 
be one word wide so that the width of the bus and the cache need not change, 
but sending an address to several banks permits them all to read simulta neously. 
This scheme, which is called interleaving, retains the advantage of incur ring the 
full memory latency only once. For example, with four banks, the time to get a 
fourword block would consist of 1 cycle to transmit the address and read request 
to the banks, 15 cycles for all four banks to access memory, and 4 cycles to send the 
four words back to the cache. This yields a miss penalty of 1 + (1 × 15) + 4 × 1 = 20 
memory bus clock cycles. This is an effective bandwidth per miss of 0.80 bytes per 
clock, or about three times the bandwidth for the onewordwide  memory and bus. 

FIGURE 5.11 The primary method of achieving higher memory bandwidth is to increase the physical or logical width 
of the memory system. In this figure, memory bandwidth is improved two ways. The simplest design, (a), uses a memory where all 
components are one word wide; (b) shows a wider memory, bus, and cache; while (c) shows a narrow bus and cache with an interleaved 
memory. In (b), the logic between the cache and processor consists of a multiplexor used on reads and control logic to update the appropriate 
words of the cache on writes. 

Processor

Cache

Memory

Bus

One-word-wide
memory organization

a. 

b. Wider memory organization

Processor

Cache

Memory

Bus

Multiplexor

Processor

Cache

Bus

Memory

bank 0

Memory

bank 1

Memory

bank 2

Memory

bank 3

c. Interleaved memory organization



Banks are also valuable on writes. Each bank can write indepen dently, quadrupling 
the write bandwidth and leading to fewer stalls in a writethrough cache. As we will 
see, an alternative strategy for writes makes interleaving even more attractive. 

Because of the ubiquity of caches and the desire for larger block sizes, DRAM 
manufacturers provide for a burst access to data from a series of sequential loca
tions in the DRAM. The newest development is Double Data Rate (DDR) DRAMs. 
The name means data transfers on both the leading and falling edge of the clock, 
thereby getting twice as much bandwidth as you might expect based on the clock 
rate and the data width. To deliver such high bandwidth, the internal DRAM is 
organized as interleaved memory banks.

The advantage of such optimizations is that they use the circuitry already 
largely on the DRAMs, adding little cost to the system while achieving a signifi cant 
improvement in bandwidth. Section C.9 of  Appendix C describes the internal 
architecture of DRAMs and how these optimizations are implemented.

Elaboration: Memory chips are organized to produce a number of output bits, usually 
4 to 32, with 16 being the most popular in 2008. We describe the organization of a RAM 
as d × w, where d is the number of addressable locations (the depth) and w is the output 
(or width of each location). DRAMs are logically organized as rectangular arrays, and 
access time is divided into row access and column ac cess. DRAMs buffer a row. Burst 
transfers allow repeated accesses to the buffer without a row access time. The buffer 
acts like an SRAM; by changing column address, random bits can be accessed in the 
buffer until the next row access. This capability changes the access time significantly, 
since the access time to bits in the row is much lower. Figure 5.12 shows how the 
density, cost, and access time of DRAMs have changed over the years. 

To improve the interface to processors, DRAMs added clocks and are properly called 
Syn chronous DRAMs or SDRAMs. The advantage of SDRAMs is that the use of a clock 
elimi nates the time for the memory and processor to synchronize.

Elaboration: One way to measure the performance of the memory system behind the 
caches is the Stream benchmark [McCalpin, 1995]. It measures the performance of long 
vector operations. They have no temporal locality and they access arrays that are larger 
than the cache of the computer being tested.

Elaboration: The burst mode for DDR memory is also found on memory buses, such 
as the Intel Duo Core Front Side Bus.
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Year introduced Chip size $ per GB
Total access time to 
a new row/column

Column access 
time to existing row

1980 64 Kbit $1,500,000 250 ns 150 ns

1983 256 Kbit $500,000 185 ns 100 ns

1985 1 Mbit $200,000 135 ns 40 ns

1989 4 Mbit $50,000 110 ns 40 ns

1992 16 Mbit $15,000 90 ns 30 ns

1996 64 Mbit $10,000 60 ns 12 ns

1998 128 Mbit $4,000 60 ns 10 ns

2000 256 Mbit $1,000 55 ns 7 ns

2004 512 Mbit $250 50 ns 5 ns

2007 1 Gbit $50 40 ns 1.25 ns

FIGURE 5.12 DRAM size increased by multiples of four approximately once every three 
years until 1996, and thereafter considerably slower. The improvements in access time have been 
slower but continuous, and cost roughly tracks density improvements, although cost is often affected by 
other issues, such as availability and demand. The cost per gigabyte is not adjusted for inflation. 

Summary

We began the previous section by examining the simplest of caches: a directmapped 
cache with a oneword block. In such a cache, both hits and misses are simple, since 
a word can go in exactly one location and there is a separate tag for every word. To 
keep the cache and memory consistent, a writethrough scheme can be used, so 
that every write into the cache also causes memory to be updated. The alternative 
to writethrough is a writeback scheme that copies a block back to memory when 
it is replaced; we’ll discuss this scheme further in upcoming sections.

To take advantage of spatial locality, a cache must have a block size larger than 
one word. The use of a larger block decreases the miss rate and improves the effi
ciency of the cache by reducing the amount of tag storage relative to the amount of 
data storage in the cache. Although a larger block size decreases the miss rate, it can 
also increase the miss penalty. If the miss penalty increased linearly with the block 
size, larger blocks could easily lead to lower performance. 

To avoid performance loss, the bandwidth of main memory is increased to 
transfer cache blocks more efficiently. Common methods for increasing bandwidth 
external to the DRAM are making the memory wider and interleaving. DRAM 
designers have steadily improved the interface between the processor and memory 
to increase the bandwidth of burst mode transfers to reduce the cost of larger cache 
block sizes.



The speed of the memory system affects the designer’s decision on the size of the 
cache block. Which of the following cache designer guidelines are generally valid?

1. The shorter the memory latency, the smaller the cache block

2. The shorter the memory latency, the larger the cache block

3. The higher the memory bandwidth, the smaller the cache block

4. The higher the memory bandwidth, the larger the cache block

 5.3  
Measuring and Improving Cache 
Performance

In this section, we begin by examining ways to measure and analyze cache perfor
mance. We then explore two different techniques for improving cache  performance. 
One focuses on reducing the miss rate by reducing the probability that two differ
ent memory blocks will contend for the same cache location. The sec ond tech
nique reduces the miss penalty by adding an additional level to the hier archy. This 
technique, called multilevel caching, first appeared in highend computers selling 
for more than $100,000 in 1990; since then it has become common on desktop 
computers selling for less than $500!

CPU time can be divided into the clock cycles that the CPU spends executing 
the program and the clock cycles that the CPU spends waiting for the memory 
system. Normally, we assume that the costs of cache accesses that are hits are part 
of the normal CPU execution cycles. Thus,

 CPU time = (CPU execution clock cycles + Memorystall clock cycles) 
  × Clock cycle time

The memorystall clock cycles come primarily from cache misses, and we make 
that assumption here. We also restrict the discussion to a simplified model of the 
memory system. In real processors, the stalls generated by reads and writes can be 
quite complex, and accurate performance prediction usually requires very detailed 
simulations of the processor and memory system.

Memorystall clock cycles can be defined as the sum of the stall cycles coming 
from reads plus those coming from writes:

Memorystall clock cycles = Readstall cycles + Writestall cycles

Check  
Yourself
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The readstall cycles can be defined in terms of the number of read accesses per 
program, the miss penalty in clock cycles for a read, and the read miss rate:

Readstall cycles =   Reads  
Program

   × Read miss rate × Read miss penalty

Writes are more complicated. For a writethrough scheme, we have two sources of 
stalls: write misses, which usually require that we fetch the block before continu
ing the write (see the Elaboration on page 467 for more details on dealing with 
writes), and write buffer stalls, which occur when the write buffer is full when a 
write occurs. Thus, the cycles stalled for writes equals the sum of these two:

Writestall cycles =  (   Writes  
Program

   × Write miss rate × Write miss penalty ) 
+ Write buffer stalls

Because the write buffer stalls depend on the proximity of writes, and not just 
the frequency, it is not possible to give a simple equation to compute such stalls. 
For tunately, in systems with a reasonable write buffer depth (e.g., four or more 
words) and a memory capable of accepting writes at a rate that significantly exceeds 
the average write frequency in programs (e.g., by a factor of 2), the write buffer 
stalls will be small, and we can safely ignore them. If a system did not meet these 
criteria, it would not be well designed; instead, the designer should have used either 
a deeper write buffer or a writeback organization.

Writeback schemes also have potential additional stalls arising from the need 
to write a cache block back to memory when the block is replaced. We will discuss 
this more in Section 5.5.

In most writethrough cache organizations, the read and write miss penalties 
are the same (the time to fetch the block from memory). If we assume that the 
write buffer stalls are negligible, we can combine the reads and writes by using a 
single miss rate and the miss penalty:

Memorystall clock cycles =   
Memory accesses

   
Program

   × Miss rate × Miss penalty

We can also factor this as

Memorystall clock cycles =   Instructions  
Program

   ×   Misses  
Instruction

   × Miss penalty

Let’s consider a simple example to help us understand the impact of cache perfor
mance on processor performance.



Calculating Cache Performance

Assume the miss rate of an instruction cache is 2% and the miss rate of the 
data cache is 4%. If a processor has a CPI of 2 without any memory stalls and 
the miss penalty is 100 cycles for all misses, determine how much faster a pro
cessor would run with a perfect cache that never missed. Assume the frequen cy 
of all loads and stores is 36%.

The number of memory miss cycles for instructions in terms of the Instruc
tion count (I) is

Instruction miss cycles = I × 2% × 100 = 2.00 × I

As the frequency of all loads and stores is 36%, we can find the number of 
memory miss cycles for data references:

Data miss cycles = I × 36% × 4% × 100 = 1.44 × I

The total number of memorystall cycles is 2.00 I + 1.44 I = 3.44 I. This is 
more than three cycles of memory stall per instruction. Accordingly, the total 
CPI including memory stalls is 2 + 3.44 = 5.44. Since there is no change in 
instruction count or clock rate, the ratio of the CPU execution times is

  CPU time with stalls     
CPU time with perfect cache

   =   
I × CPIstall × Clock cycle

     
I × CPIperfect × Clock cycle

  

=   
CPIstall  

CPIperfect
   =   5.44  

2
  

The performance with the perfect cache is better by   5.44  
2

   = 2.72.

What happens if the processor is made faster, but the memory system is not? The 
amount of time spent on memory stalls will take up an increasing fraction of the 
execution time; Amdahl’s law, which we examined in Chapter 1, reminds us of this 
fact. A few simple examples show how serious this problem can be. Suppose we 
speedup the computer in the previous example by reducing its CPI from 2 to 1 
without changing the clock rate, which might be done with an improved pipeline. 
The system with cache misses would then have a CPI of 1 + 3.44 = 4.44, and the 
system with the perfect cache would be

EXAMPLE

ANSWER
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  4.44  
1

   = 4.44 times faster.

The amount of execution time spent on memory stalls would have risen from

  3.44  
5.44

   = 63%

to

  3.44  
4.44

   = 77%.

Similarly, increasing the clock rate without changing the memory system also 
increases the performance lost due to cache misses.

The previous examples and equations assume that the hit time is not a fac tor in 
determining cache performance. Clearly, if the hit time increases, the total time to 
access a word from the memory system will increase, possibly causing an increase 
in the processor cycle time. Although we will see addi tional examples of what 
can increase hit time shortly, one example is increas ing the cache size. A larger 
cache could clearly have a longer access time, just as, if your desk in the library 
was very large (say, 3 square meters), it would take longer to locate a book on the 
desk. An increase in hit time likely adds another stage to the pipeline, since it may 
take multiple cycles for a cache hit. Although it is more complex to calculate the 
performance impact of a deeper pipeline, at some point the increase in hit time for 
a larger cache could domi nate the improvement in hit rate, leading to a decrease in 
processor performance. 

To capture the fact that the time to access data for both hits and misses affects 
performance, designers sometime use average memory access time (AMAT) as a way 
to examine alternative cache designs. Average memory access time is the average 
time to access memory considering both hits and misses and the frequency of 
different accesses; it is equal to the following:

AMAT = Time for a hit + Miss rate × Miss penalty

Calculating Average Memory Access Time

Find the AMAT for a processor with a 1 ns clock cycle time, a miss penalty of 
20 clock cycles, a miss rate of 0.05 misses per instruction, and a cache access 
time (in cluding hit detection) of 1 clock cycle. Assume that the read and write 
miss penalties are the same and ignore other write stalls. 

EXAMPLE



The average memory access time per instruction is

AMAT = Time for a hit + Miss rate × Miss penalty

 = 1 + 0.05 × 20

 = 2 clock cycles

or 2 ns.

The next subsection discusses alternative cache organizations that decrease 
miss rate but may sometimes increase hit time; additional examples appear in 
Section 5.11, Fallacies and Pitfalls.

Reducing Cache Misses by More Flexible Placement 
of Blocks

So far, when we place a block in the cache, we have used a simple placement 
scheme: A block can go in exactly one place in the cache. As mentioned earlier, it is 
called direct mapped because there is a direct mapping from any block address in 
memory to a single location in the upper level of the hierarchy. However, there is 
actually a whole range of schemes for placing blocks. Direct mapped, where a block 
can be placed in exactly one location, is at one extreme.

At the other extreme is a scheme where a block can be placed in any location 
in the cache. Such a scheme is called fully associative, because a block in memory 
may be associated with any entry in the cache. To find a given block in a fully asso
ciative cache, all the entries in the cache must be searched because a block can be 
placed in any one. To make the search practical, it is done in parallel with a com
parator associated with each cache entry. These comparators significantly increase 
the hardware cost, effectively making fully associative placement practical only for 
caches with small numbers of blocks. 

The middle range of designs between direct mapped and fully associative is called 
set associative. In a setassociative cache, there are a fixed number of  locations 
where each block can be placed. A setassociative cache with n loca tions for a block 
is called an nway setassociative cache. An nway setassocia tive cache consists of a 
number of sets, each of which consists of n blocks. Each block in the memory maps 
to a unique set in the cache given by the index field, and a block can be placed in 
any element of that set. Thus, a setassociative placement combines directmapped 

ANSWER

fully associative cache 
A cache structure in 
which a block can be 
placed in any location in 
the cache.

set-associative cache 
A cache that has a fixed 
number of loca tions (at 
least two) where each 
block can be placed.

 5.3 Measuring and Improving Cache Performance 479



480 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

placement and fully associative placement: a block is directly mapped into a set, 
and then all the blocks in the set are searched for a match. For example, Figure 5.13 
shows where block 12 may be placed in a cache with eight blocks total, accord ing 
to the three block place ment policies. 

Remember that in a directmapped cache, the position of a memory block is 
given by

(Block number) modulo (Number of blocks in the cache)

In a setassociative cache, the set containing a memory block is given by

(Block number) modulo (Number of sets in the cache)

Since the block may be placed in any element of the set, all the tags of all the elements 
of the set must be searched. In a fully associative cache, the block can go anywhere, 
and all tags of all the blocks in the cache must be searched. 

FIGURE 5.13 The location of a memory block whose address is 12 in a cache with eight blocks varies for direct-
mapped, set-associative, and fully associative placement. In directmapped placement, there is only one cache block where 
memory block 12 can be found, and that block is given by (12 modulo 8) = 4. In a twoway setassociative cache, there would be four sets, 
and memory block 12 must be in set (12 mod 4) = 0; the memory block could be in either element of the set. In a fully associative placement, 
the memory block for block address 12 can appear in any of the eight cache blocks. 
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We can also think of all block placement strategies as a variation on set 
associativity. Figure 5.14 shows the possible associativity structures for an eight
block cache. A directmapped cache is simply a oneway setassociative cache: 
each cache entry holds one block and each set has one element. A fully associative 
cache with m entries is simply an mway setassociative cache; it has one set with 
m blocks, and an entry can reside in any block within that set.

FIGURE 5.14 An eight-block cache configured as direct mapped, two-way set associa tive, four-way set associative, 
and fully associative. The total size of the cache in blocks is equal to the number of sets times the associativity. Thus, for a fixed cache 
size, increasing the associativity decreases the number of sets while increasing the number of elements per set. With eight blocks, an eightway 
setassociative cache is the same as a fully associative cache. 
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TagTag Data DataSet

0

1

0

1

2

3

0

1

2

3

4

5

6

7

Two-way set associative
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The advantage of increasing the degree of associativity is that it usually decreases 
the miss rate, as the next example shows. The main disadvantage, which we discuss 
in more detail shortly, is a potential increase in the hit time.
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Misses and Associativity in Caches

Assume there are three small caches, each consisting of four oneword blocks. 
One cache is fully associative, a second is twoway setassociative, and the third 
is directmapped. Find the number of misses for each cache organiza tion given 
the following sequence of block addresses: 0, 8, 0, 6, and 8.

The directmapped case is easiest. First, let’s determine to which cache block 
each block address maps:

Block address Cache block

0 (0 modulo 4) = 0

6 (6 modulo 4) = 2

8 (8 modulo 4) = 0

Now we can fill in the cache contents after each reference, using a blank  entry 
to mean that the block is invalid, colored text to show a new entry added to 
the cache for the associated reference, and plain text to show an old entry in 
the cache:

Address of memory 
block accessed

Hit 
or miss

Contents of cache blocks after reference

0 1 2 3

0 miss Memory[0]

8 miss Memory[8]

0 miss Memory[0]

6 miss Memory[0] Memory[6]

8 miss Memory[8] Memory[6]

The directmapped cache generates five misses for the five accesses.
The setassociative cache has two sets (with indices 0 and 1) with two 

elements per set. Let’s first determine to which set each block address maps:

Block address Cache set

0 (0 modulo 2) = 0

6 (6 modulo 2) = 0

8 (8 modulo 2) = 0

EXAMPLE

ANSWER



Because we have a choice of which entry in a set to replace on a miss, we need 
a replacement rule. Setassociative caches usually replace the least recently 
used block within a set; that is, the block that was used furthest in the past 
is replaced. (We will discuss other replacement rules in more detail shortly.) 
Using this replacement rule, the contents of the setassociative cache after each 
reference looks like this:

Address of memory 
block accessed

Hit 
or miss

Contents of cache blocks after reference

Set 0 Set 0 Set 1 Set 1

0 miss Memory[0]

8 miss Memory[0] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[0] Memory[6]

8 miss Memory[8] Memory[6]

Notice that when block 6 is referenced, it replaces block 8, since block 8 has 
been less recently referenced than block 0. The twoway setassociative cache 
has four misses, one less than the directmapped cache. 

The fully associative cache has four cache blocks (in a single set); any 
memory block can be stored in any cache block. The fully associative cache has 
the best performance, with only three misses:

Address of memory 
block accessed

Hit 
or miss

Contents of cache blocks after reference

Block 0 Block 1 Block 2 Block 3

0 miss Memory[0]

8 miss Memory[0] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[0] Memory[8] Memory[6]

8 hit Memory[0] Memory[8] Memory[6]

For this series of references, three misses is the best we can do, because 
three unique block addresses are accessed. Notice that if we had eight blocks 
in the cache, there would be no replacements in the twoway setassociative 
cache (check this for yourself), and it would have the same number of misses 
as the fully associative cache. Similarly, if we had 16 blocks, all 3 caches would 
have the same number of misses. Even this trivial example shows that cache 
size and associativity are not independent in determining cache perfor mance.

 5.3 Measuring and Improving Cache Performance 483



484 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

How much of a reduction in the miss rate is achieved by associativity? Figure 5.15 
shows the improvement for a 64 KB data cache with a 16word block, and associa
tivity ranging from direct mapped to eightway. Going from oneway to two
way associativity decreases the miss rate by about 15%, but there is little further 
improvement in going to higher associativity.

Associativity Data miss rate

1 10.3%

2 8.6%

4 8.3%

8 8.1%

FIGURE 5.15 The data cache miss rates for an organization like the Intrinsity FastMATH 
processor for SPEC CPU2000 benchmarks with associativity varying from one-way to 
eight-way. These results for 10 SPEC CPU2000 programs are from Hennessy and Patterson [2003]. 

Locating a Block in the Cache

Now, let’s consider the task of finding a block in a cache that is set associative. 
Just as in a directmapped cache, each block in a setassociative cache includes an 
address tag that gives the block address. The tag of every cache block within the 
appropriate set is checked to see if it matches the block address from the proces
sor. Figure 5.16 decomposes the address. The index value is used to select the set 
containing the address of interest, and the tags of all the blocks in the set must be 
searched. Because speed is of the essence, all the tags in the selected set are searched 
in parallel. As in a fully associative cache, a sequential search would make the hit 
time of a setassociative cache too slow.

Block offsetTag Index

FIGURE 5.16 The three portions of an address in a set-associative or direct-mapped 
cache. The index is used to select the set, then the tag is used to choose the block by comparison with the 
blocks in the selected set. The block offset is the address of the desired data within the block. 

If the total cache size is kept the same, increasing the associativity increases the 
number of blocks per set, which is the number of simultaneous compares needed 
to perform the search in parallel: each increase by a factor of 2 in asso ciativity 
doubles the number of blocks per set and halves the number of sets. Accordingly, 
each factorof2 increase in associativity decreases the size of the index by 1 bit and 
increases the size of the tag by 1 bit. In a fully associative cache, there is effectively 
only one set, and all the blocks must be checked in par allel. Thus, there is no index, 
and the entire address, excluding the block offset, is compared against the tag of 
every block. In other words, we search the entire cache without any indexing.



In a directmapped cache, only a single comparator is needed, because the entry 
can be in only one block, and we access the cache simply by indexing. Figure 5.17 
shows that in a fourway setassociative cache, four comparators are needed, 
together with a 4to1 multiplexor to choose among the four potential members 
of the selected set. The cache access consists of indexing the appropriate set and 
then searching the tags of the set. The costs of an associative cache are the extra 
comparators and any delay imposed by having to do the compare and select from 
among the elements of the set.

The choice among directmapped, setassociative, or fully associative mapping 
in any memory hierarchy will depend on the cost of a miss versus the cost of 
implementing associativity, both in time and in extra hardware.

Elaboration: A Content Addressable Memory (CAM) is a circuit that combines compari-
son and storage in a single device. Instead of supplying an address and reading a word 
like a RAM, you supply the data and the CAM looks to see if it has a copy and returns the 
index of the matching row. CAMs mean that cache designers can afford to implement 
much higher set asso ciativity than if they needed to build the hardware out of SRAMs and 
comparators. In 2008, the greater size and power of CAM generally leads to 2-way and 
4-way set associativity being built from standard SRAMs and comparators, with 8-way 
and above built using CAMs.

Choosing Which Block to Replace

When a miss occurs in a directmapped cache, the requested block can go in 
exactly one position, and the block occupying that position must be replaced. In 
an associative cache, we have a choice of where to place the requested block, and 
hence a choice of which block to replace. In a fully associative cache, all blocks are 
candidates for replacement. In a setassociative cache, we must choose among the 
blocks in the selected set. 

The most commonly used scheme is least recently used (LRU), which we used 
in the previous example. In an LRU scheme, the block replaced is the one that has 
been unused for the longest time. The set associative example on page 482 uses 
LRU, which is why we replaced Memory(0) instead of Memory(6).

LRU replacement is implemented by keeping track of when each element in a 
set was used relative to the other elements in the set. For a twoway setassociative 
cache, tracking when the two elements were used can be implemented by keeping 
a single bit in each set and setting the bit to indicate an element whenever that 
element is referenced. As associativity increases, implementing LRU gets harder; in 
Section 5.5, we will see an alternative scheme for replacement.

least recently used 
(LRU) A replacement 
scheme in which the block 
replaced is the one that 
has been  unused for the 
longest time.
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Size of Tags versus Set Associativity

Increasing associativity requires more comparators and more tag bits per 
cache block. Assuming a cache of 4K blocks, a 4word block size, and a 32bit 
address, find the total number of sets and the total number of tag bits for 
caches that are direct mapped, twoway and fourway set associative, and fully 
associative.

EXAMPLE

FIGURE 5.17 The implementation of a four-way set-associative cache requires four comparators and a 4-to-1 
multi plexor. The comparators determine which element of the selected set (if any) matches the tag. The output of the comparators 
is used to select the data from one of the four blocks of the indexed set, using a multiplexor with a decoded select signal. In some 
implementations, the Output enable signals on the data portions of the cache RAMs can be used to select the entry in the set that drives 
the output. The Output enable signal comes from the compara tors, causing the element that matches to drive the data outputs. This 
organization eliminates the need for the multiplexor. 
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Since there are 16 (= 24) bytes per block, a 32bit address yields 32 - 4 = 28 bits 
to be used for index and tag. The directmapped cache has the same number of 
sets as blocks, and hence 12 bits of index, since log2(4K) = 12; hence, the total 
number is (28 - 12) × 4K = 16 × 4K = 64 K tag bits. 

Each degree of associativity decreases the number of sets by a factor of 2 and 
thus decreases the number of bits used to index the cache by 1 and increases the 
number of bits in the tag by 1. Thus, for a twoway setassociative cache, there 
are 2K sets, and the total number of tag bits is (28 -11) × 2 × 2K = 34 × 2K = 68 
Kbits. For a fourway setassociative cache, the total number of sets is 1K, and 
the total number is (28 - 10) × 4 × 1K = 72 × 1K = 72 K tag bits.

For a fully associative cache, there is only one set with 4K blocks, and the tag 
is 28 bits, leading to 28 × 4K × 1 = 112K tag bits. 

Reducing the Miss Penalty Using Multilevel Caches

All modern computers make use of caches. To close the gap further between the 
fast clock rates of modern processors and the increasingly long time required to 
access DRAMs, most microprocessors support an additional level of caching. This 
secondlevel cache is usually on the same chip and is accessed whenever a miss 
occurs in the primary cache. If the secondlevel cache contains the desired data, 
the miss penalty for the firstlevel cache will be essentially the access time of the 
secondlevel cache, which will be much less than the access time of main memory. 
If  neither the primary nor the secondary cache contains the data, a main memory 
access is required, and a larger miss penalty is incurred. 

How significant is the performance improvement from the use of a secondary 
cache? The next example shows us.

Performance of Multilevel Caches

Suppose we have a processor with a base CPI of 1.0, assuming all references 
hit in the primary cache, and a clock rate of 4 GHz. Assume a main memory 
access time of 100 ns, including all the miss handling. Suppose the miss rate 
per instruction at the primary cache is 2%. How much faster will the proces
sor be if we add a secondary cache that has a 5 ns access time for either a hit or 
a miss and is large enough to reduce the miss rate to main memory to 0.5%?

The miss penalty to main memory is

  100 ns   
0.25   ns  

clock cycle
  
   = 400 clock cycles

ANSWER

EXAMPLE

ANSWER
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The effective CPI with one level of caching is given by

Total CPI = Base CPI + Memorystall cycles per instruction

For the processor with one level of caching,

Total CPI = 1.0 + Memorystall cycles per instruction = 1.0 + 2% × 400 = 9

With two levels of caching, a miss in the primary (or firstlevel) cache can be 
satisfied  either by the secondary cache or by main memory. The miss  penalty 
for an access to the secondlevel cache is

  5 ns   
0.25   ns  

clock cycle
  
   = 20 clock cycles

If the miss is satisfied in the secondary cache, then this is the entire miss penalty. 
If the miss needs to go to main memory, then the total miss penalty is the sum 
of the secondary cache access time and the main memory access time.

Thus, for a twolevel cache, total CPI is the sum of the stall cycles from both 
levels of cache and the base CPI: 

 Total CPI = 1 + Primary stalls per instruction
     + Secondary stalls per instruction 
  = 1 + 2% × 20 + 0.5% × 400 = 1 + 0.4 + 2.0 = 3.4

Thus, the processor with the secondary cache is faster by

  9.0  
3.4

   = 2.6

Alternatively, we could have computed the stall cycles by summing the stall 
cycles of those references that hit in the secondary cache ((2% - 0.5%) × 20 = 
0.3). Those references that go to main memory, which must include the cost to 
access the secondary cache as well as the main memory access time, is (0.5% × 
(20 + 400) = 2.1). The sum, 1.0 + 0.3 + 2.1, is again 3.4.

The design considerations for a primary and secondary cache are significantly 
different, because the presence of the other cache changes the best choice versus 
a singlelevel cache. In particular, a twolevel cache structure allows the primary 
cache to focus on minimizing hit time to yield a shorter clock cycle or fewer 
pipeline stages, while allow ing the secondary cache to focus on miss rate to reduce 
the penalty of long mem ory access times. 



The effect of these changes on the two caches can be seen by comparing each 
cache to the optimal design for a single level of cache. In comparison to a  single
level cache, the primary cache of a multilevel cache is often smaller. Furthermore, 
the primary cache may use a smaller block size, to go with the smaller cache size and  
also to reduce the miss penalty. In comparison, the secondary cache will be much 
larger than in a singlelevel cache, since the access time of the secondary cache is 
less critical. With a larger total size, the secondary cache may use a larger block size 
than appropriate with a singlelevel cache. It often uses higher associativity than 
the primary cache given the focus of reducing miss rates.

Sorting has been exhaustively analyzed to find better algorithms: Bubble Sort, 
Quicksort, Radix Sort, and so on. Figure 5.18(a) shows instructions executed 
by item searched for Radix Sort versus Quicksort. As expected, for large arrays, 
Radix Sort has an algorithmic advantage over Quicksort in terms of number of 
operations. Figure 5.18(b) shows time per key instead of instructions executed. We 
see that the lines start on the same trajectory as Figure 5.18(a), but then the Radix 
Sort line diverges as the data to sort increases. What is going on? Figure 5.18(c) 
answers by looking at the cache misses per item sorted: Quicksort consistently has 
many fewer misses per item to be sorted.

Alas, standard algorithmic analysis often ignores the impact of the memory 
hierarchy. As faster clock rates and Moore’s law allow architects to squeeze all of 
the performance out of a stream of instructions, using the memory hierarchy well 
is critical to high performance. As we said in the introduction, understanding the 
behavior of the memory hierarchy is critical to understanding the performance of 
programs on today’s computers.

Elaboration: Multilevel caches create several complications. First, there are now several 
different types of misses and corresponding miss rates. In the example on pages 487–488. 
we saw the primary cache miss rate and the global miss rate—the fraction of references 
that missed in all cache levels. There is also a miss rate for the secondary cache, which is 
the ratio of all misses in the secondary cache divided by the number of accesses to it. This 
miss rate is called the local miss rate of the secondary cache. Because the primary cache 
filters accesses, especially those with good spatial and temporal locality, the local miss 
rate of the secondary cache is much higher than the global miss rate. For the example on 
pages 487–488. we can compute the local miss rate of the secondary cache as 0.5%/2% 
= 25%! Luckily, the global miss rate dictates how often we must access the main memory.

Elaboration: With out-of-order processors (see Chapter 4), performance is more 
complex, since they execute instructions during the miss penalty. Instead of instruction 
miss rates and data miss rates, we use misses per instruction, and this formula:

  
Memory-stall cycles

    
Instruction

   =   Misses  
 Instruction

   × (Total miss latency – Overlapped miss latency)

multilevel cache 
A memory hierarchy with 
multiple levels of caches, 
rather than just a cache 
and main memory.

Understanding 
Program 
Performance

global miss rate The 
fraction of references 
that miss in all lev els of a 
multilevel cache.

local miss rate The 
fraction of references to 
one level of a cache that 
miss; used in multilevel 
hierarchies.
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FIGURE 5.18 Comparing Quicksort and Radix Sort by (a) instructions executed per item 
sorted, (b) time per item sorted, and (c) cache misses per item sorted. This data is from a 
paper by LaMarca and Ladner [1996]. Although the numbers would change for newer computers, the idea 
still holds. Due to such results, new versions of Radix Sort have been invented that take memory hierarchy 
into account, to regain its algorithmic advantages (see Section 5.11). The basic idea of cache optimizations is 
to use all the data in a block repeatedly before it is replaced on a miss. 
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There is no general way to calculate overlapped miss latency, so evaluations of memory 
hierarchies for out-of-order processors inevitably require simulation of the processor and 
mem ory hierarchy. Only by seeing the execution of the processor during each miss can we 
see if the processor stalls waiting for data or simply finds other work to do. A guideline is 
that the proces sor often hides the miss penalty for an L1 cache miss that hits in the L2 
cache, but it rarely hides a miss to the L2 cache.

Elaboration: The performance challenge for algorithms is that the memory hierarchy 
varies between different implementations of the same architecture in cache size, 
associa tivity, block size, and number of caches. To cope with such variability, some 
recent numeri cal libraries parameterize their algorithms and then search the parameter 
space at runtime to find the best combination for a particular computer. This approach 
is called autotuning.

Which of the following is generally true about a design with multiple levels of 
caches?

1. Firstlevel caches are more concerned about hit time, and secondlevel 
caches are more concerned about miss rate.

2. Firstlevel caches are more concerned about miss rate, and secondlevel 
caches are more concerned about hit time.

Summary

In this section, we focused on three topics: cache performance, using associativity 
to reduce miss rates, and the use of multilevel cache hierarchies to reduce miss 
penalties. 

The memory system has a significant effect on program execution time. The 
number of memorystall cycles depends on both the miss rate and the miss penalty. 
The challenge, as we will see in Section 5.5, is to reduce one of these factors without 
significantly affecting  other critical factors in the memory hierarchy.

To reduce the miss rate, we examined the use of associative placement schemes. 
Such schemes can reduce the miss rate of a cache by allowing more flexible place
ment of blocks within the cache. Fully associative schemes allow blocks to be 
placed anywhere, but also require that every block in the cache be searched to 
sat isfy a request. The higher costs make large fully associative caches impractical. 
Setassociative caches are a practical alternative, since we need only search among 
the elements of a unique set that is chosen by indexing. Setassociative caches 
have higher miss rates but are faster to access. The amount of associativity that 
yields the best performance depends on both the technology and the details of the 
implementation.

Finally, we looked at multilevel caches as a technique to reduce the miss penalty 
by allowing a larger secondary cache to handle misses to the primary cache. 
Secondlevel caches have become commonplace as designers find that limited 
silicon and the goals of high clock rates prevent primary caches from becoming 

Check  
Yourself
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large. The secondary cache, which is often ten or more times larger than the pri mary 
cache, handles many accesses that miss in the primary cache. In such cases, the miss 
penalty is that of the access time to the secondary cache (typically < 10 processor 
cycles) versus the access time to memory (typically > 100 proces sor cycles). As with 
associativity, the design tradeoffs between the size of the secondary cache and its 
access time depend on a number of aspects of the implementation.

 5.4 Virtual Memory

In the previous section, we saw how caches provided fast access to recently used 
portions of a program’s code and data. Similarly, the main memory can act as a 
“cache” for the secondary storage, usually implemented with magnetic disks. This 
technique is called virtual memory. Historically, there were two major motiva tions 
for virtual memory: to allow efficient and safe sharing of memory among multiple 
programs, and to remove the programming burdens of a small, limited amount of 
main memory. Four decades after its invention, it’s the former reason that reigns 
today.

Consider a collection of programs running all at once on a computer. Of course, 
to allow multiple programs to share the same memory, we must be able to protect 
the programs from each other, ensuring that a program can only read and write 
the portions of main memory that have been assigned to it. Main memory need 
contain only the active portions of the many programs, just as a cache contains 
only the active portion of one program. Thus, the principle of locality enables vir
tual memory as well as caches, and virtual memory allows us to efficiently share the 
processor as well as the main memory. 

We cannot know which programs will share the memory with  other pro
grams when we compile them. In fact, the programs sharing the memory change 
dynamically while the programs are running. Because of this dynamic interaction, 
we would like to compile each program into its own address space—a separate 
range of memory locations accessible only to this program. Virtual memory 
implements the translation of a program’s address space to physical addresses. 
This translation process enforces protection of a program’s address space from 
other programs. 

The second motivation for virtual memory is to allow a single user program to 
exceed the size of primary memory. Formerly, if a program became too large for 
memory, it was up to the programmer to make it fit. Programmers di vided pro
grams into pieces and then identified the pieces that were mutually exclusive. These 
overlays were loaded or unloaded under user program control during exe cution, 
with the programmer ensuring that the program never tried to access an overlay 
that was not loaded and that the overlays loaded never exceeded the total size of 
the memory. Overlays were traditionally organized as modules, each con taining 

. . . a system has been 
devised to make the 
core drum combina-
tion appear to the 
programmer as a single 
level store, the requisite 
transfers taking place 
auto matically. 

Kilburn et al., One-level 
storage system, 1962

virtual memory 
A technique that uses 
main memory as a “cache” 
for secondary storage.

physical address An 
address in main memory.

protection A set 
of mecha nisms for 
ensuring that multiple 
processes sharing the 
processor, memory, 
or I/O devices cannot 
interfere, intentionally 
or unin tentionally, with 
one another by reading 
or writing each other’s 
data. These mechanisms 
also isolate the operating 
system from a user 
process.



both code and data. Calls between procedures in different modules would lead to 
overlaying of one module with another.

As you can well imagine, this responsibility was a substantial burden on pro
grammers. Virtual memory, which was invented to relieve programmers of this 
difficulty, automatically manages the two levels of the memory hierarchy repre
sented by main memory (sometimes called physical memory to distinguish it from 
virtual memory) and secondary storage. 

Although the concepts at work in virtual memory and in caches are the same, 
their differing historical roots have led to the use of different term  inology. A virtual 
memory block is called a page, and a virtual memory miss is called a page fault. 
With virtual memory, the processor produces a virtual address, which is translated 
by a combina tion of hardware and software to a physical  address, which in turn can 
be used to access main memory. Figure 5.19 shows the virtually addressed memory 
with pages mapped to main memory. This process is called address mapping or 
address translation. Today, the two mem ory hierarchy levels controlled by virtual 
memory are usually DRAMs and magnetic disks (see Chapter 1, pages 22–23). If 
we return to our library analogy, we can think of a virtual address as the title of 
a book and a physical address as the location of that book in the library, such as 
might be given by the Library of Congress call number.

page fault An event that 
occurs when an accessed 
page is not present in 
main memory.

virtual address An 
address that corresponds 
to a  location in virtual 
space and is translated 
by address mapping to 
a physical address when 
memory is  accessed.

address translation Also 
called address mapping. 
The process by which a 
virtual address is mapped 
to an address used to 
access memory.

FIGURE 5.19 In virtual memory, blocks of memory (called pages) are mapped from one 
set of addresses (called virtual addresses) to another set (called physical addresses). 
The processor generates virtual addresses while the memory is accessed using physical addresses. Both the 
virtual memory and the physical memory are broken into pages, so that a virtual page is mapped to a phys ical 
page. Of course, it is also possible for a virtual page to be absent from main memory and not be mapped to 
a physical address; in that case, the page resides on disk. Physical pages can be shared by having two vir tual 
addresses point to the same physical address. This capability is used to allow two different programs to share 
data or code. 

Virtual addresses Physical addresses
Address translation

Disk addresses
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Virtual memory also simplifies loading the program for execution by provid ing 
relocation. Relocation maps the virtual addresses used by a program to dif ferent 
physical addresses before the addresses are used to access memory. This relocation 
allows us to load the program anywhere in main memory. Further more, all virtual 
memory systems in use today relocate the program as a set of fixedsize blocks 
(pages), thereby eliminating the need to find a contiguous block of memory to 
allocate to a program; instead, the operating system need only find a sufficient 
number of pages in main memory. 

In virtual memory, the address is broken into a virtual page number and a page 
offset. Figure 5.20 shows the translation of the virtual page number to a physical 
page number. The physical page number constitutes the upper portion of the 
physical address, while the page offset, which is not changed, constitutes the lower 
 portion. The number of bits in the page offset field determines the page size. The 
number of pages addressable with the virtual address need not match the number 
of pages addressable with the physical address. Having a larger number of virtual 
pages than physical pages is the basis for the illusion of an essentially unbounded 
amount of virtual memory.

FIGURE 5.20 Mapping from a virtual to a physical address. The page size is 212 = 4 KB. The 
number of physical pages allowed in memory is 218, since the physical page number has 18 bits in it. Thus, 
main memory can have at most 1 GB, while the virtual address space is 4 GB. 

Virtual page number Page offset

31 30 29 28 27 3 2 1 015 14 13 12 11 10 9 8

Physical page number Page offset

29 28 27 3 2 1 015 14 13 12 11 10 9 8

Virtual address

Physical address

Translation

Many design choices in virtual memory systems are motivated by the high cost 
of a miss, which in virtual memory is traditionally called a page fault. A page fault 
will take millions of clock cycles to process. (The table on page 453 shows that main 
memory latency is about 100,000 times quicker than disk.) This enormous miss 



penalty, dominated by the time to get the first word for typical page sizes, leads to 
several key decisions in designing virtual memory systems:

 ■ Pages should be large enough to try to amortize the high access time. Sizes 
from 4 KB to 16 KB are typical today. New desktop and server systems are 
being developed to support 32 KB and 64 KB pages, but new embedded sys
tems are going in the other direction, to 1 KB pages.

 ■ Organizations that reduce the page fault rate are attractive. The primary tech
nique used here is to allow fully associative placement of pages in memory.

 ■ Page faults can be handled in software because the overhead will be small 
compared to the disk access time. In addition, software can afford to use 
clever algorithms for choosing how to place pages because even small reduc
tions in the miss rate will pay for the cost of such algorithms. 

 ■ Writethrough will not work for virtual memory, since writes take too long. 
Instead, virtual memory systems use writeback. 

The next few subsections address these factors in virtual memory design.

Elaboration: Although we normally think of virtual addresses as much larger than 
physical addresses, the opposite can occur when the processor address size is small 
relative to the state of the memory technology. No single program can benefit, but a 
collection of programs running at the same time can benefit from not having to be 
swapped to memory or by running on parallel processors. For servers and desktop 
computers, 32-bit address processors are problematic. 

Elaboration: The discussion of virtual memory in this book focuses on paging, which 
uses fixed-size blocks. There is also a variable-size block scheme called segmentation. 
In segmenta tion, an address consists of two parts: a segment number and a segment 
offset. The segment register is mapped to a physical address, and the offset is added 
to find the actual physical address. Because the segment can vary in size, a bounds 
check is also needed to make sure that the offset is within the segment. The major 
use of segmentation is to support more powerful methods of protection and sharing in 
an address space. Most operating system textbooks con tain extensive discussions of 
segmentation compared to paging and of the use of segmentation to logically share the 
address space. The major disadvantage of segmentation is that it splits the address 
space into logically separate pieces that must be manipulated as a two-part address: 
the segment number and the offset. Paging, in contrast, makes the boundary between 
page number and offset invisible to programmers and compilers.

Segments have also been used as a method to extend the address space without 
changing the word size of the computer. Such attempts have been unsuccessful because 
of the awkwardness and performance penalties inherent in a two-part address, of which 
programmers and compilers must be aware.

Many architectures divide the address space into large fixed-size blocks that simplify 
pro tection between the operating system and user programs and increase the efficiency 
of imple menting paging. Although these divisions are often called “segments,” this 
mechanism is much simpler than variable block size segmentation and is not visible to 
user programs; we discuss it in more detail shortly. 

segmentation 
A variablesize address 
mapping scheme in which 
an address consists of two 
parts: a segment number, 
which is mapped to a 
physical address, and a 
segment offset.
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Placing a Page and Finding It Again

Because of the incredibly high penalty for a page fault, designers reduce page fault 
frequency by optimizing page placement. If we allow a virtual page to be mapped 
to any physical page, the operating system can then choose to replace any page 
it wants when a page fault occurs. For example, the operating system can use a 
sophisticated algorithm and complex data structures that track page usage to try 
to choose a page that will not be needed for a long time. The ability to use a clever 
and flexible replacement scheme reduces the page fault rate and simplifies the use 
of fully associative placement of pages. 

As mentioned in Section 5.3, the difficulty in using fully associative place ment 
is in locating an entry, since it can be anywhere in the upper level of the hierarchy. 
A full search is impractical. In virtual memory systems, we locate pages by using a 
table that indexes the memory; this structure is called a page table, and it resides in 
memory. A page table is indexed with the page number from the virtual address to 
discover the corresponding physical page number. Each program has its own page 
table, which maps the virtual address space of that program to main memory. In 
our library analogy, the page table corre sponds to a mapping between book titles 
and library locations. Just as the card catalog may contain entries for books in 
another library on campus rather than the  local branch library, we will see that the 
page table may contain entries for  pages not present in memory. To indicate the 
location of the page table in mem ory, the hardware includes a register that points 
to the start of the page table; we call this the page table register. Assume for now that 
the page table is in a fixed and contiguous area of memory. 

The page table, together with the program counter and the registers, specifies the 
state of a program. If we want to allow another program to use the processor, we 
must save this state. Later, after restoring this state, the program can continue exe
cution. We often refer to this state as a process. The process is considered active 
when it is in possession of the processor; other wise, it is considered inactive. The 
operating system can make a process active by loading the process’s state, includ
ing the program counter, which will initiate execution at the value of the saved 
program counter. 

The process’s address space, and hence all the data it can access in memory, is 
defined by its page table, which resides in memory. Rather than save the entire 
page table, the operating system simply loads the page table register to point to 
the page table of the process it wants to make active. Each process has its own page 
table, since different processes use the same virtual addresses. The operating sys tem 
is responsible for allocating the physical memory and updating the page tables, so 
that the virtual address spaces of different processes do not collide. As we will see 
shortly, the use of separate page tables also provides protection of one process from 
another.

page table The table 
contain ing the virtual 
to physical address 
translations in a virtual 
memory system. The table, 
which is stored in memory, 
is typically indexed by the 
virtual page number; each 
entry in the table contains 
the physical page number 
for that virtual page if 
the page is currently in 
memory.

Hardware/ 
Software 
Interface



Figure 5.21 uses the page table register, the virtual address, and the indicated 
page table to show how the hardware can form a physical address. A valid bit is 
used in each page table entry, just as we did in a cache. If the bit is off, the page is 
not present in main memory and a page fault occurs. If the bit is on, the page is in 
memory and the entry contains the physical page number.

FIGURE 5.21 The page table is indexed with the virtual page number to obtain the corresponding portion of the 
physical address. We assume a 32bit address. The starting address of the page table is given by the page table pointer. In this figure, the 
page size is 212 bytes, or 4 KB. The virtual address space is 232 bytes, or 4 GB, and the physical address space is 230 bytes, which allows main 
memory of up to 1 GB. The number of entries in the page table is 220, or 1 million entries. The valid bit for each entry indicates whether the 
mapping is legal. If it is off, then the page is not present in memory. Although the page table entry shown here need only be 19 bits wide, it 
would typically be rounded up to 32 bits for ease of index ing. The extra bits would be used to store additional information that needs to be 
kept on a perpage basis, such as protection. 

Virtual page number Page offset

3 1  3 0  2 9  2 8  2 7 3  2  1  01 5  1 4  1 3  1 2  1 1  1 0  9  8

Physical page number Page offset

2 9  2 8  2 7 3  2  1  01 5  1 4  1 3  1 2  1 1  1 0  9  8

Virtual address

Physical address

Page table register

Physical page numberValid

Page table

If 0 then page is not
present in memory

20 12

18
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Because the page table contains a mapping for every possible virtual page, no 
tags are  required. In cache terminology, the index that is used to access the page 
table consists of the full block address, which is the virtual page  number. 

Page Faults

If the valid bit for a virtual page is off, a page fault occurs. The operating system 
must be given control. This transfer is done with the exception mechanism, which 
we discuss later in this section. Once the operating system gets control, it must find 
the page in the next level of the hierarchy (usually magnetic disk) and decide where 
to place the requested page in main memory. 

The virtual address alone does not immediately tell us where the page is on disk. 
Returning to our library analogy, we cannot find the location of a library book on 
the shelves just by knowing its title. Instead, we go to the catalog and look up the 
book, obtaining an address for the location on the shelves, such as the Library of 
Congress call number. Likewise, in a virtual memory system, we must keep track of 
the location on disk of each page in virtual address space. 

Because we do not know ahead of time when a page in memory will be 
replaced, the operating system usually creates the space on disk for all the pages 
of a process when it creates the process. This disk space is called the swap space. 
At that time, it also creates a data structure to record where each virtual page is 
stored on disk. This data structure may be part of the page table or may be an aux
iliary data structure indexed in the same way as the page table. Figure 5.22 shows 
the organization when a single table holds either the physical page number or the 
disk address. 

The operating system also creates a data structure that tracks which  processes 
and which virtual addresses use each physical page. When a page fault occurs, if all 
the pages in main memory are in use, the operating system must choose a page to 
replace. Because we want to minimize the number of page faults, most operating 
systems try to choose a page that they hypothesize will not be needed in the near 
future. Using the past to predict the future,  operating systems follow the least 
recently used (LRU) replacement scheme, which we mentioned in Section 5.3. The 
operating system searches for the least recently used page, assuming that a page 
that has not been used in a long time is less likely to be needed than a more recently 
accessed page. The replaced pages are written to swap space on the disk. In case 
you are wondering, the operating system is just another process, and these tables 
controlling memory are in memory; the details of this seeming contradic tion will 
be explained shortly.

swap space The space on 
the disk reserved for the 
full virtual memory space 
of a process.



Implementing a completely accurate LRU scheme is too expensive, since it requires 
updating a data structure on every memory reference. Instead, most operating 
systems approximate LRU by keeping track of which pages have and which pages 
have not been recently used. To help the operating system estimate the LRU pages, 
some computers provide a reference bit or use bit, which is set whenever a page 
is accessed. The operating system periodi cally clears the refer ence bits and later 
records them so it can determine which pages were touched during a particular 
time period. With this usage information, the operating sys tem can select a page 
that is among the least recently referenced (detected by hav ing its reference bit off). 
If this bit is not provided by the hardware, the operating system must find another 
way to estimate which pages have been accessed.

Hardware/ 
Software 
Interface

reference bit Also called 
use bit. A field that is 
set whenever a page 
is accessed and that is 
used to implement LRU 
or other replacement 
schemes.

FIGURE 5.22 The page table maps each page in virtual memory to either a page in main 
memory or a page stored on disk, which is the next level in the hierarchy. The vir tual page 
number is used to index the page table. If the valid bit is on, the page table supplies the physical page number 
(i.e., the starting address of the page in memory) corresponding to the virtual page. If the valid bit is off, the 
page currently resides only on disk, at a specified disk address. In many systems, the table of physical page 
addresses and disk page addresses, while logically one table, is stored in two sepa rate data structures. Dual 
tables are justified in part because we must keep the disk addresses of all the pages, even if they are currently 
in main memory. Remember that the pages in main memory and the pages on disk are the same size. 

Page table
Physical page or

disk address
Physical memory

Virtual page
number

Disk storage

1
1
1
1
0
1
1

1
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0
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Elaboration: With a 32-bit virtual address, 4 KB pages, and 4 bytes per page table 
entry, we can compute the total page table size:

Number of page table entries =   2
32
  

212
   = 220

Size of page table = 220 page table entries × 22   
bytes
   

page table entry
   = 4 MB

That is, we would need to use 4 MB of memory for each program in execution at any 
time. This amount is not so bad for a single program. What if there are hundreds of 
programs running, each with their own page table? And how should we handle 64-bit 
addresses, which by this cal culation would need 252 words?

A range of techniques is used to reduce the amount of storage required for the page 
table. The five techniques below aim at reducing the total maximum storage required as 
well as mini mizing the main memory dedicated to page tables:

1. The simplest technique is to keep a limit register that restricts the size of the page 
table for a given process. If the virtual page number becomes larger than the con-
tents of the limit reg ister, entries must be added to the page table. This technique 
allows the page table to grow as a process consumes more space. Thus, the page 
table will only be large if the process is using many pages of virtual address space. 
This technique requires that the address space expand in only one direction.

2. Allowing growth in only one direction is not sufficient, since most languages require 
two areas whose size is expandable: one area holds the stack and the other area 
holds the heap. Because of this duality, it is convenient to divide the page table and 
let it grow from the highest address down, as well as from the lowest address up. 
This means that there will be two separate page tables and two separate limits. The 
use of two page tables breaks the address space into two segments. The high-order 
bit of an address usually determines which segment and thus which page table to 
use for that address. Since the segment is specified by the  high-order address bit, 
each segment can be as large as one-half of the address space. A limit register for 
each segment specifies the current size of the segment, which grows in units of 
pages. This type of segmentation is used by many architectures, including MIPS. 
Unlike the type of segmentation discussed in the second elaboration on page 495, 
this form of segmentation is invisible to the application program, although not to the 
operating system. The major disadvantage of this scheme is that it does not work 
well when the address space is used in a sparse fashion rather than as a contiguous 
set of virtual addresses. 

3. Another approach to reducing the page table size is to apply a hashing function to 
the vir tual address so that the page table need be only the size of the number of 
physical pages in main memory. Such a structure is called an  inverted page table. 
Of course, the lookup process is slightly more complex with an inverted page table, 
because we can no longer just index the page table.

4. Multiple levels of page tables can also be used to reduce the total amount of page 
table storage. The first level maps large fixed-size blocks of virtual address space, 
perhaps 64 to 256 pages in total. These large blocks are sometimes called  segments, 
and this first-level mapping table is sometimes called a segment table, though the 



segments are again invisible to the user. Each entry in the segment table indicates 
whether any pages in that segment are allocated and, if so, points to a page table for 
that segment. Address transla tion happens by first looking in the  segment table, 
using the highest-order bits of the ad dress. If the segment address is valid, the next 
set of high-order bits is used to index the page table indicated by the segment table 
entry. This scheme allows the address space to be used in a sparse fashion (multiple 
noncontiguous segments can be active) without hav ing to allocate the entire page 
table. Such schemes are particularly useful with very large address spaces and in 
software systems that require noncontiguous allocation. The prima ry disadvantage 
of this two-level mapping is the more complex process for address trans lation. 

5. To reduce the actual main memory tied up in page tables, most modern systems 
also allow the page tables to be paged. Although this sounds tricky, it works by using 
the same basic ideas of virtual memory and simply allowing the page tables to 
 reside in the virtual ad dress space. In addition, there are some small but  critical 
problems, such as a never-end ing series of page faults, which must be avoided. How 
these problems are overcome is both very detailed and typically highly processor 
specific. In brief, these problems are avoided by placing all the page tables in the 
address space of the operating system and placing at least some of the page tables 
for the operating system in a portion of main mem ory that is physically addressed 
and is always present and thus never on disk. 

What about Writes?

The difference between the access time to the cache and main memory is tens to 
hundreds of cycles, and writethrough schemes can be used, although we need a 
write buffer to hide the latency of the write from the processor. In a virtual mem ory 
system, writes to the next level of the hierarchy (disk) take millions of proces sor 
clock cycles; therefore, building a write buffer to allow the system to writethrough 
to disk would be completely impractical. Instead, virtual memory sys tems must use 
writeback, performing the individual writes into the page in memory, and copying 
the page back to disk when it is replaced in the memory. 

A writeback scheme has another major advantage in a virtual memory system. 
Because the disk transfer time is small compared with its access time, copying back 
an entire page is much more efficient than writing individual words back to the 
disk. A writeback operation, although more efficient than transferring indi vidual 
words, is still costly. Thus, we would like to know whether a page needs to be copied 
back when we choose to replace it. To track whether a page has been written since 
it was read into the memory, a dirty bit is added to the page table. The dirty bit is 
set when any word in a page is written. If the operating system chooses to replace 
the page, the dirty bit indicates whether the page needs to be written out before its 
location in memory can be given to another page. Hence, a modified page is often 
called a dirty page.

Hardware/ 
Software 
Interface
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Making Address Translation Fast: the TLB

Since the page tables are stored in main memory, every memory access by a program 
can take at least twice as long: one memory access to obtain the physical address 
and a second access to get the data. The key to improving access performance is to 
rely on locality of reference to the page table. When a translation for a virtual page 
number is used, it will probably be needed again in the near future, because the 
references to the words on that page have both temporal and spatial locality. 

Accordingly, modern processors include a special cache that keeps track of recently 
used translations. This special address translation cache is  tradition ally referred to 
as a translation-lookaside buffer (TLB), although it would be more accurate to call 
it a translation cache. The TLB corresponds to that little piece of paper we typically 
use to record the location of a set of books we look up in the card catalog; rather 
than continually searching the entire catalog, we record the location of several books 
and use the scrap of paper as a cache of Library of Con gress call numbers.

Figure 5.23 shows that each tag entry in the TLB holds a portion of the virtual 
page number, and each data entry of the TLB holds a physical page number. Because 

translation-lookaside 
buffer (TLB) A cache 
that keeps track of 
recently used address 
mappings to try to avoid 
an access to the page table.

FIGURE 5.23 The TLB acts as a cache of the page table for the entries that map to physical pages only. The TLB contains 
a sub set of the virtualtophysical page mappings that are in the page table. The TLB mappings are shown in color. Because the TLB is a cache, 
it must have a tag field. If there is no matching entry in the TLB for a page, the page table must be examined. The page table either supplies 
a physical page number for the page (which can then be used to build a TLB entry) or indicates that the page resides on disk, in which case a 
page fault occurs. Since the page table has an entry for every virtual page, no tag field is needed; in other words, unlike a TLB, a page table is 
not a cache. 
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we access the TLB instead of the page table on every reference, the TLB will need to 
include other status bits, such as the dirty and the reference bits. 

On every reference, we look up the virtual page number in the TLB. If we get a 
hit, the physical page number is used to form the address, and the corresponding 
reference bit is turned on. If the processor is performing a write, the dirty bit is also 
turned on. If a miss in the TLB occurs, we must determine whether it is a page fault 
or merely a TLB miss. If the page exists in memory, then the TLB miss indicates 
only that the translation is missing. In such cases, the processor can handle the 
TLB miss by loading the translation from the page table into the TLB and then 
trying the reference again. If the page is not present in memory, then the TLB miss 
indicates a true page fault. In this case, the processor invokes the operating system 
using an  exception. Because the TLB has many fewer entries than the number of 
pages in main memory, TLB misses will be much more fre quent than true page 
faults. 

TLB misses can be handled either in hardware or in software. In practice, with 
care there can be little performance difference between the two approaches, because 
the basic operations are the same in either case.

After a TLB miss occurs and the missing translation has been retrieved from the 
page table, we will need to select a TLB entry to replace. Because the reference and 
dirty bits are contained in the TLB entry, we need to copy these bits back to the page 
table entry when we replace an entry. These bits are the only portion of the TLB 
entry that can be changed. Using writeback—that is, copying these entries back at 
miss time rather than when they are written—is very efficient, since we expect the 
TLB miss rate to be small. Some systems use other techniques to approximate the 
reference and dirty bits, eliminating the need to write into the TLB except to load 
a new table entry on a miss.

Some typical values for a TLB might be

 ■ TLB size: 16–512 entries

 ■ Block size: 1–2 page table entries (typically 4–8 bytes each)

 ■ Hit time: 0.5–1 clock cycle

 ■ Miss penalty: 10–100 clock cycles

 ■ Miss rate: 0.01%–1%

Designers have used a wide variety of associativities in TLBs. Some systems use 
small, fully associative TLBs because a fully associative mapping has a lower miss 
rate; furthermore, since the TLB is small, the cost of a fully associative mapping 
is not too high. Other systems use large TLBs, often with small associativity. With 
a fully associative mapping, choosing the entry to replace becomes tricky since 
implementing a hardware LRU scheme is too expensive. Furthermore, since TLB 
misses are much more frequent than page faults and thus must be handled more 
cheaply, we cannot afford an expensive software algorithm, as we can for page 
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faults. As a result, many systems provide some support for randomly choosing 
an entry to replace. We’ll examine replacement schemes in a little more detail in 
Section 5.5.

The Intrinsity FastMATH TLB
To see these ideas in a real processor, let’s take a closer look at the TLB of the 
Intrinsity FastMATH. The memory system uses 4 KB pages and a 32bit address 
space; thus, the virtual page number is 20 bits long, as in the top of Figure 5.24. 
The physical address is the same size as the virtual address. The TLB contains 16 
entries, it is fully associative, and it is shared between the instruction and data  
ref erences. Each entry is 64 bits wide and contains a 20bit tag (which is the virtual 
page number for that TLB entry), the corresponding physical page number (also 
20 bits), a valid bit, a dirty bit, and other bookkeeping bits. 

Figure 5.24 shows the TLB and one of the caches, while Figure 5.25 shows the 
steps in processing a read or write request. When a TLB miss occurs, the MIPS 
hardware saves the page number of the reference in a special register and generates 
an exception. The exception invokes the operating system, which handles the miss 
in software. To find the physical address for the missing page, the TLB miss rou
tine indexes the page table using the page number of the virtual address and the 
page table register, which indicates the starting address of the active process page 
table. Using a special set of system instructions that can update the TLB, the oper
ating system places the physical address from the page table into the TLB. A TLB 
miss takes about 13 clock cycles, assuming the code and the page table entry are 
in the instruction cache and data cache, respectively. (We will see the MIPS TLB 
code on page 513.) A true page fault occurs if the page table entry does not have a 
valid physical address. The hardware maintains an index that indicates the recom
mended entry to replace; the recommended entry is chosen randomly. 

There is an extra complication for write requests: namely, the write access bit in 
the TLB must be checked. This bit prevents the program from writing into pages 
for which it has only read access. If the program attempts a write and the write 
access bit is off, an exception is generated. The write access bit forms part of the 
protection mechanism, which we will discuss shortly.

Integrating Virtual Memory, TLBs, and Caches

Our virtual memory and cache systems work together as a hierarchy, so that data 
cannot be in the cache unless it is present in main memory. The operating system 
helps maintain this hierarchy by flushing the contents of any page from the cache 
when it decides to migrate that page to disk. At the same time, the OS modifies 
the page tables and TLB, so that an attempt to access any data on the migrated page 
will gener ate a page fault.



FIGURE 5.24 The TLB and cache implement the process of going from a virtual address to a data item in the Intrinsity 
Fast MATH. This figure shows the organization of the TLB and the data cache, assuming a 4 KB page size. This diagram focuses on a read; 
Figure 5.25 describes how to handle writes. Note that unlike Figure 5.9, the tag and data RAMs are split. By addressing the long but narrow 
data RAM with the cache index concatenated with the block offset, we select the desired word in the block without a 16:1 multiplexor. While 
the cache is direct mapped, the TLB is fully associative. Implementing a fully associative TLB requires that every TLB tag be compared against 
the virtual page number, since the entry of interest can be anywhere in the TLB. (See content addressable memories in the Elaboration on 
page 485.) If the valid bit of the matching entry is on, the access is a TLB hit, and bits from the physical page number together with bits from 
the page offset form the index that is used to access the cache. 
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FIGURE 5.25 Processing a read or a write-through in the Intrinsity FastMATH TLB and cache. If the TLB generates a hit, the 
cache can be accessed with the resulting physical address. For a read, the cache generates a hit or miss and supplies the data or causes a stall 
while the data is brought from memory. If the operation is a write, a portion of the cache entry is overwritten for a hit and the data is sent to 
the write buffer if we assume writethrough. A write miss is just like a read miss except that the block is modified after it is read from memory. 
Writeback requires writes to set a dirty bit for the cache block, and a write buffer is loaded with the whole block only on a read miss or write 
miss if the block to be replaced is dirty. Notice that a TLB hit and a cache hit are independent events, but a cache hit can only occur after a TLB 
hit occurs, which means that the data must be present in memory. The relationship between TLB misses and cache misses is examined further 
in the following example and the exercises at the end of this chapter. 



Under the best of circumstances, a virtual address is translated by the TLB and 
sent to the cache where the appropriate data is found, retrieved, and sent back to 
the processor. In the worst case, a reference can miss in all three components of the 
memory hierarchy: the TLB, the page table, and the cache. The following example 
illustrates these interactions in more detail.

Overall Operation of a Memory Hierarchy

In a memory hierarchy like that of Figure 5.24, which includes a TLB and a 
cache organized as shown, a memory reference can encounter three different 
types of misses: a TLB miss, a page fault, and a cache miss. Consider all the 
combinations of these three events with one or more occurring (seven possi
bilities). For each possibility, state whether this event can actually occur and 
under what circumstances.

Figure 5.26 shows all combinations and whether each is possible in practice. 

TLB
Page 
table Cache Possible? If so, under what circumstance?

Hit Hit Miss Possible, although the page table is never really checked if TLB hits.

Miss Hit Hit TLB misses, but entry found in page table; after retry, data is found in cache.

Miss Hit Miss TLB misses, but entry found in page table; after retry, data misses in cache.

Miss Miss Miss TLB misses and is followed by a page fault; after retry, data must miss in cache.

Hit Miss Miss Impossible: cannot have a translation in TLB if page is not present in memory.

Hit Miss Hit Impossible: cannot have a translation in TLB if page is not present in memory.

Miss Miss Hit Impossible: data cannot be allowed in cache if the page is not in memory.

FIGURE 5.26 The possible combinations of events in the TLB, virtual memory system, and 
cache. Three of these combinations are impossible, and one is possible (TLB hit, virtual memory hit, cache 
miss) but never detected. 

Elaboration: Figure 5.26 assumes that all memory addresses are translated to 
physical addresses before the cache is accessed. In this organization, the cache is 
physically indexed and physically tagged (both the cache index and tag are physical, 
rather than virtual, addresses). In such a system, the amount of time to access memory, 

EXAMPLE

ANSWER
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assuming a cache hit, must accommodate both a TLB access and a cache access; 
of course, these accesses can be pipelined.

Alternatively, the processor can index the cache with an address that is completely 
or par tially virtual. This is called a virtually addressed cache, and it uses tags that 
are virtual addresses; hence, such a cache is virtually indexed and virtually tagged. 
In such caches, the address translation hardware (TLB) is unused during the normal 
cache access, since the cache is accessed with a virtual address that has not been 
translated to a physical address. This takes the TLB out of the critical path, reducing 
cache latency. When a cache miss occurs, however, the processor needs to translate 
the address to a physical address so that it can fetch the cache block from main 
memory. 

When the cache is accessed with a virtual address and pages are shared between 
programs (which may access them with different virtual addresses), there is the possibility 
of aliasing. Aliasing occurs when the same object has two names—in this case, two 
virtual addresses for the same page. This ambiguity creates a problem, because a word 
on such a page may be cached in two different locations, each corresponding to different 
virtual addresses. This ambiguity would allow one program to write the data without the 
other program being aware that the data had changed. Completely virtually addressed 
caches either introduce design limitations on the cache and TLB to reduce aliases or 
require the operating system, and possibly the user, to take steps to ensure that aliases 
do not occur. 

A common compromise between these two design points is caches that are virtually 
indexed—sometimes using just the page offset portion of the address, which is really 
a physical address since it is not translated—but use physical tags. These designs, 
which are virtually indexed but physically tagged, attempt to achieve the performance 
advantages of virtually indexed caches with the architecturally simpler advantages of 
a physically addressed cache. For example, there is no alias problem in this case. 
Figure 5.24 assumed a 4 KB page size, but it’s really 16 KB, so the Intrinsity FastMATH 
can use this trick. To pull it off, there must be careful coordination between the minimum 
page size, the cache size, and associativity.

Implementing Protection with Virtual Memory 

Perhaps the most important function of virtual memory is to allow sharing of a 
single main memory by multiple processes, while providing memory protection 
among these processes and the operating system. The protection mechanism must 
ensure that although multiple processes are sharing the same main memory, one 
renegade process cannot write into the address space of another user process or 
into the operating system either intentionally or unintentionally. The write access 
bit in the TLB can protect a page from being written. Without this level of protec
tion, computer viruses would be even more widespread.

virtually addressed 
cache A cache that is 
accessed with a vir tual 
address rather than a 
physi cal address.

aliasing A situation in 
which the same object is 
accessed by two addresses; 
can occur in vir tual 
memory when there are 
two virtual addresses for 
the same physical page.

physically addressed 
cache A cache that is 
addressed by a physical 
address.



To enable the operating system to implement protection in the virtual memory 
sys tem, the hardware must provide at least the three basic capabilities summarized 
below.

1. Support at least two modes that indicate whether the running process is a 
user process or an operating system process, variously called a supervisor 
process, a kernel process, or an executive process.

2. Provide a portion of the processor state that a user process can read but 
not write. This includes the user/supervisor mode bit, which dictates 
whether the processor is in user or supervisor mode, the page table 
pointer, and the TLB. To write these elements, the operating system uses 
special instructions that are only available in supervisor mode. 

3. Provide mechanisms whereby the processor can go from user mode to 
supervisor mode and vice versa. The first direction is typically accom
plished by a system call exception, implemented as a special instruction 
(syscall in the MIPS instruction set) that transfers control to a dedicated 
location in supervisor code space. As with any other exception, the 
program counter from the point of the system call is saved in the 
exception PC (EPC), and the processor is placed in supervisor mode. To 
return to user mode from the exception, use the return from exception 
(ERET) instruction, which resets to user mode and jumps to the address 
in EPC.

By using these mechanisms and storing the page tables in the operating sys tem’s 
address space, the operating system can change the page tables while pre venting a 
user process from changing them, ensuring that a user  process can access only the 
storage provided to it by the operating system.

We also want to prevent a process from reading the data of another  process. 
For example, we wouldn’t want a student program to read the grades while they 
were in the processor’s memory. Once we begin sharing main memory, we must 
provide the ability for a process to protect its data from both reading and writ ing 
by another process; otherwise, sharing the main memory will be a mixed blessing!

Remember that each process has its own virtual address space. Thus, if the 
operating system keeps the page tables organized so that the independent virtual 
pages map to disjoint physical pages, one process will not be able to access another’s 
data. Of course, this also requires that a user process be unable to change the page 
table mapping. The operating system can assure safety if it prevents the user process 
from modifying its own page tables. However, the operating system must be able to 
modify the page tables. Placing the page tables in the protected address space of the 
operating system satisfies both requirements.

Hardware/ 
Software 
Interface
supervisor mode Also 
called kernel mode. A 
mode  indicating that a 
running process is an 
operating  system process.

system call A special 
instruc tion that transfers 
control from user mode 
to a dedicated loca tion 
in supervisor code space, 
invoking the exception 
mecha nism in the process.
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When processes want to share information in a limited way, the operating system 
must assist them, since accessing the information of another process requires 
changing the page table of the accessing process. The write access bit can be used 
to restrict the sharing to just read sharing, and, like the rest of the page table, this 
bit can be changed only by the operating system. To allow another process, say, P1, 
to read a page owned by process P2, P2 would ask the operating system to create 
a page table entry for a virtual page in P1’s address space that points to the same 
physical page that P2 wants to share. The operating system could use the write 
protection bit to prevent P1 from writing the  data, if that was P2’s wish. Any bits 
that determine the access rights for a page must be included in both the page table 
and the TLB, because the page table is accessed only on a TLB miss.

Elaboration: When the operating system decides to change from running process 
P1 to run ning process P2 (called a context switch or process switch), it must ensure 
that P2 cannot get access to the page tables of P1 because that would compromise 
protection. If there is no TLB, it suffices to change the page table register to point to P2’s 
page table (rather than to P1’s); with a TLB, we must clear the TLB entries that belong to 
P1—both to protect the data of P1 and to force the TLB to load the entries for P2. If the 
process switch rate were high, this could be quite ineffi cient. For example, P2 might load 
only a few TLB entries before the operating system switched back to P1. Unfortunately, 
P1 would then find that all its TLB entries were gone and would have to pay TLB misses 
to reload them. This problem arises because the virtual addresses used by P1 and P2 
are the same, and we must clear out the TLB to avoid confusing these addresses. 

A common alternative is to extend the virtual address space by adding a process 
identifier or task identifier. The Intrinsity FastMATH has an 8-bit address space ID (ASID) 
field for this purpose. This small field identifies the currently running process; it is kept 
in a register loaded by the operating system when it switches processes. The process 
identifier is concatenated to the tag portion of the TLB, so that a TLB hit occurs only if 
both the page number and the pro cess identifier match. This combination eliminates the 
need to clear the TLB, except on rare occasions. 

Similar problems can occur for a cache, since on a process switch the cache will 
contain data from the running process. These problems arise in different ways for 
physically addressed and virtually addressed caches, and a variety of different solutions, 
such as process identifiers, are used to ensure that a process gets its own data. 

Handling TLB Misses and Page Faults

Although the translation of virtual to physical addresses with a TLB is straightfor
ward when we get a TLB hit, handling TLB misses and page faults is more com plex. 
A TLB miss occurs when no entry in the TLB matches a virtual address. A TLB miss 
can indicate one of two possibilities:

1. The page is present in memory, and we need only create the missing TLB entry. 

2. The page is not present in memory, and we need to transfer control to the 
operating system to deal with a page fault. 

context switch A 
changing of the internal 
state of the proces sor to 
allow a different process 
to use the processor 
that includes saving the 
state needed to return to 
the currently exe cuting 
process.



How do we know which of these two circumstances has occurred? When we process 
the TLB miss, we will look for a page table entry to bring into the TLB. If the 
matching page table entry has a valid bit that is turned off, then the corresponding 
page is not in memory and we have a page fault, rather than just a TLB miss. If the 
valid bit is on, we can simply retrieve the desired entry. 

A TLB miss can be handled in software or hardware because it will require only 
a short sequence of operations to copy a valid page table entry from memory into 
the TLB. MIPS traditionally handles a TLB miss in software. It brings in the page 
table entry from memory and then reexecutes the instruction that caused the TLB 
miss. Upon reexecuting, it will get a TLB hit. If the page table entry indicates the 
page is not in memory, this time it will get a page fault exception.

Handling a TLB miss or a page fault requires using the exception mechanism 
to interrupt the active process, transferring control to the operating system, and 
later resuming execution of the interrupted process. A page fault will be recognized 
sometime during the clock cycle used to access memory. To restart the instruction 
after the page fault is handled, the program counter of the instruction that caused 
the page fault must be saved. Just as in Chapter 4, the exception program counter 
(EPC) is used to hold this value. 

In addition, a TLB miss or page fault exception must be asserted by the end of 
the same clock cycle that the memory access occurs, so that the next clock cycle 
will begin exception processing rather than continue normal instruction execu
tion. If the page fault was not recognized in this clock cycle, a load instruction 
could overwrite a register, and this could be disastrous when we try to restart the 
instruction. For example, consider the instruction lw $1,0($1): the computer 
must be able to prevent the write pipeline stage from occurring; otherwise, it could 
not properly restart the instruction, since the contents of $1 would have been 
destroyed. A similar complication arises on stores. We must prevent the write into 
memory from actually completing when there is a page fault; this is usually done 
by deasserting the write control line to the memory.

Register CP0 register number Description

EPC 14 Where to restart after exception

Cause 13 Cause of exception

BadVAddr 8 Address that caused exception

Index 0 Location in TLB to be read or written

Random 1 Pseudorandom location in TLB

EntryLo 2 Physical page address and flags

EntryHi 10 Virtual page address

Context 4 Page table address and page number

FIGURE 5.27 MIPS control registers. These are considered to be in coprocessor 0, and hence are 
read using mfc0 and written using mtc0. 
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Between the time we begin executing the exception handler in the operating system 
and the time that the operating system has saved all the state of the process, the 
operating system is particularly vulnerable. For example, if another excep tion 
occurred when we were processing the first exception in the operating sys tem, the 
control unit would overwrite the exception program counter, making it impossible 
to return to the instruction that caused the page fault! We can avoid this disaster 
by providing the ability to disable and enable exceptions. When an exception first 
occurs, the processor sets a bit that disables all other exceptions; this could happen 
at the same time the processor sets the supervisor mode bit. The operating system 
will then save just enough state to allow it to recover if another exception occurs—
namely, the exception program counter (EPC) and Cause registers. EPC and Cause 
are two of the special control registers that help with exceptions, TLB misses, and 
page faults; Figure 5.27 shows the rest. The operating system can then reenable 
exceptions. These steps make sure that exceptions will not cause the processor 
to lose any state and thereby be unable to restart execution of the interrupting 
instruction.

Once the operating system knows the virtual address that caused the page fault, 
it must complete three steps:

1. Look up the page table entry using the virtual address and find the location 
of the referenced page on disk.

2. Choose a physical page to replace; if the chosen page is dirty, it must be writ
ten out to disk before we can bring a new virtual page into this physical page.

3. Start a read to bring the referenced page from disk into the chosen physical 
page. 

Of course, this last step will take millions of processor clock cycles (so will the sec
ond if the replaced page is dirty); accordingly, the operating system will usually 
select another process to execute in the processor until the disk access completes. 
Because the operating system has saved the state of the process, it can freely give 
control of the processor to another process. 

When the read of the page from disk is complete, the operating system can 
restore the state of the process that originally caused the page fault and execute the 
instruction that returns from the exception. This instruction will reset the proces
sor from kernel to user mode, as well as restore the program counter. The user 
process then reexecutes the instruction that faulted, accesses the requested page 
successfully, and continues execution.

Hardware/ 
Software 
Interface

exception enable Also 
called interrupt enable. 
A signal or action that 
controls whether the 
process responds to 
an excep tion or not; 
necessary for preventing 
the occurrence of 
exceptions during 
intervals before the 
processor has safely saved 
the state needed to restart.



Page fault exceptions for data accesses are difficult to implement properly in a 
processor because of a combination of three characteristics: 

1. They occur in the middle of instructions, unlike instruction page faults.

2. The instruction cannot be completed before handling the exception.

3. After handling the exception, the instruction must be restarted as if nothing 
had occurred. 

Making instructions restartable, so that the exception can be handled and the 
instruction later continued, is relatively easy in an architecture like the MIPS. 
Because each instruction writes only one data item and this write occurs at the end 
of the instruction cycle, we can simply prevent the instruction from complet ing (by 
not writing) and restart the instruction at the beginning. 

Let’s look in more detail at MIPS. When a TLB miss occurs, the MIPS hardware 
saves the page number of the reference in a special register called BadVAddr and 
generates an exception.

The exception invokes the operating system, which handles the miss in software. 
Control is transferred to address 8000 0000hex, the location of the TLB miss han dler. 
To find the physical address for the missing page, the TLB miss routine indexes the 
page table using the page number of the virtual address and the page table regis ter, 
which indicates the starting address of the active process page table. To make this 
indexing fast, MIPS hardware places everything you need in the special Context 
register: the upper 12 bits have the address of the base of the page table, and the 
next 18 bits have the virtual address of the missing page. Each page table entry is 
one word, so the last 2 bits are 0. Thus, the first two instructions copy the Context 
regis ter into the kernel temporary register $k1 and then load the page table entry 
from that address into $k1. Recall that $k0 and $k1 are reserved for the operating 
system to use without saving; a major reason for this convention is to make the TLB 
miss handler fast. Below is the MIPS code for a typical TLB miss handler:

TLBmiss:	
	 mfc0		$k1,Context	 #	copy	address	of	PTE	into	temp	$k1	
	 lw	 	$k1,	0($k1)	 #	put	PTE	into	temp	$k1	
	 mtc0		$k1,EntryLo	 #	put	PTE	into	special	register	EntryLo	
	 tlbwr		 	 #	put	EntryLo	into	TLB	entry	at	Random	
	 eret			 	 #	return	from	TLB	miss	exception

As shown above, MIPS has a special set of system instructions to update the 
TLB. The instruction tlbwr copies from control register EntryLo into the TLB 
entry selected by the control register Random. Random implements random 
replacement, so it is basically a freerunning counter. A TLB miss takes about a 
dozen clock cycles. 

restartable instruction 
An instruction that can 
resume exe cution after 
an exception is resolved 
without the excep tion’s 
affecting the result of the 
instruction.

handler Name of a 
software routine invoked 
to “handle” an exception 
or interrupt.
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Note that the TLB miss handler does not check to see if the page table entry is 
valid. Because the exception for TLB entry missing is much more frequent than a 
page fault, the operating system loads the TLB from the page table without exam
ining the entry and restarts the instruction. If the entry is invalid, another and 
dif ferent exception occurs, and the operating system recognizes the page fault. This 
method makes the frequent case of a TLB miss fast, at a slight performance pen alty 
for the infrequent case of a page fault.

Once the process that generated the page fault has been interrupted, it transfers 
control to 8000 0180hex, a different address than the TLB miss handler. This is 
the general address for exception; TLB miss has a special entry point to lower the 
pen alty for a TLB miss. The operating system uses the exception Cause register 
to diagnose the cause of the exception. Because the exception is a page fault, the 
operating system knows that extensive processing will be required. Thus, unlike a 
TLB miss, it saves the entire state of the active process. This state includes all the 
generalpurpose and floatingpoint registers, the page table address register, the 
EPC, and the exception Cause register. Since exception handlers do not usually use 
the floatingpoint registers, the general entry point does not save them, leav ing that 
to the few handlers that need them.

Figure 5.28 sketches the MIPS code of an exception handler. Note that we save 
and restore the state in MIPS code, taking care when we enable and disable excep
tions, but we invoke C code to handle the particular exception.

The virtual address that caused the fault depends on whether the fault was an 
instruction or data fault. The address of the instruction that generated the fault is 
in the EPC. If it was an instruction page fault, the EPC contains the virtual address 
of the faulting page; otherwise, the faulting virtual address can be computed by 
examining the instruction (whose address is in the EPC) to find the base register 
and offset field. 

Elaboration: This simplified version assumes that the stack pointer (sp) is valid. 
To avoid the problem of a page fault during this low-level exception code, MIPS sets 
aside a portion of its address space that cannot have page faults, called unmapped. 
The operating system places the exception entry point code and the exception stack 
in unmapped memory. MIPS hardware translates virtual addresses 8000 0000hex to 
BFFF FFFFhex to physical addresses simply by ignoring the upper bits of the virtual 
address, thereby placing these addresses in the low part of physical memory. Thus, 
the operating system places exception entry points and exception stacks in unmapped 
memory.

Elaboration: The code in Figure 5.28 shows the MIPS-32 exception return sequence. 
The older MIPS-I architecture uses rfe and jr instead of eret.

unmapped A portion 
of the address space that 
cannot have page faults.



Save state

Save	GPR 	 addi	 $k1,$sp,	-XCPSIZE	 #	save	space	on	stack	for	state	
	 sw	 $sp,	XCT_SP($k1)	 #	save	$sp	on	stack	
	 sw	 $v0,	XCT_V0($k1)	 #	save	$v0	on	stack	
	 ...	 	 	 #	save	$v1,	$ai,	$si,	$ti,... on	stack
	 sw	 $ra,	XCT_RA($k1)	 #	save	$ra	on	stack

Save hi, lo 	 mfhi	 $v0	 	 #	copy	Hi	
	 mflo	 $v1	 	 #	copy	Lo	
	 sw	 $v0,	XCT_HI($k1)	 #	save	Hi	value	on	stack	
	 sw	 $v1,	XCT_LO($k1)	 #	save	Lo	value	on	stack

Save exception
registers

	 mfc0	 $a0,	$cr		 #	copy	cause	register	
	 sw	 $a0,	XCT_CR($k1)	 #	save	$cr	value	on	stack	
	 ...	 	 	 #	save	$v1,....	
	 mfc0	 $a3,	$sr		 #	copy	status	register	
	 sw	 $a3,	XCT_SR($k1)	 #	save	$sr	on	stack

Set sp 	 move	 $sp,	$k1		 #	sp	=	sp	-	XCPSIZE

Enable nested exceptions

	 andi	 $v0,	$a3,	MASK1	 #	$v0	=	$sr	&	MASK1,	enable	exceptions	
	 mtc0	 $v0,	$sr		 #	$sr	=	value	that	enables	exceptions

Call C exception handler

Set	$gp 	 move	 $gp,	GPINIT	 #	set	$gp	to	point	to	heap	area

Call	C	code 	 move	 $a0,	$sp		 #	arg1	=	pointer	to	exception	stack	
	 jal	 xcpt_deliver		 #	call	C	code	to	handle	exception

Restoring state

Restore	most	
GPR,	hi,	lo

	 move	 $at,	$sp		 #	temporary	value	of	$sp	
	 lw	 $ra,	XCT_RA($at)	 #	restore	$ra	from	stack	
	 ...	 	 	 #	restore	$t0,....,	$a1	
	 lw	 $a0,	XCT_A0($k1)	 #	restore	$a0	from	stack

Restore status 
register

	 lw	 $v0,	XCT_SR($at)	 #	load	old	$sr	from	stack	
	 li	 $v1,	MASK2	 #	mask	to	disable	exceptions	
	 and	 $v0,	$v0,	$v1	 #	$v0	=	$sr	&	MASK2,	disable	exceptions	
	 mtc0	 $v0,	$sr		 #	set	status	register

Exception return

Restore	$sp	
and	rest	of	
GPR	used	as	
temporary	
registers

	 lw	 $sp,	XCT_SP($at)	 #	restore	$sp	from	stack	

	 lw	 $v0,	XCT_V0($at)	 #	restore	$v0	from	stack	

	 lw	 $v1,	XCT_V1($at)	 #	restore	$v1	from	stack	

	 lw	 $k1,	XCT_EPC($at)	 #	copy	old	$epc	from	stack	

	 lw	 $at,	XCT_AT($at)	 #	restore	$at	from	stack

Restore	ERC	
and	return

	 mtc0	 $k1,	$epc	 #	restore	$epc	

	 eret	 $ra	 	 #	return	to	interrupted	instruction

FIGURE 5.28 MIPS code to save and restore state on an exception. 

Elaboration: For processors with more complex instructions that can touch many 
memory locations and write many data items, making instructions restartable is much 
harder. Processing one instruction may generate a number of page faults in the middle 
of the instruction. For example, x86 processors have block move instructions that touch 
thousands of data words. In such processors, instructions often cannot be restarted 
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from the beginning, as we do for MIPS instructions. Instead, the instruction must be 
interrupted and later continued midstream in its execution. Resuming an instruction in 
the middle of its execution usually requires saving some special state, processing the 
exception, and restoring that special state. Making this work prop erly requires careful 
and detailed coordination between the exception-handling code in the operating system 
and the hardware.

Summary

Virtual memory is the name for the level of memory hierarchy that manages cach
ing between the main memory and disk. Virtual memory allows a single program 
to expand its address space beyond the limits of main memory. More importantly, 
virtual memory supports sharing of the main memory among multiple, simulta
neously active processes, in a protected manner. 

Managing the memory hierarchy between main memory and disk is challeng ing 
because of the high cost of page faults. Several techniques are used to reduce the 
miss rate:

1. Pages are made large to take advantage of spatial locality and to reduce the 
miss rate.

2. The mapping between virtual addresses and physical addresses, which is 
implemented with a page table, is made fully associative so that a virtual 
page can be placed anywhere in main memory.

3. The operating system uses techniques, such as LRU and a reference bit, to 
choose which pages to replace.

Writes to disk are expensive, so virtual memory uses a writeback scheme and also 
tracks whether a page is unchanged (using a dirty bit) to avoid writing unchanged 
pages back to disk.

The virtual memory mechanism provides address translation from a virtual 
address used by the program to the physical address space used for accessing 
memory. This address translation allows protected sharing of the main memory 
and provides several additional benefits, such as simplifying memory allocation. 
Ensuring that processes are protected from each other requires that only the 
operating system can change the address translations, which is implemented by 
preventing user programs from changing the page tables. Controlled sharing of 
pages among processes can be implemented with the help of the operating sys tem 
and access bits in the page table that indicate whether the user program has read or 
write access to a page.

If a processor had to access a page table resident in memory to translate every 
 access, virtual memory would be too expensive, as caches would be pointless! 
Instead, a TLB acts as a cache for translations from the page table. Addresses are 
then translated from virtual to physical using the translations in the TLB. 

Caches, virtual memory, and TLBs all rely on a common set of principles and 
policies. The next section discusses this common framework.



Although virtual memory was invented to enable a small memory to act as a large 
one, the performance difference between disk and memory means that if a program 
routinely accesses more virtual memory than it has physical mem ory, it will run 
very slowly. Such a program would be continuously swapping pages between 
memory and disk, called thrashing. Thrashing is a disaster if it occurs, but it is rare. 
If your program thrashes, the easiest solution is to run it on a computer with more 
memory or buy more memory for your computer. A more complex choice is to 
reexamine your algorithm and data structures to see if you can change the locality 
and thereby reduce the number of pages that your program uses simultaneously. 
This set of popular pages is informally called the working set.

A more common performance problem is TLB misses. Since a TLB might handle 
only 32–64 page entries at a time, a program could easily see a high TLB miss rate, 
as the processor may access less than a quarter megabyte directly: 64 × 4 KB = 
0.25 MB. For example, TLB misses are often a challenge for Radix Sort. To try 
to alleviate this problem, most computer architectures now support variable page 
sizes. For example, in addition to the standard 4 KB page, MIPS hardware sup ports 
16 KB, 64 KB, 256 KB, 1 MB, 4 MB, 16 MB, 64 MB, and 256 MB pages. Hence, if 
a program uses large page sizes, it can access more memory directly without TLB 
misses. 

The practical challenge is getting the operating system to allow programs to 
select these larger page sizes. Once again, the more complex solution to reducing 
TLB misses is to reexamine the algorithm and data structures to reduce the work
ing set of pages; given the importance of memory accesses to performance and 
the frequency of TLB misses, some programs with large working sets have been 
redesigned with that goal.

Match the memory hierarchy element on the left with the closest phrase on the 
right: 

1. L1 cache a. A cache for a cache

2. L2 cache b. A cache for disks

3. Main memory c. A cache for a main memory

4. TLB d. A cache for page table entries

Understanding 
Program  
Performance

Check  
Yourself

 5.4 Virtual Memory 517



518 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

 5.5  
A Common Framework for Memory 
Hierarchies

By now, you’ve recognized that the different types of memory hierarchies share a 
great deal in common. Although many of the aspects of memory hierarchies differ 
quantitatively, many of the policies and features that determine how a hierarchy 
functions are similar qualitatively. Figure 5.29 shows how some of the quantitative 
characteristics of memory hierarchies can differ. In the rest of this section, we will 
discuss the common operational alternatives for memory hierarchies, and how 
these determine their behavior. We will examine these policies as a series of four 
questions that apply between any two levels of a memory hierarchy, although for 
simplicity we will primarily use terminology for caches.

Feature
Typical values 
for L1 caches

Typical values 
for L2 caches

Typical values for 
paged memory

Typical values 
for a TLB

Total size in blocks 250–2000 15,000–50,000 16,000–250,000 40–1024

Total size in kilobytes 16–64 500–4000 1,000,000–1,000,000,000 0.25–16

Block size in bytes 16–64 64–128 4000–64,000 4–32

Miss penalty in clocks 10–25 100–1000 10,000,000–100,000,000 10–1000

Miss rates (global for L2) 2%–5% 0.1%–2% 0.00001%–0.0001% 0.01%–2%

FIGURE 5.29 The key quantitative design parameters that characterize the major elements of memory hierarchy in a 
com puter. These are typical values for these levels as of 2008. Although the range of values is wide, this is partially because many of the values 
that have shifted over time are related; for example, as caches become larger to overcome larger miss penalties, block sizes also grow. 

Question 1: Where Can a Block Be Placed?
We have seen that block placement in the upper level of the hierarchy can use a 
range of schemes, from direct mapped to set associative to fully associative. As 
mentioned above, this entire range of schemes can be thought of as variations on 
a setassocia tive scheme where the number of sets and the number of blocks per 
set varies: 

Scheme name Number of sets Blocks per set

Direct mapped Number of blocks in cache 1

Set associative   Number of blocks in the cache     
 Associativity

  Associativity (typically 2–16)

Fully associative 1 Number of blocks in the cache

The advantage of increasing the degree of associativity is that it usually decreases 
the miss rate. The improvement in miss rate comes from reducing misses that com
pete for the same location. We will examine these in more detail shortly. First, let’s 



look at how much improvement is gained. Figure 5.30 shows the miss rates for 
several cache sizes as associativity varies from direct mapped to eightway set asso
ciative. The largest gains are obtained in going from direct mapped to twoway 
set associative, which yields between a 20% and 30% reduc tion in the miss rate. 
As cache sizes grow, the relative improvement from associa tivity increases only 
slightly; since the overall miss rate of a larger cache is lower, the opportunity for 
improving the miss rate decreases and the absolute improve ment in the miss rate 
from associativity shrinks significantly. The potential disad vantages of associativ
ity, as we mentioned earlier, are increased cost and slower access time.

FIGURE 5.30 The data cache miss rates for each of eight cache sizes improve as the 
associativity increases. While the benefit of going from oneway (direct mapped) to twoway set 
asso ciative is significant, the benefits of further associativity are smaller (e.g., 1%–10% improvement going 
from twoway to fourway versus 20%–30% improvement going from oneway to twoway). There is even 
less improvement in going from fourway to eightway set associative, which, in turn, comes very close 
to the miss rates of a fully associative cache. Smaller caches obtain a significantly larger absolute benefit 
from associativity because the base miss rate of a small cache is larger. Figure 5.15 explains how this data 
was col lected. 
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Question 2: How Is a Block Found?

The choice of how we locate a block depends on the block placement scheme, since 
that dictates the number of possible locations. We can summarize the schemes as 
follows:
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Associativity Location method Comparisons required

Direct mapped Index 1

Set associative Index the set, search among elements Degree of associativity

Full Search all cache entries Size of the cache

Separate lookup table 0

The choice among directmapped, setassociative, or fully associative mapping 
in any memory hierarchy will depend on the cost of a miss versus the cost of 
implementing associativity, both in time and in extra hardware. Including the L2 
cache on the chip enables much higher associativity, because the hit times are not 
as critical and the designer does not have to rely on standard SRAM chips as the 
building blocks. Fully associative caches are prohibitive except for small sizes, where 
the cost of the comparators is not overwhelming and where the absolute miss rate 
improvements are greatest.

In virtual memory systems, a separate mapping table—the page table—is kept 
to index the memory. In addition to the storage required for the table, using an 
index table requires an extra memory access. The choice of full associativity for 
page placement and the extra table is motivated by these facts:

1. Full associativity is beneficial, since misses are very expensive.

2. Full associativity allows software to use sophisticated replacement schemes 
that are designed to reduce the miss rate. 

3. The full map can be easily indexed with no extra hardware and no search ing 
required. 

Therefore, virtual memory systems almost always use fully associative placement. 
Setassociative placement is often used for caches and TLBs, where the access 

combines indexing and the search of a small set. A few systems have used direct
mapped caches because of their advantage in access time and simplicity. The 
advantage in access time occurs because finding the requested block does not 
depend on a comparison. Such design choices depend on many details of the 
implementation, such as whether the cache is onchip, the technology used for 
implementing the cache, and the critical role of cache access time in determining 
the processor cycle time. 

Question 3: Which Block Should Be Replaced 
on a Cache Miss?

When a miss occurs in an associative cache, we must decide which block to replace. 
In a fully associative cache, all blocks are candidates for replacement. If the cache is 
set associative, we must choose among the blocks in the set. Of course, replacement 
is easy in a directmapped cache because there is only one candidate. 



There are the two primary strategies for replacement in setassociative or fully 
associative caches:

 ■ Random: Candidate blocks are randomly selected, possibly using some 
hardware assistance. For example, MIPS supports random replacement for 
TLB misses.

 ■ Least recently used (LRU): The block replaced is the one that has been unused 
for the longest time. 

In practice, LRU is too costly to implement for hierarchies with more 
than a small degree of associativity (two to four, typically), since tracking the 
usage information is costly. Even for fourway set associativity, LRU is often 
approximated—for example, by keeping track of which pair of blocks is LRU 
(which  requires 1 bit), and then tracking which block in each pair is LRU (which 
requires 1 bit per pair). 

For larger associativity, either LRU is approximated or random replacement is 
used. In caches, the replacement algorithm is in hardware, which means that the 
scheme should be easy to implement. Random replacement is simple to build in 
hardware, and for a twoway setassociative cache, random replacement has a miss 
rate about 1.1 times higher than LRU   replacement. As the caches become larger, the 
miss rate for both replacement  strategies falls, and the absolute differ ence becomes 
small. In fact, random replacement can sometimes be better than the simple LRU 
approximations that are easily implemented in hardware.

In virtual memory, some form of LRU is always approximated, since even a tiny 
reduction in the miss rate can be important when the cost of a miss is enormous. 
Reference bits or equivalent functionality are often provided to make it easier for 
the operating system to track a set of less recently used pages.  Because misses are 
so expensive and relatively infrequent, approximating this information primarily 
in software is acceptable. 

Question 4: What Happens on a Write?

A key characteristic of any memory hierarchy is how it deals with writes. We have 
already seen the two basic options:

 ■ Write-through: The information is written to both the block in the cache and 
the block in the lower level of the memory hierarchy (main memory for a 
cache). The caches in Section 5.2 used this scheme. 

 ■ Write-back: The in formation is written only to the block in the cache. The 
modi fied block is written to the lower level of the hierarchy only when it 
is re placed. Virtual memory systems always use writeback, for the reasons 
discussed in Section 5.4.
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Both writeback and writethrough have their advantages. The key advantages 
of writeback are the following:

 ■ Individual words can be written by the processor at the rate that the cache, 
rather than the memory, can accept them.

 ■ Multiple writes within a block require only one write to the lower level in the 
hierarchy.

 ■ When blocks are written back, the system can make effective use of a high
bandwidth transfer, since the entire block is written. 

Writethrough has these advantages:

 ■ Misses are simpler and cheaper because they never require a block to be 
written back to the lower level.

 ■ Writethrough is easier to implement than writeback, although to be prac
tical, a writethrough cache will still need to use a write buffer. 

In virtual memory systems, only a writeback policy is practical because of the 
long latency of a write to the lower level of the hierarchy (disk). The rate at which 
writes are generated by a processor generally exceed the rate at which the memory 
system can process them, even allowing for physically and logically wider memories 
and burst modes for DRAM. Consequently, today lowestlevel caches typically use 
writeback.

Caches, TLBs, and virtual memory may initially look very different, but 
they rely on the same two principles of locality, and they can be under
stood by their answers to four questions:

Question 1: Where can a block be placed?
Answer: One place (direct mapped), a few places (set associative), 

or any place (fully associative).

Question 2: How is a block found?
Answer: There are four methods: indexing (as in a directmapped 

cache), limited search (as in a setassociative cache), full 
search (as in a fully associative cache), and a separate 
lookup table (as in a page table). 

Question 3: What block is replaced on a miss?
Answer: Typically, either the least recently used or a random block.

Question 4: How are writes handled?
Answer: Each level in the hierarchy can use either writethrough or 

writeback.

The BIG 
Picture
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The Three Cs: An Intuitive Model for Understanding the 
Behavior of Memory Hierarchies
In this section, we look at a model that provides insight into the sources of misses 
in a memory hierarchy and how the misses will be affected by changes in the hier
archy. We will explain the ideas in terms of caches, although the ideas carry over 
directly to any other level in the hierarchy. In this model, all misses are classified 
into one of three categories (the three Cs):

■	 Compulsory misses: These are cache misses caused by the first access to 
a block that has never been in the cache. These are also called cold-start 
misses.

■	 Capacity misses: These are cache misses caused when the cache cannot con
tain all the blocks needed during execution of a program. Capacity misses 
occur when blocks are replaced and then later retrieved. 

■	 Conflict misses: These are cache misses that occur in setassociative or 
 directmapped caches when multiple blocks compete for the same set. Con
flict misses are those misses in a directmapped or setassociative cache that 
are eliminated in a fully associative cache of the same size. These cache misses 
are also called collision misses.

Figure 5.31 shows how the miss rate divides into the three sources. These sources 
of misses can be directly attacked by changing some aspect of the cache design. Since 
conflict misses arise directly from contention for the same cache block, increasing 
associativity reduces conflict misses. Associativity, however, may slow access time, 
leading to lower overall performance.

Capacity misses can easily be reduced by enlarging the cache; indeed, second
level caches have been growing steadily larger for many years. Of course, when we 
make the cache larger, we must also be careful about increasing the access time, 
which could lead to lower overall performance. Thus, firstlevel caches have been 
growing slowly, if at all.

Because compulsory misses are generated by the first reference to a block, the 
primary way for the cache system to reduce the number of compulsory misses is to 
increase the block size. This will reduce the number of references required to touch 
each block of the program once, because the program will consist of fewer cache 
blocks. As mentioned above, increasing the block size too much can have a negative 
effect on performance because of the increase in the miss penalty.

The decomposition of misses into the three Cs is a useful qualitative model. In 
real cache designs, many of the design choices interact, and changing one cache 
characteristic will often affect several components of the miss rate. Despite such 
shortcomings, this model is a useful way to gain insight into the performance of 
cache designs.

three Cs model A cache 
model in which all cache 
misses are classified into 
one of three cate gories: 
compulsory misses, 
capacity misses, and 
conflict misses. 

compulsory miss Also 
called cold-start miss. 
A cache miss caused by 
the first access to a block 
that has  never been in the 
cache.

capacity miss A cache 
miss that occurs because 
the cache, even with 
full associativity, can not 
contain all the blocks 
needed to satisfy the 
request. 

conflict miss Also called 
colli sion miss. A cache 
miss that occurs in a  
setassociative or direct
mapped cache when 
mul tiple blocks compete 
for the same set and that 
are eliminated in a fully 
associative cache of the 
same size.
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The challenge in designing memory hierarchies is that every change that 
potentially improves the miss rate can also negatively affect overall perfor
mance, as Figure 5.32 summarizes. This combination of  positive and nega
tive effects is what makes the design of a memory hierarchy interesting.

FIGURE 5.31 The miss rate can be broken into three sources of misses. This graph shows 
the total miss rate and its components for a range of cache sizes. This data is for the SPEC CPU2000 integer 
and floatingpoint benchmarks and is from the same source as the data in Figure 5.30. The compulsory 
miss component is 0.006% and cannot be seen in this graph. The next component is the capacity miss rate, 
which depends on cache size. The conflict portion, which depends both on associativity and on cache size, is 
shown for a range of associativities from oneway to eightway. In each case, the labeled section corre sponds 
to the increase in the miss rate that occurs when the associativity is changed from the next higher degree to 
the labeled degree of associativity. For example, the section labeled two-way indicates the addi tional misses 
arising when the cache has associativity of two rather than four. Thus, the difference in the miss rate incurred 
by a directmapped cache versus a fully associative cache of the same size is given by the sum of the sections 
marked eight-way, four-way, two-way, and one-way. The difference between eightway and fourway is so 
small that it is difficult to see on this graph. 
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Design change Effect on miss rate
Possible negative  

performance effect

Increase cache size Decreases capacity misses May increase access time

Increase associativity Decreases miss rate due to conflict 
misses

May increase access time

Increase block size Decreases miss rate for a wide range of 
block sizes due to spatial locality

Increases miss penalty. Very large 
block could increase miss rate

FIGURE 5.32 Memory hierarchy design challenges. 

Which of the following statements (if any) are generally true?

1. There is no way to reduce compulsory misses.

2. Fully associative caches have no conflict misses.

3. In reducing misses, associativity is more important than capacity.

 5.6 Virtual Machines

An idea related to virtual memory that is almost as old is Virtual Machines (VM). 
They were first developed in the mid1960s, and they have remained an important 
part of mainframe computing over the years. Although largely ignored in the 
domain of singleuser computers in the 1980s and 1990s, they have recently gained 
popularity due to 

 ■ The increasing importance of isolation and security in modern systems

 ■ The failures in security and reliability of standard operating systems 

 ■ The sharing of a single computer among many unrelated users

 ■ The dramatic increases in raw speed of processors over the decades, which 
makes the overhead of VMs more acceptable

The broadest definition of VMs includes basically all emulation methods that 
provide a standard software interface, such as the Java VM. In this section, we are 
interested in VMs that provide a complete systemlevel environment at the binary 
instruction set architecture (ISA) level. Although some VMs run different ISAs in 
the VM from the native hardware, we assume they always match the hardware. 
Such VMs are called (Operating) System Virtual Machines. IBM VM/370, VMware 
ESX Server, and Xen are examples. 

Check  
Yourself
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System virtual machines present the illusion that the users have an entire 
 computer to themselves, including a copy of the operating system. A single com
puter runs multiple VMs and can support a number of different operating systems 
(OSes). On a conventional platform, a single OS “owns” all the hardware resources, 
but with a VM, multiple OSes all share the hardware resources. 

The software that supports VMs is called a virtual machine monitor (VMM) or 
hypervisor; the VMM is the heart of virtual machine technology. The underlying 
hardware platform is called the host, and its resources are shared among the guest 
VMs. The VMM determines how to map virtual resources to physical resources: 
a physical resource may be timeshared, partitioned, or even emulated in software. 
The VMM is much smaller than a traditional OS; the isolation portion of a VMM 
is perhaps only 10,000 lines of code.

Although our interest here is in VMs for improving protection, VMs provide 
two other benefits that are commercially significant:

1. Managing software. VMs provide an abstraction that can run the complete 
software stack, even including old operating systems like DOS. A typical 
deployment might be some VMs running legacy OSes, many running the 
current stable OS release, and a few testing the next OS release.

2. Managing hardware. One reason for multiple servers is to have each appli
cation running with the compatible version of the operating system on sep
arate computers, as this separation can improve dependability. VMs allow 
these separate software stacks to run independently yet share hardware, 
thereby consolidating the number of servers. Another example is that some 
VMMs support migration of a running VM to a different computer, either 
to balance load or to evacuate from failing hardware.

In general, the cost of processor virtualization depends on the workload. User
level processorbound programs have zero virtualization overhead, because the 
OS is rarely invoked, so everything runs at native speeds. I/Ointensive workloads 
are generally also OSintensive, executing many system calls and privileged 
instructions that can result in high virtualization overhead. On the other hand, if 
the I/Ointensive workload is also I/O-bound, the cost of processor virtualization 
can be completely hidden, since the processor is often idle waiting for I/O. 

The overhead is determined by both the number of instructions that must be 
emulated by the VMM and by how much time each takes to emulate. Hence, when 
the guest VMs run the same ISA as the host, as we assume here, the goal of the 
architecture and the VMM is to run almost all instructions directly on the native 
hardware. 



Requirements of a Virtual Machine Monitor
What must a VM monitor do? It presents a software interface to guest software, 
it must isolate the state of guests from each other, and it must protect itself from 
guest software (including guest OSes). The qualitative requirements are:

 ■ Guest software should behave on a VM exactly as if it were running on the 
native hardware, except for performancerelated behavior or limitations of 
fixed resources shared by multiple VMs.

 ■ Guest software should not be able to change allocation of real system resources 
directly.

To “virtualize” the processor, the VMM must control just about everything—access 
to privileged state, address translation, I/O, exceptions, and interrupts—even though 
the guest VM and OS currently running are temporarily using them.

For example, in the case of a timer interrupt, the VMM would suspend the cur
rently running guest VM, save its state, handle the interrupt, determine which guest 
VM to run next, and then load its state. Guest VMs that rely on a timer interrupt 
are provided with a virtual timer and an emulated timer interrupt by the VMM. 

To be in charge, the VMM must be at a higher privilege level than the guest 
VM, which generally runs in user mode; this also ensures that the execution of 
any privileged instruction will be handled by the VMM. The basic requirements 
of  system virtual machines are almost identical to those for paged virtual memory 
listed above: 

 ■ At least two processor modes, system and user

 ■ A privileged subset of instructions that is available only in system mode, 
resulting in a trap if executed in user mode; all system resources must be 
controllable only via these instructions

(Lack of) Instruction Set Architecture Support for  
Virtual Machines

If VMs are planned for during the design of the ISA, it’s relatively easy to reduce 
both the number of instructions that must be executed by a VMM and improve 
their emulation speed. An architecture that allows the VM to execute directly on 
the hardware earns the title virtualizable, and the IBM 370 architecture proudly 
bears that label.

Alas, since VMs have been considered for desktop and PCbased server applica
tions only fairly recently, most instruction sets were created without virtualization 
in mind. These culprits include x86 and most RISC architectures, including ARM 
and MIPS. 
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Because the VMM must ensure that the guest system only interacts with virtual 
resources, a conventional guest OS runs as a user mode program on top of the 
VMM. Then, if a guest OS attempts to access or modify information related to 
hardware resources via a privileged instruction—for example, reading or writing 
the page table pointer—it will trap to the VMM. The VMM can then effect the 
appropriate changes to corresponding real resources.

Hence, if any instruction that tries to read or write such sensitive information 
traps when executed in user mode, the VMM can intercept it and support a virtual 
version of the sensitive information, as the guest OS expects. 

In the absence of such support, other measures must be taken. A VMM must 
take special precautions to locate all problematic instructions and ensure that they 
behave correctly when executed by a guest OS, thereby increasing the complexity 
of the VMM and reducing the performance of running the VM. 

Protection and Instruction Set Architecture

Protection is a joint effort of architecture and operating systems, but architects 
had to modify some awkward details of existing instruction set architectures when 
virtual memory became popular. For example, to support virtual memory in the 
IBM 370, architects had to change the successful IBM 360 instruction set architec
ture that had been announced just six years before. Similar adjustments are being 
made today to accommodate virtual machines.

For example, the x86 instruction POPF loads the flag registers from the top of 
the stack in memory. One of the flags is the Interrupt Enable (IE) flag. If you run 
the POPF instruction in user mode, rather than trap it, it simply changes all the 
flags except IE. In system mode, it does change the IE. Since a guest OS runs in user 
mode inside a VM, this is a problem, as it expects to see a changed IE. 

Historically, IBM mainframe hardware and VMM took three steps to improve 
performance of virtual machines:

1. Reduce the cost of processor virtualization

2. Reduce interrupt overhead cost due to the virtualization

3. Reduce interrupt cost by steering interrupts to the proper VM without 
invoking VMM

In 2006, new proposals by AMD and Intel try to address the first point, reduc ing 
the cost of processor virtualization. It will be interesting to see how many genera
tions of architecture and VMM modifications it will take to address all three points, 
and how long before virtual machines of the 21st century will be as effi cient as the 
IBM mainframes and VMMs of the 1970s.



Elaboration: In addition to virtualizing the instruction set, another challenge is 
virtualiza tion of virtual memory, as each guest OS in every VM manages its own set of 
page tables. To make this work, the VMM separates the notions of real and physical 
memory (which are often treated synonymously), and makes real memory a separate, 
intermediate level between virtual memory and physical memory. (Some use the terms 
virtual memory, physical memory, and machine memory to name the same three levels.) 
The guest OS maps virtual memory to real memory via its page tables, and the VMM 
page tables map the guest’s real memory to physical memory. The virtual memory 
architecture is specified either via page tables, as in IBM VM/370 and the x86, or via 
the TLB structure, as in MIPS.

Rather than pay an extra level of indirection on every memory access, the VMM 
maintains a shadow page table that maps directly from the guest virtual address space 
to the physical address space of the hardware. By detecting all modifications to the 
guest’s page table, the VMM can ensure the shadow page table entries being used by 
the hardware for translations cor respond to those of the guest OS environment, with 
the exception of the correct physical pages substituted for the real pages in the guest 
tables. Hence, the VMM must trap any attempt by the guest OS to change its page table 
or to access the page table pointer. This is commonly done by write protecting the guest 
page tables and trapping any access to the page table pointer by a guest OS. As noted 
above, the latter happens naturally if accessing the page table pointer is a privileged 
operation.

The final portion of the architecture to virtualize is I/O. This is by far the most difficult 
part of system virtualization because of the increasing number of I/O devices attached 
to the com puter and the increasing diversity of I/O device types. Another difficulty is the 
sharing of a real device among multiple VMs, and yet another comes from supporting 
the myriad of device driv ers that are required, especially if different guest OSes are 
supported on the same VM system. The VM illusion can be maintained by giving each 
VM generic versions of each type of I/O device driver, and then leaving it to the VMM to 
handle real I/O. 

 5.7 
 Using a Finite-State Machine to Control 
a Simple Cache

We can now implement control for a cache, just as we implemented control for 
the singlecycle and pipelined datapaths in Chapter 4. This section starts with a 
definition of a simple cache and then a description of finitestate machines (FSM). 
It finishes with the FSM of a controller for this simple cache.  Section 5.9 on the 
CD goes into more depth, showing the cache and controller in a new hardware 
description language.

A Simple Cache

We’re going to design a controller for a simple cache. Here are the key charateris tics 
of the cache:
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 ■ Directmapped cache 

 ■ Writeback using write allocate

 ■ Block size is 4 words (16 bytes or 128 bits)

 ■ Cache size is 16 KB, so it holds 1024 blocks

 ■ 32bit byte addresses

 ■ The cache includes a valid bit and dirty bit per block

From Section 5.2, we can now calculate the fields of an address for the cache:

 ■ Cache index is 10 bits

 ■ Block offset is 4 bits

 ■ Tag size is 32 - (10 + 4) or 18 bits

The signals between the processor to the cache are 

 ■ 1bit Read or Write signal

 ■ 1bit Valid signal, saying whether there is a cache operation or not

 ■ 32bit address

 ■ 32bit data from processor to cache

 ■ 32bit data from cache to processor

 ■ 1bit Ready signal, saying the cache operation is complete

Note that this is a blocking cache, in that the processor must wait until the cache 
has finished the request.

The interface between the memory and the cache has the same fields as between 
the processor and the cache, except that the data fields are now 128 bits wide. The 
extra memory width in generally found microprocessors today, which deal with 
either 32bit or 64bit words in the processor while the DRAM control ler is often 
128 bits. Making the cache block match the width of the DRAM sim plified the 
design. Here are the signals:

 ■ 1bit Read or Write signal

 ■ 1bit Valid signal, saying whether there is a memory operation or not

 ■ 32bit address

 ■ 128bit data from cache to memory

 ■ 128bit data from memory to cache

 ■ 1bit Ready signal, saying the memory operation is complete



Note that the interface to memory is not a fixed number of cycles. We assume a 
memory controller that will notify the cache via the Ready signal when the mem
ory read or write is finished.

Before describing the cache controller, we need to review finitestate machines, 
which allow us to control an operation that can take multiple clock cycles.

Finite-State Machines

To design the control unit for the singlecycle datapath, we used a set of truth tables 
that specified the setting of the control signals based on the instruction class. For a 
cache, the control is more complex because the operation can be a series of steps. 
The control for a cache must specify both the signals to be set in any step and the 
next step in the sequence. 

The most common multistep control method is based on finite-state machines,
which are usually represented graphically. A finitestate machine con sists of a set 
of states and directions on how to change states. The directions are defined by a 
next-state function, which maps the current state and the inputs to a new state. 
When we use a finitestate machine for control, each state also specifies a set of 
outputs that are asserted when the machine is in that state. The implemen tation  
of a finitestate machine usually assumes that all outputs that are not explicitly 
asserted are deasserted. Similarly, the correct operation of the datapath depends on 
the fact that a signal that is not explicitly asserted is deasserted, rather than acting 
as a don’t care.

Multiplexor controls are slightly different, since they select one of the inputs 
whether they are 0 or 1. Thus, in the finitestate machine, we always specify the 
setting of all the multiplexor controls that we care about. When we implement 
the finitestate machine with logic, setting a control to 0 may be the default and 
thus may not require any gates. A simple example of a finitestate machine appears 
in  Appendix C, and if you are unfamiliar with the concept of a finitestate 
machine, you may want to examine  Appendix C before proceeding.

A finitestate machine can be implemented with a temporary register that holds 
the current state and a block of combinational logic that determines both the data 
path signals to be asserted and the next state. Figure 5.33 shows how such an imple
mentation might look.  Appendix D describes in detail how the finitestate 
machine is implemented using this structure. In  Section C.3, the combinational 
control logic for a finitestate machine is implemented both with a ROM (read
only memory) and a PLA (programmable logic array). (Also see  Appendix C 
for a description of these logic elements.) 

finite-state machine 
A sequen tial logic 
function con sisting of a 
set of inputs and outputs, 
a nextstate function 
that maps the cur rent 
state and the inputs to a 
new state, and an output 
function that maps the 
 current state and possibly 
the inputs to a set of  
asserted outputs.

next-state function 
A combi national function 
that,  given the inputs 
and the current state, 
determines the next state 
of a finitestate machine.
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Elaboration: The style of finite-state machine in this book is called a Moore machines, 
after Edward Moore. Its identifying characteristic is that the output depends only on the 
current state. For a Moore machine, the box labeled combinational control logic can be 
split into two pieces. One piece has the control output and only the state input, while the 
other has only the next-state output.

An alternative style of machine is a Mealy machine, named after George Mealy. The 
Mealy machine allows both the input and the current state to be used to determine 
the output. Moore machines have potential implementation advantages in speed and 
size of the control unit. The speed advantages arise because the control outputs, which 
are needed early in the clock cycle, do not depend on the inputs, but only on the current 
state. In  Appendix C, when the imple mentation of this finite-state machine is taken 
down to logic gates, the size advantage can be clearly seen. The potential disadvantage 
of a Moore machine is that it may require additional states. For example, in situations 
where there is a one-state difference between two sequences of states, the Mealy 
machine may unify the states by making the outputs depend on the inputs.

FIGURE 5.33 Finite-state machine controllers are typically implemented using a block 
of combinational logic and a register to hold the current state. The outputs of the combina
tional logic are the nextstate number and the control signals to be asserted for the current state. The inputs 
to the combinational logic are the current state and any inputs used to determine the next state. In this 
case, the inputs are the instruction register opcode bits. Notice that in the finitestate machine used in this 
chapter, the outputs depend only on the current state, not on the inputs. The Elaboration explains this in 
more detail. 

Combinational
control logic

Outputs

Inputs

State register
Next state

Datapath control outputs

Inputs from cache
datapath



FSM for a Simple Cache Controller

Figure 5.34 shows the four states of our simple cache controller:

 ■ Idle: This state waits for a valid read or write request from the processor, 
which moves the FSM to the Compare Tag state.

 ■ Compare Tag: As the name suggests, this state tests to see if the requested read 
or write is a hit or a miss. The index portion of the address selects the tag to 
be compared. If the data in the cache block referred to by the index portion of 
the address is valid and the tag portion of the address matches the tag, then the 
requested read or write is a hit. Either the data is read from the selected word 
or the writ ten to the selected word, and then the Cache Ready signal is set. If 
it is a write, the dirty bit is set to 1. Note that a write hit also sets the valid bit 
and the tag field; while it seems unnecessary, it is included because the tag is a 
single memory, so to change the dirty bit we also need to change the valid and 
tag fields. If it is a hit and the block is valid, the FSM returns to the idle state. A 
miss first updates the cache tag and then goes either to the WriteBack state, if 
the block at this location has dirty bit value of 1, or to the Allo cate state if it is 0. 
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FIGURE 5.34 Four states of the simple controller. 
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 ■ Write-Back: This state writes the 128bit block to memory using the address 
composed from the tag and cache index. We remain in this state waiting for 
the Ready signal from memory. When the memory write is complete, the 
FSM goes to the Allocate state.

 ■ Allocate : The new block is fetched from memory. We remain in this state 
waiting for the Ready signal from memory. When the memory read is com
plete, the FSM goes to the Compare Tag state. Although we could have gone 
to a new state to complete the operation instead of reusing the Compare Tag 
state, there is a good deal of overlap, including the update of the appropriate 
word in the block if the access was a write. 

This simple model could easily be extended with more states to try to improve 
performance. For example, the Compare Tag state does both the compare and the 
read or write of the cache data in a single clock cycle. Often the compare and cache 
access are done in separate states to try to improve the clock cycle time. Another 
optimization would be to add a write buffer so that we could save the dirty block 
and then read the new block first so that the processor doesn’t have to wait for two 
memory accesses on a dirty miss. The cache would then write the dirty block from 
the write buffer while the processor is operating on the requested data.

 Section 5.9, on the CD, goes into more detail about the FSM, showing the 
full controller in a hardware description language and a block diagram of this 
simple cache.

 5.8  
Parallelism and Memory Hierarchies: 
Cache Coherence

Given that a multicore multiprocessor means multiple processors on a single 
chip, these processors very likely share a common physical address space. Caching 
shared data introduces a new problem, because the view of memory held by 
two different processors is through their individual caches, which, without any 
additional precau tions, could end up seeing two different values. Figure 5.35 
illustrates the problem and shows how two different processors can have two 
different values for the same location. This difficulty is generally referred to as the 
cache coherence problem. 

Informally, we could say that a memory system is coherent if any read of a data 
item returns the most recently written value of that data item. This definition, 
although intuitively appealing, is vague and simplistic; the reality is much more 
complex. This simple definition contains two different aspects of memory system 
behavior, both of which are critical to writing correct shared memory programs. 
The first aspect, called coherence, defines what values can be returned by a read. 



The second aspect, called consistency, determines when a written value will be 
returned by a read. 

Let’s look at coherence first. A memory system is coherent if 

1. A read by a processor P to a location X that follows a write by P to X, with no 
writes of X by another processor occurring between the write and the read 
by P, always returns the value written by P. Thus, in Figure 5.35 above, if CPU 
A were to read X after time step 3, it should see the value 1.

2. A read by a processor to location X that follows a write by another proces sor 
to X returns the written value if the read and write are sufficiently sepa rated 
in time and no other writes to X occur between the two accesses. Thus, in 
Figure 5.35, we need a mechanism so that the value 0 in the cache of CPU B 
is replaced by the value 1 after CPU A stores 1 into memory at address X in 
time step 3.

3. Writes to the same location are serialized; that is, two writes to the same 
location by any two processors are seen in the same order by all processors. 
For example, if CPU B stores 2 into memory at address X after time step 3, 
processors can never read the value at location X as 2 and then later read 
it as 1.

The first property simply preserves program order—we certainly expect this 
property to be true in uniprocessors, for example. The second property defines 
the notion of what it means to have a coherent view of memory: if a processor 
could continuously read an old data value, we would clearly say that memory was 
incoherent. 

The need for write serialization is more subtle, but equally important. Suppose 
we did not serialize writes, and processor P1 writes location X followed by P2 
writing location X. Serializing the writes ensures that every processor will see the 

FIGURE 5.35 The cache coherence problem for a single memory location (X), read and 
written by two processors (A and B). We initially assume that neither cache contains the variable and 
that X has the value 0. We also assume a writethrough cache; a writeback cache adds some additional but 
similar complications. After the value of X has been written by A, A’s cache and the memory both con tain the 
new value, but B’s cache does not, and if B reads the value of X, it will receive 0! 

Time
step Event

Cache  contents for 
CPU A

Cache  contents 
for CPU B

Memory 
contents for 
location X

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A stores 1 into X 1 0 1
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write done by P2 at some point. If we did not serialize the writes, it might be the 
case that some processor could see the write of P2 first and then see the write of 
P1, maintaining the value written by P1 indefinitely. The simplest way to avoid 
such difficulties is to ensure that all writes to the same location are seen in the same 
order; this property is called write serialization. 

Basic Schemes for Enforcing Coherence

In a cache coherent multiprocessor, the caches provide both  migration and replica-
tion of shared data items: 

 ■ Migration: A data item can be moved to a local cache and used there in a 
transparent fashion. Migration reduces both the latency to access a shared 
data item that is allocated remotely and the bandwidth demand on the shared 
memory. 

 ■ Replication: When shared data are being  simultaneously read, the caches 
make a copy of the data item in the local cache. Replication reduces both 
latency of access and contention for a read shared data item. 

Supporting this migration and replication is critical to performance in access ing 
shared data, so many multiprocessors introduce a hardware protocol to main tain 
coherent caches. The protocols to maintain coherence for multiple processors are 
called cache coherence proto cols. Key to implementing a cache coherence proto col is 
tracking the state of any sharing of a data block. 

The most popular cache coherence protocol is snooping. Every cache that has a 
copy of the data from a block of physical memory also has a copy of the sharing 
status of the block, but no centralized state is kept. The caches are all accessible via 
some broadcast medium (a bus or network), and all cache controllers monitor or 
snoop on the medium to determine whether or not they have a copy of a block that 
is requested on a bus or switch access. 

In the following section we explain snoopingbased cache coherence as imple
mented with a shared bus, but any communication medium that broadcasts cache 
misses to all processors can be used to implement a snoopingbased coherence 
scheme. This broadcasting to all caches makes snooping protocols simple to 
implement but also limits their scalability. 

Snooping Protocols 
One method of enforcing coherence is to ensure that a processor has exclusive 
access to a data item before it writes that item. This style of protocol is called a write 
invalidate protocol  because it invalidates copies in other caches on a write. Exclusive 
access ensures that no other readable or writable copies of an item exist when the 
write occurs: all other cached copies of the item are invalidated. 



Figure 5.36 shows an example of an invalidation protocol for a snooping bus with 
writeback caches in action. To see how this protocol ensures coherence,  con sider 
a write followed by a read by another processor: since the write requires exclu
sive access, any copy held by the reading processor must be invalidated (hence the 
protocol name). Thus, when the read occurs, it misses in the cache, and the cache 
is forced to fetch a new copy of the data. For a write, we require that the writing 
processor have exclusive access, preventing any other processor from being able to 
write simultaneously. If two processors do attempt to write the same data simulta
neously, one of them wins the race, causing the other proces sor’s copy to be invali
dated. For the other processor to complete its write, it must obtain a new copy of 
the data, which must now contain the updated value. There fore, this protocol also 
enforces write serialization. 

FIGURE 5.36 An example of an invalidation protocol working on a snooping bus for a 
single cache block (X) with write-back caches. We assume that neither cache initially holds X and 
that the value of X in memory is 0. The CPU and memory contents show the value after the processor and 
bus activity have both completed. A blank indicates no activity or no copy cached. When the second miss 
by B occurs, CPU A responds with the value canceling the response from memory. In addition, both the 
contents of B’s cache and the memory contents of X are updated. This update of memory, which occurs 
when a block becomes shared, simplifies the protocol, but it is possible to track the ownership and force the 
writeback only if the block is replaced. This requires the introduction of an additional state called “owner,” 
which indicates that a block may be shared, but the owning processor is responsible for updating any other 
processors and memory when it changes the block or replaces it. 

Processor activity Bus activity
Contents of  

CPU A’s cache
Contents of  

CPU B’s cache

Contents of  
memory  

location X

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes a 1 to X Invalidation for X 1 0

CPU B reads X Cache miss for X 1 1 1

One insight is that block size plays an important role in cache coherency. For 
example, take the case of snooping on a cache with a block size of eight words, 
with a single word alternatively writ ten and read by two processors. Most proto cols 
exchange full blocks between processors, thereby increasing coherency bandwidth 
demands. 

Large blocks can also cause what is called false shar ing: when two unrelated 
shared variables are located in the same cache block, the full block is exchanged 
between processors even though the processors are accessing different variables. 
Programmers and compilers should lay out data carefully to avoid false 
sharing.

Hardware/ 
Software 
Interface

false sharing When two 
unre  lated shared variables 
are located in the same 
cache block and the 
full block is exchanged 
between  processors even 
though the  processors 
are accessing dif ferent 
variables.
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Elaboration: Although the three properties on page 535 are sufficient to ensure 
coherence, the question of when a written value will be seen is also important. To see 
why, observe that we cannot require that a read of X in Figure 5.35 instantaneously 
sees the value writ ten for X by some other pro cessor. If, for example, a write of X on 
one processor precedes a read of X on another processor very shortly beforehand, it 
may be impossible to ensure that the read returns the value of the data written, since 
the written data may not even have left the pro cessor at that point. The issue of exactly 
when a written value must be seen by a reader is defined by a memory consistency 
model. 

We make the following two assumptions. First, a write does not complete (and allow 
the next write to occur) until all processors have seen the effect of that write. Second, 
the processor does not change the order of any write with respect to any other memory 
access. These two con ditions mean that if a processor writes location X followed by 
location Y, any processor that sees the new value of Y must also see the new value 
of X. These restrictions allow the processor to reorder reads, but forces the processor 
to finish a write in program order.

Elaboration: Since input can change memory behind the caches and since output 
could need the latest value in a write back cache, there is also a cache coherency problem 
for I/O with the caches of a single processor as well as just between caches of multiple 
processors. The cache coherence problem for multiprocessors and I/O (see Chapter 6), 
although similar in origin, has different characteristics that affect the appropriate solution. 
Unlike I/O, where multiple data copies are a rare event—one to be avoided whenever 
possi ble—a program running on multiple proces sors will normally have copies of the 
same data in several caches.

Elaboration: In addition to the snooping cache coherence protocol where the status 
of shared blocks is distributed, a directory-based cache coherence protocol keeps the 
sharing sta tus of a block of physical memory in just one location, called the directory. 
Directory-based coherence has slightly higher implementation overhead than snooping, 
but it can reduce traffic between caches and thus scale to larger processor counts.

   Advanced Material: Implementing 
Cache Controllers

This section on the CD shows how to implement control for a cache, just as we 
implemented control for the singlecycle and pipelined datapaths in Chapter 4. This 
section starts with a description of finitestate machines and the implemention of 
a cache controller for a simple data cache, including a description of the cache 
controller in a hardware description language. It then goes into details of an 
example cache coherence protocol and the difficulties in implementing such a 
protocol.

5.9
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FIGURE 5.37 An Intel Nehalem die processor photo with the components labeled. This 
13.5 by 19.6 mm die has 731 million transistors. It contains four processors that each have private 32KB 
instruction and 32LKB instruction caches and a 512KB L2 cache. The four cores share an 8MB L3 cache. 
The two 128bit memory channels are to DDR3 DRAM. Each core also has a twolevel TLB. The memory 
controller is now on the die, so there is no separate north bridge chip as in Intel Clovertown. 
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 5.10 
 Real Stuff: the AMD Opteron X4 
(Barcelona) and Intel Nehalem Memory 
Hierarchies

In this section, we will look at the memory hierarchy in two modern microproces sors:  
the AMD Opteron X4 (Barcelona) processor and the Intel Nehalem. Figure 5.37 
shows the Intel Nehalem die photo, and Figure 1.9 in Chapter 1 shows the AMD 
Opteron X4 die photo. Both have secondary and tertiary caches on the main 
processor die. Such integration reduces access time to the lowerlevel caches and 
also reduces the number of pins on the chip, since there is no need for a bus to an 
external secondary cache. Both have onchip memory controllers, which reduces 
the latency to main memory.
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The Memory Hierarchies of the Nehalem and Opteron

Figure 5.38 summarizes the address sizes and TLBs of the two processors. Note that 
the AMD Opteron X4 (Barcelona) has four TLBs and that the virtual and physical 
addresses do not have to match the word size. The X4 implements only 48 of the 
potential 64 bits of its virtual space and 48 of the potential 64 bits of its physical 
address space. Nehalem has three TLBs, and the virtual address is 48 bits and the 
physical address is 44 bits.

Characteristic Intel Nehalem AMD Opteron X4 (Barcelona)

Virtual address 48 bits 48 bits

Physical address 44 bits 48 bits

Page size 4 KB, 2/4 MB 4 KB, 2/4 MB

TLB organization 1 TLB for instructions and 1 TLB for 
data per core

Both L1 TLBs are four-way set 
associative, LRU replacement

The L2 TLB is four-way set 
associative, LRU replacement

L1 I-TLB has 128 entries for small 
pages, 7 per thread for large pages

L1 D-TLB has 64 entries for small 
pages, 32 for large pages

The L2 TLB has 512 entries

TLB misses handled in hardware

1 L1 TLB for instructions and 1 L1 TLB for 
data per core

Both L1 TLBs fully associative, LRU 
replacement

1 L2 TLB for instructions and 1 L2 TLB for 
data per core

Both L2 TLBs are four-way set associative, 
round-robin

Both L1 TLBs have 48 entries

Both L2 TLBs have 512 entries

TLB misses handled in hardware

FIGURE 5.38 Address translation and TLB hardware for the Intel Nehalem and AMD 
Opteron X4. The word size sets the maximum size of the virtual address, but a processor need not use all 
bits. Both processors provide support for large pages, which are used for things like the operating system 
or mapping a frame buffer. The largepage scheme avoids using a large number of entries to map a single 
object that is always present. Nehalem supports two hardwaresupported threads per core (see Section 7.5 
in Chapter 7). 

Figure 5.39 shows their caches. Each processor in the X4 has its own L1 64KB 
instruction and data caches and its own 512KB L2 cache. The four pro cessors 
share a single 2MB L3 cache. Nehalem has a similar structure, with each proces sor 
having its own L1 32KB instruction and data caches and its own 512KB L2 cache, 
and the four processors share a single 8MB L3 cache.

Figure 5.40 shows the CPI, miss rates per thousand instructions for the L1 and 
L2 caches, and DRAM accesses per thousand instructions for Opteron X4 running 
the SPECint 2006 benchmarks. Note that the CPI and cache miss rates are highly 
correlated. The correlation coefficient of the set of CPIs and the set of L1 misses 
per 1000 instructions is 0.97. Although we don’t have the actual L3 misses, we can 
infer the effectiveness of L3 by the reduction in DRAM accesses versus L2 misses. 
While a few programs benefit significantly from the 2MB L3 cache—h264avc, 
hmmer, and bzip2—most do not.



Characteristic Intel Nehalem AMD Opteron X4 (Barcelona)

L1 cache organization Split instruction and data caches Split instruction and data caches

L1 cache size 32 KB each for instructions/data per 
core

64 KB each for instructions/data 
per core

L1 cache associativity 4-way (I), 8-way (D) set associative 2-way set associative

L1 replacement Approximated LRU replacement LRU replacement

L1 block size 64 bytes 64 bytes

L1 write policy Write-back, Write-allocate Write-back, Write-allocate

L1 hit time (load-use) Not Available 3 clock cycles

L2 cache organization Unified (instruction and data) per core Unified (instruction and data) per core

L2 cache size 256 KB (0.25 MB) 512 KB (0.5 MB)

L2 cache associativity 8-way set associative 16-way set associative

L2 replacement Approximated LRU replacement Approximated LRU replacement

L2 block size 64 bytes 64 bytes

L2 write policy Write-back, Write-allocate Write-back, Write-allocate

L2 hit time Not Available 9 clock cycles

L3 cache organization Unified (instruction and data) Unified (instruction and data) 

L3 cache size 8192 KB (8 MB), shared 2048 KB (2 MB), shared

L3 cache associativity 16-way set associative 32-way set associative

L3 replacement Not Available Evict block shared by fewest cores

L3 block size 64 bytes 64 bytes

L3 write policy Write-back, Write-allocate Write-back, Write-allocate

L3 hit time Not Available 38 (?)clock cycles

FIGURE 5.39 First-level, second-level, and third-level caches in the Intel Nehalem and 
AMD Opteron X4 2356 (Barcelona). 

Techniques to Reduce Miss Penalties

Both the Nehalem and the Opteron X4 have additional optimizations that allow 
them to reduce the miss penalty. The first of these is the return of the requested 
word first on a miss, as described in the Elaboration on page 473. Both allow the 
processor to continue to execute instructions that access the data cache during 
a cache miss. This  technique, called a nonblocking cache, is commonly used by 
designers who are attempting to hide the cache miss latency by using outoforder 
pro cessors. They implement two flavors of nonblocking. Hit under miss allows addi
tional cache hits during a miss, while miss under miss allows multiple outstanding 
cache misses. The aim of the first of these two is hiding some miss latency with 
other work, while the aim of the second is overlapping the latency of two different 
misses.

Overlapping a large fraction of miss times for multiple outstanding misses 
requires a highbandwidth memory system capable of handling multiple misses in 
parallel. In desktop systems, the memory may only be able to take limited advan
tage of this capability, but large servers and multiprocessors often have memory 
systems capable of handling more than one outstanding miss in parallel. 

nonblocking cache 
A cache that allows 
the processor to make 
references to the cache 
while the cache is 
 handling an earlier miss.
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Both microprocessors prefetch instructions and have a builtin hardware prefetch 
mechanism for data accesses. They look at a pattern of data misses and use this 
information to try to predict the next address to start fetching the data before the 
miss occurs. Such techniques generally work best when accessing arrays in loops.

A significant challenge facing cache designers is to support processors like the 
Nehalem and Opteron X4, which can execute more than one memory instruction 
per clock cycle. Multiple requests can be supported in the firstlevel cache by two 
different techniques. The cache can be multiported, allowing more than one simul
taneous access to the same cache block. Multiported caches, however, are often 
too expensive, since the RAM cells in a multiported memory must be much larger 
than singleported cells. The alternative scheme is to break the cache into banks 
and allow multiple, independent accesses, provided the accesses are to different 
banks. The technique is similar to interleaved main memory (see Figure 5.11).The 
Opteron X4 L1 data cache supports two 128bit reads per clock cycle and has eight 
banks.

Nehalem and most other processors follow the policy of inclusion in their mem
ory hierarchy. This means that a copy of all data in the higher level caches can also 
be found in the lowerlevel caches. In contrast, the AMD processors follow the 
policy of exclusion in their first and secondlevel cache, meaning that a cache block 
can only be found in the first or secondlevel caches, but not both. Hence, on an 
L1 miss when a block is fetched from L2 to L1, the block replaced is sent back to 
the L2 cache. 

FIGURE 5.40 CPI, miss rates, and DRAM accesses for the Opteron model X4 2356 
(Barcelona) mem ory hierarchy running SPECint2006. Alas, the L3 miss counters did not work on 
this chip, so we only have DRAM accesses to infer the effectiveness of the L3 cache. Note that this figure is for 
the same sys tems and benchmarks as Figure 1.20 in Chapter 1. 

 
Name

 
CPI

L1 D cache 
misses/1000 instr

L2 D cache 
misses/1000 instr

DRAM 
accesses/1000 instr

perl 0.75 3.5 1.1 1.3

bzip2 0.85 11.0 5.8 2.5

gcc 1.72 24.3 13.4 14.8

mcf 10.00 106.8 88.0 88.5

go 1.09 4.5 1.4 1.7 

hmmer 0.80 4.4 2.5 0.6

sjeng 0.96 1.9 0.6 0.8

libquantum 1.61 33.0 33.1 47.7

h264avc 0.80 8.8 1.6 0.2 

omnetpp 2.94 30.9 27.7 29.8

astar 1.79 16.3 9.2 8.2 

xalancbmk 2.70 38.0 15.8 11.4

Median 1.35 13.6 7.5 5.4



The sophisticated memory hierarchies of these chips and the large fraction of 
the dies dedicated to caches and TLBs show the significant design effort expended 
to try to close the gap between processor cycle times and memory latency.

Elaboration: The shared L3 cache of Opteron X4 does not always follow exclu sion. 
Since the data blocks can be shared between several processors in the L3 cache, it 
only removes the cache block from L3 if no other processors are sharing it. Hence, the 
L3 cache proto col recognizes whether or not the cache block is being shared or only 
used by a single proces sor.

Elaboration: Just as Opteron X4 does not follow the conventional inclusion property, 
it also has a novel relationship between the levels of the memory hierarchy. Instead of 
the memory feeding the L2 cache that in turn feeds the L1 cache, the L2 cache only 
holds data that has been evicted from the L1 cache. Thus, the L2 cache can be called a 
victim cache, since it only holds blocks displaced from L1 (“victims”). Similarly, L3 cache 
is a victim cache for the L2 cache, only con taining blocks that spill over from L2. If an 
L1 miss is not found in the L2 cache but found in the L3 cache, the L3 cache supplies 
the data directly to L1 cache. Hence, an L1 miss can be ser viced by an L2 hit or an L3 
hit or memory.

 5.11 Fallacies and Pitfalls

As one of the most naturally quantitative aspects of computer architecture, the 
memory hierarchy would seem to be less vulnerable to fallacies and pitfalls. Not 
only have there been many fallacies propagated and pitfalls encountered, but some 
have led to major negative outcomes. We start with a pitfall that often traps students 
in exercises and exams.

Pitfall: Forgetting to account for byte addressing or the cache block size in simu-
lating a cache. 

When simulating a cache (by hand or by computer), we need to make sure we 
account for the effect of byte addressing and multiword blocks in determining 
into which cache block a given address maps. For example, if we have a 32byte 
directmapped cache with a block size of 4 bytes, the byte address 36 maps into 
block 1 of the cache, since byte address 36 is block address 9 and (9 modulo 8) = 1.

 5.11 Fallacies and Pitfalls 543



544 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

On the other hand, if address 36 is a word address, then it maps into block  
(36 mod 8) = 4. Make sure the problem clearly states the base of the address. 

In like fashion, we must account for the block size. Suppose we have a cache 
with 256 bytes and a block size of 32 bytes. Into which block does the byte address 
300 fall? If we break the address 300 into fields, we can see the answer:

31 30 29 . . . . . . . . . 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 . . . . . . . . . 0 0 0 1 0 0 1 0 1 1 0 0

Cache block 
number

Block offset

Block address

Byte address 300 is block address

    300  
32

     = 9

The number of blocks in the cache is

    256  
32

     = 8

Block number 9 falls into cache block number (9 modulo 8) = 1. 
This mistake catches many people, including the authors (in earlier drafts) and 

instructors who forget whether they intended the addresses to be in words, bytes, 
or block numbers. Remember this pitfall when you tackle the exercises.

Pitfall: Ignoring memory system behavior when writing programs or when gener-
ating code in a compiler.

This could easily be written as a fallacy: “Programmers can ignore memory hierar
chies in writing code.” We illustrate with an example using matrix multiply, to 
complement the sort comparison in Figure 5.18.

Here is the inner loop of the version of matrix multiply from Chapter 3: 

for	(i=0;	i!=500;	i=i+1)	
			for	(j=0;	j!=500;	j=j+1)	
						for	(k=0;	k!=500;	k=k+1)	
									x[i][j]	=	x[i][j]	+	y[i][k]	*	z[k][j];

When run with inputs that are 500 × 500 double precision matrices, the CPU 
runtime of the above loop on a MIPS CPU with a 1MB secondary cache was 
about half the speed compared to when the loop order is changed to k,j,i (so i 
is innermost)! The only difference is how the program accesses memory and the 
ensuing effect on the memory hierarchy. Further compiler optimizations, using a 
technique called blocking, can result in a runtime that is another four times faster 
for this code! 



Pitfall: Having less set associativity for a shared cache than the number of cores or 
threads sharing that cache.

Without extra care, a parallel program running on 2n processors or threads can 
easily allocate data structures to addresses that would map to the same set of a 
shared L2 cache. If the cache is at least 2nway associative, then these accidental 
conflicts are hidden by the hardware from the program. If not, programmers 
could face apparently mysterious performance bugs—actually due to L2 conflict 
misses—when migrating from, say, a 16core design to 32core design if both use 
16way associative L2 caches.

Pitfall: Using average memory access time to evaluate the memory hierarchy of an 
out-of-order processor.

If a processor stalls during a cache miss, then you can separately calculate the 
memorystall time and the processor execution time, and hence evaluate the mem
ory hierarchy independently using average memory access time (see page 478).

If the processor continues to execute instructions, and may even sustain more 
cache misses during a cache miss, then the only accurate assessment of the mem
ory hierarchy is to simulate the outoforder processor along with the memory 
hierarchy.

Pitfall: Extending an address space by adding segments on top of an unsegmented 
address space.

During the 1970s, many programs grew so large that not all the code and data 
could be addressed with just a 16bit address. Computers were then revised to 
offer 32bit addresses, either through an unsegmented 32bit address space (also 
called a flat address space) or by adding 16 bits of segment to the existing 16bit 
address. From a marketing point of view, adding segments that were programmer
visible and that forced the programmer and compiler to decompose programs into 
segments could solve the addressing problem. Unfortunately, there is trouble any 
time a programming language wants an address that is larger than one segment, 
such as indices for large arrays, unrestricted pointers, or reference parameters. 
Moreover, adding segments can turn every address into two words—one for the 
segment number and one for the segment offset—causing problems in the use of 
addresses in registers.

Pitfall: Implementing a virtual machine monitor on an instruction set architec ture 
that wasn’t designed to be virtualizable.

Many architects in the 1970s and 1980s weren’t careful to make sure that all instruc
tions reading or writing information related to hardware resource information 
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were privileged. This laissez-faire attitude causes problems for VMMs for all of 
these architectures, including the x86, which we use here as an example.

Figure 5.41 describes the 18 instructions that cause problems for virtualization 
[Robin and Irvine, 2000]. The two broad classes are instructions that

 ■ Read control registers in user mode that reveals that the guest operating sys
tem is running in a virtual machine (such as POPF, mentioned earlier)

 ■ Check protection as required by the segmented architecture but assume that 
the operating system is running at the highest privilege level

To simplify implementations of VMMs on the x86, both AMD and Intel have 
proposed extensions to the architecture via a new mode. Intel’s VTx provides 
a new execution mode for running VMs, an architected definition of the VM 
state, instructions to swap VMs rapidly, and a large set of parameters to select 
the cir cumstances where a VMM must be invoked. Altogether, VTx adds 11 new 
instructions for the x86. AMD’s Pacifica makes similar proposals.

An alternative to modifying the hardware is to make small modifications to the 
operating system to avoid using the troublesome pieces of the architecture. This 

Problem category Problem x86 instructions

Access sensitive registers without 
trapping when running in user mode 

Store global descriptor table register (SGDT) 
Store local descriptor table register (SLDT) 
Store interrupt descriptor table register (SIDT)
Store machine status word (SMSW)
Push flags (PUSHF, PUSHFD)
Pop flags (POPF, POPFD)

When accessing virtual memory 
mechanisms in user mode, instructions 
fail the x86 protection checks

Load access rights from segment descriptor (LAR)
Load segment limit from segment descriptor (LSL)
Verify if segment descriptor is readable (VERR)
Verify if segment descriptor is writable (VERW)
Pop to segment register (POP CS, POP SS, . . .)
Push segment register (PUSH CS, PUSH SS, . . .)
Far call to different privilege level (CALL)
Far return to different privilege level (RET)
Far jump to different privilege level (JMP)
Software interrupt (INT)
Store segment selector register (STR)
Move to/from segment registers (MOVE)

FIGURE 5.41 Summary of 18 x86 instructions that cause problems for virtualization 
[Robin and Irvine, 2000]. The first five instructions in the top group allow a program in user mode to 
read a control register, such as a descriptor table registers, without causing a trap. The pop flags instruction 
modifies a control register with sensitive information but fails silently when in user mode. The protection 
checking of the segmented architecture of the x86 is the downfall of the bottom group, as each of these 
instructions checks the privilege level implicitly as part of instruction execution when reading a control 
reg ister. The checking assumes that the OS must be at the highest privilege level, which is not the case for 
guest VMs. Only the Move to segment register tries to modify control state, and protection checking foils it 
as well. 



technique is called paravirtualization, and the open source Xen VMM is a good 
example. The Xen VMM provides a guest OS with a virtual machine abstraction 
that uses only the easytovirtualize parts of the physical x86 hardware on which 
the VMM runs. 

 5.12 Concluding Remarks

The difficulty of building a memory system to keep pace with faster processors is 
underscored by the fact that the raw material for main memory, DRAMs, is essen
tially the same in the fastest computers as it is in the slowest and cheapest. 

It is the principle of locality that gives us a chance to overcome the long  
latency of memory access—and the soundness of this strategy is demonstrated at  
all levels of the memory hierarchy. Although these levels of the hierarchy look 
quite differ ent in quantitative terms, they follow similar strategies in their opera
tion and exploit the same properties of locality. 

Multilevel caches make it possible to use more cache optimizations more easily 
for two reasons. First, the design parameters of a lowerlevel cache are different 
from a firstlevel cache. For example, because a lowerlevel cache will be much 
larger, it is possible to use larger block sizes. Second, a lowerlevel cache is not 
constantly being used by the processor, as a firstlevel cache is. This allows us to 
consider having the lowerlevel cache do something when it is idle that may be 
useful in preventing future misses. 

Another trend is to seek software help. Efficiently managing the memory hier
archy using a variety of program transformations and hardware facilities is a major 
focus of compiler enhancements. Two different ideas are being explored. One idea 
is to reorganize the program to enhance its spatial and temporal locality. This 
approach focuses on looporiented programs that use large arrays as the major 
data structure; large linear algebra problems are a typical example. By restructuring 
the loops that access the arrays, substantially improved locality—and, therefore, 
cache performance—can be obtained. The discussion on page 544 showed how 
effective even a simple change of loop structure could be. 

Another approach is prefetching. In prefetching, a block of data is brought 
into the cache before it is actually referenced. Many microprocessors use hardware 
prefetching to try to predict accesses that may be difficult for software to notice.

A third approach is special cacheaware instructions that optimize memory 
transfer. For example, the microprocessors in Section 7.10 in Chapter 7 use an 
optimization that does not fetch the contents of a block from memory on a write 
miss because the program is going to write the full block. This optimization 
significantly reduces memory traffic for one kernel.

prefetching A technique 
in which data blocks 
needed in the future are 
brought into the cache 
early by the use of special 
instructions that specify 
the address of the block.
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As we will see in Chapter 7, memory systems are a central design issue for parallel 
processors. The growing importance of the memory hierarchy in determining 
system performance means that this important area will continue to be a focus of 
both designers and researchers for some years to come.

    Historical Perspective and Further 
Reading

This history section  gives an overview of memory technologies, from mercury 
delay lines to DRAM, the invention of the memory hierarchy, protection mech
anisms, and virtual machines, and concludes with a brief history of operating 
 systems, including CTSS, MULTICS, UNIX, BSD UNIX, MSDOS, Windows, and 
Linux.

 5.14 Exercises
Contributed by Jichuan Chang, Jacob Leverich, Kevin Lim, and Parthasarathy Ranganathan  
(all of HewlettPackard)

Exercise 5.1
In this exercise we consider memory hierarchies for various applications, listed in 
the following table.

a. Software version control

b. Making phone calls

5.1.1 [10] <5.1> Assuming both client and server are involved in the process, 
first name the client and server systems. Where can caches be placed to speed up 
the process? 

5.1.2 [10] <5.1> Design a memory hierarchy for the system. Show the typical 
size and latency at various levels of the hierarchy. What is the relationship between 
cache size and its access latency? 

5.1.3 [15] <5.1> What are the units of data transfers between hierarchies? What 
is the relationship between the data location, data size, and transfer latency? 

5.13



5.1.4 [10] <5.1, 5.2> Communication bandwidth and server processing band
width are two important factors to consider when designing a memory hierarchy. 
How can the bandwidths be improved? What is the cost of improving them?

5.1.5 [5] <5.1, 5.8> Now consider multiple clients simultaneously accessing the 
server. Will such scenarios improve the spatial and temporal locality? 

5.1.6 [10] <5.1, 5.8> Give an example of where the cache can provide outofdate 
data. How should the cache be designed to mitigate or avoid such issues?

Exercise 5.2
In this exercise we look at memory locality properties of matrix computation. The 
following code is written in C, where elements within the same row are stored 
contiguously.

a. for	(I=0;	I<8;	I++)	
		for	(J=0;	J<8000;	J++)	
				A[I][J]=B[I][0]+A[J][I];

b. for	(J=0;	J<8000;	J++)	
			for	(I=0;	I<8;	I++)	
				A[I][J]=B[I][0]+A[J][I];

5.2.1 [5] <5.1> How many 32bit integers can be stored in a 16byte cache line?

5.2.2 [5] <5.1> References to which variables exhibit temporal locality?

5.2.3 [5] <5.1> References to which variables exhibit spatial locality?

Locality is affected by both the reference order and data layout. The same compu
tation can also be written below in Matlab, which differs from C by contiguously 
storing matrix elements within the same column.

a. for	I=1:8	
		for	J=1:8000	
				A(I,J)=B(I,0)+A(J,I);	
		end	
end

b. for	J=1:8000	
		for	I=1:8	
				A(I,J)=B(I,0)+A(J,I);	
		end	
end
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5.2.4 [10] <5.1> How many 16byte cache lines are needed to store all 32bit 
matrix elements being referenced?

5.2.5 [5] <5.1> References to which variables exhibit temporal locality?

5.2.6 [5] <5.1> References to which variables exhibit spatial locality?

Exercise 5.3
Caches are important to providing a highperformance memory hierarchy to pro
cessors. Below is a list of 32bit memory address references, given as word addresses.

a. 3, 180, 43, 2, 191, 88, 190, 14, 181, 44, 186, 253

b. 21, 166, 201, 143, 61, 166, 62, 133, 111, 143, 144, 61

5.3.1 [10] <5.2> For each of these references, identify the binary address, the tag, 
and the index given a directmapped cache with 16 oneword blocks. Also list if 
each reference is a hit or a miss, assuming the cache is initially empty.

5.3.2 [10] <5.2> For each of these references, identify the binary address, the 
tag, and the index given a directmapped cache with twoword blocks and a total 
size of 8 blocks. Also list if each reference is a hit or a miss, assuming the cache is 
initially empty.

5.3.3 [20] <5.2, 5.3> You are asked to optimize a cache design for the given 
references. There are three directmapped cache designs possible, all with a total of 
8 words of data: C1 has 1word blocks, C2 has 2word blocks, and C3 has 4word 
blocks. In terms of miss rate, which cache design is the best? If the miss stall time 
is 25 cycles, and C1 has an access time of 2 cycles, C2 takes 3 cycles, and C3 takes  
5 cycles, which is the best cache design?

There are many different design parameters that are important to a cache’s overall 
performance. The table below lists parameters for different directmapped cache 
designs.

Cache Data Size Cache Block Size Cache Access Time 

a. 32 KB 2 words 1 cycle

b. 32 KB 4 words 2 cycle

5.3.4 [15] <5.2> Calculate the total number of bits required for the cache listed 
in the table, assuming a 32bit address. Given that total size, find the total size 



of the closest directmapped cache with 16word blocks of equal size or greater. 
Explain why the second cache, despite its larger data size, might provide slower 
performance than the first cache.

5.3.5 [20] <5.2, 5.3> Generate a series of read requests that have a lower miss 
rate on a 2 KB 2way set associative cache than the cache listed in the table. Iden
tify one possible solution that would make the cache listed in the table have 
an equal or lower miss rate than the 2 KB cache. Discuss the advantages and 
disadvantages of such a solution.

5.3.6 [15] <5.2> The formula shown on page 457 shows the typical method 
to index a directmapped cache, specifically (Block address) modulo (Number 
of blocks in the cache). Assuming a 32bit address and 1024 blocks in the cache, 
consider a different indexing function, specifically (Block address[31:27] XOR 
Block address[26:22]). Is it possible to use this to index a directmapped cache? If 
so, explain why and discuss any changes that might need to be made to the cache. 
If it is not possible, explain why.

Exercise 5.4
For a directmapped cache design with a 32bit address, the following bits of the 
address are used to access the cache.

Tag Index Offset

a. 31–10 9–5 4–0

b. 31–12 11–6 5–0

5.4.1 [5] <5.2> What is the cache line size (in words)?

5.4.2 [5] <5.2> How many entries does the cache have? 

5.4.3 [5] <5.2> What is the ratio between total bits required for such a cache 
implementation over the data storage bits? 

Starting from power on, the following byteaddressed cache references are recorded.

Address 0 4 16 132 232 160 1024 30 140 3100 180 2180

5.4.4 [10] <5.2> How many blocks are replaced?

5.4.5 [10] <5.2> What is the hit ratio? 
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5.4.6 [20] <5.2> List the final state of the cache, with each valid entry represented 
as a record of <index, tag, data>. 

Exercise 5.5
Recall that we have two write policies and write allocation policies, and their com
binations can be implemented either in L1 or L2 cache.

L1 L2

a. Write through, non-write allocate Write back, write allocate

b. Write through, write allocate Write back, write allocate

5.5.1 [5] <5.2, 5.5> Buffers are employed between different levels of memory 
hierarchy to reduce access latency. For this given configuration, list the possible 
buffers needed between L1 and L2 caches, as well as L2 cache and memory. 

5.5.2 [20] <5.2, 5.5> Describe the procedure of handling an L1 writemiss, 
considering the component involved and the possibility of replacing a dirty block.

5.5.3 [20] <5.2, 5.5> For a multilevel exclusive cache (a block can only reside in 
one of the L1 and L2 caches), configuration, describe the procedure of handling an 
L1 writemiss, considering the component involved and the possibility of replacing 
a dirty block.

Consider the following program and cache behaviors. 

Data Reads per 
1000 Instructions 

Data Writes per 
1000 Instructions 

Instruction 
Cache Miss Rate 

Data Cache 
Miss Rate 

Block Size 
(byte) 

a. 250 100 0.30% 2% 64

b. 200 100 0.30% 2% 64

5.5.4 [5] <5.2, 5.5> For a writethrough, writeallocate cache, what are the 
minimum read and write bandwidths (measured by byte per cycle) needed to 
achieve a CPI of 2?

5.5.5 [5] <5.2, 5.5> For a writeback, writeallocate cache, assuming 30% 
of replaced data cache blocks are dirty, what are the minimal read and write 
bandwidths needed for a CPI of 2?

5.5.6 [5] <5.2, 5.5> What are the minimal bandwidths needed to achieve the 
performance of CPI=1.5?



Exercise 5.6
Media applications that play audio or video files are part of a class of workloads 
called “streaming” workloads; i.e., they bring in large amounts of data but do not 
reuse much of it. Consider a video streaming workload that accesses a 512 KB 
working set sequentially with the following address stream:

0, 2, 4, 6, 8, 10, 12, 14, 16, …

5.6.1 [5] <5.5, 5.3> Assume a 64 KB directmapped cache with a 32byte line. 
What is the miss rate for the address stream above? How is this miss rate sensitive 
to the size of the cache or the working set? How would you categorize the misses 
this workload is experiencing, based on the 3C model? 

5.6.2 [5] <5.5, 5.1> Recompute the miss rate when the cache line size is 16 bytes, 
64 bytes, and 128 bytes. What kind of locality is this workload exploiting?

5.6.3 [10] <5.10> “Prefetching” is a technique that leverages predictable address 
patterns to speculatively bring in additional cache lines when a particular cache 
line is accessed. One example of prefetching is a stream buffer that prefetches 
sequentially adjacent cache lines into a separate buffer when a particular cache line 
is brought in. If the data is found in the prefetch buffer, it is considered as a hit and 
moved into the cache and the next cache line is prefetched. Assume a twoentry 
stream buffer and assume that the cache latency is such that a cache line can be 
loaded before the computation on the previous cache line is completed. What is the 
miss rate for the address stream above?

Cache block size (B) can affect both miss rate and miss latency. Assuming a 
1CPI machine with an average of 1.35 references (both instruction and data) per  
instruction, help find the optimal block size given the following miss rates for vari
ous block sizes.

8 16 32 64 128

a. 4% 3% 2% 1.5% 1%

b. 8% 7% 6% 5% 4%

5.6.4 [10] <5.2> What is the optimal block size for a miss latency of 20×B cycles?

5.6.5 [10] <5.2> What is the optimal block size for a miss latency of 24+B cycles?

5.6.6 [10] <5.2> For constant miss latency, what is the optimal block size?
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Exercise 5.7
In this exercise, we will look at the different ways capacity affects overall perfor
mance. In general, cache access time is proportional to capacity. Assume that main 
memory accesses take 70 ns and that memory accesses are 36% of all instructions. 
The following table shows data for L1 caches attached to each of two processors, 
P1 and P2.

L1 Size L1 Miss Rate L1 Hit Time 

a. P1 2 KB 8.0% 0.66 ns

P2 4 KB 6.0% 0.90 ns

b. P1 16 KB 3.4% 1.08 ns

P2 32 KB 2.9% 2.02 ns

5.7.1 [5] <5.3> Assuming that the L1 hit time determines the cycle times for P1 
and P2, what are their respective clock rates?

5.7.2 [5] <5.3> What is the AMAT for P1 and P2?

5.7.3 [5] <5.3> Assuming a base CPI of 1.0 without any memory stalls, what is 
the total CPI for P1 and P2? Which processor is faster?

For the next three problems, we will consider the addition of an L2 cache to P1 to 
presumably make up for its limited L1 cache capacity. Use the L1 cache capacities 
and hit times from the previous table when solving these problems. The L2 miss 
rate indicated is its local miss rate.

L2 Size L2 Miss Rate L2 Hit Time 

a. 1 MB 95% 5.62 ns

b. 8 MB 68% 23.52 ns

5.7.4 [10] <5.3> What is the AMAT for P1 with the addition of an L2 cache? Is 
the AMAT better or worse with the L2 cache?

5.7.5 [5] <5.3> Assuming a base CPI of 1.0 without any memory stalls, what is 
the total CPI for P1 with the addition of an L2 cache?

5.7.6 [10] <5.3> Which processor is faster, now that P1 has an L2 cache? If P1 is 
faster, what miss rate would P2 need in its L1 cache to match P1’s performance? 
If P2 is faster, what miss rate would P1 need in its L1 cache to match P2’s 
performance?



Exercise 5.8
This exercise examines the impact of different cache designs, specifically compar
ing associative caches to the directmapped caches from Section 5.2. For these 
exercises, refer to the table of address streams shown in Exercise 5.3.

5.8.1 [10] <5.3> Using the references from Exercise 5.3, show the final cache 
contents for a threeway set associative cache with twoword blocks and a total size 
of 24 words. Use LRU replacement. For each reference identify the index bits, the 
tag bits, the block offset bits, and if it is a hit or a miss.

5.8.2 [10] <5.3> Using the references from Exercise 5.3, show the final cache 
contents for a fully associative cache with oneword blocks and a total size of 8 
words. Use LRU replacement. For each reference identify the index bits, the tag bits, 
and if it is a hit or a miss.

5.8.3 [15] <5.3> Using the references from Exercise 5.3, what is the miss rate for a 
fully associative cache with twoword blocks and a total size of 8 words, using LRU 
replacement? What is the miss rate using MRU (most recently used) replacement? 
Finally what is the best possible miss rate for this cache, given any replacement 
policy?

Multilevel caching is an important technique to overcome the limited amount of 
space that a first level cache can provide while still maintaining its speed. Consider 
a processor with the following parameters:
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a. 1.5 2 GHz 100 ns 7% 12 cycles 3.5% 28 cycles 1.5%

b. 1.0 2 GHz 150 ns 3% 15 cycles 5.0% 20 cycles 2.0%

5.8.4 [10] <5.3> Calculate the CPI for the processor in the table using: 1) only a 
first level cache, 2) a second level directmapped cache, and 3) a second level eight
way set associative cache. How do these numbers change if main memory access 
time is doubled? If it is cut in half?
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5.8.5 [10] <5.3> It is possible to have an even greater cache hierarchy than two 
levels. Given the processor above with a second level, directmapped cache, a 
designer wants to add a third level cache that takes 50 cycles to access and will 
reduce the global miss rate to 1.3%. Would this provide better performance? In 
general, what are the advantages and disadvantages of adding a third level cache?

5.8.6 [20] <5.3> In older processors such as the Intel Pentium or Alpha 21264, 
the second level of cache was external (located on a different chip) from the main 
processor and the first level cache. While this allowed for large second level caches, 
the latency to access the cache was much higher, and the bandwidth was typically 
lower because the second level cache ran at a lower frequency. Assume a 512 KB off
chip second level cache has a global miss rate of 4%. If each additional 512 KB of 
cache lowered global miss rates by 0.7%, and the cache had a total access time of 50 
cycles, how big would the cache have to be to match the performance of the second 
level directmapped cache listed in the table? Of the eightway set associative cache?

Exercise 5.9
For a highperformance system such as a Btree index for a database, the page size 
is determined mainly by the data size and disk performance. Assume that on aver
age a Btree index page is 70% full with fixsized entries. The utility of a page is its 
Btree depth, calculated as log2(entries). The following table shows that for 16byte 
entries, and a 10yearold disk with a 10 ms latency and 10 MB/s transfer rate, the 
optimal page size is 16K.

Page Size (KB)
Page Utility or B-Tree Depth  

(Number of Disk Accesses Saved) 
Index Page Access 

Cost (ms) Utility/Cost 

2 6.49 (or log2(2048/16×0.7)) 10.2 0.64

4 7.49 10.4 0.72

8 8.49 10.8 0.79

16 9.49 11.6 0.82

32 10.49 13.2 0.79

64 11.49 16.4 0.70

128 12.49 22.8 0.55

256 13.49 35.6 0.38

5.9.1 [10] <5.4> What is the best page size if entries now become 128 bytes?

5.9.2 [10] <5.4> Based on 5.9.1, what is the best page size if pages are half full?

5.9.3 [20] <5.4> Based on 5.9.2, what is the best page size if using a modern disk 
with a 3 ms latency and 100 MB/s transfer rate? Explain why future servers are 
likely to have larger pages. 



Keeping “frequently used” (or “hot”) pages in DRAM can save disk accesses, but 
how do we determine the exact meaning of “frequently used” for a given system? 
Data engineers use the cost ratio between DRAM and disk access to quantify the 
reuse time threshold for hot pages. The cost of a disk access is $Disk /accesses_per_
sec, while the cost to keep a page in DRAM is $DRAM_MB/page_size. The typical 
DRAM and disk costs and typical database page sizes at several time points are 
listed below:

Year
DRAM Cost 

($/MB) Page Size (KB)
Disk Cost  
($/disk)

Disk Access Rate 
(access/sec)

1987 5000 1 15000 15

1997 15 8 2000 64

2007 0.05 64 80 83

5.9.4 [10] <5.1, 5.4> What are the reuse time thresholds for these three technology 
generations?

5.9.5 [10] <5.4> What are the reuse time thresholds if we keep using the same 4K 
page size? What’s the trend here? 

5.9.6 [20] <5.4> What other factors can be changed to keep using the same 
page size (thus avoiding software rewrite)? Discuss their likeliness with current 
technology and cost trends. 

Exercise 5.10
As described in Section 5.4, virtual memory uses a page table to track the mapping 
of virtual addresses to physical addresses. This exercise shows how this table must 
be updated as addresses are accessed. The following table is a stream of virtual ad
dresses as seen on a system. Assume 4 KB pages, a 4entry fully associative TLB, and 
true LRU replacement. If pages must be brought in from disk, increment the next 
largest page number.

a. 4669, 2227, 13916, 34587, 48870, 12608, 49225

b. 12948, 49419, 46814, 13975, 40004, 12707, 52236

TLB

Valid Tag Physical Page Number

1 11 12

1 7 4

1 3 6

0 4 9
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Page table

Valid Physical Page or in Disk

1 5

0 Disk

0 Disk

1 6

1 9

1 11

0 Disk

1 4

0 Disk

0 Disk

1 3

1 12

5.10.1 [10] <5.4> Given the address stream in the table, and the initial TLB and 
page table states shown above, show the final state of the system. Also list for each 
reference if it is a hit in the TLB, a hit in the page table, or a page fault.

5.10.2 [15] <5.4> Repeat Exercise 5.10.1, but this time use 16 KB pages instead 
of 4 KB pages. What would be some of the advantages of having a larger page size? 
What are some of the disadvantages?

5.10.3 [15] <5.3, 5.4> Show the final contents of the TLB if it is 2way set 
associative. Also show the contents of the TLB if it is direct mapped. Discuss the 
importance of having a TLB to high performance. How would virtual memory 
accesses be handled if there were no TLB? 

There are several parameters that impact the overall size of the page table. Listed 
below are several key page table parameters.

Virtual Address Size Page Size Page Table Entry Size 

a. 32 bits 8 KB 4 bytes 

b. 64 bits 8 KB 6 bytes

5.10.4 [5] <5.4> Given the parameters in the table above, calculate the total 
page table size for a system running 5 applications that utilize half of the memory 
available.



5.10.5 [10] <5.4> Given the parameters in the table above, calculate the total 
page table size for a system running 5 applications that utilize half of the memory 
available, given a two level page table approach with 256 entries. Assume each entry 
of the main page table is 6 bytes. Calculate the minimum and maximum amount 
of memory required.

5.10.6 [10] <5.4> A cache designer wants to increase the size of a 4 KB virtually 
indexed, physically tagged cache. Given the page size listed in the table above, is it 
possible to make a 16 KB directmapped cache, assuming 2 words per block? How 
would the designer increase the data size of the cache?

Exercise 5.11
In this exercise, we will examine space/time optimizations for page tables. The fol
lowing table shows parameters of a virtual memory system.

Virtual Address (bits) Physical DRAM Installed Page Size PTE Size (byte) 

a. 43 16 GB 4 KB 4

b. 38 8 GB 16 KB 4

5.11.1 [10] <5.4> For a singlelevel page table, how many page table entries 
(PTEs) are needed? How much physical memory is needed for storing the page 
table? 

5.11.2 [10] <5.4> Using a multilevel page table can reduce the physical memory 
consumption of page tables, by only keeping active PTEs in physical memory. How 
many levels of page tables will be needed in this case? And how many memory 
references are needed for address translation if missing in TLB? 

5.11.3 [15] <5.4> An inverted page table can be used to further optimize space 
and time. How many PTEs are needed to store the page table? Assuming a hash 
table implementation, what are the common case and worst case numbers of 
memory references needed for servicing a TLB miss?

The following table shows the contents of a 4entry TLB.

Entry-ID Valid VA Page Modified Protection PA Page

1 1 140 1 RW 30

2 0 40 0 RX 34

3 1 200 1 RO 32

4 1 280 0 RW 31
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5.11.4 [5] <5.4> Under what scenarios would entry 2’s valid bit be set to zero? 

5.11.5 [5] <5.4> What happens when an instruction writes to VA page 30? When 
would a software managed TLB be faster than a hardware managed TLB?

5.11.6 [5] <5.4> What happens when an instruction writes to VA page 200?

Exercise 5.12
In this exercise, we will examine how replacement policies impact miss rate. 
 Assume a 2way set associative cache with 4 blocks. You may find it helpful to 
draw a table like those found on page 482 to solve the problems in this exercise, as 
demonstrated below on the address sequence “0, 1, 2, 3, 4.”

Address of Memory 
Block Accessed 

Hit or 
Miss 

Evicted 
Block 

Contents of Cache Blocks after Reference

Set 0 Set 0 Set 1 Set 1

0 Miss Mem[0]

1 Miss Mem[0] Mem[1]

2 Miss Mem[0] Mem[2] Mem[1]

3 Miss Mem[0] Mem[2] Mem[1] Mem[3]

4 Miss 0 Mem[4] Mem[2] Mem[1] Mem[3]

…

The following table shows address sequences.

Address Sequence 

a. 0, 2, 4, 8, 10, 12, 14, 16, 0

b. 1, 3, 5, 1, 3, 1, 3, 5, 3

5.12.1 [5] <5.3, 5.5> Assuming an LRU replacement policy, how many hits does 
this address sequence exhibit?

5.12.2 [5] <5.3, 5.5> Assuming an MRU (most recently used) replacement policy, 
how many hits does this address sequence exhibit?

5.12.3 [5] <5.3, 5.5> Simulate a random replacement policy by flipping a coin. 
For example, “heads” means to evict the first block in a set and “tails” means 
to evict the second block in a set. How many hits does this address sequence 
exhibit?



5.12.4 [10] <5.3, 5.5> Which address should be evicted at each replacement to 
maximize the number of hits? How many hits does this address sequence exhibit if 
you follow this “optimal” policy?

5.12.5 [10] <5.3, 5.5> Describe why it is difficult to implement a cache 
replacement policy that is optimal for all address sequences.

5.12.6 [10] <5.3, 5.5> Assume you could make a decision upon each memory 
reference whether or not you want the requested address to be cached. What impact 
could this have on miss rate?

Exercise 5.13
To support multiple virtual machines, two levels of memory virtualization are need
ed. Each virtual machine still controls the mapping of virtual address (VA) to physi
cal address (PA), while the hypervisor maps the physical address (PA) of each virtual 
machine to the actual machine address (MA). To accelerate such mappings, a soft
ware approach called “shadow paging” duplicates each virtual machine’s page tables 
in the hypervisor, and intercepts VA to PA mapping changes to keep both copies 
consistent. To remove the complexity of shadow page tables, a hardware approach 
called nested page table (or extended page table) explicitly supports two classes of 
page tables (VA⇨PA and PA⇨MA) and can walk such tables purely in hardware.

Consider the following sequence of operations:

(1) Create process; (2) TLB miss; (3) page fault; (4) context switch; 

5.13.1 [10] <5.4, 5.6> What would happen for the given operation sequence for 
shadow page table and nested page table, respectively? 

5.13.2 [10] <5.4, 5.6> Assuming an x86based 4level page table in both guest 
and nested page table, how many memory references are needed to service a TLB 
miss for native vs. nested page table?

5.13.3 [15] <5.4, 5.6> Among TLB miss rate, TLB miss latency, page fault rate, 
and page fault handler latency, which metrics are more important for shadow page 
table? Which are important for nested page table?

The following table shows parameters for a shadow paging system.

TLB Misses per 1000 
Instructions

NPT TLB Miss 
Latency 

Page Faults per 
1000 Instructions

Shadowing Page 
Fault Overhead

0.2 200 cycles 0.001 30,000 cycles 
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5.13.4 [10] <5.6> For a benchmark with native execution CPI of 1, what are 
the CPI numbers if using shadow page tables vs. NPT (assuming only page table 
virtualization overhead)? 

5.13.5 [10] <5.6> What techniques can be used to reduce page table shadowing 
induced overhead? 

5.13.6 [10] <5.6> What techniques can be used to reduce NPT induced overhead? 

Exercise 5.14
One of the biggest impediments to widespread use of virtual machines is the per
formance overhead incurred by running a virtual machine. The table below lists 
various performance parameters and application behavior.

 
 
 
 
 

Base CPI

 
Priviliged 

O/S 
Accesses 
per 10,000 

Instructions

 
 

Performance 
Impact to 

Trap to the 
Guest O/S

 
 
 

Performance 
Impact to Trap 

to VMM 

 
 

I/O 
Accesses 
per 10,000 

Instructions

I/O Access 
Time 

(Includes 
Time to Trap 

to Guest  
O/S)

a. 1.5 120 15 cycles 175 cycles 30 1100 cycles

b. 1.75 90 20 cycles 140 cycles 25 1200 cycles

5.14.1 [10] <5.6> Calculate the CPI for the system listed above assuming that 
there are no accesses to I/O. What is the CPI if the VMM performance impact 
doubles? If it is cut in half? If a virtual machine software company wishes to obtain 
a 10% performance degradation, what is the longest possible penalty to trap to the 
VMM?

5.14.2 [10] <5.6> I/O accesses often have a large impact on overall system 
performance. Calculate the CPI of a machine using the performance characteristics 
above, assuming a nonvirtualized system. Calculate the CPI again, this time 
using a virtualized system. How do these CPIs change if the system has half the 
I/O accesses? Explain why I/O bound applications have a smaller impact from 
virtualization.

5.14.3 [30] <5.4, 5.6> Compare and contrast the ideas of virtual memory and 
virtual machines. How do the goals of each compare? What are the pros and cons 
of each? List a few cases where virtual memory is desired, and a few cases where 
virtual machines are desired.



5.14.4 [20] <5.6> Section 5.6 discusses virtualization under the assumption that 
the virtualized system is running the same ISA as the underlying hardware. However, 
one possible use of virtualization is to emulate nonnative ISAs. An example of this 
is QEMU, which emulates a variety of ISAs such as MIPS, SPARC, and PowerPC. 
What are some of the difficulties involved in this kind of virtualization? Is it possible 
for an emulated system to run faster than on its native ISA?

Exercise 5.15
In this exercise, we will explore the control unit for a cache controller for a pro
cessor with a write buffer. Use the finite state machine found in Figure 5.34 as a 
starting point for designing your own finite state machines. Assume that the cache 
controller is for the simple directmapped cache described on page 529, but you 
will add a write buffer with a capacity of one block.

Recall that the purpose of a write buffer is to serve as temporary storage so that 
the processor doesn’t have to wait for two memory accesses on a dirty miss. Rather 
than writing back the dirty block before reading the new block, it buffers the dirty 
block and immediately begins reading the new block. The dirty block can then be 
written to main memory while the processor is working.

5.15.1 [10] <5.5, 5.7> What should happen if the processor issues a request that 
hits in the cache while a block is being written back to main memory from the write 
buffer?

5.15.2 [10] <5.5, 5.7> What should happen if the processor issues a request that 
misses in the cache while a block is being written back to main memory from the 
write buffer?

5.15.3 [30] <5.5, 5.7> Design a finite state machine to enable the use of a write 
buffer.

Exercise 5.16
Cache coherence concerns the views of multiple processors on a given cache block. 
The following table shows two processors and their read/write operations on two 
different words of a cache block X (initially X[0] = X[1] = 0).

P1 P2

a. X[0]	++;	X[1]	=	3; X[0]	=	5;	X[1]	+=2;

b. X[0]	=10;	X[1]	=	3; X[0]	=	5;	X[1]	+=2;
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5.16.1 [15] <5.8> List the possible values of the given cache block for a correct 
cache coherence protocol implementation. List at least one more possible value of 
the block if the protocol doesn’t ensure cache coherency. 

5.16.2 [15] <5.8> For a snooping protocol, list a valid operation sequence on 
each processor/cache to finish the above read/write operations. 

5.16.3 [10] <5.8> What are the bestcase and worstcase numbers of cache 
misses needed to execute the listed read/write instructions?

Memory consistency concerns the views of multiple data items. The following ta
ble shows two processors and their read/write operations on different cache blocks 
(A and B initially 0). 

P1 P2

a. A	=	1;	B	=	2;	A+=2;	B++; C	=	B;	D	=	A;	

b. A	=	1;	B	=	2;	A=5;	B++; C	=	B;	D	=	A;	

5.16.4 [15] <5.8> List the possible values of C and D for an implementation that 
ensures both consistency assumptions on page 538. 

5.16.5 [15] <5.8> List at least one more possible pair of values for C and D if 
such assumptions are not maintained. 

5.16.6 [15] <5.2, 5.8> For various combinations of write policies and write 
allocation policies, which combinations make the protocol implementation simpler? 

Exercise 5.17
Both Barcelona and Nehalem are chip multiprocessors (CMPs), having multiple 
cores and their caches on a single chip. CMP onchip L2 cache design has interest
ing tradeoffs. The following table shows the miss rates and hit latencies for two 
benchmarks with private vs. shared L2 cache designs. Assume L1 cache misses once 
every 32 instructions.

Private Shared

Benchmark A misses-per-instruction 0.30% 0.12%

Benchmark B misses-per-instruction 0.06% 0.03%



The next table shows hit latencies.

Private Cache Shared Cache Memory 

a. 5 20 180

b. 10 50 120

5.17.1 [15] <5.10> Which cache design is better for each of these benchmarks? 
Use data to support your conclusion.

5.17.2 [15] <5.10> Shared cache latency increases with the CMP size. Choose the 
best design if the shared cache latency doubles. Offchip bandwidth becomes the 
bottleneck as the number of CMP cores increases. Choose the best design if off
chip memory latency doubles. 

5.17.3 [10] <5.10> Discuss the pros and cons of shared vs. private L2 caches 
for both singlethreaded, multithreaded, and multiprogrammed workloads, and 
reconsider them if having onchip L3 caches. 

5.17.4 [15] <5.10> Assume both benchmarks have a base CPI of 1 (ideal L2 
cache). If having nonblocking cache improves the average number of concurrent 
L2 misses from 1 to 2, how much performance improvement does this provide over 
a shared L2 cache? How much improvement can be achieved over private L2? 

5.17.5 [10] <5.10> Assume new generations of processors double the number of 
cores every 18 months. To maintain the same level of percore performance, how 
much more offchip memory bandwidth is needed for a 2012 processor? 

5.17.6 [15] <5.10> Consider the entire memory hierarchy. What kinds of 
optimizations can improve the number of concurrent misses?

Exercise 5.18
In this exercise we show the definition of a web server log and examine code opti
mizations to improve log processing speed. The data structure for the log is defined 
as follows:

struct	entry	{	
		int		srcIP;				//	remote	IP	address	
		char	URL[128];	//	request	URL	(e.g.,	“GET	index.html”)	
		long	long	refTime;		//	reference	time		
		int		status;			//	connection	status	
		char	browser[64];	//	client	browser	name	
}	log	[NUM_ENTRIES];
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Some processing functions on a log are:

a. topK_sourceIP	(int	hour);

b. browser_histogram	(int	srcIP);	//	browsers	of	a	given	IP

5.18.1 [5] <5.11> Which fields in a log entry will be accessed for the given log 
processing function? Assuming 64byte cache blocks and no prefetching, how 
many cache misses per entry does the given function incur on average?

5.18.2 [10] <5.11> How can you reorganize the data structure to improve cache 
utilization and access locality? Show your structure definition code. 

5.18.3 [10] <5.11> Give an example of another log processing function that 
would prefer a different data structure layout. If both functions are important, how 
would you rewrite the program to improve the overall performance? Supplement 
the discussion with code snippet and data. 

For the problems below, use data from “Cache Performance for SPEC CPU2000 
Benchmarks” (http://www.cs.wisc.edu/multifacet/misc/spec2000cachedata/) for 
the pairs of benchmarks shown in the following table.

a. Mesa / gcc

b. mcf / swim

5.18.4 [10] <5.11> For 64 KB data caches with varying set associativities, what 
are the miss rates broken down by miss types (cold, capacity, and conflict misses) 
for each benchmark?

5.18.5 [10] <5.11> Select the set associativity to be used by a 64 KB L1 data cache 
shared by both benchmarks. If the L1 cache has to be directly mapped, select the set 
associativity for the 1 MB L2 cache. 

5.18.6 [20] <5.11> Give an example in the miss rate table where higher set 
associativity actually increases miss rate. Construct a cache configuration and 
reference stream to demonstrate this. 

http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data


§5.1, page 457: 1 and 4. (3 is false because the cost of the memory hierarchy varies 
per computer, but in 2008 the highest cost is usually the DRAM.)
§5.2, page 475: 1 and 4: A lower miss penalty can enable smaller blocks, since you 
don’t have that much latency to amortize, yet higher memory bandwidth usually 
leads to larger blocks, since the miss penalty is only slightly larger.
§5.3, page 491: 1.
§5.4, page 517: 1a, 2c, 3b, 4d.
§5.5, page 525: 2. (Both large block sizes and prefetching may reduce compulsory 
misses, so 1 is false.)

Answers to  
Check Yourself
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Combining bandwidth 
and storage . . . enables 
swift and reliable access 
to the ever-expanding 
troves of content on the 
proliferating disks and 
. . . repositories of the 
Internet.

George Gilder 
The End Is Drawing Nigh, 2000
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 6.1 Introduction

Although users can get frustrated if their computer hangs and must be rebooted, 
they become apoplectic if their storage system crashes and they lose information. 
Thus, the standard for dependability is much higher for storage than for computa
tion. Networks also plan for failures in communication, including several mecha
nisms to detect and recover from such failures. Hence, I/O systems generally place 
much greater emphasis on dependability and cost, while processors and memory 
focus on performance and cost. 

I/O systems must also plan for expandability and for diversity of devices, which 
is not a concern for processors. Expandability is related to storage capacity, which 
is another design parameter for I/O systems; systems may need a lower bound of 
storage capacity to fulfill their role.

Although performance plays a smaller role for I/O, it is more complex. For 
example, with some devices we may care primarily about access latency, while 

FIGURE 6.1 A typical collection of I/O devices. The connections between the I/O devices, 
 processor, and memory are historically called buses, although the term means shared parallel wires and most 
I/O connections today are closer to dedicated serial lines. Communication among the devices and the pro
cessor uses both interrupts and protocols on the interconnect, as we will see in this chapter. Figure 6.9 shows 
the organization for a desktop PC. 
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with others throughput is crucial. Furthermore, performance depends on many 
aspects of the system: the device characteristics, the connection between the device 
and the rest of the system, the memory hierarchy, and the operating sys tem. All of 
the components, from the individual I/O devices to the processor to the system 
software, will affect the dependability, expandability, and performance of tasks that 
include I/O. Figure 6.1 shows the structure of a simple system with its I/O. 

I/O devices are incredibly diverse. Three characteristics are useful in organizing 
this wide variety:

 ■ Behavior: Input (read once), output (write only, cannot be read), or  storage 
(can be reread and usually rewritten).

 ■ Partner: Either a human or a machine is at the other end of the I/O device, 
either feeding data on input or reading data on output.

 ■ Data rate: The peak rate at which data can be transferred between the I/O 
device and the main memory or processor. It is useful to know the maximum 
demand the device may generate when designing an I/O system. 

For example, a keyboard is an input device used by a human with a peak data rate 
of about 10 bytes per second. Figure 6.2 shows some of the I/O devices connected 
to computers. 

Device Behavior Partner Data rate (Mbit/sec)

Keyboard Input Human 30,000.0001

Mouse Input Human 30,000.0038

Voice input Input Human 30,000.2640

Sound input Input Machine 30,003.0000

Scanner Input Human 30,003.2000

Voice output Output Human 30,000.2640

Sound output Output Human 30,008.0000

Laser printer Output Human 30,003.2000

Graphics display Output Human 800.0000–8000.0000

Cable modem Input or output Machine 0.1280–6.0000

Network/LAN Input or output Machine 100.0000–10000.0000

Network/wireless LAN Input or output Machine 11.0000–54.0000

Optical disk Storage Machine 30,080.0000–220.0000

Magnetic tape Storage Machine 005.0000–120.0000

Flash memory Storage Machine 32.0000–200.0000

Magnetic disk Storage Machine 800.0000–3000.0000

FIGURE 6.2 The diversity of I/O devices. I/O devices can be distinguished by whether they serve as 
input, output, or storage devices; their communication partner (people or other computers); and their peak 
communication rates. The data rates span eight orders of magnitude. Note that a network can be an input or 
an output device, but cannot be used for storage. Transfer rates for devices are always quoted in base 10, so 
that 10 Mbit/sec = 10,000,000 bits/sec. 

 6.1 Introduction 571



572 Chapter 6 Storage and Other I/O Topics

In Chapter 1, we briefly discussed four important I/O de vices: mice, graphics 
displays, disks, and networks. In this chapter we go into much more depth on 
storage and related items. On the CD, there is an advanced topics section on 
networks, which are well covered in other books.

How we should assess I/O performance often depends on the application. In 
some environments, we may care primarily about system throughput. In these 
cases, I/O bandwidth will be most important. Even I/O bandwidth can be mea
sured in two different ways: 

1. How much data can we move through the system in a certain time?

2. How many I/O operations can we do per unit of time? 

Which performance measurement is best may depend on the environment. 
For example, in many multimedia applications, most I/O requests are for long 
streams of data, and transfer bandwidth is the important characteristic. In another 
 environment, we may wish to process a large number of small, unrelated accesses 
to an I/O device. An example of such an environment might be a taxprocessing 
office of the U.S. National Income Tax Service (NITS). NITS mostly cares about 
processing a large number of forms in a given time; each tax form is stored sepa
rately and is fairly small. A system oriented toward large file transfer may be satis
factory, but an I/O system that can support the simultaneous transfer of many 
small files may be cheaper and faster for processing millions of tax forms. 

In other applications, we care primarily about response time, which you will 
recall is the total elapsed time to accomplish a particular task. If the I/O requests 
are extremely large, response time will depend heavily on bandwidth, but in many 
environments, most accesses will be small, and the I/O system with the lowest 
latency per access will deliver the best response time. On  singleuser machines 
such as desktop computers and laptops, response time is the key performance 
characteristic.

A large number of applications, especially in the vast commercial market for 
computing, require both high throughput and short response times. Examples 
include automatic teller machines (ATMs), order entry and inventory tracking 
systems, file servers, and Web servers. In such environments, we care about both 
how long each task takes and how many tasks we can process in a second. The 
number of ATM requests you can process per hour doesn’t matter if each one takes 
15 minutes—you won’t have any customers left! Similarly, if you can process each 
ATM request quickly but can only handle a small number of requests at once, you 
won’t be able to support many ATMs, or the cost of the computer per ATM will be 
very high.

In summary, the three classes of desktop, server, and embedded computers are 
sensitive to I/O dependability and cost. Desktop and embedded systems are more 
focused on response time and diversity of I/O devices, while server systems are 
more focused on throughput and expandability of I/O devices.

I/O requests Reads or 
writes to I/O devices.



 6.2 Dependability, Reliability, and Availability

Users crave dependable storage, but how do you define it? In the computer indus
try, it is harder than looking it up in the dictionary. After considerable debate, the 
following is considered the standard definition [Laprie, 1985]:

Computer system dependability is the quality of delivered service such that 
reli ance can justifiably be placed on this service. The service delivered by a 
system is its observed actual behavior as perceived by other system(s) interacting 
with this system’s users. Each module also has an ideal specified behavior, where 
a service specification is an agreed description of the expected behavior. A system 
failure occurs when the actual behavior deviates from the specified behavior. 

Thus, you need a reference specification of expected behavior to be able to 
determine dependability. Users can then see a system alternating between two 
states of delivered service with respect to the service specification:

1. Service accomplishment, where the service is delivered as specified 

2. Service interruption, where the delivered service is different from the speci
fied service

Transitions from state 1 to state 2 are caused by failures, and transitions from state 2 
to state 1 are called restorations. Failures can be permanent or intermittent. The 
latter is the more difficult case; it is harder to diagnose the problem when a system 
oscillates between the two states. Permanent failures are far easier to diagnose. This 
definition leads to two related terms: reliability and availability.

Reliability is a measure of the continuous service accomplishment—or, equiva
lently, of the time to failure—from a reference point. Hence, the mean time to 
failure (MTTF) of disks in Figure 6.5 below is a reliability measure. A related term 
is annual failure rate (AFR), which is just the percentage of devices that would be 
expected to fail in a year for a given MTTF. Service interruption is measured as 
mean time to repair (MTTR). Mean time between failures (MTBF) is simply the 
sum of MTTF + MTTR. Although MTBF is widely used, MTTF is often the more 
appropriate term.

Availability is a measure of service accomplishment with respect to the alter
nation between the two states of accomplishment and interruption. Availabil ity is 
statistically quantified as

Availability =   MTTF
   

(MTTF + MTTR)
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Note that reliability and availability are actually quantifiable measures, rather than 
just synonyms for dependability. 

What is the cause of failures? Figure 6.3 summarizes many papers that have col
lected data on reasons for computer systems and telecommunications systems to 
fail. Clearly, human operators are a significant source of failures.

Operator Software Hardware System Year data collected

42% 25% 18% Datacenter (Tandem) 1985

15% 55% 14% Datacenter (Tandem) 1989

18% 44% 39% Datacenter (DEC VAX) 1985

50% 20% 30% Datacenter (DEC VAX) 1993

50% 14% 19% U.S. public telephone network 1996

54% 7% 30% U.S. public telephone network 2000

60% 25% 15% Internet services 2002

FIGURE 6.3 Summary of studies of reasons for failures. Although it is difficult to collect data 
to determine whether operators are the cause of errors, since operators often record the reasons for failures, 
these studies did capture that data. There were often other categories, such as environmental reasons for 
outages, but they were generally small. The top two rows come from a classic paper by Jim Gray [1990], which 
is still widely quoted almost 20 years after the data was collected. The next two rows are from a paper by 
Murphy and Gent, who studied causes of outages in VAX systems over time [“Measuring system and software 
reli ability using an automated data collection process,” Quality and Reliability Engineering International 11:5, 
September–October 1995, 341–53]. The fifth and sixth rows are studies of FCC failure data about the U.S. 
public switched telephone network by Kuhn [“Sources of failure in the public switched telephone network,” 
IEEE Computer 30:4, April 1997, 31–36] and by Patty Enriquez. The study of three Internet services is from 
Oppenheimer, Ganapath, and Patterson [2003]. 

To increase MTTF, you can improve the quality of the components or design 
systems to continue operation in the presence of components that have failed. 
Hence, failure needs to be defined with respect to a context. A failure in a compo
nent may not lead to a failure of the system. To make this distinction clear, the 
term fault is used to mean failure of a component. Here are three ways to improve 
MTTF:

1. Fault avoidance: Preventing fault occurrence by construction.

2. Fault tolerance: Using redundancy to allow the service to comply with the 
service specification despite faults occurring, which applies primarily to 
hardware faults. Section 6.9 describes the RAID approaches to making storage 
dependable via fault tolerance.

3. Fault forecasting: Predicting the presence and creation of faults, which 
applies to hardware and software faults, allowing the component to be 
replaced before it fails.

Shrinking MTTR can help availability as much as increasing MTTF. For 
example, tools for fault detection, diagnosis, and repair can help reduce the time 
to repair faults by people, software, and hardware.



Which of the following are true about dependability?

1. If a system is up, then all its components are accomplishing their expected 
service.

2. Availability is a quantitative measure of the percentage of time a system is 
accomplishing its expected service.

3. Reliability is a quantitative measure of continuous service accomplishment 
by a system.

4. The major source of outages today is software.

 6.3 Disk Storage

As mentioned in Chapter 1, magnetic disks rely on a rotating platter coated with a 
magnetic surface and use a moveable read/write head to access the disk. Disk stor
age is nonvolatile—the data remains even when power is removed. A magnetic 
disk consists of a collection of platters (1–4), each of which has two recordable disk 
surfaces. The stack of platters is rotated at 5400 to 15,000 RPM and has a diameter 
from 1inch to just over 3.5 inches. Each disk surface is divided into con centric 
circles, called tracks. There are typically 10,000 to 50,000 tracks per sur face. Each 
track is in turn divided into sectors that contain the information; each track may 
have 100 to 500 sectors. Sectors are typically 512 bytes in size, although there is an 
initiative to increase the sector size to 4096 bytes. The sequence recorded on the 
magnetic media is a sector number, a gap, the information for that sector including 
error correction code (see  Appendix C, page C66), a gap, the sector number of 
the next sector, and so on. 

Originally, all tracks had the same number of sectors and hence the same num
ber of bits. With the introduction of zone bit recording (ZBR) in the early 1990s, 
disk drives changed to a varying number of sectors (and hence bits) per track, 
instead keeping the spacing between bits constant. ZBR increases the number of 
bits on the outer tracks and thus increases the drive capacity.

As we saw in Chapter 1, to read and write information the read/write heads 
must be moved so that they are over the correct location. The disk heads for each 
surface are connected together and move in conjunction, so that every head is over 
the same track of every surface. The term cylinder is used to refer to all the tracks 
under the heads at a given point on all surfaces.

To access data, the operating system must direct the disk through a threestage 
process. The first step is to position the head over the proper track. This operation 
is called a seek, and the time to move the head to the desired track is called the 
seek time. 

Check  
Yourself

nonvolatile Storage 
device where data retains 
its value even when power 
is removed.

track One of thousands 
of con centric circles that 
makes up the surface of a 
magnetic disk.

sector One of the 
segments that make up a 
track on a mag netic disk; 
a sector is the smallest 
amount of  information 
that is read or written on 
a disk.

seek The process of 
positioning a read/write 
head over the proper track 
on a disk.
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Disk manufacturers report minimum seek time, maximum seek time, and 
average seek time in their manuals. The first two are easy to measure, but the aver
age is open to wide interpretation because it depends on the seek distance. The 
industry has decided to calculate average seek time as the sum of the time for all 
possible seeks divided by the number of possible seeks. Average seek times are 
usually advertised as 3 ms to 13 ms, but, depending on the application and sched
uling of disk requests, the actual average seek time may be only 25% to 33% of the 
advertised number because of locality of disk references. This locality arises both 
because of successive accesses to the same file and because the operating system 
tries to schedule such accesses together.

Once the head has reached the correct track, we must wait for the desired sec
tor to rotate under the read/write head. This time is called the rotational latency 
or rotational delay. The average latency to the desired information is halfway 
around the disk. Because the disks rotate at 5400 RPM to 15,000 RPM, the average 
rotational latency is between

Average rotational latency =   0.5 rotation  
5400 RPM

   =   0.5 rotation    

5400 RPM/ ( 60   seconds  
minute

   ) 
  

	 = 0.0056 seconds = 5.6 ms

and

Average rotational latency =   0.5 rotation  
15,000 RPM

   =   0.5 rotation    

15,000 RPM/ ( 60   seconds  
minute

   ) 
  

	 = 0.0020 seconds = 2.0 ms

The last component of a disk access, transfer time, is the time to transfer a 
block of bits. The transfer time is a function of the sector size, the rotation speed, 
and the recording density of a track. Transfer rates in 2008 were between 70 and 
125 MB/sec. The one complication is that most disk controllers have a builtin 
cache that stores sectors as they are passed over; transfer rates from the cache are 
typi cally higher and may be up to 375 MB/sec (3 Gbit/sec) in 2008. Today, most 
disk transfers are multiple sectors in length. 

A disk controller usually handles the detailed control of the disk and the transfer 
between the disk and the memory. The controller adds the final component of 
disk access time, controller time, which is the overhead the controller imposes in 
performing an I/O access. The average time to perform an I/O operation will con
sist of these four times plus any wait time incurred because other processes are 
using the disk.

rotational latency Also 
called rotational delay. 
The time required for 
the desired sector of a 
disk to rotate under the 
read/write head; usually 
assumed to be half the 
 rotation time.



Disk Read Time

What is the average time to read or write a 512byte sector for a typical disk 
rotating at 15,000 RPM? The advertised average seek time is 4 ms, the transfer 
rate is 100 MB/sec, and the controller overhead is 0.2 ms. Assume that the disk 
is idle so that there is no waiting time.

Average disk access time is equal to average seek time + average rotational 
de lay + transfer time + controller overhead. Using the advertised average seek 
time, the answer is

4.0 ms +   0.5 rotation  
15,000 RPM

   +   0.5 KB  
100 MB/sec

   + 0.2 ms = 4.0 + 2.0 + 0.005 + 0.2 = 6.2 ms

If the measured average seek time is 25% of the advertised average time, the 
answer is

1.0 ms + 2.0 ms + 0.005 ms + 0.2 ms = 3.2 ms

Notice that when we consider measured average seek time, as opposed to 
advertised average seek time, the rotational latency can be the largest compo
nent of the access time.

Disk densities have continued to increase for more than 50 years. The impact 
of this compounded improvement in density and the reduction in physical size 
of a disk drive has been amazing, as Figure 6.4 shows. The aims of different disk 
designers have led to a wide variety of drives being available at any particular 
time. Figure 6.5 shows the characteristics of four  magnetic disks. In 2008, these 
disks from a single manufacturer cost between $0.30 and $5.00 per gigabyte. In 
the broader market, prices generally range between $0.20 and $2.00 per gigabyte, 
depending on size, interface, and performance. 

While disks will remain viable for the foreseeable future, the conventional 
wis dom about where block numbers are found has not. The assumptions of the  
sec tortrackcylinder model are that nearby blocks are on the same track, blocks 
in the same cylinder take less time to access since there is no seek time, and some 
tracks are closer than others. The reason for the breakdown was the raising of the 
level of the interfaces. Higherlevel intelligent interfaces like ATA and SCSI required 
a microprocessor inside a disk, which lead to performance optimiza tions. 

To speedup sequential transfers, these higherlevel interfaces organize disks 
more like tapes than like random access devices. The logical blocks are ordered 
in serpentine fashion across a single surface, trying to capture all the sectors that 
are recorded at the same bit density. Hence, sequential blocks may be on different 
tracks. We will see an example in Figure 6.19 of the pitfall of assuming the 
conventional sectortrackcylinder model.

EXAMPLE

ANSWER

Advanced Technology 
Attachment (ATA) 
A command set used as a 
standard for I/O devices 
that is popular in the PC.

Small Computer 
Systems Interface (SCSI) 
A command set used as a 
standard for I/O devices.
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FIGURE 6.4 Six magnetic disks, varying in diameter from 14 inches down to 1.8 inches. 
The pictured disks were introduced over more than 15 years ago and hence are not intended to be represen
tative of the best capacity of modern disks of these diameters. This photograph does, however, accurately 
portray their relative physical sizes. The widest disk is the DEC R81, containing four 14inch diameter plat
ters and storing 456 MB. It was manufactured in 1985. The 8inch diameter disk comes from Fujitsu, and this 
1984 disk stores 130 MB on six platters. The Micropolis RD53 has five 5.25inch platters and stores 85 MB. 
The IBM 0361 also has five platters, but these are just 3.5 inches in diameter. This 1988 disk holds 320 MB. 
In 2008, the most dense 3.5inch disk had 2 platters and held 1 TB in the same space, yielding an increase 
in density of about 3000 times! The Conner CP 2045 has two 2.5inch platters containing 40 MB and was 
made in 1990. The smallest disk in this photograph is the Integral 1820. This single 1.8inch platter contains 
20 MB and was made in 1992. 

Elaboration: These high-level interfaces let disk controllers add caches, which allow 
for fast access to data that was recently read between transfers requested by the 
pro cessor. They use write-through and do not update on a write miss, and often also 
include prefetch algorithms to try to anticipate demand. Controllers also use a com-
mand queue that allow the disk to decide in what order to perform the commands to 
maximize performance while maintaining correct behavior. Of course, such capabilities 
complicate the measurement of disk performance and increase the importance of 
workload choice when comparing disks.



Characteristics
Seagate 

ST33000655SS
Seagate 

ST31000340NS
Seagate  

ST973451SS
Seagate 

ST9160821AS

Disk diameter (inches) 3.50 3.50 2.50 2.50

Formatted data  
capacity (GB) 147 1000 73 160

Number of disk  
surfaces (heads) 2 4 2 2

Rotation speed (RPM) 15,000 7200 15,000 5400

Internal disk cache  
size (MB) 16 32 16 8

External interface,  
bandwidth (MB/sec) SAS, 375 SATA, 375 SAS, 375 SATA, 150

Sustained transfer  
rate (MB/sec) 73–125 105 79–112 44

Minimum seek  
(read/write) (ms) 0.2/0.4 0.8/1.0 0.2/0.4 1.5/2.0

Average seek  
read/write (ms) 3.5/4.0 8.5/9.5 2.9/3.3 12.5/13.0

Mean time to failure  
(MTTF) (hours) 1,400,000 @ 25°C 1,200,000 @ 25°C 1,600,000 @ 25°C —

Annual failure rate  
(AFR) (percent) 0.62% 0.73% 0.55% —

Contact start-stop cycles — 50,000 — >600,000

Warranty (years) 5 5 5 5

Nonrecoverable read  
errors per bits read <1 sector per 1016 <1 sector per 1015 <1 sector per 1016 <1 sector per 1014

Temperature, shock 
(operating) 5°–55°C, 60 G 5°–55°C, 63 G 5°–55°C, 60 G 0°–60°C, 350 G

Size: dimensions (in.),  
weight (pounds) 1.0" ×	4.0" × 5.8", 1.5 lbs 1.0" × 4.0" × 5.8", 1.4 lbs 0.6" × 2.8" × 3.9", 0.5 lbs 0.4" × 2.8" × 3.9", 0.2 lbs

Power: operating/idle/ 
standby (watts) 15/11/— 11/8/1 8/5.8/— 1.9/0.6/0.2

GB/cu. in., GB/watt 6 GB/cu.in., 10 GB/W 43 GB/cu.in., 91 GB/W 11 GB/cu.in., 9 GB/W 37 GB/cu.in., 84 GB/W

Price in 2008, $/GB ~ $250, ~ $1.70/GB ~ $275, ~ $0.30/GB ~ $350, ~ $5.00/GB ~ $100, ~ $0.60/GB

FIGURE 6.5 Characteristics of four magnetic disks by a single manufacturer in 2008. The three leftmost drives are for servers 
and desktops while the rightmost drive is for laptops. Note that the third drive is only 2.5 inches in diameter, but it is a high performance drive 
with the highest reliability and fastest seek time. The disks shown here are either serial versions of the interface to SCSI (SAS), a standard I/O 
bus for many sys tems, or serial version of ATA (SATA), a standard I/O bus for PCs. The transfer rates from the caches is 3–5 times faster than 
the transfer rate from the disk surface. The much lower cost per gigabyte of the SATA 3.5inch drive is primarily due to the hypercompetitive 
PC market, although there are dif ferences in performance in I/Os per second due to faster rotation and faster seek times for SAS. The service 
life for these disks is five years. Note that the quoted MTTF assumes nominal power and temperature. Disk lifetimes can be much shorter if 
temperature and vibration are not controlled. See the link to Seagate at www.seagate.com for more information on these drives. 

Which of the following are true about disk drives?

1. 3.5inch disks perform more IOs per second than 2.5inch disks.

2. 2.5inch disks offer the highest gigabytes per watt.

3. It takes hours to read the contents of a high capacity disk sequentially.

4. It takes months to read the contents of a high capacity disk using random 
512byte sectors.

Check  
Yourself
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 6.4 Flash Storage.

Many have tried to invent a technology to replace disks, and many have failed: CCD 
memory, bubble memory, and holographic memory were all found want ing. By 
the time a new technology would ship, disks made advances as predicted earlier, 
costs dropped accordingly, and the challenging product would be unattractive in 
the marketplace. 

The first credible challenger is flash memory. This semiconductor memory is 
nonvolatile like disks, but latency is 100–1000 times faster than disk, and it is smaller, 
more power efficient, and more shock resistant. Equally important, because of the 
popularity of flash memory in cell phones, digital cameras, and MP3 players, there 
is a large market to pay for the investment in improving flash mem ory technology. 
Recently, flash memory cost per gigabyte has been falling 50% per year. In 2008, 
the price per gigabyte of flash was $4 to $10 per gigabyte, or about 2 to 40 times 
higher than disk and 5 to 10 times lower than DRAM. Figure 6.6 com pares three 
flashbased products. 

 
Characteristics

Kingston
SecureDigital 

(SD) 
SD4/8 GB

Transend Type I
CompactFlash  
TS16GCF133

RiDATA 
Solid State Disk 

2.5 inch SATA

Formatted data capacity (GB) 8 16 32

Bytes per sector 512 512 512

Data transfer rate (read/write MB/sec) 4 20/18 68/50

Power operating/standby (W) 0.66/0.15 0.66/0.15 2.1/—

Size: height × width × depth (inches) 0.94 × 1.26 × 0.08 1.43 × 1.68 × 0.13 0.35 × 2.75 × 4.00

Weight in grams (454 grams/pound) 2.5 11.4 52

Mean time between failures (hours) > 1,000,000 > 1,000,000 > 4,000,000

GB/cu. in., GB/watt  84 GB/cu.in.,  
12 GB/W

 51 GB/cu.in.,  
24 GB/W

8 GB/cu.in.,  
16 GB/W

Best price (2008) ~ $30 ~ $70 ~ $300

FIGURE 6.6 Characteristics of three flash storage products. The CompactFlash standard 
package was proposed by Sandisk Corporation in 1994 for the PCMCIAATA cards of portable PCs. Because 
it follows the ATA interface, it simulates a disk interface, including seek commands, logical tracks, and so on. 
The RiDATA product imitates an SATA 2.5inch disk interface. 

Although its cost per gigabyte is higher than disks, flash memory is popular in 
mobile devices in part because it comes in smaller capacities. As a result, the 1inch 



diameter hard disks are disappearing from some embedded markets. For example, 
in 2008 the Apple iPod Shuffle MP3 player sold for $50 and held 1 GB, while the 
small est disk holds 4 GB and sells for more than the whole MP3 player. 

Flash memory is a type of electrically erasable programmable readonly mem
ory (EEPROM). The first flash memory, called NOR flash because of the similarity 
of the storage cell to a standard NOR gate, was a direct competitor with other 
EEPROMs and is randomly addressable like any memory. A few years later, NAND 
flash memory offered greater storage density, but memory could only be read and 
written in blocks as wiring needed for random accesses was removed. NAND flash 
is much less expensive per gigabyte and much more popular than NOR flash; 
all of the products in Figure 6.6 use NAND flash. Figure 6.7 compares the key 
characteristics of NOR versus NAND flash memory.

Unlike disks and DRAM, but like other EEPROM technologies, flash memory 
bits wear out (see Figure 6.7). To cope with such limits, most NAND flash prod ucts 
include a controller to spread the writes by remapping blocks that have been written 
many times to less trodden blocks. This technique is called wear leveling. With 
wear leveling, consumer products like cell phones, digital cameras, MP3 players, 
or memory keys are very unlikely to exceed the write limits in the flash. Such 
controllers lower the potential performance of flash, but they are needed unless 
higherlevel software monitors block wear. However, controllers can also improve 
yield by mapping out memory cells that were manufactured incorrectly.

Write limits are one reason flash memory is not popular in desktop and server 
computers. However, in 2008 the first laptops are being sold with flash memory 
instead of hard disks at a considerable price premium to offer faster boot times, 
smaller size, and longer battery life. There are also flash memories available in 
standard disk form factors, as Figure 6.6 shows. Combining both ideas, hybrid hard 
disks include, say, a gigabyte of flash memory so that laptops can boot more quickly 
and save energy by allowing the disks to remain idle more frequently.

In the coming years, it appears that flash will compete successfully with hard 
disks for many batteryoperated devices. As capacity increases and the cost per 

Characteristics
NOR Flash 
Memory

NAND Flash 
Memory

Typical use BIOS memory USB key

Minimum access size (bytes) 512 bytes 2048 bytes

Read time (microseconds) 0.08 25

Write time (microseconds) 10.00 1500 to erase + 

250

Read bandwidth (MBytes/second) 10 40

Write bandwidth (MBytes/second) 0.4 8

Wearout (writes per cell) 100,000 10,000 to 100,000

Best price/GB (2008) $65 $4

FIGURE 6.7 Characteristics of NOR versus NAND flash memory in 2008. These devices can 
read bytes and 16bit words despite their large access sizes. 
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gigabyte continues to decline, it will be interesting to see whether the higher 
performance and energy efficiency of flash memory will yield opportunities in the 
desktop and server markets as well.

Which of the following are true about flash memory?

1. Like DRAM, flash is a semiconductor memory.

2. Like disks, flash does not lose information if it loses power.

3. The read access time of NOR flash is similar to DRAM.

4. The read bandwidth of NAND flash is similar to disk.

 6.5  
Connecting Processors, Memory, and 
I/O Devices

In a computer system, the various subsystems must have interfaces to one another. 
For example, the memory and processor need to com municate, as do the proces
sor and the I/O devices. For many years, this has been done with a bus. A bus is a 
shared communication link, which uses one set of wires to connect multiple sub
systems. The two major advantages of the bus organization are versatility and low 
cost. By defining a single connection scheme, new devices can easily be added, and 
peripherals can even be moved between computer systems that use the same kind 
of bus. Furthermore, buses are costeffective, because a single set of wires is shared 
in multiple ways. 

The major disadvantage of a bus is that it creates a communication bottle neck, 
possibly limiting the maximum I/O throughput. When I/O must pass through 
a single bus, the bandwidth of that bus limits the maximum I/O throughput. 
Designing a bus system capable of meeting the demands of the pro cessor as well 
as connecting large numbers of I/O devices to the machine pre sents a major 
challenge. 

Buses are traditionally classified as processor-memory buses or I/O buses. 
 Processormemory buses are short, generally high speed, and matched to the 
memory system so as to maximize memory processor bandwidth. I/O buses, by 
contrast, can be lengthy, can have many types of devices connected to them, and 
often have a wide range in the data bandwidth of the devices connected to them. I/O 
buses do not typically interface directly to the memory but use either a  processor
memory or a backplane bus to connect to memory. Other buses with different 
characteristics have emerged for special functions, such as graphics buses. 

One reason bus design is so difficult is that the maximum bus speed is largely 
limited by physical factors: the length of the bus and the number of devices. These 
physical limits prevent us from running the bus arbitrarily fast. In addition, the 

Check  
Yourself

processor-memory bus 
A bus that connects 
processor and memory 
and that is short, gen erally 
high speed, and matched 
to the memory system so 
as to maximize memory
processor bandwidth.

backplane bus A bus 
that is designed to allow 
processors, memory, and 
I/O devices to coexist on a 
single bus.



need to support a range of devices with widely varying  latencies and data transfer 
rates also makes bus design challenging.

As it became difficult to run many parallel wires at high speed due to clock skew 
and reflection (see  Appendix C), the industry transitioned from parallel shared 
buses to highspeed serial pointtopoint interconnections with switches. Thus, 
such I/O networks have generally replaced I/O buses in our systems.

As a result of this transition, this section has been revised in this edition to 
emphasize the general problem of connecting I/O devices, processors, and mem
ory, rather than focusing exclusively on buses.

Connection Basics

Let’s consider a typical I/O transaction. A transaction in cludes two parts: sending 
the address and receiving or sending the data. Bus transactions are typically 
defined by what they do to memory. A read transac tion transfers data from mem
ory (to either the processor or an I/O de vice), and a write transaction writes data 
to the memory. Clearly, this terminology is confusing. To avoid this, we’ll try to 
use the terms input and output, which are always defined from the perspective of 
the processor: an input operation is inputting data from the device to memory, 
where the processor can read it, and an output operation is outputting data to a 
device from memory where the processor wrote it. 

The I/O interconnect serves as a way of expanding the machine and connecting 
new peripherals. To make this easier, the computer industry has developed several 
standards. The standards serve as a specification for the computer manufacturer 
and for the peripheral manufacturer. A standard assures the computer designer 
that peripherals will be available for a new machine, and it ensures the peripheral 
builder that users will be able to hook up their new equipment. Figure 6.8 sum
marizes the key characteristics of the five popular I/O standards: Firewire, USB, PCI 
Express (PCIe), Serial ATA (SATA), and Serial Attached SCSI (SAS). They connect a 
variety of devices to the desktop computer, from keyboards to cameras to disks. 

Traditional buses are synchronous. That means the bus includes a clock in 
the con trol lines and a fixed protocol for communicating that is relative to the 
clock. For example, for performing a read from memory, we might have a protocol 
that transmits the address and read command on the first clock cycle, using the 
control lines to indicate the type of request. The memory might then be required 
to respond with the data word on the fifth clock. This type of protocol can be  
imple mented easily in a small finitestate machine. Because the protocol is predeter
mined and involves little logic, the bus can run fast, and the interface logic will 
be small. Synchronous buses have two major disadvantages, however. First, every 
device on the bus must run at the same clock rate. Second, because of clock skew 
problems, synchronous buses cannot be long if they are fast (see  Appendix C).

These problems led to asynchronous interconnects, which are not clocked. 
Because they are not clocked, asynchronous interconnects can accom modate a 
wide variety of devices, and the bus can be lengthened without worrying about 

I/O transaction 
A sequence of operations 
over the interconnect that 
 includes a request and may 
include a response, either 
of which may carry data. 
A trans action is initiated 
by a single request and 
may take many individual 
bus operations.

synchronous bus A bus 
that includes a clock in 
the control lines and 
a fixed protocol for 
communicating that is 
relative to the clock.

asynchronous 
interconnect Uses a 
handshaking protocol 
for coordinating usage 
rather than a clock; can 
 accommodate a wide 
variety of devices of  
dif fering speeds.
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clock skew or synchronization problems. All the examples in Figure 6.8 are 
asyn chronous.

To coordinate the transmission of data between sender and receiver, an asyn
chronous bus uses a handshaking protocol. A handshaking protocol consists of a 
series of steps in which the sender and receiver proceed to the next step only when 
both parties agree. The protocol is implemented with an additional set of control 
lines.

The I/O Interconnects of the x86 Processors
Figure 6.9 shows the I/O system of a traditional PC. The processor connects to 
periph erals via two main chips. The chip next to the processor is the memory 
controller hub, commonly called the north bridge, and the one connected to it is 
the I/O controller hub, called the south bridge. 

The north bridge is basically a DMA controller, connecting the processor to 
memory, possibly a graphics card, and the south bridge chip. The south bridge 
connects the north bridge to a cornucopia of I/O buses. Intel, AMD, NVIDIA, and 
others offer a wide variety of these chip sets to connect the processor to the out side 
world. 

Figure 6.10 shows three examples of the chip sets. Note that AMD swallowed 
the north bridge chip in the Opteron and later products, thereby reducing the chip 
count and the latency to memory and graphics cards by skipping a chip crossing.

As Moore’s law continues, an increasing number of I/O controllers that were 
 formerly available as optional cards that connected to I/O buses have been coopted 
into these chip sets. For example, the AMD Opteron X4 and the Intel Nehalem 

handshaking protocol 
A series of steps used to 
coordinate asynchronous 
bus transfers in which 
the sender and receiver 
proceed to the next step 
only when both parties 
agree that the current step 
has been completed.

Characteristic Firewire (1394) USB 2.0 PCI Express
Serial 
ATA

Serial 
Attached SCSI

Intended use External External Internal Internal External

Devices per 
channel

63 127 1 1 4

Basic data  
width (signals)

4 2 2 per lane 4 4

Theoretical peak  
bandwidth

50 MB/sec (Firewire 400) 
or 100 MB/sec (Firewire 

800)

0.2 MB/sec (low speed),  
1.5 MB/sec (full speed),  

or 60 MB/sec (high 
speed)

250 MB/sec per lane (1x); 
PCIe cards come as  

1x, 2x, 4x, 8x, 16x, or 32x

300 MB/
sec

300 MB/sec

Hot pluggable Yes Yes Depends on form factor Yes Yes

Maximum bus 
length (copper 
wire)

4.5 meters 5 meters 0.5 meters 1 meter 8 meters

Standard name IEEE 1394, 1394b
USB Implementors 

Forum
 PCI-SIG SATA-IO T10 committee

FIGURE 6.8 Key characteristics of five dominant I/O standards. The intended use column indicates whether it is designed to be 
used with cables external to the computer or just inside the computer with short cables or wire on printed circuit boards. PCIe can sup port 
simultaneous reads and writes, so some publications double the bandwidth per lane assuming a 50/50 split of read versus write band width. 



include the north bridge inside the microprocessor, and the south bridge chip of 
the Intel 975 includes a RAID controller (see Section 6.9).

These I/O interconnects provide electrical connectivity among I/O devices, 
processors, and memory, and also define the lowestlevel protocol for commu
nication. Above this basic level, we must define hardware and software protocols 
for controlling data transfers between I/O devices and memory, and for the  pro
cessor to specify commands to the I/O devices. These topics are covered in the next 
section.

Both networks and buses connect components together. Which of the following 
are true about them?

1. I/O networks and I/O buses are almost always standardized.

2. I/O networks and I/O buses are almost always synchronous.

Check  
Yourself

Parallel ATA
(100 MB / sec)

PCIe x16 (or 2 PCIe x8)
(4 GB / sec)

PCIe x4
(1 GB / sec)

PCIe x4
(1 GB / sec)

ESI
(2 GB / sec)

PCIe x8
(2 GB / sec)Serial ATA

(300 MB / sec)
Disk

Intel Xeon 5300
processor

Intel Xeon 5300
processor

Memory
controller

hub
(north bridge)

5000P

Main
memory
DIMMs

FB DDR2 667
(5.3 GB / sec)

Disk

LPC
(1 MB / sec)

Keyboard,
mouse, ...

USB 2.0
(60 MB / sec)

I / O
controller

hub
(south bridge)

Entreprise South
Bridge 2 

Front Side Bus (1333 MHz, 10.5 GB / sec)

CD / DVD

PCI-X bus
(1 GB / sec)

PCI-X bus
(1 GB / sec)

FIGURE 6.9 Organization of the I/O system on an Intel server using the Intel 5000P chip 
set. If you assume reads and writes are each half the traffic, you can double the bandwidth per link for 
PCIe. 
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 6.6  
Interfacing I/O Devices to the Processor, 
Memory, and Operating System

A bus or network protocol defines how a word or block of data should be commu
nicated on a set of wires. This still leaves several other tasks that must be per formed 
to actually cause data to be transferred from a device and into the memory address 
space of some user program. This section focuses on these tasks and will answer 
such questions as the following: 

 ■ How is a user I/O request transformed into a device command and commu
nicated to the device?

 ■ How is data actually transferred to or from a memory location?

 ■ What is the role of the operating system? 

Intel 5000P chip set Intel 975X chip set  AMD 580X CrossFire

Target segment Server Performance PC Server/Performance PC

Front Side Bus (64 bit) 1066/1333 MHz 800/1066 MHz —

Memory controller hub (“north bridge”)

Product name Blackbird 5000P MCH 975X MCH

Pins 1432 1202

Memory type, speed DDR2 FBDIMM 667/533 DDR2 800/667/533

Memory buses, widths 4 × 72 1 × 72

Number of DIMMs, DRAM/DIMM 16, 1 GB/2 GB/4 GB 4, 1 GB/2 GB

Maximum memory capacity 64 GB 8 GB

Memory error correction available? Yes No

PCIe/External Graphics Interface 1 PCIe x16 or 2 PCIe x 1 PCIe x16 or 2 PCIe x8

South bridge interface PCIe x8, ESI PCIe x8

I/O controller hub (“south bridge”)

Product name 6321 ESB ICH7  580X CrossFire

Package size, pins 1284  652 549

PCI-bus: width, speed Two 64-bit, 133 MHz 32-bit, 33 MHz, 6 masters —

PCI Express ports Three PCIe x4 Two PCIe x16, Four PCI x1

Ethernet MAC controller, interface — 1000/100/10 Mbit —

USB 2.0 ports, controllers 6 8 10

ATA ports, speed One 100 Two 100 One 133

Serial ATA ports 6 2 4

AC-97 audio controller, interface — Yes Yes

I/O management SMbus 2.0, GPIO SMbus 2.0, GPIO ASF 2.0, GPIO

FIGURE 6.10 Two I/O chip sets from Intel and one from AMD. Note that the north bridge functions are included on the AMD 
micropro cessor, as they are on the more recent Intel Nehalem. 



As we will see in answering these questions, the operating system plays a major role 
in handling I/O, acting as the interface between the hardware and the pro gram that 
requests I/O. 

The responsibilities of the operating system arise from three characteristics of 
I/O systems: 

1. Multiple programs using the processor share the I/O system. 

2. I/O systems often use interrupts (externally generated exceptions) to com
municate information about I/O operations. Because interrupts cause a 
transfer to kernel or supervisor mode, they must be handled by the operat
ing system (OS).

3. The lowlevel control of an I/O device is complex, because it requires man
aging a set of concurrent events and because the requirements for correct 
device control are often very detailed.

The three characteristics of I/O systems above lead to several different functions 
the OS must provide:

 ■ The OS guarantees that a user’s program accesses only the portions of an 
I/O device to which the user has rights. For example, the OS must not allow a 
program to read or write a file on disk if the owner of the file has not granted 
access to this program. In a system with shared I/O  devices, protec tion could 
not be provided if user programs could perform I/O directly.

 ■ The OS provides abstractions for accessing devices by supplying routines that 
handle lowlevel device operations.

 ■ The OS handles the interrupts generated by I/O devices, just as it handles the 
exceptions generated by a program.

 ■ The OS tries to provide equitable access to the shared I/O resources, as well as 
schedule accesses to enhance system throughput. 

To perform these functions on behalf of user programs, the operating system 
must be able to communicate with the I/O devices and to prevent the user pro gram 
from communicating with the I/O devices directly. Three types of commu nication 
are required

1. The OS must be able to give commands to the I/O devices. These com mands 
include not only operations like read and write, but also other oper ations to 
be done on the device, such as a disk seek.

Hardware/ 
Software 
Interface
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2. The device must be able to notify the OS when the I/O device has com pleted 
an operation or has encountered an error. For example, when a disk completes 
a seek, it will notify the OS.

3. Data must be transferred between memory and an I/O device. For example, 
the block being read on a disk read must be moved from disk to memory.

In the next few subsections, we will see how these communications are performed.

Giving Commands to I/O Devices
To give a command to an I/O device, the processor must be able to address the 
device and to supply one or more command words. Two methods are used to 
address the device: memorymapped I/O and special I/O instructions. In memory-
mapped I/O, portions of the address space are assigned to I/O devices. Reads and 
writes to those addresses are interpreted as commands to the I/O device. 

For example, a write operation can be used to send data to an I/O device where 
the data will be interpreted as a command. When the processor places the address 
and data on the memory bus, the memory system ignores the operation because 
the address indicates a portion of the memory space used for I/O. The device 
con troller, however, sees the operation, records the data, and transmits it to the 
device as a command. User programs are prevented from issuing I/O operations 
directly, because the OS does not provide access to the address space assigned to 
the I/O devices, and thus the addresses are protected by the address translation. 
Memorymapped I/O can also be used to transmit data by writing or reading to 
select addresses. The device uses the address to determine the type of command, 
and the data may be provided by a write or obtained by a read. In any event, the 
address encodes both the device identity and the type of transmission between 
processor and device. 

Actually performing a read or write of data to fulfill a program request usually 
requires several separate I/O operations. Furthermore, the processor may have to 
interrogate the status of the device between individual commands to determine 
whether the command completed successfully. For example, a simple printer has 
two I/O device registers—one for status information and one for data to be printed. 
The Status register contains a done bit, set by the printer when it has printed a 
character, and an error bit, indicating that the printer is jammed or out of paper. 
Each byte of data to be printed is put into the Data register. The proces sor must 
then wait until the printer sets the done bit before it can place another character in 
the buffer. The processor must also check the error bit to determine if a problem 
has occurred. Each of these operations requires a separate I/O device access. 

memory-mapped I/O 
An I/O scheme in which 
portions of address space 
are assigned to I/O devices, 
and reads and writes to  
those addresses are 
interpreted as commands 
to the I/O device.



Elaboration: The alternative to memory-mapped I/O is to use dedicated  I/O instruc tions 
in the processor. These I/O instructions can specify both the device number and the 
command word (or the location of the command word in memory). The processor 
communicates the device address via a set of wires normally included as part of the I/O 
bus. The actual command can be transmitted over the data lines in the bus. Exam ples 
of computers with I/O instructions are the Intel x86 and the IBM 370 computers. By 
making the I/O instructions illegal to execute when not in kernel or supervisor mode, 
user programs can be prevented from accessing the devices directly.

Communicating with the Processor

The process of periodically checking status bits to see if it is time for the next  
I/O operation, as in the previous example, is called polling. Polling is the simplest 
way for an I/O device to communicate with the processor. The I/O device simply 
puts the information in a Status register, and the processor must come and get the 
information. The processor is totally in control and does all the work. 

Polling can be used in several different ways. Realtime embedded applications 
poll the I/O devices, since the I/O rates are predetermined and it makes I/O over
head more predictable, which is helpful for real time. As we will see, this allows 
polling to be used even when the I/O rate is somewhat higher. 

The disadvantage of polling is that it can waste a lot of processor time, because 
processors are so much faster than I/O devices. The processor may read the Status 
register many times, only to find that the device has not yet com pleted a compara
tively slow I/O operation, or that the mouse has not budged since the last time it 
was polled. When the device completes an operation, we must still read the status 
to determine whether it was successful. 

The overhead in a polling interface was recognized long ago, leading to the 
invention of interrupts to notify the processor when an I/O device requires atten
tion from the processor. Interrupt-driven I/O, which is used by almost all systems 
for at least some devices, employs I/O interrupts to indicate to the processor that 
an I/O device needs attention. When a device wants to notify the processor that 
it has completed some operation or needs attention, it causes the processor to be 
interrupted. 

An I/O interrupt is just like the exceptions we saw in Chapters 4 and 5, with two 
important distinctions: 

1. An I/O interrupt is asynchronous with respect to the instruction execution. 
That is, the interrupt is not associated with any instruction and does not 
prevent the instruction completion. This is very different from either page 
fault exceptions or exceptions such as arithmetic overflow. Our control 
unit need only check for a pending I/O interrupt at the time it starts a new 
instruction. 

I/O instruction  
A dedicated instruction 
that is used to give a 
command to an I/O 
device and that specifies 
both the device number 
and the command word 
(or the location of the 
command word in 
memory).

polling The process of 
periodi cally checking the 
status of an I/O device 
to determine the need to 
service the device.

interrupt-driven I/O An 
I/O scheme that employs 
interrupts to indicate to 
the processor that an I/O 
device needs attention.
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2. In addition to the fact that an I/O interrupt has occurred, we would like to 
convey further information, such as the identity of the device generating the 
interrupt. Furthermore, the interrupts represent devices that may have dif
ferent priorities and whose interrupt requests have different urgencies asso
ciated with them. 

To communicate information to the processor, such as the identity of the  device 
raising the interrupt, a system can use either vectored interrupts or an exception 
Cause register. When the processor recognizes the interrupt, the device can send 
either the vector address or a status field to place in the Cause register. As a result, 
when the OS gets control, it knows the identity of the device that caused the 
interrupt and can immediately interrogate the device. An interrupt mecha nism 
eliminates the need for the processor to poll the device and instead allows the 
processor to focus on executing programs.

Interrupt Priority Levels

To deal with the different priorities of the I/O devices, most interrupt mechanisms 
have several levels of priority; UNIX operating systems use four to six levels. These 
priorities indicate the order in which the processor should process interrupts. 
Both internally generated exceptions and external I/O interrupts have priorities; 
typically, I/O interrupts have lower priority than internal exceptions. There may 
be multiple I/O interrupt priorities, with highspeed devices associated with the 
higher priorities. 

To support priority levels for interrupts, MIPS provides the primitives that let 
the operating system implement the policy, similar to the way that MIPS handles 
TLB misses. Figure 6.11 shows the key registers, and Section B.7 in Appendix B 
gives more details.

The Status register determines who can interrupt the computer. If the interrupt 
enable bit is 0, then none can interrupt. A more refined blocking of interrupts is 
available in the interrupt mask field. There is a bit in the mask corresponding to 
each bit in the pending interrupt field of the Cause register. To enable the corre
sponding interrupt, there must be a 1 in the mask field at that bit position. Once 
an interrupt occurs, the operating system can find the reason in the exception code 
field of the Status register: 0 means an interrupt occurred, with other values for the 
exceptions mentioned in Chapter 5.

Here are the steps that must occur in handling an interrupt:

1. Logically AND the pending interrupt field and the interrupt mask field to 
see which enabled interrupts could be the culprit. Copies are made of these 
two registers using the mfc0 instruction.

2. Select the higher priority of these interrupts. The software convention is that 
the leftmost is the highest priority.



3. Save the interrupt mask field of the Status register.

4. Change the interrupt mask field to disable all interrupts of equal or lower 
priority.

5. Save the processor state needed to handle the interrupt.

6. To allow higherpriority interrupts, set the interrupt enable bit of the Cause 
register to 1.

7. Call the appropriate interrupt routine.

8. Before restoring state, set the interrupt enable bit of the Cause register to 0. 
This allows you to restore the interrupt mask field.

Appendix B shows an exception handler for a simple I/O task on pages B36 to 
B37.

How do the interrupt priority levels (IPLs) correspond to these mechanisms? 
The IPL is an operating system invention. It is stored in the memory of the process, 
and every process is given an IPL. At the lowest IPL, all interrupts are permitted. 
Conversely, at the highest IPL, all interrupts are blocked. Raising and lowering the 
IPL involves changes to the interrupt mask field of the Status register. 
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FIGURE 6.11 The Cause and Status registers. This version of the Cause register corresponds to 
the MIPS32 architecture. The earlier MIPS I architecture had three nested sets of kernel/user and interrupt 
enable bits to support nested interrupts. Section B.7 in Appendix B has more details about these registers. 
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Elaboration: The two least significant bits of the pending interrupt and interrupt mask 
fields are for software interrupts, which are lower priority. These are typically used by 
higher-priority interrupts to leave work for lower-priority interrupts to do once the immedi-
ate reason for the interrupt is handled. Once the higher-priority interrupt is finished, the 
lower-priority tasks will be noticed and handled.

Transferring the Data between a Device and Memory
We have seen two different methods that enable a device to communicate with 
the processor. These two techniques—polling and I/O interrupts—form the basis 
for two methods of implementing the transfer of data between the I/O device and 
memory. Both these techniques work best with lower bandwidth devices, where 
we are more interested in reducing the cost of the device controller and interface 
than in providing a highbandwidth transfer. Both polling and interruptdriven 
transfers put the burden of moving data and managing the transfer on the proces
sor. After looking at these two schemes, we will examine a scheme more suitable for 
higherperformance devices or collections of devices.

We can use the processor to transfer data between a device and memory based 
on polling. In realtime applications, the processor loads data from I/O device 
registers and stores them into memory.

An alternative mechanism is to make the transfer of data interrupt driven. 
In this case, the OS would still transfer data in small numbers of bytes from or 
to the device. But because the I/O operation is interrupt driven, the OS simply 
works on other tasks while data is being read from or written to the device. When 
the OS recognizes an interrupt from the device, it reads the status to check for 
errors. If there are none, the OS can supply the next piece of data, for example, by 
a sequence of memorymapped writes. When the last byte of an I/O request has 
been transmitted and the I/O operation is completed, the OS can inform the pro
gram. The processor and OS do all the work in this process, accessing the device 
and memory for each data item transferred. 

Interruptdriven I/O relieves the processor from having to wait for every I/O 
event, although if we used this method for transferring data from or to a hard disk, 
the overhead could still be intolerable, since it could consume a large frac tion of 
the processor when the disk was transferring. For highbandwidth devices like hard 
disks, the transfers consist primarily of relatively large blocks of data (hundreds 
to thousands of bytes). Thus, computer designers invented a mecha nism for 
offloading the processor and having the device controller transfer data directly to 
or from the memory without involving the processor. This mechanism is called 
direct memory access (DMA). The interrupt mechanism is still used by the device 
to communicate with the processor, but only on completion of the I/O transfer or 
when an error occurs. 

DMA is implemented with a specialized controller that transfers data between 
an I/O device and memory independent of the processor. The DMA controller 

direct memory access 
(DMA) A mechanism 
that provides a device 
controller with the ability 
to transfer data directly 
to or from the memory 
without involving the 
processor.



becomes the master and directs the reads or writes between itself and mem ory. 
There are three steps in a DMA transfer:

1. The processor sets up the DMA by supplying the identity of the device, the 
operation to perform on the device, the memory address that is the source 
or destination of the data to be transferred, and the number of bytes to 
transfer.

2. The DMA starts the operation on the device and arbitrates for the 
interconnect. When the data is available (from the device or memory), it 
transfers the data. The DMA device supplies the memory address for the 
read or the write. If the request requires more than one transfer, the DMA 
unit generates the next memory address and initiates the next transfer. Using 
this mechanism, a DMA unit can complete an entire transfer, which may 
be thousands of bytes in length, without bothering the processor. Many 
DMA controllers contain some memory to allow them to deal flexi bly either 
with delays in transfer or with those incurred while waiting to become the 
master.

3. Once the DMA transfer is complete, the controller interrupts the processor, 
which can then determine by interrogating the DMA device or examining 
memory whether the entire operation completed successfully. 

There may be multiple DMA devices in a computer system. For example, in a 
system with a single processormemory bus and multiple I/O buses, each I/O bus 
controller will often contain a DMA processor that handles any transfers between 
a device on the I/O bus and the memory. 

Unlike either polling or interruptdriven I/O, DMA can be used to interface a 
hard disk without consuming all the processor cycles for a single I/O. Of course, if 
the processor is also contending for memory, it will be delayed when the memory 
is busy doing a DMA transfer. By using caches, the processor can avoid having to 
access memory most of the time, thereby leaving most of the memory bandwidth 
free for use by I/O devices.

Elaboration: To further reduce the need to interrupt the processor and occupy it in 
handling an I/O request that may involve doing several actual operations, the I/O con-
troller can be made more intelligent. Intelligent controllers are often called I/O proces
sors (as well as I/O controllers or channel controllers). These specialized processors 
basically execute a series of I/O operations, called an I/O program. The program may 
be stored in the I/O processor, or it may be stored in memory and fetched by the I/O 
processor. When using an I/O processor, the operating system typically sets up an I/O 
program that indicates the I/O operations to be done as well as the size and transfer 
address for any reads or writes. The I/O processor then takes the operations from the 
I/O program and interrupts the processor only when the entire program is completed. 
DMA processors are essentially special-purpose processors (usually single-chip and 
nonprogrammable), while I/O processors are often implemented with general-purpose 
microprocessors, which run a specialized I/O program. 

master A unit on the 
I/O interconnect that can 
initiate transfer  requests.
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Direct Memory Access and the Memory System
When DMA is incorporated into an I/O system, the relationship between the  
mem ory system and processor changes. Without DMA, all accesses to the mem ory 
system come from the processor and thus proceed through address trans  lation and 
cache access as if the processor generated the references. With DMA, there is another 
path to the memory system—one that does not go through the address translation 
mechanism or the cache hierarchy. This difference generates some problems in 
both virtual memory systems and systems with caches. These problems are usually 
solved with a combination of hardware techniques and soft ware support.

The difficulties in having DMA in a virtual memory system arise because pages 
have both a physical and a virtual address. DMA also creates problems for systems 
with caches, because there can be two copies of a data item: one in the cache and 
one in memory. Because the DMA processor issues memory requests directly to the 
memory rather than through the processor cache, the value of a memory loca tion 
seen by the DMA unit and the processor may differ. Consider a read from disk that 
the DMA unit places directly into memory. If some of the locations into which the 
DMA writes are in the cache, the processor will receive the old value when it does a 
read. Similarly, if the cache is writeback, the DMA may read a value directly from 
memory when a newer value is in the cache, and the value has not been written 
back. This is called the stale data problem or coherence problem (see Chapter 5).

We have looked at three different methods for transferring data between an I/O 
device and memory. In moving from polling to an interruptdriven to a DMA 
interface, we shift the burden for managing an I/O operation from the processor to 
a progressively more intelligent I/O controller. These methods have the advan tage 
of freeing up processor cycles. Their disadvantage is that they increase the cost of 
the I/O system. Because of this, a given computer  system can choose which point 
along this spectrum is appropriate for the I/O devices connected to it.

Before discussing the design of I/O systems, let’s look briefly at performance 
measures of them in the next section.

In ranking the three ways of doing I/O, which statements are true?

1. If we want the lowest latency for an I/O operation to a single I/O device, the 
order is polling, DMA, and interrupt driven.

2. In terms of lowest impact on processor utilization from a single I/O device, 
the order is DMA, interrupt driven, and polling.    

Check  
Yourself



In a system with virtual memory, should DMA work with virtual addresses or 
physical addresses? The obvious problem with virtual addresses is that the DMA 
unit will need to translate the virtual addresses to physical addresses. The major 
problem with the use of a physical address in a DMA transfer is that the transfer 
cannot easily cross a page boundary. If an I/O request crossed a page boundary, 
then the memory locations to which it was being transferred would not necessar ily 
be contiguous in the virtual memory. Consequently, if we use physical addresses, 
we must constrain all DMA transfers to stay within one page.

One method to allow the system to initiate DMA transfers that cross page 
boundaries is to make the DMA work on virtual addresses. In such a system, the 
DMA unit has a small number of map entries that provide virtualtophysical 
mapping for a transfer. The operating system provides the mapping when the I/O 
is initiated. By using this mapping, the DMA unit need not worry about the loca
tion of the virtual pages involved in the transfer. 

Another technique is for the operating system to break the DMA transfer into 
a series of transfers, each confined within a single physical page. The transfers are 
then chained together and handed to an I/O processor or intelligent DMA unit that 
executes the entire sequence of transfers; alternatively, the operating system can 
individually request the transfers. 

Whichever method is used, the operating system must still cooperate by not 
remapping pages while a DMA transfer involving that page is in progress.

The coherency problem for I/O data is avoided by using one of three major tech
niques. One approach is to route the I/O activity through the cache. This ensures 
that reads see the latest value while writes update any data in the cache. Routing 
all I/O through the cache is expensive and potentially has a large negative perfor
mance impact on the processor, since the I/O data is rarely used immediately and 
may displace useful data that a running program needs. A second choice is to have 
the OS selectively invalidate the cache for an I/O read or force writebacks to occur 
for an I/O write (often called cache flushing). This approach requires some small 
amount of hardware support and is probably more efficient if the software can 
perform the function easily and efficiently. Because this flushing of large parts of 
the cache need only happen on DMA block accesses, it will be relatively infre quent. 
The third approach is to provide a hardware mechanism for selectively flushing 
(or invalidating) cache entries. Hardware invalidation to ensure cache coherence 
is typical in multiprocessor systems, and the same technique can be used for I/O; 
Chapter 5 discusses this topic in detail.

Hardware/ 
Software 
Interface

Hardware/ 
Software 
Interface
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 6.7  
I/O Performance Measures: Examples 
from Disk and File Systems

How should we compare I/O systems? This is a complex question, because I/O 
performance depends on many aspects of the system, and different applications 
stress different aspects of the I/O system. Furthermore, a design can make com
plex tradeoffs between response time and throughput, making it impossible to 
measure just one aspect in isolation. For example, handling a request as early as 
possible generally minimizes response time, although greater throughput can be 
achieved if we try to handle related requests together. Accordingly, we may increase 
throughput on a disk by grouping requests that access locations that are close 
together. Such a policy will increase the response time for some requests, probably 
leading to a larger variation in response time. Although throughput will be higher, 
some benchmarks constrain the maximum response time to any request, making 
such optimizations potentially problematic.

In this section, we give some examples of measurements proposed for deter
mining the performance of storage systems. These benchmarks are affected by a 
variety of system features, including the disk technology, the way disks are con
nected, the memory system, the processor, and the file system provided by the 
operating system. 

Before we discuss these benchmarks, we need to address a confusing point 
about terminology and units. The performance of I/O systems depends on the 
rate at which the system transfers data. The transfer rate depends on the clock 
rate, which is typically given in GHz = 109 cycles per second. The transfer rate is 
usually quoted in GB/sec. In I/O systems, GBs are measured using base 10 (i.e., 
1 GB = 109 = 1,000,000,000 bytes), unlike main memory where base 2 is used (i.e., 
1 GB = 230 = 1,073,741,824 bytes). In addition to adding confusion, this difference 
introduces the need to convert between base 10 (1K = 1000) and base 2 (1K = 
1024), because many I/O accesses are for data blocks that have a size that is a power 
of 2. Rather than complicate all our examples by accurately converting one of the 
two measurements, we make note here of this distinction and the fact that treating 
the two measures as if the units were identical introduces a small error. We illus
trate this error in Section 6.12.

Transaction Processing I/O Benchmarks

Transaction processing (TP) applications involve both a response time require
ment and a performance measurement based on throughput. Furthermore, most 
of the I/O accesses are small. Because of this, TP applications are chiefly con cerned 
with I/O rate, measured as the number of accesses per second, as opposed to data 
rate, measured as bytes of data per second. TP applications generally involve changes 
to a large database, with the system meeting some response time requirements 

transaction processing 
A type of application 
that  involves han dling 
small short operations 
(called transactions) that 
typi cally require both 
I/O and com putation. 
Transaction  processing 
applications typi cally 
have both response time 
requirements and a perfor
mance measurement 
based on the throughput 
of transactions.

I/O rate Performance 
measure of I/Os per unit 
time, such as reads per 
second.

data rate Performance 
mea sure of bytes per unit 
time, such as GB/second.



as well as gracefully handling certain types of failures. These applications are 
extremely critical and costsensitive. For example, banks normally use TP systems 
because they are concerned about a range of characteristics. These include making 
sure transactions aren’t lost, handling transactions quickly, and minimizing the 
cost of processing each transaction. Although dependability in the face of failure is 
an absolute requirement in such systems, both response time and throughput are 
critical to building costeffective systems.

A number of transaction processing benchmarks have been developed. The 
bestknown set of benchmarks is a series developed by the Transaction Processing 
Council (TPC). 

TPCC, initially created in 1992, simulates a complex query environment. TPCH  
models ad hoc decision support—the queries are unrelated, and knowl edge of past 
queries cannot be used to optimize future queries; the result is that query execution 
times can be very long. TPCW is a Webbased transaction benchmark that 
simulates the activities of a businessoriented transactional Web server. It exercises 
the database system as well as the underlying Web server soft ware. TPCApp is 
an application server and Web services benchmark. The most recent is TPCE,  
which simulates the transaction processing workload of a broker age firm. The TPC 
benchmarks are described at www.tpc.org. 

All the TPC benchmarks measure performance in transactions per second. In 
addition, they include a response time requirement, so that throughput perfor
mance is measured only when the response time limit is met. To model realworld 
systems, higher transaction rates are also associated with larger systems, both in 
terms of users and the size of the database to which the transactions are applied. 
Hence, storage capacity must scale with performance. Finally, the system cost for a 
benchmark system must also be included, allowing accurate comparisons of cost/
performance. 

File System and Web I/O Benchmarks

In addition to processor benchmarks, SPEC offers both a file server benchmark 
(SPECSFS) and a Web server benchmark (SPECWeb). SPECSFS is a benchmark 
for measuring NFS (Network File System) performance using a script of file server 
requests; it tests the performance of the I/O system, including both disk and net
work I/O, as well as the processor. SPECSFS is a throughputoriented benchmark 
but with important response time requirements. SPECWeb is a Web server bench
mark that simulates multiple clients requesting both static and dynamic pages from 
a server, as well as clients posting data to the server (see Chapter 1).

The most recent SPEC effort is to measure power. SPECPower measures power 
and performance characteristics of small servers.

Sun recently announced filebench, a file system benchmark frame work. Instead 
of a standard workload, it provides a language that lets you describe the workload 
you’d like to run on your file systems. However, there are examples of file workloads 
that are supposed to emulate common applications of file sys tems.
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Are the following true or false? Unlike processor benchmarks, I/O benchmarks

1. concentrate on throughput rather than latency

2. can require that the data set scale in size or number of users to achieve per
formance milestones

3. often report cost performance

 6.8 Designing an I/O System 

There are two primary types of specifications that designers encounter in I/O sys
tems: latency constraints and bandwidth constraints. In both cases, knowledge of 
the traffic pattern affects the design and analysis.

Latency constraints involve ensuring that the latency to complete an I/O opera
tion is bounded by a certain amount. In the simple case, the system may be unloaded, 
and the designer must ensure that some latency bound is met either because it is 
critical to the application or because the device must receive certain guaranteed 
service to prevent errors. Likewise, determining the latency on an unloaded system 
is relatively easy, since it involves tracing the path of the I/O operation and summing 
the individual latencies. 

Finding the average latency (or distribution of latency) under a load is much 
harder. Such problems are tackled either by queuing theory (when the behavior 
of the workload requests and I/O service times can be approx imated by simple 
distributions) or by simulation (when the behavior of I/O events is complex). Both 
topics are beyond the limits of this text.

Designing an I/O system to meet a set of bandwidth constraints given a work
load is the other typical problem designers face. Alternatively, the  designer may be 
given a partially configured I/O system and be asked to balance the system to main
tain the maximum bandwidth achievable, as dictated by the preconfigured portion 
of the system. This latter design problem is a simplified version of the first. 

The general approach to designing such a system is as follows:

1. Find the weakest link in the I/O system, which is the component in the I/O 
path that will constrain the design. Depending on the workload, this com
ponent can be anywhere, including the processors, the memory system, the 
I/O controllers, or the devices. Both the workload and configuration limits 
may dictate where the weakest link is located.

2. Configure this component to sustain the required bandwidth.

3. Determine the requirements for the rest of the system and configure them to 
support this bandwidth.

Check  
Yourself



The easiest way to understand this methodology is with an example. We’ll do a 
simple analysis of the I/O system of the Sun Fire x4150 server in Section 6.10 to 
show how this methodology works.

 6.9  
Parallelism and I/O: Redundant Arrays of 
Inexpensive Disks

Amdahl’s law in Chapter 1 reminds us that neglecting I/O in this parallel revolu
tion is foolhardy. A simple example demonstrates this. 

Impact of I/O on System Performance

Suppose we have a benchmark that executes in 100 seconds of elapsed time, of 
which 90 seconds is CPU time and the rest is I/O time. Suppose the number of 
processors doubles every two years, but the processors remain the same speed, 
and I/O time doesn’t improve. How much faster will our program run at the 
end of six years?

We know that

 Elapsed time = CPU time + I/O time

 100 = 90 + I/O time

 I/O time = 10 seconds

The new CPU times and the resulting elapsed times are computed in the fol
lowing table.

EXAMPLE

ANSWER

After n years CPU time I/O time Elapsed time % I/O time

0 years 90 seconds 10 seconds 100 seconds 10%

2 years   90  
2
   = 45 seconds 10 seconds 55 seconds 18%

4 years   45  
2
   = 23 seconds 10 seconds 33 seconds 31%

6 years   23  
2
   = 11 seconds 10 seconds 21 seconds 47%
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The improvement in CPU performance after six years is

  90  
11

   = 8

However, the improvement in elapsed time is only

  100  
21

   = 4.7

and the I/O time has increased from 10% to 47% of the elapsed time.

Hence, the parallel revolution needs to come to I/O as well as to computation, or 
the effort spent in parallelizing could be squandered whenever programs do I/O, 
which they all must do.

Accelerating I/O performance was the original motivation of disk arrays (see  
 Section 6.14 on the CD). In the late 1980s, the high performance storage of 

choice was large, expensive disks, such as the larger ones in Figure 6.4. The argument 
was that by replacing a few large disks with many small disks, performance would 
improve because there would be more read heads. This shift is a good match for 
multiple processors as well, since many read/write heads mean the storage system 
could support many more independent accesses as well as large transfers spread 
across many disks. That is, you could get both high I/Os per second and high data 
transfer rates. In addition to higher performance, there could be advantages in cost, 
power, and floor space, since smaller disks are generally more efficient per gigabyte 
than larger disks.

The flaw in the argument was that disk arrays could make reliability much 
worse. These smaller, inexpensive drives had lower MTTF ratings than the large 
drives, but more importantly, by replacing a single drive with, say, 50 small drives, 
the failure rate would go up by at least a factor of 50!

The solution was to add redundancy so that the system could cope with disk 
failures without losing information. By having many small disks, the cost of extra 
redundancy to improve dependability is small, relative to the solutions for a few 
large disks. Thus, dependability was more affordable if you constructed a redundant 
array of inexpensive disks. This observation led to its name: redundant arrays of 
inexpensive disks, abbreviated RAID. 

In retrospect, although its invention was motivated by performance, depen
dability was the key reason for the widespread popularity of RAID. The parallel 
revolution has resurfaced the original performance side of the argument for RAID. 
The rest of this section surveys the options for dependability and their impacts on 
cost and performance.

How much redundancy do you need? Do you need extra information to 
find the faults? Does it matter how you organize the data and the extra check 
i nforma tion on these disks? The paper that coined the term gave an evolutionary  
answer to these questions, starting with the simplest but most expensive solution. 

redundant arrays of 
 inexpensive disks 
(RAID) An  organization 
of disks that uses an array 
of small and inexpen sive 
disks so as to increase 
both performance and 
reliability.



Figure 6.12 shows the evolution and example cost in number of extra check disks. 
To keep track of the evolution, the authors numbered the stages of RAID, and they 
are still used today.

No Redundancy (RAID 0) 

Simply spreading data over multiple disks, called striping, automatically forces 
accesses to several disks. Striping across a set of disks makes the collection appear 
to software as a single large disk, which simplifies storage management. It also 
improves performance for large accesses, since many disks can operate at once. 
Videoediting systems, for example, often stripe their data and may not worry 
about dependability as much as, say, databases.

RAID 0 is something of a misnomer, as there is no redundancy. However, RAID 
levels are often left to the operator to set when creating a storage system, and RAID 0 is 
often listed as one of the options. Hence, the term RAID 0 has become widely used. 

striping Allocation of 
logically sequential blocks 
to separate disks to allow 
higher perfor mance than 
a single disk can deliver.

FIGURE 6.12 RAID for an example of four data disks showing extra check disks per RAID 
level and companies that use each level. Figures 6.13 and 6.14 explain the difference between 
RAID 3, RAID 4, and RAID 5. 

RAID 0
(No redundancy)
Widely used

Data disks

RAID 1
(Mirroring)
EMC, HP(Tandem), IBM

RAID 2
(Error detection and
correction code) Unused 

RAID 3
(Bit-interleaved parity)
Storage concepts

RAID 4
(Block-interleaving parity)
Network appliance

RAID 5
(Distributed block-
interleaved parity)
Widely used

RAID 6
(P + Q redundancy)
Recently popular

Redundant check disks
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Mirroring (RAID 1) 

This traditional scheme for tolerating disk failure, called mirroring or shadowing, 
uses twice as many disks as does RAID 0. Whenever data is written to one disk, 
that data is also written to a redundant disk, so that there are always two copies 
of the information. If a disk fails, the system just goes to the “mirror” and reads 
its contents to get the desired information. Mirroring is the most expensive RAID 
solution, since it requires the most disks.

Error Detecting and Correcting Code (RAID 2)

RAID 2 borrows an error detection and correction scheme most often used for 
memories (see  Appendix C). Since RAID 2 has fallen into disuse, we’ll not 
describe it here.

Bit-Interleaved Parity (RAID 3)
The cost of higher availability can be reduced to 1/n, where n is the number of 
disks in a protection group. Rather than have a complete copy of the original data 
for each disk, we need only add enough redundant information to restore the lost 
information on a failure. Reads or writes go to all disks in the group, with one  extra 
disk to hold the check information in case there is a failure. RAID 3 is popu lar in 
applications with large data sets, such as multimedia and some scientific codes.

Parity is one such scheme. Readers unfamiliar with parity can think of the 
redundant disk as having the sum of all the data in the other disks. When a disk 
fails, then you subtract all the data in the good disks from the parity disk; the 
remaining information must be the missing information. Parity is simply the sum 
modulo two. 

Unlike RAID 1, many disks must be read to determine the missing data. The 
assumption behind this technique is that taking longer to recover from failure but 
spending less on redundant storage is a good tradeoff.

Block-Interleaved Parity (RAID 4)
RAID 4 uses the same ratio of data disks and check disks as RAID 3, but they access 
data differently. The parity is stored as blocks and associated with a set of data 
blocks.

In RAID 3, every access went to all disks. However, some applications prefer 
smaller accesses, allowing independent accesses to occur in parallel. That is the 
purpose of the RAID levels 4 to 6. Since error detection information in each sector 
is checked on reads to see if the data is correct, such “small reads” to each disk can 
occur independently as long as the minimum access is one sector. In the RAID 
context, a small access goes to just one disk in a protection group while a large 
access goes to all the disks in a protection group.

Writes are another matter. It would seem that each small write would demand 
that all other disks be accessed to read the rest of the information needed to 

mirroring Writing the 
identi cal data to multiple 
disks to increase data 
availability.

protection group The 
group of data disks 
or blocks that share a 
common check disk or 
block.



 recalculate the new parity, as in the left in Figure 6.13. A “small write” would require 
reading the old data and old parity, adding the new information, and then writing 
the new parity to the parity disk and the new data to the data disk.

The key insight to  reduce this overhead is that parity is simply a sum of infor
mation; by watching which bits change when we write the new information, we 
need only change the corresponding bits on the parity disk. The right of Figure 6.13 
shows the shortcut. We must read the old data from the disk being written, compare 
old data to the new data to see which bits change, read the old parity, change 
the corresponding bits, then write the new data and new parity. Thus, the small 
write  involves four disk accesses to two disks instead of accessing all disks. This 
organization is RAID 4.

Distributed Block-Interleaved Parity (RAID 5)
RAID 4 efficiently supports a mixture of large reads, large writes, and small reads, 
plus it allows small writes. One drawback to the system is that the parity disk must 
be updated on every write, so the parity disk is the bottleneck for backtoback 
writes. 

To fix the paritywrite bottleneck, the parity information can be spread through
out all the disks so that there is no single bottleneck for writes. The dis tributed 
parity organization is RAID 5. 

FIGURE 6.13 Small write update on RAID 4. This optimization for small writes reduces the number 
of disk accesses as well as the number of disks occupied. This figure assumes we have four blocks of data and 
one block of parity. The naive RAID 4 parity calculation in the left of the figure reads blocks D1, D2, and D3 
before adding block D0¢ to calculate the new parity P¢. (In case you were wondering, the new data D0¢ comes 
directly from the CPU, so disks are not involved in reading it.) The RAID 4 shortcut on the right reads the 
old value D0 and compares it to the new value D0¢ to see which bits will change. You then read the old parity 
P and then change the corresponding bits to form P¢. The logical function exclusive OR does exactly what 
we want. This example replaces three disk reads (D1, D2, D3) and two disk writes (D0¢, P¢) involving all the 
disks for two disk reads (D0, P) and two disk writes (D0¢, P¢), which involve just two disks. Increasing the size 
of the parity group increases the savings of the shortcut. RAID 5 uses the same shortcut. 

D0′ D0 D1 D2 D3 P

D0′ D1 D2 D3 P′

New Data 1. Read 2. Read 3. Read

4. Write 5. Write 

XOR

D0′ D0 D1 D2 D3 P

D0′ D1 D2 D3 P′

+

New Data1. Read 2. Read

3. Write 4. Write

XOR

+ XOR

+
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Figure 6.14 shows how data is distributed in RAID 4 versus RAID 5. As the 
organization on the right shows, in RAID 5 the parity associated with each row of 
data blocks is no longer restricted to a single disk. This organization allows multi ple 
writes to occur simultaneously as long as the parity blocks are not located on the 
same disk. For example, a write to block 8 on the right must also access its parity 
block P2, thereby occupying the first and third disks. A second write to block 5 on 
the right, implying an update to its parity block P1, accesses the second and fourth 
disks and thus could occur concurrently with the write to block 8. Those same 
writes to the organization on the left result in changes to blocks P1 and P2, both on 
the fifth disk, which is a bottleneck. 

P + Q Redundancy (RAID 6)
Paritybased schemes protect against a single selfidentifying failure. When a single 
failure correction is not sufficient, parity can be generalized to have a second calcu
lation over the data and another check disk of information. This second check 
block allows recovery from a second failure. Thus, the storage overhead is twice 
that of RAID 5. The small write shortcut of Figure 6.13 works as well, except now 
there are six disk accesses instead of four to update both P and Q information.

RAID Summary
RAID 1 and RAID 5 are widely used in servers; one estimate is that 80% of disks in 
servers are found in a RAID organization.

One weakness of the RAID systems is repair. First, to avoid making the data 
unavailable during repair, the array must be designed to allow the failed disks to be 

FIGURE 6.14 Block-interleaved parity (RAID 4) versus distributed block-interleaved par ity 
(RAID 5).  By distributing parity blocks to all disks, some small writes can be performed in parallel. 
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replaced without having to turn off the system. RAIDs have enough redun dancy to 
allow continuous operation, but hot-swapping disks place demands on the physical 
and electrical design of the array and the disk interfaces. Second, another failure 
could occur during repair, so the repair time affects the chances of losing data: the 
longer the repair time, the greater the chances of another failure that will lose data. 
Rather than having to wait for the operator to bring in a good disk, some systems 
include standby spares so that the data can be reconstructed immediately upon 
discovery of the failure. The operator can then replace the failed disks in a more 
leisurely fashion. Note that a human operator ultimately determines which disks 
to remove. As Figure 6.3 shows, operators are only human, so they occasionally 
remove the good disk instead of the broken disk, leading to an unrecoverable disk 
failure.

In addition to designing the RAID system for repair, there are questions about 
how disk technology changes over time. Although disk manufacturers quote very 
high MTTF for their products, those numbers are under nominal conditions. If a 
particular disk array has been subject to temperature cycles due to, say, the failure 
of the air conditioning system, or to shaking due to a poor rack design, construc
tion, or installation, the failure rates can be three to six times higher (see the fal lacy 
on page 613). The calculation of RAID reliability assumes independence between 
disk failures, but disk failures could be correlated, because such damage due to the 
environment would likely happen to all the disks in the array. Another concern is 
that since disk bandwidth is growing more slowly than disk capacity, the time to 
repair a disk in a RAID system is increasing, which in turn increases the chances of a 
second failure. For example, a 1000 GB SATA disk could take almost three hours to 
read sequentially, assuming no interference. Given that the damaged RAID is likely 
to continue to serve data, reconstruction could be stretched considerably. Besides 
increasing that time, another concern is that read ing much more data during 
reconstruction means increasing the chance of an uncorrectable read media failure, 
which would result in data loss. Other argu ments for concern about simultaneous 
multiple failures are the increasing num ber of disks in arrays and the use of SATA 
disks, which are slower and have higher capacity than traditional enterprise disks.

Hence, these trends have led to a growing interest in protecting against more 
than one failure, and so RAID 6 is increasingly being offered as an option and being 
used in the field.

Which of the following are true about RAID levels 1, 3, 4, 5, and 6?

1. RAID systems rely on redundancy to achieve high availability.

2. RAID 1 (mirroring) has the highest check disk overhead.

3. For small writes, RAID 3 (bitinterleaved parity) has the worst throughput.

4. For large writes, RAID 3, 4, and 5 have the same throughput.

hot-swapping Replacing 
a hardware component 
while the system is 
running.

standby spares Reserve 
hard ware resources that 
can immedi ately take 
the place of a failed 
component.

Check  
Yourself

 6.9 Parallelism and I/O: Redundant Arrays of Inexpensive Disks 605



606 Chapter 6 Storage and Other I/O Topics

Elaboration: One issue is how mirroring interacts with striping. Suppose you had, say, 
four disks’ worth of data to store and eight physical disks to use. Would you create four 
pairs of disks—each organized as RAID 1—and then stripe data across the four RAID 1 
pairs? Alternatively, would you create two sets of four disks—each organized as RAID 
0—and then mirror writes to both RAID 0 sets? The RAID terminology has evolved to call 
the former RAID 1 + 0 or RAID 10 (“striped mirrors”) and the latter RAID 0 + 1 or RAID 
01 (“mirrored stripes”).

 6.10 Real Stuff: Sun Fire x4150 Server

In addition to the revolution in how microprocessors are constructed, we are see
ing a revolution in how software is delivered. Instead of the traditional model of 
software sold on a CD or shipped over the Internet to be installed in your com
puter, the alternative is software as a service. That is, you go over the Internet to 
do your work on a computer that runs the software you want to use to provide 
the service that you desire. The most popular example is likely Web searching, but 
there are services for photo editing and storage, document processing, database 
storage, virtual worlds, and so on. If you looked hard, you can probably find service 
ver sion of almost every program you use on your desktop computer.

This shift has led to the construction of large data centers to hold the comput
ers and disks to run the services used by millions of external users. What should 
computers look like if they are designed to be placed in these large data centers? 
They certainly all don’t need displays and keyboards. Clearly, space efficiency and 
power efficiency will be important if you have 10,000 of them in a datacenter, in 
addition to the traditional concerns of cost and performance. 

The related question is what should storage look like in a datacenter? While 
there are many options, one popular version is to include disks with the processor 
and memory, and make this whole unit the building block. To overcome concerns 
about reliability, the application itself makes redundant copies and is responsible 
for keeping them consistent and recovering from failures. 

The IT industry has largely agreed to some standards in the physical design 
of computers for the datacenter, specifically the rack used to hold the computers  
in the datacenter. The most popular is the 19inch rack, which is 19 inches wide 
(482.6 mm). Computers designed for the rack are labeled, naturally enough, 
rack mount, but are also called a subrack or simply a shelf. Because the traditional 
placement of holes in which to attach the shelves is 1.75 inches (44.45 mm) apart, 
this distance is commonly called a rack unit or simply unit (U). The most popular 
19inch rack is 42 U high, which is 42 x 1.75 or 73.5 inches high. The depth of the 
shelf varies.



FIGURE 6.15 A standard 19-inch rack populated with 42 1U servers. This rack has 42 1U 
“pizza box” servers. Source: http://gchelpdesk.ual berta.ca/news/07mar06/cbhd_news_07mar06.php. 

Hence, the smallest rack mount computer is 19 inches wide and 1.75 inches tall, 
often called 1U computers or 1U servers. Because of their dimensions, they have 
earned the nickname pizza boxes. Figure 6.15 shows an example of a standard rack 
populated with 42 1U servers.

 6.10 Real Stuff: Sun Fire x4150 Server 607

http://www.gchelpdesk.ualberta.ca/news/07mar06/cbhd_news_07mar06.php


608 Chapter 6 Storage and Other I/O Topics

Figure 6.16 shows the Sun Fire x4150, an example of a 1U server. Maximally 
configured, this 1U box contains:

 ■ 8 2.66 GHz processors, spread across two sockets (2 Intel Xeon 5345)

 ■ 64 GB of DDR2667 DRAM, spread across 16 4GB FBDIMMs

 ■ 8 15,000 RPM 73 GB SAS 2.5inch disk drives 

 ■ 1 RAID controller (Supporting RAID 0, RAID 1, RAID 5, and RAID 6)

 ■ 4 10/100/1000 Ethernet ports

 ■ 3 PCI Express x8 ports

 ■ 4 external and 1 internal USB 2.0 ports 

3 PCI Express Slots

System Status LEDs Video4 Gigabit NICs

2 USB Ports

Management
Serial

Management NIC

2 Redundant
Power Supplies

FIGURE 6.16 The front and rear of the Sun Fire x4150 1U server. The dimensions are 1.75 inches 
high by 19 inches wide. The eight 2.5inch disks drives can be replaced from the front. In the upper right is a 
DVD and two USB ports. The picture below labels the items at the rear of the server. It has redundant power 
supplies and fans to allow the server to continue operating despite failures of one of these  components.  



Figure 6.17 shows the connectivity and bandwidths of the chips on the mother
board. Figures 6.9 and 6.10 describe the I/O chip set for the Intel 5345, and 
Figure 6.5 describes the SAS disks in the Sun Fire x4150. 

To clarify the advice on designing an I/O system in Section 6.8, let’s per form 
a simple performance evaluation to see where the bottlenecks might be for a 
hypothetical application.

I/O System Design

Make the following assumptions about the Sun Fire x4150:

 ■ The user program uses 200,000 instructions per I/O operation 

 ■ The operating system averages 100,000 instructions per I/O operation
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FIGURE 6.17 Logical connections and bandwidths of components in the Sun Fire x4150. The three PCIe connectors allow 
x16 boards to be plugged in, but it only provides eight lanes of bandwidth to the MCH. Source: Figure 5 of “SUN FIRE™ X4150 AND X4450. 
SERVER ARCHITECTURE” (see www.sun.com/servers/x64/x4150/). 
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 ■ The workload consists of 64 KB reads 

 ■ Each processor sustains 1 billion instructions per second

Find the maximum sustainable I/O rate for a fully loaded Sun Fire x4150 for 
random reads and sequential reads. Assume that the reads can always be done 
on an idle disk if one exists (i.e., ignore disk conflicts) and that the RAID 
controller is not the bottleneck.

Let’s first find the I/O rate of a single processor. Each I/O takes 200,000 user 
instructions and 100,000 OS instructions, so

Maximum I/O rate of 1 processor = 

  Instruction execution rate    
Instructions per I/O

   =   1 ´ 109
   

(200 + 100) ´ 103
   = 3,333   

I/Os
  

second
  

As a single Intel 5345 socket has four processors, it can perform 13,333 IOPS. 
Two sockets with eight processors can perform 26,667 IOPS.

Let’s determine IOPS per disks for random and sequential reads for the 2.5inch 
SAS disk described in Figure 6.5. Rather than use the average seek time from the 
disk manufacturer, let’s assume that it is only a quarter of that time, as is often the 
case (see Section 6.3). The time per random read of a single disk:

Time per I/O at disk = Seek + rotational time + Transfer time

=	  2.9  
4

   ms + 2.0 ms +   64 KB  
112 MB/sec

   = 3.3 ms

Thus, each disk can complete 1000 ms/3.3 ms or 303 I/Os per second, and 
eight disks perform 2424 random reads per second.

For sequential reads, it’s just the transfer size divided by the disk bandwidth:

   
112 MB/sec

  
64 KB

   = 1750 IOPS

Eight disks can perform 14,000 sequential 64 KB reads.
We need to see if the paths from the disks to memory and the processors are 

a bottleneck. Let’s start with the PCI Express interconnect from the RAID card 
to the north bridge chip. Each lane of a PCIe is 250 MB/second, so eight lanes 
can perform 2 GB/second.

Max I/O rate of PCIe x8 =   PCI bandwidth    
Bytes per I/O

   =   2 ´ 109
  

64 ´ 103
   = 31,250   

I/Os
  

second
  

Even eight disks transferring sequentially use less than half the PCIe x8 link.

ANSWER



Once the data gets to the MCB, it needs to be written into the DRAM. The 
bandwidth of a DDR2 667 MHz FBDIMM is 5336 MB/second. A single DIMM 
can perform

   
5336 MB/sec

  
64 KB

   = 83,375 IOPS

The memory is not a bottleneck even with one DIMM, and we have 16 in a 
fully configured Sun Fire x4150.

The final link in the chain is the Front Side Bus that connects north bridge 
hub to the Intel 5345 socket. Its peak bandwidth is 10.6 GB/sec, but Section 7.10 
suggests you get no more than half peak. Each I/O transfers 64 KB, so

Max I/O rate of FSB =   Bus bandwidth
   

Bytes per I/O
   =   5.3 ´ 109

  
64 ´ 103

   = 81,540   
I/Os

  
second

  

There is one Front Side Bus per socket, so the dual FSB peak is over 150,000 
IOPS, and once again, the FSB is not a bottleneck.

Hence, a fully configured Sun Fire x4150 can sustain the peak bandwidth of 
the eight disks, which is 2424 random reads per second or 14,000 sequential 
reads per second.

Notice the significant number of simplifying assumptions that are needed to do 
this example. In practice, many of these simplifications might not hold for critical 
I/Ointensive applications. For this reason, running a realistic workload or rele vant 
benchmark is often the only plausible way to evaluate I/O performance.

As mention at the beginning of this section, these new datacenters are con cerned 
about power and space as well as cost and performance. Figure 6.18 shows the idle 
and peak power required by a fully configured Sun Fire x4150, with a breakdown 
by each component. Let’s look at the alternative configurations of the Sun Fire 
x4150 to conserve power.

I/O System Power Evaluation

Reconfigure a Sun Fire x4150 to minimize power, assuming that the workload 
in the example above is the only activity on this 1U server.

To achieve the 2424 random 64 KB reads per second from the prior example, 
we need all eight disks and the PCI RAID controller. From the calculations 
above, a single DIMM can support over 80,000 IOPS, so we can save power 
in mem ory. The Sun Fire x4150 minimum memory is two DIMMs, so we can 

EXAMPLE

ANSWER
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save the power (and cost) of 14 4GB DIMMs. A single socket can support 
13,333 IOPS, so we can also reduce the number of Intel E5345 sockets by one. 
Using the numbers in Figure 6.18, the total system power is now:

Idle Powerrandom reads = 154 + 2 ´ 10 + 8 ´ 8 + 15 = 253 watts

Peak Powerrandom reads = 215 + 2 ´ 11 + 8 ´ 8 + 15 = 316 watts

or a reduction in power by a factor of 1.6 to 1.7.
The original system can performance 14,000 64 KB sequential reads per 

second. We still need all the disks and the disk controller, and the same number 
of DIMMs can handle this higher load. This workload exceeds a processing 
power of the single Intel E5345 socket, so we need to add a second one.

Idle Powersequential reads = 154 + 22 + 2 ´ 10 + 8 ´ 8 + 15 = 275 watts

Peak Powersequential reads = 215 + 79 +	2 ´ 11 + 8 ´ 8 + 15 = 395 watts

or a reduction in power by a factor of 1.4 to 1.5.

    Advanced Topics: Networks

Networks are growing in popularity over time, and unlike other I/O devices, there 
are many books and courses on them. For readers who have not taken courses or 

6.11

FIGURE 6.18 Idle and peak power of a fully configured Sun Fire x4150. These experiments came while running SPECJBB with 
29 dif ferent configurations, so the peak power could be different when running different applications (source: www.sun.com/servers/x64/
x4150/calc). 

Components System

Item Idle Peak Number Idle Peak

Single Intel 2.66 GHz E5345 socket, 
Intel 5000 MCB/IOH chip set, Ethernet 
controllers, power supplies, fans, . . . 

154 W 215 W 1 154 W 37% 215 W 39%

Additional Intel 2.66 GHz E5345 socket 22 W 79 W 1 22 W 5% 79 W 14%

4 GB DDR2-667 5300 FBDIMM 10 W 11 W 16 160 W 39% 176 W 32%

73 GB SAS 15K Disk drives 8 W 8 W 8 64 W 15% 64 W 12%

PCIe x8 RAID Disk controller 15 W 15 W 1 15 W 4% 15 W 3%

Total — — — 415 W 100% 549 W 100%

http://www.sun.com/servers/x64/x4150/calc
http://www.sun.com/servers/x64/x4150/calc


read books on networking,  Section 6.11 on the CD gives a quick overview of 
the topics and terminology, including Internetworking, the OSI model, protocol 
families such as TCP/IP, longhaul networks such as ATM, local area networks such 
as Ethernet, and wireless networks such as IEEE 802.11.

 6.12 Fallacies and Pitfalls

Fallacy: The rated mean time to failure of disks is 1,200,000 hours or almost 140 years, 
so disks practically never fail.

Marketing practices of disk manufacturers have misled users. How is such an 
MTTF calculated? Early in the process, manufacturers will put thousands of disks 
in a room, run them for a few months, and count the number that fail. They com
pute MTTF as the total number of hours that the disks were cumulatively avail able 
divided by the number that failed.

One problem is that this number far exceeds the lifetime of a disk, which is 
commonly assumed to be five years or 43,800 hours. For this large MTTF to 
make some sense, disk manufacturers argue that the calculation corresponds to 
a user who buys a disk, and then keeps replacing the disk every five years—the 
planned lifetime of the disk. The claim is that if many customers (and their great 
grandchildren) did this for the next century, on average they would replace a disk 
27 times before a failure, or about 140 years.

A more useful measure would be percentage of disks that fail in a year, called 
annual failure rate (AFR). Assume 1000 disks with a 1,200,000hour MTTF and 
that the disks are used 24 hours a day. If you replaced failed disks with a new one 
having the same reliability characteristics, the number that would fail per year 
(8,760 hours) is 

Failed disks =	   
1000 drives ´ 8760 hours/drive

      
1,200,000 hours/failure

   = 7.3

Stated alternatively, the AFR is 0.73%. Disk manufacturers are starting to quote 
AFR as well as MTTB to give users better intuition about what to expect about 
their products.

Fallacy: Disk failure rates in the field match their specifications.

Two recent studies evaluated large collections of disks to check the relationship 
between results in the field compared to specifications. One study was of almost 
100,000 ATA and SCSI disks that had quoted MTTF of 1,000,000 to 1,500,000 
hours, or AFR of 0.6% to 0.8%. They found AFRs of 2% to 4% to be common, often 
three to five times higher than the specified rates [Schroeder and Gibson, 2007].  
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A sec ond study of more than 100,000 ATA disks, which had a quoted AFR of about 
1.5%, saw failure rates of 1.7% for drives in their first year rise to 8.6% for drives in 
their third year, or about five to six times the specified rate [Pinheiro, Weber, and 
Bar roso, 2007].

Fallacy: A GB/sec interconnect can transfer 1 GB of data in 1 second. 

First, you generally cannot use 100% of any computer resource. For a bus, you 
would be fortunate to get 70% to 80% of the peak bandwidth. Time to send the 
address, time to acknowledge the signals, and stalls while waiting to use a busy bus 
are among the reasons you cannot use 100% of a bus. 

Second, the definition of a gigabyte of storage and a gigabyte per second of 
bandwidth do not agree. As we discussed on page 596, I/O bandwidth measures 
are usually quoted in base 10 (i.e., 1 GB/sec = 109 bytes/sec), while 1 GB of data 
is typically a base 2 measure (i.e., 1 GB = 230 bytes). How significant is this distinc
tion? If we could use 100% of the bus for data transfer, the time to transfer 1 GB of 
data on a 1 GB/sec interconnect is actually 

  2
30
  

109
   =   

1,073,741,824
    

1,000,000,000
   = 1.073741824 »	1.07 seconds

Pitfall: Trying to provide features only within the network versus end to end.

The concern is providing at a lowerlevel features that can only be accomplished at 
the highest  level, thus only partially satisfying the communication demand. Saltzer, 
Reed, and Clark [1984] give the end-to-end argument, as follows:

The function in question can completely and correctly be specified only with the 
knowledge and help of the application standing at the endpoints of the commu-
nication system. Therefore, providing that questioned function as a feature of the 
communication system itself is not possible. 

Their example of the pitfall was a network at MIT that used several gateways, 
each of which added a checksum from one gateway to the next. The programmers 
of the application assumed the checksum guaranteed accuracy, incorrectly believ
ing that the message was protected while stored in the memory of each gateway. 
One gateway developed a transient failure that swapped one pair of bytes per mil
lion bytes transferred. Over time the source code of one operating system was 
repeatedly passed through the gateway, thereby corrupting the code. The only 
solution was to correct the infected source files by comparing to paper listings and 
repairing the code by hand! Had the checksums been calculated and checked by the 
application running on the end systems, safety would have been assured.

There is a useful role for intermediate checks, however, provided that endtoend 
checking is available. Endtoend checking may show that something is   bro ken between 



two nodes, but it doesn’t point to where the problem is. Intermediate checks can  
discover which component is broken. You need both for repair.

Pitfall: Moving functions from the CPU to the I/O processor, expecting to improve 
performance without a careful analysis. 

There are many examples of this pitfall trapping people, although I/O processors, 
when properly used, can certainly enhance performance. A frequent instance of 
this fallacy is the use of intelligent I/O interfaces, which, because of the higher 
overhead to set up an I/O request, can turn out to have worse latency than a 
 processordirected I/O activity (although if the processor is freed up sufficiently, 
system throughput may still increase). Frequently, performance falls when the I/O 
processor has much lower performance than the main processor. Consequently, a 
small amount of main processor time is replaced with a larger amount of I/O pro
cessor time. Workstation designers have seen both these phenomena repeatedly. 

Myer and Sutherland [1968] wrote a classic paper on the tradeoff of complex
ity and performance in I/O controllers. Borrowing the religious concept of the 
“wheel of reincarnation,” they eventually noticed they were caught in a loop of 
continuously increasing the power of an I/O processor until it needed its own 
simpler coprocessor: 

We approached the task by starting with a simple scheme and then adding 
com mands and features that we felt would enhance the power of the machine. 
Gradually the [display] processor became more complex . . . . Finally the display 
processor came to resemble a full-fledged computer with some special graphics 
features. And then a strange thing happened. We felt compelled to add to the 
processor a second, subsidiary processor, which, itself, began to grow in 
 com plexity. It was then that we discovered the disturbing truth. Designing a 
display processor can become a never-ending cyclical process. In fact, we found the 
pro cess so frustrating that we have come to call it the “wheel of reincarnation.”

Pitfall: Using magnetic tapes to back up disks.

This is both a fallacy and a pitfall. Magnetic tapes have been part of computer 
sys tems as long as disks because they use similar technology as disks, and hence 
his torically have followed the same density improvements. The historic cost/
performance difference between disks and tapes is based on a sealed, rotating disk 
having lower access time than sequential tape access; but removable spools of 
magnetic tape mean many tapes can be used per reader, and they can be very long 
and so have high capacity. Hence, in the past a single magnetic tape could hold the 
contents of many disks, and since it was 10 to 100 times cheaper per gigabyte than 
disks, it was a useful backup medium.

The claim was that magnetic tapes must track disks since innovations in disks 
must help tapes. This claim was important because tapes were a small market and 
could not afford a separate large research and development effort. One reason the 
market is small is that desktop owners generally do not back up disks onto tape, 
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and so while desktops are by far the largest market for disks, desktops are a small 
market for tapes. 

Alas, the larger market has led disks to improve much more quickly than tapes. 
Starting in 2000 to 2002, the largest popular disk was larger than the largest popu lar 
tape. In that same time frame, the price per gigabyte of ATA disks dropped below 
that of tapes. Tape advocates claim that tapes have compatibility require ments that 
are not imposed on disks; tape readers must read or write the current and previous 
generation of tapes, and must read the last four generations of tapes. As disks are 
closed systems, disk heads need only read the platters enclosed with them, and this 
advantage explains why disks are improving much more rapidly. 

Today, some organizations have dropped tapes altogether, using networks and 
remote disks to replicate the data geographically. Indeed, many companies offer ing 
software as a service use inexpensive components but replicate data at an applica
tion level across multiples sites. The sites are picked so that disasters would not take 
out both sites, enabling instantaneous recovery time. (Long recovery time for site 
disasters is another serious drawback to the serial nature of magnetic tapes.) Such 
a solution depends on advances in disk capacity and network band width to make 
economic sense, but these two are getting much greater investment and hence have 
better recent records of accomplishment than tape.

Fallacy: Operating systems are the best place to schedule disk accesses.

As mentioned in Section 6.3, higherlevel interfaces like ATA and SCSI offer logi cal 
block addresses to the host operating system. Given this highlevel abstraction, the 
best an OS can do to try to help performance is to sort the logical block addresses 
into increasing order. However, since the disk knows the actual mapping of the 
logical addresses onto the physical geometry of sectors, tracks, and surfaces, it can 
reduce the rotational and seek latencies by rescheduling.

For example, suppose the workload is four reads [Anderson, 2003]:

Operation Starting LBA Length

Read 724 8

Read 100 16

Read 9987 1

Read 26 128

The host might reorder the four reads into logical block order:

Operation Starting LBA Length

Read 26 128

Read 100 16

Read 724 8

Read 9987 1



Depending on the relative location of the data on the disk, reordering could make 
it worse, as Figure 6.19 shows. The diskscheduled reads complete in threequarters 
of a disk revolution, but the OSscheduled reads take three revolutions.

Pitfall: Using the peak transfer rate of a portion of the I/O system to make perfor-
mance projections or performance comparisons.

Many of the components of an I/O system, from the devices to the controllers to 
the buses, are specified using their peak bandwidths. In practice, these peak band
width measurements are often based on unrealistic assumptions about the system 
or are unattainable because of other system limitations. For example, in quoting 
bus performance, the peak transfer rate is sometimes specified using a memory 
system that is impossible to build. For networked systems, the software overhead 
of initiating communication is ignored.

The 32bit, 33MHz PCI bus has a peak bandwidth of about 133 MB/sec. In 
practice, even for long transfers, it is difficult to sustain more than about 80 MB/sec 
for realistic memory systems. 

Amdahl’s law also reminds us that the throughput of an I/O system will be 
limited by the lowestperformance component in the I/O path.

 6.13 Concluding Remarks

I/O systems are evaluated on several different characteristics: dependability; the 
va riety of I/O devices supported; the maximum number of I/O devices; cost; and 
performance, measured both in latency and in throughput. These goals lead to 

FIGURE 6.19 Example showing OS versus disk schedule accesses, labeled host-ordered 
versus drive-ordered. The former takes three revolutions to complete the four reads, while the latter 
completes them in just threefourths of a revolution (from Anderson [2003]). 
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widely varying schemes for interfacing I/O devices. In the lowend and midrange 
systems, buffered DMA is likely to be the dominant transfer mechanism. In the 
highend systems, latency and bandwidth may both be important, and cost may 
be secondary. Multiple paths to I/O devices with limited buffering often charac
terize highend I/O systems. Typically, being able to access the data on an I/O 
device at any time (high availability) becomes more important as systems grow. 
As a result, redundancy and error correction mechanisms become more and more 
prevalent as we enlarge the system.

Storage and networking demands are growing at unprecedented rates, in part 
because of increasing demands for all information to be at your fingertips. One 
estimate is that the amount of information created in 2002 was 5 exabytes—
equivalent to 500,000 copies of the text in the U.S. Library of Congress—and 
that the total amount of information in the world was doubling every three years 
[Lyman and Varian, 2003].

Future directions of I/O include expanding the reach of wired and wireless net
works, with nearly every device potentially having an IP address, and the expanding 
role of flash memory in storage systems.

The performance of an I/O system, whether measured by bandwidth or latency, 
depends on all the elements in the path between the device and memory, includ
ing the operating system that generates the I/O commands. The bandwidth of the 
interconnect, the memory, and the device determine the maximum transfer rate 
from or to the device. Similarly, the latency depends on the device latency, together 
with any latency imposed by the memory system or buses. The effective bandwidth 
and response latency also depend on other I/O requests that may cause contention 
for some resource in the path. Finally, the operating system is a bottle neck. In some 
cases, the OS takes a long time to deliver an I/O request from a user program to an 
I/O device, leading to high latency. In other cases, the operating system effectively 
limits the I/O bandwidth because of limitations in the number of concurrent I/O 
operations it can support.

Keep in mind that while performance can help sell an I/O system, users over
whelmingly demand capacity and dependability from their I/O systems.

   
Historical Perspective and Further 
Reading

The history of I/O systems is a fascinating one.  Section 6.14 gives a brief his tory 
of magnetic disks, RAID, flash memory, databases, the Internet, the World Wide 
Web, and how Ethernet continues to triumph over its challengers.

Understanding  
Program  

Performance

6.14



 6.15 Exercises
Contributed by Perry Alexander of the University of Kansas

Exercise 6.1
Figure 6.2 describes numerous I/O devices in terms of their behavior, partner, and 
data rate. However, these classifications often do not provide a complete picture of 
data flow within a system. Explore device classifications for the following devices.

a. Auto Pilot

b. Automated Thermostat

6.1.1 [5] <6.1> For the devices listed in the table, identify I/O interfaces and 
 classify them in terms of their behavior and partner.

6.1.2 [5] <6.1> For the interfaces identified in the previous problem, estimate 
their data rate.

6.1.3 [5] <6.1> For the interfaces identified in the previous problem, determine 
whether data rate or operation rate is the best performance measurement.

Exercise 6.2
Mean Time Between Failures (MTBF), Mean Time To Replacement (MTTR), and 
Mean Time To Failure (MTTF) are useful metrics for evaluating the reliability and 
availability of a storage resource. Explore these concepts by answering the ques
tions about devices with the following metrics.

MTTF MTTR

a. 3 Years 1 Day

b. 7 Years 3 Days

6.2.1 [5] <6.1, 6.2> Calculate the MTBF for each of the devices in the table.

6.2.2 [5] <6.1, 6.2> Calculate the availability for each of the devices in the table.

6.2.3 [5] <6.1, 6.2> What happens to availability as the MTTR approaches 0? Is 
this a realistic situation?

6.2.4 [5] <6.1, 6.2> What happens to availability as the MTTR gets very high, i.e., 
a device is difficult to repair? Does this imply the device has low availability?
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Exercise 6.3
Average and minimum times for reading and writing to storage devices are 
 common measurements used to compare devices. Using techniques from Chap
ter 6, calculate values related to read and write time for disks with the following 
 characteristics.

Average Seek Time RPM Disk Transfer Rate Controller Transfer Rate

a. 10 ms 7500 90 MB/s 100 MB/s

b. 7 ms 10,000 40 MB/s 200 MB/s

6.3.1 [10] <6.2, 6.3> Calculate the average time to read or write a 1024byte 
 sector for each disk listed in the table.

6.3.2 [10] <6.2, 6.3> Calculate the minimum time to read or write a 2048byte 
sector for each disk listed in the table.

6.3.3 [10] <6.2, 6.3> For each disk in the table, determine the dominant factor 
for performance. Specifically, if you could make an improvement to any aspect of 
the disk, what would you choose? If there is no dominant factor, explain why.

Exercise 6.4
Ultimately, storage system design requires consideration of usage scenarios as 
well as disk parameters. Different situations require different metrics. Let’s try to 
systematically evaluate disk systems. Explore differences in how storage systems 
should be evaluated by answering the questions about the following applications.

a. Aircraft Control System

b. Phone Switch

6.4.1 [5] <6.2, 6.3> For each application, would decreasing the sector size during 
reads and writes improve performance? Explain your answer.

6.4.2 [5] <6.2, 6.3> For each application, would increasing disk rotation speed 
improve performance? Explain your answer.

6.4.3 [5] <6.2, 6.3> For each application, would increasing disk rotation speed 
improve system performance given that MTTF is decreased? Explain your answer.



Exercise 6.5
FLASH memory is one of the first true competitors for traditional disk drives. 
Explore the implications of FLASH memory by answering questions about the 
 following applications.

a. Aircraft Control System

b. Phone Switch

6.5.1 [5] <6.2, 6.3, 6.4> As we move towards solid state drives constructed from 
FLASH memory, what will change about disk read times assuming that the data 
transfer rate stays constant?

6.5.2 [10] <6.2, 6.3, 6.4> Would each application benefit from a solid state FLASH 
drive given that cost is a design factor?

6.5.3 [10] <6.2, 6.3, 6.4> Would each application be inappropriate for a solid 
state FLASH drive given that cost is NOT a design factor?

Exercise 6.6
Explore the nature of FLASH memory by answering the questions related to per
formance for FLASH memories with the following characteristics.

Data Transfer Rate Controller Transfer Rate

a. 120 MB/s 100 MB/s

b. 100 MB/s 90 MB/s

6.6.1 [10] <6.2, 6.3, 6.4> Calculate the average time to read or write a 1024byte 
sector for each FLASH memory listed in the table.

6.6.2 [10] <6.2, 6.3, 6.4> Calculate the minimum time to read or write a 512byte 
sector for each FLASH memory listed in the table. 

6.6.3 [5] <6.2, 6.3, 6.4> Figure 6.6 shows that FLASH memory read and write 
access times increase as FLASH memory gets larger. Is this unexpected? What fac
tors cause this?
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Exercise 6.7
I/O can be performed either synchronously or asynchronously. Explore the differ
ences by answering performance questions about the following peripherals.

a. Printer

b. Scanner

6.7.1 [5] <6.5> What would be the most appropriate bus type (synchronous or 
asynchronous) for handling communications between a CPU and the peripherals 
listed in the table?

6.7.2 [5] <6.5> What problems would long, synchronous busses cause for con
nections between a CPU and the peripherals listed in the table?

6.7.3 [5] <6.5> What problems would asynchronous busses cause for connec
tions between a CPU and the peripherals listed in the table?

Exercise 6.8
Among the most common bus types used in practice today are FireWire (IEEE 
1394), USB, PCI, and SATA. Although all four are asynchronous, they are imple
mented in different ways giving them different characteristics. Explore differ
ent bus structures by answering questions about the busses and the following 
peripherals.

a. Mouse

b. Graphics Coprocessor

6.8.1 [5] <6.5> Select an appropriate bus (FireWire, USB, PCI, or SATA) for the 
peripherals listed in the table. Explain why the bus selected is appropriate. (See 
Figure 6.8 for key characteristics of each bus.)

6.8.2 [20] <6.5> Use online or library resources and summarize the communica
tion structure for each bus type. Identify what the bus controller does and where 
the control physically is.

6.8.3 [15] <6.5> Outline limitations of each of the bus types. Explain why those 
limitations must be taken into consideration when using the bus.

Exercise 6.9
Communicating with I/O devices is achieved using combinations of polling, 
interrupt handling, memory mapping, and special I/O commands. Answer the 



 questions about communicating with I/O subsystems for the following applica
tions using combinations of these techniques.

a. Auto Pilot

b. Automated Thermostat

6.9.1 [5] <6.6> Describe device polling. Would each application in the table be 
appropriate for communication using polling techniques? Explain.

6.9.2 [5] <6.6> Describe interrupt driven communication. For each application 
in the table, if polling is inappropriate, explain how interrupt driven techniques 
could be used.

6.9.3 [10] <6.6> For the applications listed in the table, outline a design for 
memory mapped communication. Identify reserved memory locations and out
line their contents.

6.9.4 [10] <6.6> For the applications listed in the table, outline a design for com
mands implementing command driven communication. Identify commands and 
their interaction with the device.

6.9.5 [5] <6.6> Does it make sense to define I/O subsystems that use a combi
nation of memory mapping and command driven communication? Explain your 
answer.

Exercise 6.10
Section 6.6 defines an eightstep process for handling interrupts. The Cause and 
Status registers together provide information on the cause of the interrupt and the 
status of the interrupt handling system. Explore interrupt handling by answering 
the questions about the following combinations of interrupts.

a. Ethernet Controller Data Mouse Controller Reboot

b. Mouse Controller Power Down Overheat

6.10.1 [5] <6.6> When an interrupt is detected, the Status register is saved and 
all but the highest priority interrupt is disabled. Why are lowpriority interrupts 
disabled? Why is the status register saved prior to disabling interrupts?

6.10.2 [10] <6.6> Prioritize interrupts from the devices listed in each table row.

6.10.3 [10] <6.6> Outline how an interrupt from each of the devices listed in the 
table would be handled.
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6.10.4 [5] <6.6> What happens if the interrupt enable bit of the Cause register 
is not set when handling an interrupt? What value could the interrupt mask value 
take to accomplish the same thing?

6.10.5 [5] <6.6> Most interrupt handling systems are implemented in the operat
ing system. What hardware support could be added to make interrupt handling more 
efficient? Contrast your solution to potential hardware support for function calls.

6.10.6 [5] <6.6> In some interrupt handling implementations, an interrupt 
causes an immediate jump to an interrupt vector. Instead of a Cause register where 
each interrupt sets a bit, each interrupt has its own interrupt vector. Can the same 
priority interrupt system be implemented using this approach? Is there any advan
tage to this approach?

Exercise 6.11
Direct Memory Access (DMA) allows devices to access memory directly rather 
than working through the CPU. This can dramatically speed up the performance 
of peripherals, but adds complexity to memory system implementations. Explore 
DMA implications by answering the questions about the following peripherals.

a. Mouse Controller

b. Ethernet Controller

6.11.1 [5] <6.6> Does the CPU relinquish control of memory when DMA is 
active? For example, can a peripheral simply communicate with memory directly, 
avoiding the CPU completely?

6.11.2 [10] <6.6> Of the peripherals listed in the table, which would benefit 
from DMA? What criteria determine if DMA is appropriate?

6.11.3 [10] <6.6> Of the peripherals listed in the table, which could cause coher
ency problems with cache contents? What criteria determine if coherency issues 
must be addressed?

6.11.4 [5] <6.6> Describe what problems could occur when mixing DMA and 
virtual memory. Which of the peripherals in the table could introduce such prob
lems? How can they be avoided?

Exercise 6.12
Metrics for I/O performance may vary dramatically from application to applica
tion. Where the number of transactions processed dominates performance in some 



situations, data throughput dominates in others. Explore I/O performance evalua
tion by answering the questions for the following applications.

a. Mathematical Computations

b. Online Chat

6.12.1 [10] <6.7> For each application in the table, does I/O performance domi
nate system performance?

6.12.2 [10] <6.7> For each application in the table, is I/O performance best mea
sured using raw data throughput?

6.12.3 [5] <6.7> For each application in the table, is I/O performance best mea
sured using the number of transactions processed?

6.12.4 [5] <6.7> Is there a relationship between the performance measures from 
the previous two problems and choosing whether to use polling or interrupt driven 
communication? What about the choice of using memory mapped or command 
driven I/O?

Exercise 6.13
Benchmarks play an important role in evaluating and selecting peripheral devices. 
For benchmarks to be useful, they must exhibit properties similar to those experi
enced by a device under normal use. Explore benchmarks and device selection by 
answering questions about the following applications.

a. Mathematical Computations

b. Online Chat

6.13.1 [5] <6.7> For each application in the table, define characteristics that a set 
of benchmarks should exhibit when evaluating an I/O subsystem.

6.13.2 [15] <6.7> Using online or library resources, identify a set of standard 
benchmarks for applications in the table. Why do standard benchmarks help?

6.13.3 [5] <6.7> Does it make sense to evaluate an I/O subsystem outside the 
larger system it is a part of? How about evaluating a CPU?

Exercise 6.14
RAID is among the most popular approaches to parallelism and redundancy in 
storage systems. The name Redundant Arrays of Inexpensive Disks implies  several 
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things about RAID arrays that we will explore in the context of the following 
 activities.

a. High-Performance Mathematical Computations

b. Online Video Services

6.14.1 [10] <6.9> RAID 0 uses striping to force parallel access among many 
disks. Why does striping improve disk performance? For each of the activities listed 
in the table, will striping help better achieve their goals?

6.14.2 [5] <6.9> RAID 1 mirrors data among several disks. Assuming that inex
pensive disks have lower MTBF than expensive disks, how can redundancy using 
inexpensive disks result in a system with lower MTBF? Use the mathematical defi
nition of MTBF to explain your answer. For each of the activities listed in the table, 
will RAID 1 help better achieve their goals?

6.14.3 [5] <6.9> Like RAID 1, RAID 3 provides higher data availability. Explain 
the tradeoff between RAID 1 and RAID 3. Would each of the applications listed in 
the table benefit from RAID 3 over RAID 1?

Exercise 6.15
RAID 3, RAID 4, and RAID 5 all use parity system to protect blocks of data. 
 Specifically, a parity block is associated with a collection of data blocks. Each row 
in the following table shows the values of the data and parity blocks, as described 
in Figure 6.13.

New D0 D0 D1 D2 D3 P

a. 7453 AB9C AABB 0098 549C 2FFF

b. F245 7453 DD25 AABB FEFE FEFF

6.15.1 [10] <6.9> Calculate the new RAID 3 parity value P’ for data in lines a and 
b in the table.

6.15.2 [10] <6.9> Calculate the new RAID 4 parity value P’ for data in lines a and 
b in the table.

6.15.3 [5] <6.9> Is RAID 3 or RAID 4 more efficient? Are there reasons why 
RAID 3 would be preferable to RAID 4?

6.15.4 [5] <6.9> RAID 4 and RAID 5 use roughly the same mechanism to calcu
late and store parity for data blocks. How does RAID 5 differ from RAID 4 and for 
what applications would RAID 5 be more efficient?



6.15.5 [5] <6.9> RAID 4 and RAID 5 speed improvements grow with respect to 
RAID 3 as the size of the protected block grows. Why is this the case? Is there a situ
ation where RAID 4 and RAID 5 would be no more efficient than RAID 3?

Exercise 6.16
The emergence of web servers for ecommerce, online storage, and communication 
has made disk servers critical applications. Availability and speed are wellknown 
metrics for disk servers, but power consumption is becoming increasingly impor
tant. Answer the questions about configuration and evaluation of disk servers with 
the following parameters.

Program  
Instructions/ 
I/O Operation

OS Instructions/ 
I/O Operation

Workload (KB 
reads)

Processor  
Speed (Instructions/

Second)

a. 100,000 150,000 64 2 Billion

b. 200,000 200,000 128 3 Billion

6.16.1 [10] <6.8, 6.10> Find the maximum sustained I/O rate for random 
reads and writes. Ignore disk conflicts and assume the RAID controller is not the 
bottleneck. Follow the same approach as outlined in Section 6.10 making similar 
assumptions where necessary.

6.16.2 [10] <6.8, 6.10> Assume we are configuring a Sun Fire x4150 server as 
described in Section 6.10. Determine if a configuration of 8 disks presents an I/O 
bottleneck. Repeat for configurations of 16, 4, and 2 disks.

6.16.3 [10] <6.8, 6.10> Determine if the PCI bus, DIMM, or the Front Side Bus 
presents an I/O bottleneck. Use the same parameters and assumptions used in 
Section 6.10.

6.16.4 [5] <6.8, 6.10> Explain why real systems tend to use benchmarks or real 
applications to assess actual performance.

Exercise 6.17
Determining the performance of a single server with relatively complete data is an 
easy task. However, when comparing servers from different vendors providing dif
ferent data, choosing among alternatives can be difficult. Explore the process of find
ing and evaluating servers by answering questions about the following application.

Database Server

6.17.1 [15] <6.8, 6.10> For the application listed above, identify runtime charac
teristics for an operational system. Choose characteristics that will support evalua
tion similar to that performed for Exercise 6.16.
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6.17.2 [15] <6.8, 6.10> For the application listed above, find a server available 
in the marketplace that you feel would be appropriate for running the application. 
Before evaluating the server, identify reasons why it was selected.

6.17.3 [20] <6.8, 6.10> Using metrics similar to those used in Chapter 6 and 
Exercise 6.16, assess the server you identified in 6.17.2 in comparison to the Sun 
Fire x4150 server evaluated in Exercise 6.16. Which would you choose? Did the 
results of your analysis surprise you? Specifically, would you choose differently?

6.17.4 [15] <6.8, 6.10> Identify a standard benchmark set that would be useful 
for comparing the server you identified in 6.17.2 with the Sun Fire x4150.

Exercise 6.18
Measurements and statistics provided by storage vendors must be carefully inter
preted to gain meaningful predictions about their system behavior. The following 
table provides data for various disk drives.

# of Drives Hours/Drive Hours/Failure

a. 1000 10,512 1,200,000

b. 1250 8760 1,200,000

6.18.1 [10] <6.12> Calculate annual failure rate (AFR) for disks in the table.

6.18.2 [10] <6.12> Assume that annual failure rate varies over the lifetime of 
disks in the previous table. Specifically, assume that AFR is three times as high in 
the 1st month of operation and doubles every year starting in the 5th year. How 
many disks would be replaced after 7 years of operation? What about 10 years?

6.18.3 [10] <6.12> Assume that disks with lower failure rates are more expen
sive. Specifically, disks are available at a higher cost that will start doubling their 
failure rate in year 8 rather than year 5. How much more would you pay for disks if 
your intent is to keep them for 7 years? What about 10 years?

Exercise 6.19
For disks in the table in Exercise 6.18, assume that your vendor offers a RAID 0 
configuration that will increase storage system throughput by 70% and a RAID 1 
configuration that will drop AFR of disk pairs by 2. Assume that the cost of each 
solution is 1.6 times the original solution cost.

6.19.1 [5] <6.9, 6.12> Given only the original problem parameters, would you 
recommend upgrading to either RAID 0 or RAID 1 assuming individual disk 
parameters remain the same in the previous table?



6.19.2 [5] <6.9, 6.12> Given that your company operates a global search engine 
with a large disk farm, does upgrading to either RAID 0 or RAID 1 make economic 
sense given that your income model is based on the number of advertisements 
served?

6.19.3 [5] <6.9, 6.12> Repeat 6.19.2 for a large disk farm operated by an online 
backup company. Does upgrading to either RAID 0 or RAID 1 make economic 
sense given that your income model is based on the availability of your server?

Exercise 6.20
Daytoday evaluation and maintenance of operational computer systems involves 
many of the concepts discussed in Chapter 6. Explore the intricacies of evaluating 
systems by exploring the following questions.

6.20.1 [20] <6.10, 6.12> Configure the Sun Fire x4150 to provide 10 terabytes of 
storage for a processor array of 1000 processors running bioinformatics simula
tions. Your configuration should minimize power consumption while addressing 
throughput and availability concerns for the disk array. Make sure you consider the 
properties of large simulations when performing your configuration.

6.20.2 [20] <6.10, 6.12> Recommend a backup and data archiving system for the 
disk array from 6.20.1. Compare and contrast disk, tape, and online backup capa
bilities. Use Internet and library resources to identify potential servers. Assess cost 
and suitability for the application using parameters described in Chapter 6. Select 
parameters for comparison using properties of the application as well as specified 
requirements.

6.20.3 [15] <6.10, 6.12> Competing vendors for the systems you identified 
in 6.20.2 have offered to allow you to evaluate their systems on site. Identify the 
benchmarks you will use to determine which system is best for your applica
tion. Determine how long it will take you to gather enough data to make your 
determination.

§6.2, page 575: 2 and 3 are true. 
§6.3, page 579: 3 and 4 are true.
§6.4, page 582: All are true (assuming 40 MB/s is comparable to100 MB/s).
§6.5, page 585: 1 is true. 
§6.6, page 594: 1 and 2.
§6.7, page 598: 1 and 2. 3 is false, since most TPC benchmarks include cost.
§6.9, page 605: All are true.

Answers to 
Check Yourself
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 7.1 Introduction

Computer architects have long sought the El Dorado of computer design: to create 
power ful computers simply by connecting many existing smaller ones. This golden 
vision is the fountainhead of multiprocessors.  Ideally, customers order as many 
processors as they can afford and receive a commensurate amount of per formance. 
Thus, multiprocessor software must be designed to work with a variable number 
of processors. As mentioned in Chapter 1, power has become the overrid ing issue 
for both  datacenters  and  microprocessors.  Replacing  large  inefficient  processors 
with  many  smaller,  efficient  processors  can  deliver  better  performance  per  watt 
or per joule both in the large and in the small, if software can efficiently use them. 
Thus, improved power efficiency joins scalable performance in the case for multi
processors. 

Since multiprocessor  software must  scale,  some designs  support operation  in 
the presence of broken hardware; that is, if a single processor fails in a multipro
cessor with n processors, these system would continue to provide service with n - 1 
processors. Hence, multiprocessors can also improve availability (see Chapter 6).

High performance can mean high throughput for independent jobs, called job-
level parallelism or process-level parallelism. These parallel jobs are independent 
appli cations, and they are an important and popular use of parallel computers. This 
approach is in contrast to running a single job on multiple processors. We use the 
term parallel processing program to refer to a single program that runs on multi
ple processors simultaneously. 

There have long been scientific problems that have needed much faster com
puters, and this class of problems has been used to  justify many novel parallel 
computers over the past decades. We will cover several of them in this chapter. 
Some  of  these  problems  can  be  handled  simply,  using  a  cluster  composed  of 
microprocessors housed  in many  independent  servers or PCs.  In addition, clus
ters can serve equally demanding applications outside the sciences, such as search 
engines, Web servers, email servers, and databases.

As described in Chapter 1, multiprocessors have been shoved into the spot
light  because  the  power  problem  means  that  future  increases  in  performance 
will  apparently  come  from  more  processors  per  chip  rather  than  higher  clock 
rates and improved CPI. They are called multicore microprocessors instead of 
multipro cessor  microprocessors,  presumably  to  avoid  redundancy  in   naming. 
Hence,  pro cessors  are  often  called  cores  in  a  multicore  chip.  The  number  of 
cores is expected to double every two years. Thus, programmers who care about 
performance must become parallel programmers, for sequential programs mean 
slow programs.

multiprocessor  A 
computer system with at 
least two proces sors. This 
is in contrast to a  
uniprocessor, which has 
one.

job-levelparallelism  or 
process-levelparallelism 
Utilizing multiple 
processors by running 
independent programs 
simultaneously.

parallelprocessing
program  A single 
program that runs on 
multiple processors 
simultaneously.

cluster  A set of 
computers connected 
over a local area 
network (LAN) that 
functions as a single large 
multiprocessor.

multicore
microprocessor 
A microprocessor 
containing mul tiple 
processors (“cores”) in a 
single integrated circuit.

“Over the Mountains 
Of the Moon, Down 
the Valley of the 
Shadow, Ride, boldly 
ride” The shade 
replied,— “If you seek 
for El Dorado!”

Edgar Allan Poe, 
“El Dorado,” stanza 4, 
1849
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The tall challenge facing the industry is to create hardware and software that will 
make it easy to write correct parallel processing programs that will execute efficiently 
in performance and power as the number of cores per chip scales geo metrically.

This sudden shift in microprocessor design has caught many off guard, so there 
is a great deal of confusion about the terminology and what it means. Figure 7.1 
tries to clarify the terms serial, parallel, sequential, and concurrent. The columns 
of  this  figure  represent  the  software,  which  is  either  inherently  sequential  or 
concur rent. The rows of the figure represent the hardware, which is either serial or 
paral lel. For example, the programmers of compilers think of them as sequential 
programs:  the  steps  are  lexical  analysis,  parsing,  code  generation,  optimization, 
and so on. In contrast, the programmers of operating systems normally think of 
them as concurrent programs: cooperating processes handling I/O events due to 
independent jobs running on a computer.

Software

Sequential Concurrent

Hardware

Serial
Matrix Multiply written in MatLab 

running on an Intel Pentium 4

Windows Vista Operating System 

running on an Intel Pentium 4

Parallel

Matrix Multiply written in MATLAB 

running on an Intel Xeon e5345 

(Clovertown)

Windows Vista Operating System 

running on an Intel Xeon e5345 

(Clovertown)

FIGURE 7.1 Hardware/software categorization and examples of application perspective 
on concurrency versus hardware perspective on parallelism. 

The point of these two axes of Figure 7.1 is that concurrent software can run on 
serial hardware,  such as operating systems for  the Intel Pentium 4 uniprocessor, 
or  on  parallel  hardware,  such  as  an  OS  on  the  more  recent  Intel  Xeon  e5345 
(Clovertown). The same is true for sequential software. For example, the MATLAB 
pro grammer writes a matrix multiply thinking about it sequentially, but it could run 
serially on Pentium 4 hardware or in parallel on Xeon e5345 hardware. You might 
guess that the only challenge of the parallel revolution is figuring out how to make 
naturally sequential software have high performance on parallel hardware, but it is 
also to make concurrent programs have high performance on multiprocessors as 
the number of processors increases. With this distinction made, in the rest of this 
chapter we will use parallel processing program or parallel software to mean either 
sequential or concurrent software running on parallel hardware.

The next section describes why it is hard to create efficient parallel processing 
programs.  Sections  7.3  and  7.4  describe  the  two  alternatives  of  a  fundamental 
par allel hardware characteristic, which is whether or not all the processors in the 
sys tems  rely  upon  a  single  physical  address.  The  two  popular  versions  of  these 
alternatives are called shared memory multiprocessors and clusters. Section 7.5 then 
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describes  multithreading,  a  term  often  confused  with  multiprocessing,  in  part 
because it relies upon similar concurrency in programs. Section 7.6 describes an 
older classification scheme than in Figure 7.1. In addition, it describes two styles 
of instruction set architectures that support running of sequential applications on 
parallel hardware, namely SIMD and vector. Section 7.7 describes a relatively new 
style of computer from the graphics hardware community, called a graphics pro
cessing unit (GPU). Appendix A describes GPUs in more detail. We next discuss the 
diffi culty of finding parallel benchmarks in Section 7.9. This section is followed by 
a description of a new, simple, yet insightful performance model that helps in the 
design of applications as well as architectures. We use this model in Section 7.11 
to evaluate four recent multicore computers on two application kernels. We close 
with fallacies and pitfalls and our conclusions for parallelism.

Before proceeding further down the path to parallelism, don’t forget our initial 
incursions from the prior chapters:

 ■ Chapter 2, Section 2.11: Parallelism and Instructions: Synchronization

 ■ Chapter 3, Section 3.6: Parallelism and Computer Arithmetic: Associativity

 ■ Chapter 4, Section 4.10: Parallelism and Advanced InstructionLevel Parallelism

 ■ Chapter 5, Section 5.8: Parallelism and Memory Hierarchies: Cache Coherence

 ■ Chapter 6, Section 6.9: Parallelism and I/O: Redundant Arrays of Inexpensive 
Disks

True or false: To benefit from a multiprocessor, an application must be concur rent.

 7.2  
The Difficulty of Creating Parallel 
Processing Programs

The difficulty with parallelism  is not  the hardware;  it  is  that  too  few  important 
application  programs  have  been  rewritten  to  complete  tasks  sooner  on  multi
processors. It is difficult to write software that uses multiple processors to complete 
one task faster, and the problem gets worse as the number of processors increases. 

Why has  this been so? Why have parallel processing programs been so much 
harder to develop than sequential programs? 

The  first  reason  is  that  you  must  get  better  performance  and  efficiency  from 
a  parallel  processing  program  on  a  multiprocessor;  otherwise,  you  would  just 
use  a  sequential  program  on  a  uni processor,  as  programming  is  easier.  In  fact, 
uniprocessor  design  techniques  such  as  superscalar  and  outoforder  execution 
take advantage of instructionlevel parallelism (see Chapter 4), normally without 
the  involvement  of  the  programmer.  Such  innovations  reduced  the  demand  for 
rewriting programs for multiprocessors, since programmers could do nothing and 
yet their sequential programs would run faster on new computers.

Check Yourself



Why is it difficult to write parallel processing programs that are fast, especially 
as the number of processors increases? In Chapter 1, we used the analogy of eight 
reporters trying to write a single story in hopes of doing the work eight times faster. 
To succeed, the task must be broken into eight equalsized pieces, because otherwise 
some reporters would be idle while waiting for the ones with larger pieces to finish. 
Another per formance danger would be that the reporters would spend too much 
time communicat ing with each other instead of writing their pieces of the story. 
For both this analogy and parallel programming, the challenges include scheduling, 
load bal ancing, time for synchronization, and overhead for communication between 
the parties. The challenge is stiffer with the more reporters for a newspaper story 
and the more processors for parallel programming. 

Our discussion in Chapter 1 reveals another obstacle, namely Amdahl’s law. It 
reminds us that even small parts of a program must be parallelized if the program 
is to make good use of many cores.

Speed-up Challenge

Suppose you want to achieve a speedup of 90 times faster with 100 processors. 
What per centage of the original computation can be sequential?

Amdahl’s law (Chapter 1) says 

Execution time after improvement = 

  
Execution time affected by improvement

      
Amount of improvement

     + Execution time unaffected

We can reformulate Amdahl’s in terms of speedup versus the original execu
tion time:

EXAMPLE

ANSWER

Speedup =    Execution time before    ________________________________________________________________      
(Execution time before - Execution time affected) +    Execution time affected    

100 
   

  

This formula is usually rewritten assuming that the execution time before is 
1 for some unit of time, and the execution time affected by improvement is 
considered the fraction of the original execution time:

Speedup =   1  __________________________________________    
(1 - Fraction time affected) +   Fraction time affected  __________________ 100   
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Substituting for the goal of a speedup of 90 into the formula above:

90 =    1  _____________________________________    
(1 − Fraction time affected) +   Fraction time affected   

100
   

  

Then simplifying the formula and solving for fraction time affected:

90 × (1 – 0.99 × Fraction time affected) = 1

90 - (90 × 0.99 × Fraction time affected) = 1
90 - 1 = 90 × 0.99 × Fraction time affected

Fraction time affected = 89/89.1 =  0.999

 Thus, to achieve a speedup of 90 from 100 processors, the sequential percent
age can only be 0.1%.

Yet, there are applications with substantial parallelism. 

Speed-up Challenge: Bigger Problem

Suppose you want to perform two sums: one is a sum of 10 scalar variables, 
and one is a matrix sum of a pair of twodimensional arrays, with dimensions 
10 by 10. What speedup do you get with 10 versus 100 processors? Next, cal
culate the speedups assuming the matrices grow to 100 by 100.

If we assume performance  is a  function of  the  time  for an addition,  t,  then 
there  are  10  additions  that  do  not  benefit  from  parallel  processors  and  100 
ad ditions that do. If the time for a single processor is 110 t, the execution time 
for 10 processors is

Execution time after improvement = 

  
Execution time affected by improvement

    _________________________________   
Amount of improvement

    + Execution time unaffected

Execution time affected improvement =   100t ____ 10    + 10t  = 20t

so the speedup with 10 processors is 110t/20t = 5.5. The execution time for 
100 processors is

Execution time after improvement =   100t ____ 100   + 10t  = 11t

so the speedup with 100 processors is 110t/11t  = 10. 

EXAMPLE

ANSWER



Thus, for this problem size, we get about 55% of the potential speedup with 
10 processors, but only 10% with 100. Look what happens when we increase 
the matrix. The sequential program now takes 10t + 10,000t = 10,010t. The 
execution time for 10 processors is

Execution time after improvement =   
10,000t

 _______ 10    + 10t = 1010t

so the speedup with 10 processors is 10,010t/1010t = 9.9. The execution time 
for 100 processors is

Execution time after improvement =   
10,000t

 _______ 100    + 10t = 110t

so the speedup with 100 processors is 10,010t/110t = 91. Thus, for this larger 
problem size, we get about 99% of the potential speedup with 10 proces sors 
and more than 90% with 100.

These  examples  show  that  getting  good  speedup  on  a  multiprocessor  while 
keeping the problem size fixed is harder than getting good speedup by increasing 
the size of the problem. This allows us to introduce two terms that describe ways 
to scale up. Strong scaling means measuring speedup while keeping the problem 
size fixed. Weak scaling means that the program size grows proportionally to the 
increase in the number of processors. Let’s assume that the size of the problem, M, 
is the working set in main memory, and we have P processors. Then the memory 
per pro cessor for strong scaling is approximately M/P, and for weak scaling, it  is 
approxi mately M.

Depending on the application, you can argue for either scaling approach. For 
example,  the TPCC debitcredit database benchmark  (Chapter 6)  requires  that 
you scale up the number of customer accounts to achieve higher transactions per 
minute. The argument is that it’s nonsensical to think that a given customer base 
is sud denly going to start using ATMs 100 times a day just because the bank gets a 
faster computer. Instead, if you’re going to demonstrate a system that can perform 
100 times the numbers of transactions per minute, you should run the experiment 
with 100 times as many customers.

This final example shows the importance of load balancing.

Speed-up Challenge: Balancing Load

To achieve the speedup of 91 on the previous larger problem with 100 proces
sors,  we  assumed  the  load  was  perfectly  balanced.  That  is,  each  of  the  100 
processors had 1% of the work to do. Instead, show the impact on speedup if 
one processor’s load is higher than all the rest. Calculate at 2% and 5%.

strongscaling  Speedup 
achieved on a multi

processor without 
increasing the size of the 
problem.

weakscaling  Speedup 
achieved on a multi
processor while increasing 
the size of the problem 
proportionally to the 
increase in the number of 
pro cessors.

EXAMPLE
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If one processor has 2% of the parallel load, then it must do 2% × 10,000 or 200 
additions, and the other 99 will share the remaining 9800. Since they are operating 
simultaneously, we can just calculate the execution time as a maxi mum

Execution time after improvement = Max  (   9800t _____ 99   ,   200t ____ 1    )  + 10t = 210t

The speedup drops to 10,010t/210t = 48. If one processor has 5% of the load, 
it must perform 500 additions:

Execution time after improvement = Max  (   9500t _____ 99   ,   500t ____ 1    )  + 10t = 510t

The  speedup  drops  even  further  to  10,010t/510t  =  20.  This  example  dem
onstrates the value of balancing load, for just a single processor with twice the 
load of the others cuts speedup almost in half, and five times the load on one 
processor reduces the speedup by almost a factor of five. 

True or false: Strong scaling is not bound by Amdahl’s law.

 7.3 Shared Memory Multiprocessors

Given  the difficulty of  rewriting old programs  to  run well on parallel hardware,  a 
natural question is what computer designers can do to simplify the task. One answer 
was to provide a single physical address space that all processors can share, so that 
programs need not  concern  themselves with where  they are  run, merely  that  they 
may be executed in parallel. In this approach, all variables of a program can be made 
available at any time to any processor. The alternative is to have a separate address space 
per processor that requires that sharing must be explicit; we’ll describe this option in 
the next section. When the physical address space is common—which is usually the 
case for multicore chips—then the hardware typ ically provides cache coherence to 
give a consistent view of the shared memory (see Section 5.8 of Chapter 5). 

A shared memory multiprocessor (SMP) is one that offers the programmer a 
single physical address space across all processors, although a more accurate term 
would have been sharedaddress multiprocessor. Note that such systems can still 
run  independent  jobs  in  their  own  virtual  address  spaces,  even  if  they  all  share 
a  physical  address  space.  Processors  communicate  through  shared  variables  in 
memory, with all processors capable of accessing any memory location via loads 
and stores. Figure 7.2 shows the classic organization of an SMP. 

Single address space multiprocessors come in two styles. The first takes about 
the same time to access main memory no matter which processor requests it and 
no matter which word is requested. Such machines are called uniform memory 
access (UMA)  multiprocessors.  In  the  second  style,  some  memory  accesses  are 

ANSWER

Check Yourself

sharedmemory
multiprocessor
(SMP)  A parallel 
processor with a single 
address space, implying 
implicit communica tion 
with loads and stores. 

uniform memoryaccess
(UMA)  A multiprocessor 
in which accesses to main 
memory take about the 
same amount of time no 
matter which processor 
requests the access and 
no mat ter which word is 
asked.



much faster than others, depending on which  processor asks for which word. Such 
machines are called nonuniform memory access  (NUMA) multiprocessors. As you 
might expect, the programming chal lenges are harder for a NUMA multi processor 
than for a UMA multiprocessor, but NUMA machines can scale to larger sizes and 
NUMAs can have lower latency to nearby memory.

As processors operating in parallel will normally share data, they also need to 
coordinate when operating on shared data; otherwise, one processor could start 
working  on  data  before  another  is  finished  with  it.  This  coordination  is  called 
syn chronization. When  sharing  is  supported with a  single  address  space,  there 
must be a separate mechanism for synchronization. One approach uses a lock for 
a shared variable. Only one processor at a  time can acquire  the  lock, and other 
pro cessors interested in shared data must wait until the original processor unlocks 
the variable. Section 2.11 of Chapter 2 describes  the  instructions  for  locking  in 
MIPS.

A Simple Parallel Processing Program for a Shared Address Space

Suppose  we  want  to  sum  100,000  numbers  on  a  shared  memory  multipro
cessor computer with uniform memory access time. Let’s assume we have 100 
processors.

The first step again would be to split the set of numbers into subsets of the 
same size. We do not allocate the subsets to a different memory space, since 
there is a single memory space for this ma chine; we just give different starting 
addresses to each processor. Pn is the number that identifies the processor, 
between 0 and 99. All processors start the pro gram by running a  loop that 
sums their subset of numbers:

EXAMPLE

ANSWER

Processor

Memory I/O

Processor Processor

Cache Cache Cache

Interconnection Network

. . .

. . .

FIGURE 7.2 Classic organization of a shared memory multiprocessor.  nonuniformmemory
access(NUMA)  A type 
of single address space 
multiprocessor in which 
some mem ory accesses 
are much faster than 
others depending on 
which processor asks for 
which word.

synchronization  The 
process of coordinating 
the behavior of two or 
more processes, which 
may be running on 
different processors.

lock  A synchronization 
device that allows access 
to data to only one 
processor at a time.
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sum[Pn] = 0; 
for (i = 1000*Pn; i < 1000*(Pn+1); i = i + 1)  
   sum[Pn] = sum[Pn] + A[i]; /* sum the assigned areas*/

The  next  step  is  to  add  these  many  partial  sums.  This  step  is  called  a 
reduction. We divide to conquer. Half of the processors add pairs of partial 
sums, and then a quarter add pairs of the new partial sums, and so on until we 
have the single, final sum. Figure 7.3 illustrates the hierarchi cal nature of this 
reduction.   

In this example, the two processors must synchronize before the  “consumer” 
processor  tries  to  read  the  result  from  the  memory  location  written  by  the 
“producer” processor;  otherwise,  the  consumer  may  read  the  old  value  of 
the data. We want each processor to have its own version of the loop counter 
variable i, so we must indicate that it is a “private” variable. Here is the code 
(half is private also):

half = 100; /* 100 processors in multiprocessor*/
repeat

synch(); /* wait for partial sum completion*/
if (half%2 != 0 && Pn == 0) 

sum[0] = sum[0] + sum[half-1];
/* Conditional sum needed when half is
odd; Processor0 gets missing element */

half = half/2; /* dividing line on who sums */
if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1); /* exit with final sum in Sum[0] */

True or  false: Shared memory multiprocessors cannot  take advantage of  job
level parallelism. 

reduction  A function 
that pro cesses a data 
structure and returns 
a single value.

Check Yourself
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FIGURE 7.3 The last four levels of a reduction that sums results from each processor, 
from bottom to top.  For all processors whose number i  is less than half, add the sum produced by 
processor number (i + half) to its sum. 

Elaboration: An alternative to sharing the physical address space would be to have 
separate physical address spaces but share a common virtual address space, leaving it up 
to the operating system to handle communication. This approach has been tried, but it has 
too high an overhead to offer a practical shared memory abstraction to the programmer.
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The alternative approach to sharing an address space is for the processors to each 
have their own private physical address space. Figure 7.4 shows the classic organi
zation of  a multiprocessor with multiple private  address  spaces. This  alternative 
multiprocessor must communicate via explicit message passing, which tradition
ally  is  the name of such style of computers. Provided the system has routines to 
send and receive messages, coordination is built in with message passing, since one 
processor knows when a message is sent, and the receiving processor knows when a 
message arrives. If the sender needs confirmation that the message has arrived, the 
receiving processor can then send an acknowledgment message back to the sender. 

FIGURE 7.4 Classic organization of a multiprocessor with multiple private address spaces, 
traditionally called a message-passing multiprocessor. Note that unlike the SMP in Figure 7.2, the 
interconnection network is not between the caches and memory but is instead between pro cessormemory 
nodes. 

Cache Cache Cache

Memory Memory Memory

Interconnection Network

. . .

. . .

Processor Processor Processor. . .

Some concurrent  applications  run well on parallel hardware,  independent of 
whether it offers shared addresses or message passing. In particular, joblevel par
allelism and applications with little communication—like Web search, mail serv
ers, and file servers—do not require shared addressing to run well. 

There were several attempts to build highperformance computers based on high
performance messagepassing networks, and they did offer better absolute commu
nication performance  than clusters built using  local  area networks. The problem 
was that they were much more expensive. Few applications could justify the higher 
communication  performance,  given  the  much  higher  costs.  Hence,  clusters  have 
become the most widespread example today of the messagepassing parallel com
puter. Clusters are generally collections of commodity computers that are connected 
to each other over their I/O interconnect via standard network switches and cables. 
Each runs a distinct copy of the operating system. Virtually every Internet service 
relies on clusters of commodity servers and switches.

messagepassing 
Communicating between 
 multiple processors by 
explic itly sending and 
receiving  information.

sendmessageroutine 
A routine used by a 
processor in machines 
with private memories to 
pass to another processor.

receivemessage
routine  A routine 
used by a processor in 
machines with private 
memories to accept a 
message from another 
processor.

clusters Collections of 
computers con nected 
via I/O over standard 
network switches to 
form a mes sagepassing 
multiprocessor.
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One drawback of clusters has been that the cost of administering a cluster of n 
machines is about the same as the cost of administering n independent machines, 
while the cost of administering a shared memory multiprocessor with n proces sors 
is about the same as administering a single machine. 

This  weakness  is  one  of  the  reasons  for  the  popularity  of  virtual  machines 
(Chapter 5), since VMs make clusters easier to administer. For example, VMs make 
it possible to stop or start programs atomically, which simplifies software upgrades. 
VMs can even migrate a program from one computer in a cluster to another without 
stopping the program, allowing a program to migrate from fail ing hardware.

Another  drawback  to  clusters  is  that  the  processors  in  a  cluster  are  usually 
connected  using  the  I/O  interconnect  of  each  computer,  whereas  the  cores  in  a 
multiproces sor are usually connected on the memory interconnect of the computer. 
The memory interconnect has higher bandwidth and lower latency, allowing much 
better communication performance. 

A final weakness is the overhead in the division of memory: a cluster of n machi
nes has n independent memories and n copies of the operating system, but a shared 
memory multiprocessor allows a single program to use almost all the memory in the 
computer, and it only needs a single copy of the OS.

Memory Efficiency

Suppose a single shared memory processor has 20 GB of main memory, five 
clustered computers each have 4 GB, and the OS occupies 1 GB. How much 
more space is there for users with shared memory?

The  ratio  of  memory  available  for  user  programs  on  the  shared  memory 
computer versus the cluster would be

   20 - 1 _________ 
5 × (4 - 1)

    =   19 ___ 15   ≈ 1.25

so shared memory computers have about 25% more space.

Let’s  redo  the  summing example  from  the prior  section  to  see  the  impact of 
multiple private memories and explicit communication.

A Simple Parallel Processing Program for Message Passing

Suppose we want to sum 100,000 numbers in a messagepassing multi  processor 
with 100 processors, each with multiple private memories.

EXAMPLE

ANSWER

EXAMPLE



Since this computer has multiple address spaces, the first step is distributing 
the 100 subsets to each of the local memories. The processor containing the 
100,000  numbers  sends  the  subsets  to  each  of  the  100  processor memory 
nodes.

The next step is to get the sum of each subset. This step is simply a loop that 
every processor follows: read a word from local memory and add it to a local 
variable:

sum = 0; 
for (i = 0; i<1000; i = i + 1) /* loop over each array */ 
 sum = sum + AN[i];  /* sum the local arrays */

The last step is the reduction that adds these 100 partial sums. The hard part 
is that each partial sum is located in a different processor. Hence, we must use 
the interconnection network to send partial sums to accumulate the final sum. 
Rather  than sending all  the partial  sums  to a  single processor, which would 
result in sequentially adding the partial sums, we again divide to con quer. 

First, half of the processors send their partial sums to the other half of the 
processors, where two partial sums are added together. Then onequarter of 
the processors (half of the half) send this new partial sum to the other quarter 
of the processors (the remaining half of the half) for the next round of sums. 
This halving, sending, and receiving continue until there is a single sum of all 
numbers. Let Pn represent the number of the processor, send(x,y) be a rou
tine that sends over the interconnection network to processor number x the 
value y, and  receive() be a function that accepts a value from the network 
for this processor. Here is the code:

limit = 100; half = 100;/* 100 processors */ 
repeat
  half = (half+1)/2; /* send vs. receive dividing line*/

  if (Pn >= half && Pn < limit) send(Pn - half, sum);
  if (Pn < (limit/2)) sum = sum + receive(); 
  limit = half; /* upper limit of senders */ 
until (half == 1); /* exit with final sum */

This code divides all processors into senders or receivers, and each  receiving 
processor gets only one message, so we can presume that a  receiving processor 
will  stall  until  it  receives  a  message.  Thus,  send  and  receive  can  be  used  as 
primitives for synchronization as well as for communication, as the processors 
are aware of the transmission of data.

If there is an odd number of nodes, the middle node does not participate in 
send/receive. The limit is then set so that this node is the highest node in the 
next iteration.

ANSWER
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Elaboration: This example assumes implicitly that message passing is about as fast 
as addi tion. In reality, message sending and receiving is much slower. An optimization to 
better bal ance computation and communication might be to have fewer nodes receive 
many sums from other processors.

Computers  that  rely on message passing  for  communication  rather  than cache 
coherent shared memory are much easier for hardware designers (see Section 5.8 
of Chapter 5). The advantage for programmers is that communication is explicit, 
which means there are fewer performance surprises than with the implicit com
munication in cachecoherent shared memory computers. The downside for pro
grammers  is  that  it’s  harder  to  port  a  sequential  program  to  a  messagepassing 
computer, since every communication must be identified in advance or the pro
gram doesn’t work. Cachecoherent shared memory allows the hardware to figure 
out what data needs to be communicated, which makes porting easier. There are 
differences of opinion as to which is the shortest path to high performance, given 
the pros and cons of implicit communication.

A weakness of separate memories for user memory turns into a strength in sys tem 
availability. Since a cluster consists of independent computers connected through 
a local area network, it is much easier to replace a machine without bringing down 
the system in a cluster than in an SMP. Fundamentally, the shared address means 
that it is difficult to isolate a processor and replace a processor without heroic work 
by the operating system. Since the cluster software is a  layer that runs on top of 
local operating  systems running on each computer, it is much easier to disconnect 
and replace a broken machine. 

Given  that  clusters  are  constructed  from  whole  computers  and  independent, 
scalable networks, this isolation also makes it easier to expand the system without 
bringing down the application that runs on top of the cluster.

Lower cost, high availability, improved power efficiency, and rapid, incremen tal 
expandability make clusters attractive to service providers for the World Wide Web. 
The search engines that millions of us use every day depend upon this tech nology. 
eBay, Google, Microsoft, Yahoo, and others all have multiple datacenters each with 
clusters of tens of thousands of processors. Clearly, the use of multiple processors 
in Internet service companies has been hugely successful.

Elaboration: Another form of large scale computing is grid computing, where the comput
ers are spread across large areas, and then the programs that run across them must 
communicate via long haul networks. The most popular and unique form of grid computing 
was pioneered by the SETI@home project. It was observed that millions of PCs are idle 
at any one time doing nothing useful, and they could be harvested and put to good uses 

Hardware/ 
Software 
Interface



if someone developed software that could run on those computers and then gave each 
PC an independent piece of the problem to work on. The first example was the Search 
for ExtraTerrestrial Intelligence (SETI). Over 5 million computer users in more than 200 
countries have signed up for SETI@home and have collectively contributed over 19 billion 
hours of computer processing time. By the end of 2006, the SETI@home grid operated at 
257 TeraFLOPS.

1.  True  or  false:  Like  SMPs,  messagepassing  computers  rely  on  locks  for 
synchronization.

2.  True or false: Unlike SMPs, messagepassing computers need multiple copies 
of the parallel processing program and the operating system.

 7.5 Hardware Multithreading

Hardware multithreading allows multiple threads to share the functional units of 
a single processor in an overlapping fashion. To permit this sharing, the processor 
must  duplicate  the  independent  state  of  each  thread.  For  example,  each  thread 
would have a separate copy of the register file and the PC. The memory itself can 
be shared through the virtual memory mechanisms, which already support multi
programming. In addition, the hardware must support the ability to change to a 
different thread relatively quickly. In particular, a thread switch should be much 
more efficient than a process switch, which typically requires hundreds to thou
sands of processor cycles while a thread switch can be instantaneous.

There  are  two  main  approaches  to  hardware  multithreading.  Fine-grained 
 multithreading switches between threads on each instruction, resulting in inter
leaved execution of multiple threads. This interleaving is often done in a round
robin fashion, skipping any threads that are stalled at that time. To make finegrained 
multithreading  practical,  the  processor  must  be  able  to  switch  threads  on  every 
clock cycle. One key advantage of finegrained multithreading is that it can hide 
the throughput losses that arise from both short and long stalls, since instructions 
from other threads can be executed when one thread stalls. The primary disadvan
tage of finegrained multithreading is that it slows down the execu tion of the indi
vidual threads, since a thread that is ready to execute without stalls will be delayed 
by instructions from other threads. 

Coarse-grained multithreading was invented as an alternative to finegrained 
multithreading.  Coarsegrained  multithreading  switches  threads  only  on  costly 
stalls,  such  as  secondlevel  cache  misses.  This  change  relieves  the  need  to  have 
thread switching be essentially free and is much less likely to slow down the execu
tion  of  an  individual  thread,  since  instructions  from  other  threads  will  only  be 
issued  when  a  thread  encounters  a  costly  stall.  Coarsegrained  multithreading 
suf fers, however,  from a major drawback:  it  is  limited  in  its  ability  to overcome 

Check Yourself

hardwaremultithreading 
Increasing utilization of a 
pro cessor by switching to 
another thread when one 
thread is stalled.

fine-grained
multithreading 
A version of hardware 
multi threading that 
suggests switch ing 
between threads after 
every instruction.

coarse-grained
multithreading 
A version of hardware 
multi threading that 
suggests switch ing 
between threads only after 
significant events, such as 
a cache miss.
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throughput  losses,  especially  from  shorter  stalls.  This  limitation  arises  from  the 
pipeline startup costs of coarsegrained multithreading. Because a processor with 
coarsegrained  multithreading  issues  instructions  from  a  single  thread,  when  a 
stall occurs, the pipeline must be emptied or frozen. The new thread that begins 
executing after  the  stall must fill  the pipeline before  instructions will be able  to 
complete. Due to this startup overhead, coarsegrained multithreading is much 
more  useful  for  reducing  the  penalty  of  highcost  stalls,  where  pipeline  refill  is 
negligible compared to the stall time. 

Simultaneous multithreading (SMT) is a variation on hardware multithread
ing  that uses  the  resources of a multipleissue, dynamically  scheduled processor 
to  exploit  threadlevel  parallelism  at  the  same  time  it  exploits  instructionlevel 
paral lelism. The key insight that motivates SMT is that multipleissue processors 
often have more functional unit parallelism available than a single thread can effec
tively use. Furthermore, with register renaming and dynamic scheduling, multiple 
instructions from independent threads can be issued without regard to the depen
dences  among  them;  the  resolution  of  the  dependences  can  be  handled  by  the 
dynamic scheduling capability. 

Since you are relying on the existing dynamic mechanisms, SMT does not switch 
resources every cycle. Instead, SMT is always executing instructions from multiple 
threads, leaving it up to the hardware to associate instruction slots and renamed 
registers with their proper threads.

Figure  7.5  conceptually  illustrates  the  differences  in  a  processor’s  ability  to 
exploit superscalar resources for the following processor configurations. The top 
portion  shows  how  four  threads  would  execute  independently  on  a  superscalar 
with no multithreading support. The bottom portion shows how the four threads 
could be combined to execute on the processor more efficiently using three multi
threading options:

 ■ A superscalar with coarsegrained multithreading 

 ■ A superscalar with finegrained multithreading

 ■ A superscalar with simultaneous multithreading 

In the superscalar without hardware multithreading support, the use of issue slots 
is limited by a lack of instructionlevel parallelism. In addition, a major stall, such 
as an instruction cache miss, can leave the entire processor idle. 

In  the  coarsegrained  multithreaded  superscalar,  the  long  stalls  are  partially 
hidden  by  switching  to  another  thread  that  uses  the  resources  of  the  processor. 
Although  this  reduces  the  number  of  completely  idle  clock  cycles,  the  pipeline 
startup overhead still  leads to idle cycles, and limitations to ILP means all issue 
slots will not be used. In the finegrained case, the interleaving of threads mostly 
eliminates fully empty slots. Because only a single thread issues instructions in a 
given clock cycle, however, limitations in instructionlevel parallelism still lead to 
idle slots within some clock cycles.

simultaneous
multithreading (SMT) 
A version of multi
threading that lowers the 
cost of multithreading 
by utilizing the resources 
needed for multiple issue, 
dynamically schedule 
microarchitecture. 



In the SMT case, threadlevel parallelism and instructionlevel parallelism are 
both exploited, with multiple threads using the issue slots in a single clock cycle. 
Ideally,  the  issue  slot  usage  is  limited  by  imbalances  in  the  resource  needs  and 
resource availability over multiple  threads.  In practice, other  factors  can  restrict 
how many slots are used. Although Figure 7.5 greatly simplifies the real operation 
of  these  processors,  it  does  illustrate  the  potential  performance  advantages  of 
multithreading  in  general  and  SMT  in  particular.  For  example,  the  recent  Intel 
Nehalem multicore supports SMT with two threads to improve core utilization.

Let us conclude with three observations. First, from Chapter 1, we know that the 
power wall is forcing a design toward simpler and more powerefficient pro cessors on 
a chip. It may well be that the underutilized resources of outoforder processors may 
be reduced, and so simpler forms of multithreading will be used. For example, the Sun 
UltraSPARC T2 (Niagara 2) microprocessor in Section 7.11 is an example of a return 
to simpler microarchitectures and hence the use of finegrained multithreading.

Issue slots

Thread C Thread DThread A Thread B

Time

Time

SMTCoarse MT Fine MT

Issue slots

FIGURE 7.5 How four threads use the issue slots of a superscalar processor in different 
approaches. The  four  threads  at  the  top  show  how  each  would  execute  running  alone  on  a  standard 
superscalar processor without multithreading support. The three examples at  the bottom show how they 
would execute running together in three multithreading options. The horizontal dimension represents the 
instruction issue capability in each clock cycle. The vertical dimension represents a sequence of clock cycles. 
An empty (white) box indicates that the corresponding issue slot is unused in that clock cycle. The shades of 
gray and color correspond to four different threads in the multithreading processors. The additional pipe line 
startup effects for coarse multithreading, which are not illustrated in this figure, would lead to further loss 
in throughput for coarse multithreading. 
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Second, a key performance challenge is tolerating latency due to cache misses. 
Finegrained  computers  like  the  UltraSPARC  T2  switch  to  another  thread  on  a 
miss, which is probably more effective in hiding memory latency than trying to fill 
unused issue slots as in SMT.

A third observation is that the goal of hardware multithreading is to use hard ware 
more efficiently by sharing components between different tasks. Multicore designs 
share resources as well. For example, two processors might share a  float ingpoint 
unit or an L3 cache. Such sharing reduces some of the benefits of multi threading 
compared with providing more nonmultithreaded cores.

1.  True or false: Both multithreading and multicore rely on parallelism to get 
more efficiency from a chip.

2.  True or false: Simultaneous multithreading uses threads to improve resource 
utilization of a dynamically scheduled, outoforder processor.

 7.6 SISD, MIMD, SIMD, SPMD, and Vector

Another  categorization  of  parallel  hardware  proposed  in  the  1960s  is  still  used 
today. It was based on the number of instruction streams and the number of data 
streams. Figure 7.6 shows the categories. Thus, a conventional uniprocessor has a 
single instruction stream and single data stream, and a conventional multiproces
sor has multiple  instruction streams and multiple data streams. These two cate
gories are abbreviated SISD and MIMD, respectively.

Data Streams

Single Multiple

Instruction 

Streams

Single SISD: Intel Pentium 4 SIMD: SSE instructions of x86

Multiple MISD: No examples today MIMD: Intel Xeon e5345 (Clovertown)

FIGURE 7.6 Hardware categorization and examples based on number of instruction streams 
and data streams: SISD, SIMD, MISD, and MIMD. 

While it is possible to write separate programs that run on different processors 
on a MIMD computer and yet work together for a grander, coordinated goal, pro
grammers normally write a single program that runs on all processors of an MIMD 
computer,  relying  on  conditional  statements  when  different  processors  should 
execute  different  sections  of  code.  This  style  is  called  Single Program Mul tiple 
Data (SPMD), but it is just the normal way to program a MIMD computer.

Check Yourself

SISD or Single 
Instruction stream, 
Single Data stream.  
A uniprocessor.

MIMD or Multiple 
Instruction streams, 
Multiple Data streams.  
A multiprocessor.

SPMD  Single Program, 
Multi ple Data streams.
The conven tional MIMD 
programming model, 
where a single program 
runs across all processors.



While it is hard to provide examples of useful computers that would be classi fied 
as multiple instruction streams and single data stream (MISD), the inverse makes 
much  more  sense.  SIMD  computers  operate  on  vectors  of  data.  For  exam ple,  a 
single SIMD instruction might add 64 numbers by sending 64 data streams to 64 
ALUs to form 64 sums within a single clock cycle.

The virtues of SIMD are that all the parallel execution units are synchronized 
and they all respond to a single instruction that emanates from a single program 
counter (PC). From a programmer’s perspective, this is close to the already famil
iar SISD. Although every unit will be executing the same instruction, each execu
tion unit has  its own address  registers, and so each unit can have different data 
addresses. Thus, in terms of Figure 7.1, a sequential application might be compiled 
to  run  on  serial  hardware  organized  as  a  SISD  or  in  parallel  hardware  that  was 
organized as an SIMD.

The original motivation behind SIMD was to amortize the cost of the control 
unit over dozens of execution units. Another advantage is the reduced size of pro
gram memory—SIMD needs only one copy of the code that is being simulta neously 
executed, while messagepassing MIMDs may need a copy in every processor, and 
shared memory MIMD will need multiple instruction caches. 

SIMD  works  best  when  dealing  with  arrays  in  for  loops.  Hence,  for  parallel
ism  to  work  in  SIMD,  there  must  be  a  great  deal  of  identically  structured  data, 
which is called data-level parallelism. SIMD is at its weakest in case or switch state
ments, where each execution unit must perform a different operation on its data, 
de pending on what data it has. Execution units with the wrong data are disabled so 
that units with proper data may continue. Such sit uations essentially run at 1/nth 
performance, where n is the num ber of cases.

The socalled array processors that inspired the SIMD category faded into his
tory (see   Section 7.14 on the CD), but  two current  interpretations of SIMD 
remain active today.

SIMD in x86: Multimedia Extensions

The most widely used variation of SIMD is found in almost every microproces
sor today, and is the basis of the hundreds of MMX and SSE instructions of the 
x86 microprocessor (see Chapter 2). They were added to improve performance of 
multimedia programs. These instructions allow the hardware to have many ALUs 
operate simultaneously or, equivalently, to partition a single, wide ALU into many 
parallel  smaller ALUs  that operate  simultaneously. For example, you could con
sider a single hardware component to be one 64bit ALU or two 32bit ALUs or 
four 16bit ALUs or eight 8bit ALUs. Loads and stores are simply as wide as the 
widest ALU, so the programmer can think of the same data transfer instruction as 
transferring either a single 64bit data element or two 32bit data elements or four 
16bit data elements or eight 8bit data elements. 

SIMD or Single 
Instruction stream, 
Multiple Data streams.  
A multiprocessor. The 
same instruction is 
applied to many data 
streams, as in a vector pro
cessor or array processor.

data-levelparallelism   
Paral lelism achieved by 
operating on independent 
data.
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This very low cost parallelism for narrow integer data was the original inspira tion 
of the MMX instructions of the x86. As Moore’s law continued, more hard ware was 
added to these multimedia extensions, and now SSE2 supports the simultaneous 
execution of a pair of 64bit floatingpoint numbers.

The width of the operation and the registers is encoded in the opcode of these 
multimedia instructions. As the data width of the registers and operations grew, 
the number of opcodes for multimedia instructions exploded, and now there are 
hundreds of SSE instructions to perform the useful combinations (see Chapter 2).

Vector

An  older  and  more  elegant  interpretation  of  SIMD  is  called  a  vector  architec ture, 
which has been closely identified with Cray Computers. It is again a great match to 
problems with  lots of datalevel parallelism. Rather  than having 64 ALUs perform 
64  additions  simultaneously,  like  the  old  array  processors,  the  vector  architectures 
pipelined the ALU to get good performance at lower cost. The basic philosophy of 
vector architecture is to collect data elements from memory, put them in order into a 
large set of registers, operate on them sequentially in regis ters, and then write the results 
back to memory. A key feature of vector architec tures is a set of vector registers. Thus, 
a vector architecture might have 32 vector registers, each with 64 64bit elements. 

Comparing Vector to Conventional Code

Suppose we extend the MIPS instruction set architecture with vector instruc
tions  and  vector  registers.  Vector  operations  use  the  same  names  as  MIPS  
op erations, but with the letter “V” appended. For example, addv.d adds two 
doubleprecision vectors. The vector instructions take as their input either a pair 
of vector registers (addv.d) or a vector register and a scalar register (addvs.d). 
In  the  latter  case,  the  value  in  the  scalar  register  is  used  as  the  in put  for  all 
operations—the operation addvs.d will add the contents of a sca lar register to 
each element in a vector register. The names lv and sv denote vector load and 
vector store, and they load or store an entire vector of dou bleprecision data. 
One operand is the vector register to be loaded or stored; the other operand, 
which is a MIPS generalpurpose register, is the starting address of the vector in 
memory. Given this short description, show the con ventional MIPS code versus 
the vector MIPS code for

Y = a × X + Y

where X and Y are vectors of 64 double precision floatingpoint numbers, ini tially 
resident in memory, and a is a scalar double precision variable. (This example is 
the socalled DAXPY loop that forms the inner loop of the Lin pack benchmark; 
DAXPY  stands  for  double  precision  a   × X   plus  Y.).  Assume  that  the  starting 
addresses of X and Y are in $s0 and $s1, respectively.

EXAMPLE



Here is the conventional MIPS code for DAXPY: 

 l.d $f0,a($sp) ;load scalar a 
 addiu r4,$s0,#512  ;upper bound of what to load  
loop: l.d $f2,0($s0) ;load x(i) 
 mul.d $f2,$f2,$f0 ;a × x(i)
 l.d $f4,0($s1) ;load y(i) 
 add.d $f4,$f4,$f2 ;a × x(i) + y(i)
 s.d $f4,0($s1) ;store into y(i) 
 addiu $s0,$s0,#8 ;increment index to x 
 addiu $s1,$s1,#8 ;increment index to y 
 subu $t0,r4,$s0 ;compute bound 
 bne $t0,$zero,loop ;check if done

Here is the vector MIPS code for DAXPY:

 l.d $f0,a($sp) ;load scalar a 
 lv $v1,0($s0) ;load vector x 
 mulvs.d $v2,$v1,$f0 ;vector-scalar multiply 
 lv $v3,0($s1) ;load vector y 
 addv.d $v4,$v2,$v3 ;add y to product 
 sv $v4,0($s1) ;store the result

There  are  some  interesting  comparisons  between  the  two  code  segments  in 
this example. The most dramatic is that the vector processor greatly reduces the 
dynamic instruction bandwidth, executing only six instructions versus almost 600 
for MIPS. This reduction occurs both because the vector operations work on 64 
elements and because the overhead instructions that constitute nearly half the loop 
on MIPS are not present in the vector code. As you might expect, this reduc tion in 
instructions fetched and executed saves power.

Another important difference is the frequency of pipeline hazards (Chapter 4). 
In the straightforward MIPS code, every add.d must wait for a mul.d, and every 
s.d must wait for the add.d. On the vector processor, each vector instruction will 
only stall for the first element in each vector, and then subsequent elements will 
flow smoothly down the pipeline. Thus, pipeline stalls are required only once per 
vector operation, rather than once per vector element. In this example, the pipeline 
stall frequency on MIPS will be about 64 times higher than it is on VMIPS. The 
pipeline stalls can be reduced on MIPS by using loopunrolling (see Chapter 4). 
However, the large difference in instruction bandwidth cannot be reduced.

ANSWER
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Elaboration: The loop in the example above exactly matched the vector length. When 
loops are shorter, vector architectures use a register that reduces the length of vector 
operations. When loops are larger, we add bookkeeping code to iterate fulllength vector 
operations and to handle the leftovers. This latter process is called strip mining.

Vector versus Scalar

Vector  instructions have several  important properties compared to conven tional 
instruction set architectures, which are called scalar architectures in this context:

 ■ A single vector instruction specifies a great deal of work—it is equivalent to 
executing an entire loop. The instruction fetch and decode bandwidth needed 
is dramatically reduced. 

 ■ By using a vector instruction, the compiler or programmer indicates that the 
computation of each result in the vector is independent of the computation 
of other results in the same vector, so hardware does not have to check for 
data hazards within a vector instruction. 

 ■ Vector architectures and compilers have a reputation of making it much eas
ier  than  MIMD  multiprocessors  to  write  efficient  applications  when  they 
contain datalevel parallelism.

 ■ Hardware need only check for data hazards between two vector  instructions 
once  per  vector  operand,  not  once  for  every  element  within  the  vectors. 
Reduced checking can save power as well.

 ■ Vector instructions that access memory have a known access pattern. If the 
vector’s elements are all adjacent, then fetching the vector from a set of heavily 
interleaved memory banks works very well. Thus, the cost of the latency to 
main memory  is seen only once for  the entire vector, rather than once for 
each word of the vector.

 ■ Because  an entire  loop  is  replaced by a  vector  instruction whose  behavior 
is predetermined, control hazards that would normally arise from the loop 
branch are nonexistent.

 ■ The savings in instruction bandwidth and hazard checking plus the efficient 
use of memory bandwidth give vector architectures advantages in power and 
energy versus scalar architectures. 

For these reasons, vector operations can be made faster than a sequence of sca
lar operations on the same number of data items, and designers are motivated to 
include vector units if the application domain can use them frequently.



Vector versus Multimedia Extensions

Like multimedia extensions found in the x86 SSE instructions, a vector instruc tion 
specifies  multiple  operations.  However,  multimedia  extensions  typically  specify 
a  few operations while vector specifies dozens of operations. Unlike multi media 
extensions, the number of elements in a vector operation is not in the opcode but 
in a separate register. This means different versions of the vector archi tecture can 
be implemented with a different number of elements just by changing the contents 
of that register and hence retain binary compatibility. In contrast, a new large set of 
opcodes is added each time the “vector” length changes in the multimedia exten
sion architecture of the x86. 

Also unlike multimedia extensions, the data transfers need not be contiguous. 
Vectors  support  both  strided  accesses,  where  the  hardware  loads  every  nth  data 
element in memory, and indexed accesses, where hardware finds the addresses of 
the items to be loaded in a vector register. 

Like multimedia extensions, vector easily captures the flexibility in data widths, 
so it is easy to make an operation work on 32 64bit data elements or 64 32bit data 
elements or 128 16bit data elements or 256 8bit data elements.

Generally, vector architectures are a very efficient way to execute data parallel 
processing programs; they are better matches to compiler technology than multi
media  extensions;  and  they  are  easier  to  evolve  over  time  than  the  multimedia 
extensions to the x86 architecture.

True or false: As exemplified in the x86, multimedia extensions can be thought of 
as a vector architecture with short vectors that supports only sequential vector data 
transfers.

Elaboration: Given the advantages of vector, why aren’t they more popular outside high
performance computing? There were concerns about the larger state for vector registers 
increas ing context switch time and the difficulty of handling page faults in vector loads 
and stores, and SIMD instructions achieved some of the benefits of vector instructions. 
However, recent announcements from Intel suggest that vectors will play a bigger role. 
Intel’s Advanced Vector Instructions (AVI), to arrive in 2010, will expand the width of the 
SSE registers from 128 bits to 256 bits immediately and allow eventual expansion to 
1024 bits. This latter width is equivalent to 16 doubleprecision floatingpoint numbers. 
Whether there will be vector load and store instructions are unclear. In addition, Intel’s 
entry into the discrete GPU mar ket for 2010—code named “Larrabee”—is reputed to 
have vector instructions.

Elaboration: Another advantage of vector and multimedia extensions is that it is 
relatively easy to extend a scalar instruction set architecture with these instructions to 
improve perfor mance of data parallel operations.

Check  
Yourself
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 7.7 Introduction to Graphics Processing Units

A major  justification for adding SIMD instructions to existing architectures was 
that many microprocessors were connected to graphics displays in PCs and work
stations, so an increasing fraction of processing time was used for graphics. Hence, 
as Moore’s law increased the number of transistors available to micropro cessors, it 
made sense to improve graphics processing.

Just  as  Moore’s  law  allowed  the  CPU  to  improve  graphics  processing,  it  also 
enabled video graphics controller chips to add functions to accelerate 2D and 3D 
graphics. Moreover, at the very high end were expensive graphics cards typically 
from Silicon Graphics, that could be added to workstations, to enable the creation 
of photographic quality images. These highend graphics cards were popular for 
creating  computergenerated  images  that  later  found  their  way  into  television 
advertisements and then into movies. Thus, video graphics controllers had a target 
to shoot for as processing resources increased, much as supercomput ers provided 
a  rich  resource  of  ideas  for  microprocessors  to  borrow  in  the  quest  for  greater 
performance.

A major driving force for improving graphics processing was the computer game 
industry, both on PCs and in dedicated game consoles such as the Sony PlayStation. 
The rapidly growing game market encouraged many companies to make increasing 
investments in developing faster graphics hardware, and this pos itive feedback led 
graphics processing to improve at a faster rate than generalpurpose processing in 
mainstream microprocessors. 

Given  that  the  graphics  and  game  community  had  different  goals  than  the 
micro processor development community, it evolved its own style of processing and 
terminology. As the graphics processors increased in power, they earned the name 
Graphics Processing Units or GPUs to distinguish themselves from CPUs. Here are 
some of the key characteristics as to how GPUs vary from CPUs:

 ■ GPUs are accelerators that supplement a CPU, so they do not need be able 
to perform all the tasks of a CPU. This role allows them to dedicate all their 
resources to graphics. It’s fine for GPUs to perform some tasks poorly or not 
at all, given that in a system with both a CPU and a GPU, the CPU can do 
them if needed. Thus, the CPUGPU combination is one example of hetero
geneous multiprocessing, where not all the processors are identical. (Another 
example is the IBM Cell architecture in Section 7.11, which was also designed 
to accelerate 2D and 3D graphics.)

 ■ The  programming  interfaces  to  GPUs  are  highlevel  application  pro
gramming  interfaces  (APIs),  such  as  OpenGL  and  Microsoft’s  DirectX, 
 coupled  with  highlevel  graphics  shading  languages,  such  as  NVIDIA’s  C 
for  Graphics  (Cg)  and  Microsoft’s  High  Level  Shader  Language  (HLSL).  



The  language   compilers  target  industrystandard  intermediate  languages 
instead of machine  instructions. GPU driver  software generates optimized 
GPU spe cific machine instructions. While these APIs and languages evolve 
rapidly to embrace new GPU resources enabled by Moore’s law, the freedom 
from backward binary  instruction compatibility enables GPU designers  to 
explore  new  architectures  without  the  fear  that  they  will  be  saddled  with 
implementing  failed  experiments  forever.  This  environment  leads  to  more 
rapid innovation in GPUs than in CPUs.

 ■ Graphics  processing  involves  drawing  vertices  of  3D  geometry  primitives 
such as lines and triangles and shading or rendering pixel fragments of geo
metric primitives. Video games,  for example, draw 20 to 30 times as many 
pixels as vertices.

 ■ Each  vertex  can  be  drawn  independently,  and  each  pixel  fragment  can  be 
rendered independently. To render millions of pixels per frame rapidly, the 
GPU evolved to execute many threads from vertex and pixel shader pro grams 
in parallel. 

 ■ The  graphics  data  types  are  vertices,  consisting  of  (x,  y,  z,  w)  coordinates, 
and  pixels,  consisting  of  (red,  green,  blue,  alpha)  color  components.  (See 
Appendix A to learn more about vertices and pixels.) GPUs represent each 
vertex component as a 32bit floatingpoint number. Each of the four pixel 
components  was  originally  an  8bit  unsigned  integer,  but  recent  GPUs 
now  represent  each  component  as  singleprecision  floatingpoint  number 
between 0.0 and 1.0.

 ■ The working  set  can be hundreds of megabytes,  and  it does not  show  the 
same temporal locality as data does in mainstream applications. Moreover, 
there is a great deal of datalevel parallelism in these tasks.

These differences led to different styles of architecture:

 ■ Perhaps the biggest difference is that GPUs do not rely on multilevel caches 
to overcome the long latency to memory, as do CPUs. Instead, GPUs rely on 
having enough threads to hide the latency to memory. That is, between the 
time of a memory request and the time that data arrives, the GPU executes 
hundreds or thousands of threads that are independent of that request.

 ■ GPUs rely on extensive parallelism to obtain high performance, implement
ing many parallel processors and many concurrent threads.

 ■ The  GPU  main  memory  is  thus  oriented  toward  bandwidth  rather  than 
latency. There are even separate DRAM chips for GPUs that are wider and 
have  higher  bandwidth  than  DRAM  chips  for  CPUs.  In  addition,  GPU 
memories have traditionally had smaller main memories than conventional 
microprocessors. In 2008, GPUs typically have 1 GB or less, while CPUs have 
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2 to 32 GB. Finally, keep in mind that for generalpurpose compu tation, you 
must include the time to transfer the data between CPU memory and GPU 
memory, since the GPU is a coprocessor.

 ■ Given  the  reliance  on  many  threads  to  deliver  good  memory  bandwidth, 
GPUs can accommodate many parallel processors as well as many threads. 
Hence, each GPU processor is highly multithreaded. 

 ■ In  the  past,  GPUs  relied  on  heterogeneous  special  purpose  processors  to 
deliver the performance needed for graphics applications. Recent GPUs are 
heading  toward  identical generalpurpose processors  to give more flexibil
ity in programming, making them more like the multicore designs found in 
mainstream computing.

 ■ Given the fourelement nature of the graphics data types, GPUs historically 
have SIMD instructions, like CPUs. However, recent GPUs are focusing more 
on scalar instructions to improve programmability and efficiency.

 ■ Unlike CPUs, there has been no support for double precision floatingpoint 
arithmetic, since there has been no need for it in the graphics applications. 
In  2008,  the  first  GPUs  to  support  double  precision  in  hardware  were 
announced. Nevertheless, single precision operations will still be eight to ten 
times faster than double precision, even on these new GPUs, while the differ
ence  in  performance  for  CPUs  is  limited  to  benefits  in  transferring  fewer 
bytes in the memory system due to using narrow data.

Although  GPUs  were  designed  for  a  narrower  set  of  applications,  some  pro
grammers wondered if they could specify their applications in a form that would 
let them tap the high potential performance of GPUs. To distinguish this style of 
using GPUs, some called it General Purpose GPUs or GPGPUs. After tiring of try
ing  to specify  their problems using  the graphics APIs and graphics shading  lan
guages, they developed Cinspired programming languages to allow them to write 
programs directly  for  the GPUs. An example  is Brook, a  streaming  language  for 
GPUs. The next step in programmability of both the hardware and the program
ming language is NVIDIA’s CUDA (Compute Unified Device Architecture), which 
enables  the  programmer  to  write  C  programs  to  execute  on  GPUs,  albeit  with 
some restrictions. The use of GPUs for parallel computing is growing with their 
increasing programmability. 

An Introduction to the NVIDIA GPU Architecture

Appendix A goes into much more depth on GPUs and presents in detail the most 
recent NVIDIA GPU architecture, called Tesla. Since GPUs evolved in their own 
environment,  they not only have different architectures, as  suggested above, but 
they also have a different  set of  terms. Once you  learn  the GPU terms, you will 



see the similarities to approaches presented in prior sections, such as finegrained 
multithreading and vectors.

To  help  you  with  that  transition  to  the  new  vocabulary,  we  present  a  quick 
introduction to the terms and ideas in the Tesla GPU architecture and the CUDA 
programming environment.

A discrete GPU chip sits on a separate card that plugs into a standard PC over 
the PCIExpress interconnect. Socalled motherboard GPUs are integrated into the 
motherboard chip set, such as a north bridge or a south bridge (Chapter 6).

GPUs are generally offered as a family of chips at different price performance points, 
with all being software compatible. Teslabased GPUs chips are offered with between 
1 and 16 nodes, which NVIDIA calls multiprocessors. In early 2008, the largest version 
is called  the GeForce 8800 GTX, which has 16 multiprocessors and a clock rate of 
1.35 GHz. Each multiprocessor contains eight multithreaded sin gleprecision floating
point units and integer processing units, which NVIDIA calls streaming processors. 

Since  the  architecture  includes  a  singleprecision floatingpoint multiplyadd 
instruction, the peak single precision multiplyadd performance of the 8800 GTX 
chip is:

16 MPs ×   8 SPs _____ 
MP

    ×   2 FLOPs/instr  ____________ 
SP

    ×   1 instr ______ 
clock

   ×   1.35 × 109 clocks  ______________ 
second

    

  =   16 × 8 × 2 × 1.35 GFLOPs  _____________________  
second

   

  =   345.6 GFLOPs  ____________ 
second

   

Each of the 16 multiprocessors of the GeForce 8800 GTX has a softwareman aged 
local store with a capacity of 16 KB plus 8192 32bit registers. The memory system 
of the 8800 GTX consists of six partitions of 900 MHz Graphics DDR3 DRAM, each 
8 bytes wide and with 128 MB of capacity. The total memory size is thus 768 MB. 
The peak GDDR3 memory bandwidth is 

6 ×   
 8 Bytes

 _______ 
transfer

   ×   2 transfers _________ 
clock

    ×   0.9 × 109 clocks  _____________ 
second

    =   6 × 8 × 2 × 0.9GB  _______________ 
second

    =   86.4 GB _______ 
second

   

To  hide  memory  latency,  each  streaming  processor  has  hardwaresupported 
threads. Each group of 32 threads is called a warp. A warp is the unit of schedul
ing, and the active threads in a warp—up to 32—execute in parallel in SIMD fash
ion. The multithreaded architecture copes with conditions, however, by allowing 
threads to take different branch paths. When threads of a warp take diverging paths, 
the warp sequentially  executes both code paths with some inactive threads, which 
makes the active threads run more slowly. The hardware joins the threads back into 
a fully active warp as soon as the conditional paths are completed. To get the best 
performance, all 32 threads of a warp need to  execute together in parallel. In simi
lar style, the hardware also looks at the  address streams coming from the dif ferent 
threads to try to merge the individual  requests into fewer but larger mem ory block 
transfers to increase memory performance.
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Figure 7.7 combines all these features together and compares a Tesla multiprocessor 
to a Sun UltraSPARC T2 core, which is described in Sections 7.5 and 7.11. Both are 
hardware multithreaded by scheduling threads over time, shown on the vertical axis.
Each  Tesla  multiprocessor  consists  of  eight  streaming  processors,  which  execute 
eight parallel threads per clock showing horizontally. As mentioned above, the best 
performance comes when all 32 threads of a warp execute together in a SIMDlike 
fashion, which the Tesla architecture calls singleinstruc tion multiplethread (SIMT). 
SIMT dynamically discovers which threads of a warp can execute the same instruction 
together, and which independent threads are idle that cycle. The T2 core contains just a 
single mul tithreaded processor. Each cycle it executes one instruction for one thread. 

The Tesla multiprocessor uses finegrained hardware multithreading to sched
ule 24 warps over time, which are shown vertically in blocks of four clock cycles. 
Similarly,  the  UltraSPARC  T2  schedules  eight  hardwaresup ported  threads  over 
time, one thread per cycle, shown vertically. Thus, just as the T2 hardware switches 
between  threads  to keep  the T2 core busy,  the Tesla hardware  switches between 
warps to keep the Tesla multiprocessor busy. The major difference is that the T2 
core has one processor that can switch threads every clock cycle, while the minimum 
unit of switching warps in the Tesla microprocessor is two clock cycles across eight 
streaming cores. Since Tesla  is aimed at programs with a great deal of datalevel 
parallelism,  the designers believed there  is  little perfor mance difference between 

FIGURE 7.7 Comparing single core of a Sun UltraSPARC T2 (Niagara 2) to a single Tesla multi-
processor. The T2 core is a single processor and uses hardware multithreading with eight threads (although there 
are some restrictions scheduling threads to pipelines). The Tesla multiprocessor contains eight streaming proces
sors and uses hardwaresupported  multithreading with 24 warps of 32 threads (eight processors times four clock 
cycles). The T2 can switch every clock cycle, while the Tesla can switch only every two or four clock cycles. One way 
to compare the two is that the T2 can only multithread the processor over time, while Tesla can multithread over 
time and over space; that is, across the eight streaming processors as well as segments of four clock cycles. 

Processors

UltraSPARC T2

...

Hardware
Supported
Threads

Thread0
Thread1
Thread2
Thread3
Thread4
Thread5
Thread6
Thread7

Tesla Multiprocessor

Warp0

Warp1

Warp23



switching every two or four clock cycles versus every clock cycle, and the hardware 
was much simpler by restricting the frequency of switching.

The  CUDA  programming  environment  has  its  own  terminology  as  well. 
A CUDA program is a unified C/C++ program for a heterogeneous CPU and GPU 
system. It executes on the CPU and dispatches parallel work to the GPU. This work 
consists of a data transfer from main memory and a thread dispatch. A thread is a 
piece of the program for the GPU. Programmers specify the number of threads in 
a thread block, and the number of thread blocks they wish to start exe cuting on the 
GPU. The reason the programmers care about thread blocks is that all the threads 
in the thread block are scheduled to run on the same multiprocessor so they all 
share  the same  local memory. Thus,  they can communicate via  loads and stores 
instead of messages. The CUDA compiler allocates registers to each thread, under 
the constraint that the registers per thread times threads per thread block does not 
exceed the 8192 registers per multiprocessor. 

A thread block can be up to 512 threads. Each group of 32 threads in a thread 
block is packed into warps. Large thread blocks have better efficiency than small 
ones, and they can be as small as a single thread. As mentioned above, thread blocks 
and warps with fewer than 32 threads operate less efficiently than full ones.

A hardware scheduler tries to schedule multiple thread blocks per multiproces
sor when possible.  If  it does,  the  scheduler also partitions  the 16 KB  local  store 
dynamically between the different thread blocks.

Putting GPUs into Perspective

GPUs like the NVIDIA Tesla architecture do not fit neatly into prior classifications 
of computers, such Figure 7.6 on page 648. Clearly, the GeForce 8800 GTX, with 
16 Tesla multiprocessors, is an MIMD. The question is how to classify each of the 
Tesla  multiprocessors  and  the  eight  streaming  processors  that  make  up  a  Tesla 
multiproces sor.

Recall that we earlier said that SIMD was at its best with for loops and was at its 
weakest in case and switch statements. Tesla aims at the high performance for data
level parallelism while making it easy for programmers to deal with independent 
threadlevel parallel cases. Tesla allows the programmer to think the multiprocessor 
is a multithreaded MIMD of eight streaming processors, but the hardware tries to 
gang together the eight stream ing processors to act in SIMT fashion when multi
ple threads of the same warp can execute together. When the threads do operate 
independently  and  follow  an  independent  execution  path,  they  execute  more 
slowly than in SIMT fashion, for all 32 threads of a warp share a single instruction 
fetch unit. If all 32 threads of a warp were executing independent instructions, each 
thread would operate at 1/16th the peak perfor mance of a full warp of 32 threads 
executing on eight streaming processors over four clocks.

Thus, each independent thread has its own effective PC, so programmers can 
think of  the Tesla multiproces sor as MIMD, but programmers need to take care 
to write control flow statements that allow the SIMT hardware to execute CUDA 
programs in SIMD fashion to deliver the desired performance. 
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In  contrast  to  vector  architectures,  which  rely  on  a  vectorizing  compiler  to 
recognize datalevel parallelism at compile time and generate vector instructions, 
hardware  implementations  of  Tesla  architecture  discovers  datalevel  parallelism 
among threads at runtime. Thus, Tesla GPUs do not need vectorizing compilers, and 
they make it easier for the programmer to handle the portions of the program that 
do not have datalevel parallelism. To put this unique approach into perspective, 
Figure 7.8 places GPUs in a classification that looks at instructionlevel parallelism 
versus  datalevel  parallelism  and  whether  it  is  discovered  at  compile  time  or 
runtime. This categori zation is one indication that the Tesla GPU is breaking new 
ground in computer architecture.

Static: Discovered at Compile 
Time

Dynamic: Discovered at 
Runtime

InstructionLevel Parallelism VLIW Superscalar

DataLevel Parallelism SIMD or Vector Tesla Multiprocessor

FIGURE 7.8 Hardware categorization of processor architectures and examples based on 
static versus dynamic and ILP versus DLP. 

True or false: GPUs rely on graphics DRAM chips to reduce memory latency and 
thereby increase performance on graphics applications.

 7.8 
 Introduction to Multiprocessor Network 
Topologies

Multicore chips require networks on chips to connect cores together. This sec tion 
reviews the pros and cons of different multiprocessor networks.

Network costs include the number of switches, the number of links on a switch to 
connect to the network, the width (number of bits) per link, and length of the links 
when the network is mapped into chip. For example, some cores may be adjacent and 
others may be on the other side of the chip. Network performance is multifaceted as 
well. It includes the latency on an unloaded net work to send and receive a message, the 
throughput in terms of the maximum number of messages that can be transmitted 
in a given time period, delays caused by contention for a portion of the network, 
and  variable  performance  depending  on  the  pattern  of  communication. Another 
obligation of the network may be fault tolerance, since systems may be required to 
operate in the presence of broken components. Finally, in this era of powerlimited 
chips, the power efficiency of different organizations may trump other concerns.

Networks are normally drawn as graphs, with each arc of the graph represent ing 
a link of the communication network. The processormemory node is shown as a 

Check Yourself



black square, and the switch is shown as a colored circle. In this section, all links are 
bidirectional; that is, information can flow in either direction. All net works consist of 
switches whose links go to processormemory nodes and to other switches. The first 
improvement over a bus is a network that connects a sequence of nodes together:

This topology is called a ring. Since some nodes are not directly connected, some 
messages will have to hop along intermediate nodes until they arrive at the final 
destination. 

Unlike a bus, a ring is capable of many simultaneous transfers. Because there 
are numerous topologies to choose from, performance metrics are needed to dis
tinguish  these  designs.  Two  are  popular.  The  first  is  total network bandwidth, 
which is the bandwidth of each link multiplied by the number of links. This repre
sents the very best case. For the ring network above, with P processors, the total 
network bandwidth would be P times the bandwidth of one link; the total net work 
bandwidth of a bus is just the bandwidth of that bus, or two times the band width 
of that link.

To balance this best case, we include another metric that is closer to the worst 
case: the bisection bandwidth. This is calculated by dividing the machine into two 
parts, each with half the nodes. Then you sum the bandwidth of the links that cross 
that imaginary dividing line. The bisection bandwidth of a ring is two times the 
link bandwidth, and it is one times the link bandwidth for the bus. If a single link 
is as fast as the bus, the ring is only twice as fast as a bus in the worst case, but it is 
P times faster in the best case.

Since some network topologies are not symmetric, the question arises of where 
to draw the imaginary line when bisecting the machine. This is a worstcase met
ric, so the answer is to choose the division that yields the most pessimistic net work 
performance. Stated alternatively, calculate all possible bisection bandwidths and 
pick the smallest. We take this pessimistic view because parallel programs are often 
limited by the weakest link in the communication chain.

At  the  other  extreme  from  a  ring  is  a  fully connected network,  where  every 
processor  has  a  bidirectional  link  to  every  other  processor.  For  fully  connected 
networks, the total network bandwidth is P × (P - 1)/2, and the bisection band
width is (P/2)2.

The tremendous improvement in performance of fully connected networks is 
offset by  the  tremendous  increase  in cost. This  inspires engineers  to  invent new 
topologies  that are between  the cost of  rings and  the performance of  fully con
nected networks. The evaluation of success depends in large part on the nature of 
the communication in the workload of parallel programs run on the machine.

The  number  of  different  topologies  that  have  been  discussed  in  publications 
would be difficult to count, but only a handful have been used in commercial parallel 
processors.  Figure  7.9  illustrates  two  of  the  popular  topologies.  Real  machines 

bisectionbandwidth 
The bandwidth between 
two equal parts of 
a multiprocessor. 
This measure is for a 
worst case split of the 
multiprocessor.

fullyconnectednetwork 
A network that connects 
 processormemory nodes 
by supplying a dedicated 
commu nication link 
between every node.
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Infor mally, the peak 
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can refer to the speed 
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collective transfer rate of 
all links in the network.
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frequently add extra links to these simple topologies to improve performance and 
reliability. 

An  alternative  to  placing  a  processor  at  every  node  in  a  network  is  to  leave 
only the switch at some of these nodes. The switches are smaller than processor 
 memoryswitch nodes, and thus may be packed more densely,  thereby  lessening 
distance  and  increasing  performance.  Such  networks  are  frequently  called  
multi stage networks to reflect the multiple steps that a message may travel. Types 
of  multistage  networks  are  as  numerous  as  singlestage  networks;  Figure 7.10 
illustrates  two  of  the  popular  multistage  organizations.  A  fully connected or 
crossbar network allows any node to communicate with any other node  in one 
pass through the network. An Omega network uses less hardware than the crossbar 
net work (2n log

2
 n versus n2 switches), but contention can occur between messages, 

depending on the pattern of communication. For example, the Omega network in 
Figure 7.10 cannot send a message from P

0
 to P

6
 at the same time that it sends a 

mes sage from P
1
 to P

7
.

Implementing Network Topologies

This simple analysis of all the networks in this section ignores important practical 
considerations in the construction of a network. The distance of each link affects 
the cost of communicating at a high clock rate—generally, the longer the distance, 
the more expensive  it  is  to run at a high clock rate. Shorter distances also make 

multistagenetwork 
A network that supplies a 
small switch at each node.

fullyconnectednetwork 
A network that connects 
 processormemory nodes 
by supplying a dedicated 
commu nication link 
between every node.

crossbarnetwork 
A network that allows any 
node to commu nicate 
with any other node in 
one pass through the 
network.

FIGURE 7.9 Network topologies that have appeared in commercial parallel proces sors.
The  colored  circles  represent  switches  and  the  black  squares  represent  processormemory  nodes.  Even 
though a switch has many links, generally only one goes to the processor. The Boolean ncube topology is 
an ndimensional interconnect with 2n nodes, requiring n links per switch (plus one for the processor) and 
thus n nearestneighbor nodes. Frequently, these basic topologies have been supplemented with extra arcs to 
improve performance and reliability. 

a. 2-D grid or mesh of 16 nodes b. n-cube tree of 8 nodes (8 = 23 so n = 3)



it easier to assign more wires to the link, as the power to drive many wires from 
a  chip  is  less  if  the  wires  are  short.  Shorter  wires  are  also  cheaper  than  longer 
wires. Another practical limitation is that the threedimensional drawings must be 
mapped onto chips that are essentially twodimensional media. The final concern is 
power. Power concerns may force multicore chips to rely on simple grid topolo gies, 
for example. The bottom line is that topologies that appear elegant when sketched 
on the blackboard may be impractical when constructed in silicon.

FIGURE 7.10 Popular multistage network topologies for eight nodes. The switches in these 
drawings  are  simpler  than  in  earlier  drawings  because  the  links  are  unidirectional;  data  comes  in  at  the    
bot tom and exits out the right link. The switch box in c can pass A to C and B to D or B to C and A to D. 
The crossbar uses n2 switches, where n is the number of processors, while the Omega network uses 2n log

2
n 

of the large switch boxes, each of which is logically composed of four of the smaller switches. In this case, 
the crossbar uses 64 switches versus 12 switch boxes, or 48 switches, in the Omega network. The crossbar, 
how ever, can support any combination of messages between processors, while the Omega network cannot. 

a. Crossbar b. Omega network

c. Omega network switch box
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 7.9 Multiprocessor Benchmarks

As we saw in Chapter 1, benchmarking systems is always a sensitive topic, because 
it  is  a  highly  visible  way  to  try  to  determine  which  system  is  better.  The  results 
affect  not  only  the  sales  of  commercial  systems,  but  also  the  reputation  of  the 
designers of those systems. Hence, the participants want to win the competition, 
but they also want to be sure that if someone else wins, they deserve to win because 
they have a genuinely better system. This desire  leads to rules to ensure that the 
benchmark results are not simply engineering tricks for that benchmark, but are 
instead advances that improve performance of real applications.

To avoid possible tricks, a typical rule is that you can’t change the benchmark. 
The source code and data sets are fixed, and there is a single proper answer. Any 
deviation from those rules makes the results invalid.

Many multiprocessor benchmarks follow these traditions. A common excep tion 
is to be able to increase the size of the problem so that you can run the benchmark 
on  systems with a widely different number of processors. That  is, many bench
marks allow weak scaling rather than require strong scaling, even though you must 
take care when comparing results for programs running different prob lem sizes. 

Figure 7.11 is a summary of several parallel benchmarks, also described below: 

 ■ Linpack  is a collection of  linear algebra routines, and the routines  for per
forming  Gaussian  elimination  constitute  what  is  known  as  the  Linpack 
benchmark. The DAXPY routine  in  the example on page 650  represents  a 
small fraction of the source code of the Linpack benchmark, but it accounts 
for most of  the  execution  time  for  the  benchmark.  It  allows weak  scaling, 
letting the user pick any size problem. Moreover, it allows the user to rewrite 
Linpack in any form and in any language, as long as it computes the proper 
result. Twice a year, the 500 computers with the fastest Linpack performance 
are published at www.top500.org. The first on this list is considered by the 
press to be the world’s fastest computer.

 ■ SPECrate is a throughput metric based on the SPEC CPU benchmarks, such 
as SPEC CPU 2006 (see Chapter 1). Rather than report performance of the 
individual programs, SPECrate  runs many copies of  the program simulta
neously. Thus, it measures joblevel parallelism, as there is no communica
tion between the jobs. You can run as many copies of the programs as you 
want, so this is again a form of weak scaling.

 ■ SPLASH and SPLASH 2 (Stanford Parallel Applications for Shared Memory) 
were efforts by researchers at Stanford University in the 1990s to put together 

http://www.top500.org


Benchmark Scaling? Reprogram? Description

Linpack Weak Yes Dense matrix linear algebra [Dongarra, 1979]

SPECrate Weak No Independent job parallelism [Henning, 2007]

Stanford Parallel 
Applications for 
Shared Memory 
SPLASH 2 [Woo 

et al., 1995]

Strong  
(although  

offers  
two problem 

sizes)

No

Complex 1D FFT
Blocked LU Decomposition
Blocked Sparse Cholesky Factorization
Integer Radix Sort
BarnesHut
Adaptive Fast Multipole
Ocean Simulation
Hierarchical Radiosity
Ray Tracer
Volume Renderer
Water Simulation with Spatial Data Structure
Water Simulation without Spatial Data Structure

NAS Parallel 
Benchmarks 
[Bailey et al., 

1991]

Weak
Yes  
(C or  

Fortran only)

EP: embarrassingly parallel
MG: simplified multigrid

CG: unstructured grid for a conjugate gradient method

FT: 3D partial differential equation solution using FFTs  
IS: large integer sort

PARSEC 
Benchmark Suite 

[Bienia et al., 
2008]

Weak No

Blackscholes—Option pricing with BlackScholes PDE
Bodytrack—Body tracking of a person
Canneal—Simulated cacheaware annealing to optimize routing
Dedup—Nextgeneration compression with data deduplication
Facesim—Simulates the motions of a human face
Ferret—Content similarity search server
Fluidanimate—Fluid dynamics for animation with SPH method
Freqmine—Frequent itemset mining
Streamcluster—Online clustering of an input stream
Swaptions—Pricing of a portfolio of swaptions
Vips—Image processing
x264—H.264 video encoding

Berkeley  
Design  

Patterns 
[Asanovic et al., 

2006]

Strong or  
Weak

Yes

FiniteState Machine
Combinational Logic
Graph Traversal
Structured Grid
Dense Matrix
Sparse Matrix
Spectral Methods (FFT)
Dynamic Programming
NBody
MapReduce
Backtrack/Branch and Bound
Graphical Model Inference
Unstructured Grid
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a  parallel  benchmark  suite  similar  in  goals  to  the  SPEC  CPU  benchmark 
suite.  It  includes  both  kernels  and  applications,  including  many  from  the 
highperformance computing community. This benchmark requires strong 
scaling, although it comes with two data sets.

 ■ The  NAS (NASA Advanced Supercomputing) parallel benchmarks  were 
another attempt from the 1990s to benchmark multiprocessors. Taken from 
computational fluid dynamics, they consist of five kernels. They allow weak 
scaling by defining a few data sets. Like Linpack, these benchmarks can be 
rewritten, but the rules require that the programming language can only be 
C or Fortran.

 ■ The  recent  PARSEC (Princeton Application Repository for Shared Memory 
Computers) benchmark suite  consists  of  multithreaded  programs  that  use 
Pthreads (POSIX  threads)  and  OpenMP (Open  MultiProcessing).  They 
focus on emerging markets and consist of nine applications and three ker
nels. Eight rely on data parallelism, three rely on pipelined parallelism, and 
one on unstructured parallelism.

The downside of such traditional restrictions to benchmarks is that innovation 
is  chiefly  limited  to  the  architecture  and  compiler.  Better  data  structures,  algo
rithms, programming languages, and so on often can not be used, since that would 
give a misleading result. The system could win because of, say, the algo rithm, and 
not because of the hardware or the compiler. 

While these guidelines are understandable when the foundations of computing 
are relatively stable—as they were in the 1990s and the first half of this decade— 
they are undesirable at the beginning of a revolution. For this revolution to succeed, 
we need to encourage innovation at all levels. 

One  recent  approach  has  been  advocated  by  researchers  at  the  University  of 
California at Berkeley. They have identified 13 design patterns that they claim will 
be part of applications of  the  future. These design patterns are  implemented by 
frameworks or kernels. Examples are sparse matrices, structured grid, finitestate 
machines, map reduce, and graph traversal. By keeping the definitions at a high 
level,  they  hope  to  encourage  innovations  at  any  level  of  the  system.  Thus,  the 
system with the fastest sparse matrix solver is welcome to use any data structure, 
algorithm,  and  pro gramming  language,  in  addition  to  novel  architectures  and 
compilers. We’ll see examples of such benchmarks in Section 7.11.

True  or  false:  The  main  drawback  with  conventional  approaches  to  bench
marks for parallel computers is that the rules that ensure fairness also suppress 
innovation.

Pthreads  A UNIX 
API for cre ating and 
manipulating threads. It 
comes with a library.

OpenMP  An API 
for shared memory 
multiprocessing in C, 
C++, or Fortran that runs 
on UNIX and Microsoft 
platforms. It includes 
compiler directives, a 
library, and runtime 
directives.

Check  
Yourself



 7.10 Roofline: A Simple Performance Model

This section is based on a paper by Williams and Patterson [2008]. In the recent 
past, conventional wisdom in computer architecture  led to similar microproces
sor  designs.  Nearly  every  desktop  and  server  computer  used  caches,  pipelining, 
superscalar instruction issue, branch prediction, and outoforder execution. The 
instruction sets varied, but the microprocessors were all from the same school of 
design.

The switch to multicore  likely means that microprocessors will become more 
diverse, since there is no conventional wisdom as to which architecture will make it 
easiest to write correct parallel processing programs that run efficiently and scale as 
the number of cores increases over time. Moreover, as the number of cores per chip 
does increase, a single manufacturer will likely offer different numbers of cores per 
chip at different price points at the same time. 

Given the increasing diversity, it would be especially helpful if we had a simple 
model that offered insights into the performance of different designs. It need not 
be perfect, just insightful. 

The 3Cs model  from Chapter 5  is an analogy. It  is not a perfect model, since 
it  ignores  potentially  important  factors  like  block  size,  block  allocation  policy, 
and block replacement policy. Moreover, it has quirks. For example, a miss can be 
ascribed due to capacity in one design and to a conflict miss in another cache of 
the same size. Yet 3Cs model has been popular for 20 years, because it offers insight 
into the behavior of programs, helping both architects and programmers improve 
their creations based on insights from that model. 

To find such a model, let’s start with the 13 Berkeley design patterns in Figure 7.9. 
The idea of the design patterns is that the performance of a given application is 
really the weighted sum of several kernels that implement those design patterns. 
We’ll evaluate individual kernels here, but keep in mind that real applications are 
combinations of many kernels.

While there are versions with different data types, floating point is popular in 
several implementations. Hence, peak floatingpoint performance is a limit on the 
speed  of  such  kernels  on  a  given  computer.  For  multicore  chips,  peak  floating
point performance is the collective peak performance of all the cores on the chip. 
If there were multiple microprocessors in the system, you would multiply the peak 
per chip by the total number of chips.

The demands on  the memory  system can be estimated by dividing  this peak 
floatingpoint  performance  by  the  average  number  of  floatingpoint  operations 
per byte accessed: 

  
FloatingPoint Operations/Sec

      
FloatingPoint Operations/Byte

   = Bytes/Sec
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The ratio of floatingpoint operations per byte of memory accessed is called the 
arithmetic intensity. It can be calculated by taking the total number of floating
point operations for a program divided by the total number of data bytes transferred 
to  main  memory  during  program  execution.  Figure  7.12  shows  the  arithmetic 
intensity of several of the Berkeley design patterns from Figure 7.11.

arithmeticintensity
The ratio of floatingpoint 
operations in a program to 
the number of data bytes 
accessed by a program 
from main memory.

FIGURE 7.12 Arithmetic intensity, specified as the number of float-point operations to 
run the program divided by the num ber of bytes accessed in main memory [Williams, 
Patterson, 2008]. Some kernels have an arithmetic intensity that scales with problem size, such as Dense 
Matrix, but there are many kernels with arithmetic intensities independent of problem size. For kernels in 
this former case, weak scaling can lead to different results, since it puts much less demand on the memory 
system. 

A r i t h m e t i c   I n t e n s i t y 

O(N) O(log(N)) O(1) 

Sparse
Matrix
(SpMV)

Structured
Grids
(Stencils,
PDEs)

Structured
Grids
(Lattice
Methods)

Spectral
Methods
(FFTs)

Dense
Matrix
(BLAS3)

N-body
(Particle
Methods)

The Roofline Model

The proposed simple model ties floatingpoint performance, arithmetic intensity, 
and  memory  performance  together  in  a  twodimensional  graph  [Will iams, 
Patterson, 2008]. Peak floatingpoint performance can be found using the hardware 
specifications mentioned above. The working set of the kernels we consider here 
do not fit in onchip caches, so peak memory performance may be defined by the 
memory system behind the caches. One way to find the peak memory perfor mance 
is the Stream benchmark. (See the Elaboration on page 473 in Chapter 5).

Figure 7.13 shows the model, which is done once for a computer, not for each 
kernel.  The  vertical Yaxis  is  achievable  floatingpoint  performance  from  0.5  to 
64.0 GFLOPs/second. The horizontal Xaxis is arithmetic intensity, varying from 
1/8 FLOPs/DRAM byte accessed to 16 FLOPs/DRAM byte accessed. Note that the 
graph is a loglog scale. 

For a given kernel, we can find a point on the Xaxis based on  its arithmetic 
intensity. If we drew a vertical line through that point, the performance of the ker
nel on that computer must lie somewhere along that line. We can plot a horizontal 
line  showing  peak  floatingpoint  performance  of  the  computer.  Obviously,  the 



actual floatingpoint performance can be no higher than the horizontal line, since 
that is a hardware limit.

How  could  we  plot  the  peak  memory  performance?  Since  Xaxis  is  FLOPs/
byte  and  the  Yaxis  is  FLOPs/second,  bytes/second  is  just  a  diagonal  line  at  a  
45degree  angle  in  this  figure.  Hence,  we  can  plot  a  third  line  that  gives  the 
maximum floatingpoint performance that the memory system of that computer 
can support for a given arithmetic intensity. We can express the limits as a formula 
to plot the line in the graph in Figure 7.13:

Attainable GFLOPs/sec =  Min (Peak Memory BW × Arithmetic Intensity, 
Peak FloatingPoint Performance)

The horizontal and diagonal lines give this simple model its name and indicates 
its value. The “roofline” sets an upper bound on performance of a kernel depend
ing on  its  arithmetic  intensity.  If we  think of arithmetic  intensity as a pole  that 
hits the roof, either it hits the flat part of the roof, which means performance is 
com putationally limited, or it hits the slanted part of the roof, which means perfor
mance is ultimately limited by memory bandwidth. In Figure 7.13, kernel 2 is an 
example of the former and kernel 1 is an example of the latter. Given a roofline of 
a computer, you can apply it repeatedly, since it doesn’t vary by kernel.

FIGURE 7.13 Roofline Model [Williams, Patterson, 2008]. This example has a peak floatingpoint 
performance of 16 GFLOPS/sec and a peak memory bandwidth of 16 GB/sec from the Stream benchmark. 
(Since stream is actually four measurements, this line is the average of the four.) The dotted vertical line in 
color on the left represents Kernel 1, which has an arithmetic intensity of 0.5 FLOPs/byte. It is limited by 
memory bandwidth to no more than 8 GFLOPS/sec on this Opteron X2. The dotted vertical line to the right 
repre sents Kernel 2, which has an arithmetic intensity of 4 FLOPs/byte. It is limited only computationally to 
16 GFLOPS/s. (This data is based on the AMD Opteron X2 (Revision F) using dual cores running at 2 GHz 
in a dual socket system.) 
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Note that the “ridge point,” where the diagonal and horizontal roofs meet, offers 
an interesting insight into the computer. If it is far to the right, then only kernels 
with  very  high  arithmetic  intensity  can  achieve  the  maximum  perfor mance  of 
that computer. If it is far to the left, then almost any kernel can poten tially hit the 
maximum performance. We’ll see examples of both shortly.

Comparing Two Generations of Opterons

The AMD Opteron X4 (Barcelona) with four cores is the successor to the Opteron 
X2 with two cores. To simplify board design, they use the same socket. Hence, they 
have  the  same DRAM channels and  thus  the  same peak memory bandwidth.  In 
addition to doubling the number of cores, the Opteron X4 also has twice the peak 
floatingpoint performance per core: Opteron X4 cores can issue two floatingpoint 
SSE2 instructions per clock cycle, while Opteron X2 cores issue at most one. As the 
two systems we’re comparing have similar clock rates—2.2 GHz for Opteron X2 
versus 2.3 GHz for Opteron X4—the Opteron X4 has more than four times the peak 
floatingpoint performance of the Opteron X2 with the same DRAM bandwidth. 
The Opteron X4 also has a 2MB L3 cache, which is not found in the Opteron X2.

Figure 7.14 compares the roofline models for both systems. As we would expect, 
the ridge point moves from 1 in the Opteron X2 to 5 in the Opteron X4. Hence, to 
see a performance gain in the next generation, kernels need an arith metic intensity 
higher than 1 or their working sets must fit in the caches of the Opteron X4. 

FIGURE 7.14 Roofline models of two generations of Opterons. The Opteron X2 roofline, which 
is  the same as Figure 7.11,  is  in black, and the Opteron X4 roofline  is  in color. The bigger ridge point of 
Opteron X4 means that kernels that where computationally bound on the Opteron X2 could be memory 
performance bound on the Opteron X4. 
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The roofline model gives an upper bound to performance. Suppose your program 
is  far  below  that  bound. What  optimizations  should  you  perform,  and  in  what 
order?

To reduce computational bottlenecks, the following two optimizations can help 
almost any kernel:

1.  Floatingpoint operation mix.  Peak floatingpoint performance for a com
puter typically requires an equal number of nearly simultaneous additions 
and multiplications. That balance is necessary either because the computer 
supports a fused multiplyadd instruction (see the Elaboration on page 268 
in  Chapter  3)  or  because  the  floatingpoint  unit  has  an  equal  number  of 
floatingpoint adders and floatingpoint multipliers. The best performance 
also  requires  that  a  significant  fraction of  the  instruction mix  is floating
point operations and not integer instructions.

2.  Improve instructionlevel parallelism and apply SIMD. For superscalar archi
tectures,  the  highest  performance  comes  when  fetching,  executing,  and 
committing three to four instructions per clock cycle (see Chapter 4). The 
goal here is to improve the code from the compiler to increase ILP. One way 
is by unrolling loops. For the x86 architectures, a single SIMD instruction 
can operate on pairs of double precision operands, so they should be used 
whenever possible.

To reduce memory bottlenecks, the following two optimizations can help:

1.  Software prefetching.  Usually  the  highest  performance  requires  keeping 
many  memory  operations  in  flight,  which  is  easier  to  do  by  performing 
software prefetch instructions rather than waiting until the data is required 
by the computation.

2.  Memory affinity.  Most microprocessors today include a memory controller 
on the same chip with the microprocessor. If the system has multiple chips, 
this means that some addresses go to the DRAM that is local to one chip, and 
the rest require accesses over the chip interconnect to access the DRAM that 
is local to another chip. The latter case lowers performance. This optimiza
tion tries to allocate data and the threads tasked to operate on that data to 
the same memoryprocessor pair, so that the processors rarely have to access 
the memory of the other chips.

The roofline model can help decide which of these optimizations to perform and 
the order in which to perform them. We can think of each of these optimizations as 
a “ceiling” below the appropriate roofline, meaning that you cannot break through 
a ceiling without performing the associated optimization. 
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FIGURE 7.15 Roofline model with ceilings. The top graph shows the computational “ceilings” of 
8  GFLOPs/sec  if  the  floatingpoint  operation  mix  is  imbalanced  and  2  GFLOPs/sec  if  the  optimizations 
to increase  ILP and SIMD are also missing. The bottom graph shows  the memory bandwidth ceilings of 
11 GB/sec without software prefetching and 4.8 GB/sec if memory affinity optimizations are also miss ing. 
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The computational roofline can be found from the manuals, and the memory 
roofline can be  found  from running  the stream benchmark. The computational 
ceilings, such as floatingpoint balance, also come from the manuals for that com
puter.  The  memory  ceiling  requires  running  experiments  on  each  computer  to 
determine the gap between them. The good news is that this process only need be 
done  once  per  computer,  for  once  someone  characterizes  a  computer’s  ceilings, 
everyone can use the results to prioritize their optimizations for that computer.

Figure  7.15  adds  ceilings  to  the  roofline  model  in  Figure  7.13,  showing  the 
computational ceilings  in the top graph and the memory bandwidth ceilings on 
the  bottom  graph. Although  the  higher  ceilings  are  not  labeled  with  both  opti
mizations, that is implied in this figure; to break through the highest ceiling, you 
need to have already broken through all the ones below. 

The  thickness of  the gap between  the ceiling and  the next higher  limit  is  the 
reward for trying that optimization. Thus, Figure 7.15 suggests that optimization 
2,  which  improves  ILP,  has  a  large  benefit  for  improving  computation  on  that 
computer, and optimization 4, which improves memory affinity, has a large bene fit 
for improving memory bandwidth on that computer.

Figure 7.16 combines the ceilings of Figure 7.15 into a single graph. The arith
metic intensity of a kernel determines the optimization region, which in turn sug
gests which optimizations to try. Note that the computational optimizations and 
the memory bandwidth optimizations overlap for much of the arithmetic inten
sity. Three  regions are  shaded differently  in Figure 7.16  to  indicate  the different 
optimization strategies. For example, Kernel 2  falls  in  the blue  trapezoid on  the 
right, which suggests working only on the computational optimizations. Kernel 1  
falls in the bluegray parallelogram in the middle, which suggests trying both types 
of optimizations. Moreover, it suggests starting with optimizations 2 and 4. Note 
that the Kernel 1 vertical lines fall below the floatingpoint imbalance opti mization, 
so optimization 1 may be unnecessary. If a kernel fell in the gray trian gle on the 
lower left, it would suggest trying just memory optimizations.

Thus far, we have been assuming that the arithmetic intensity is fixed, but that is 
not really the case. First, there are kernels where the arithmetic intensity increases 
with  problem  size,  such  as  for  Dense  Matrix  and  Nbody  problems  (see  Figure 
7.12). Indeed, this can be a reason that programmers have more success with weak 
scaling than with strong scaling. Second, caches affect the number of accesses that 
go  to  memory,  so  optimizations  that  improve  cache  performance  also  improve 
arithmetic intensity. One example is improving temporal locality by unrolling loops 
and  then grouping  together  statements with  similar addresses. Many computers 
have special cache instructions that allocate data in a cache but do not first fill the 
data  from memory at  that address,  since  it will  soon be over written. Both these 
optimizations reduce memory traffic, thereby moving the arithmetic intensity pole 
to the right by a factor of, say, 1.5. This shift right could put the kernel in a different 
optimization region.
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The  next  section  uses  the  roofline  model  to  demonstrate  the  difference  for 
four recent multicore microprocessors for two real application kernels. While the 
examples above show how to help programmers improve performance, the model 
can also be used by architects to decide where they optimize hardware to improve 
performance of the kernels that they think will be important.

Elaboration: The ceilings are ordered so that lower ceilings are easier to optimize. 
Clearly, a programmer can optimize in any order, but following this sequence reduces the 
chances of wasting effort on an optimization that has no benefit due to other constraints. 
Like the 3Cs model, as long as the roofline model delivers on insights, a model can have 
quirks. For example, it assumes the program is load balanced between all processors.

FIGURE 7.16 Roofline model with ceilings, overlapping areas shaded, and the two ker-
nels from Figure 7.13. Kernels whose arithmetic intensity land in the blue trapezoid on the right should 
focus on computation optimizations, and kernels whose arithmetic intensity land in the gray triangle in the 
lower left should focus on memory bandwidth optimizations. Those that land in the bluegray parallelo gram 
in the middle need to worry about both. As Kernel 1 falls in the parallelogram in the middle, try opti mizing 
ILP and SIMD, memory affinity, and software prefetching. Kernel 2 falls in the trapezoid on the right, so try 
optimizing ILP and SIMD and the balance of floatingpoint operations. 
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Elaboration: An alternative to the Stream benchmark is to use the raw DRAM 
bandwidth as the roofline. While the DRAMs definitely set a hard bound, actual memory 
performance is often so far from that boundary that it’s not that useful as an upper bound. 
That is, no program can go close to that bound. The downside to using Stream is that 
very careful programming may exceed the Stream results, so the memory roofline may 
not be as hard a limit as the computa tional roofline. We stick with Stream because few 
programmers will be able to deliver more memory bandwidth than Stream discovers.

Elaboration: The two axes used above were floatingpoint operations per second and 
arith metic intensity of accesses to main memory. The roofline model could be used 
for other kernels and computers where the performance was a function of different 
performance metrics. 

For example, if the working set fits in the L2 cache of the computer, the bandwidth 
plotted on the diagonal roofline could be L2 cache bandwidth instead of main memory 
bandwidth, and the arithmetic intensity on the Xaxis would be based on FLOPs per L2 
cache byte accessed. The diagonal L2 performance line would move up, and the ridge 
point would likely move to the left.

As a second example, if the kernel was sort, records sorted per second could replace 
floatingpoint operations per instruction on the Yaxis and arithmetic intensity would 
become records per DRAM byte accessed. 

The roofline model could even work for an I/O intensive kernel. The Yaxis would be 
I/O operations per second, the Xaxis would be the average number of instructions per 
I/O opera tion, and the roofline would show peak I/O bandwidth.

Elaboration: Although the roofline model shown is for multicore processors, it clearly 
would work for a uniprocessor as well.

 7.11  
Real Stuff: Benchmarking Four Multicores 
Using the Roofline Model

Given the uncertainty about the best way to proceed in this parallel revolution, it’s 
not surprising that we see as many different designs as there are multicore chips. 
In this section, we’ll examine four multicore systems for two kernels of the design 
patterns  in  Figure  7.11:  sparse  matrix  and  structured  grid.  (The  information  in 
this section is from [Williams, Oliker, et al., 2007], [Williams, Carter, et al., 2008], 
[Williams and Patterson, 2008].)
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Four	Multicore	Systems

Figure 7.17 shows the basic organization of the four systems, and Figure 7.18 lists 
the key characteristics of the examples of this section. These are all dual socket 
systems. Figure 7.19 shows the roofline performance model for each system.
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The  Intel  Xeon  e5345  (codenamed  “Clovertown”)  contains  four  cores  per 
socket by packaging two dual core chips into a single socket. These two chips share 
a front side bus that is attached to a separate north bridge chip set (see Chapter 6). 
This north bridge chip set supports two front side buses and hence two sockets. It 
includes the memory controller for the 667 MHz Fully Buffered DRAM DIMMs 
(FBDIMMs). This dualsocket system uses a processor clock rate of 2.33 GHz and 
has the highest peak performance of the four examples: 75 GFLOPS. However, the 
roofline model in Figure 7.19 shows that this can be achieved only with arithmetic 
intensities of 8 and above. The reason is that the dual front side buses interfere with 
each other, yielding relatively low memory bandwidth to programs. 

The AMD Opteron X4 2356 (Barcelona) contains four cores per chip, and each 
socket has a single chip. Each chip has a memory controller on board and its own 
path to 667 MHz DDR2 DRAM. These two sockets communicate over separate, 
dedicated  Hypertransport  links,  which  makes  it  possible  to  build  a  “glueless” 
multichip system. This dualsocket system uses a processor clock rate of 2.30 GHz 
and has a peak performance of about 74 GFLOPS. Figure 7.19 shows that the ridge 
point  in the roofline model  is  to the  left of  the Xeon e5345 (Clover town), at an 
arithmetic intensity of about 5 FLOPS per byte.

The Sun UltraSPARC T2 5140 (code named “Niagara 2”) is quite different from 
the two x86 microarchitectures. It uses eight relatively simple cores per chip with 
a much lower clock rate. It also provides finegrained multithreading with eight 
threads per core. A single chip has four memory controllers that could drive four 
sets of 667 MHz FBDIMMs. To join two UltraSPARC T2 chips together, two of the 
four memory channels are connected, leaving two memory channels per chip. This 
dualsocket  system has a peak performance of about 22 GFLOPS, and the ridge 
point is an amazingly low arithmetic intensity of just 1/3 FLOPS per byte.

FIGURE 7.18 Characteristics of the four recent multicores. Although  the  Xeon  e5345  and  Opteron  X4  have  the  same  speed 
DRAMs, the Stream benchmark shows a higher practical memory bandwidth due to the inefficiencies of the front side bus on the Xeon e5345. 

MPU Type ISA
Number 
Threads

Number 
Cores

Number 
Sockets

Clock 
GHz

Peak 
GFLOP/s

DRAM: Peak GB/s, Clock Rate, 
Type

Intel Xeon e5345 

(Clovertown)
x86/64 8 8 2 2.33 75 FSB: 2 x 10.6

667 MHz 

FBDIMM

AMD Opteron X4 

2356 (Barcelona)
x86/64 8 8 2 2.30 74 2 x 10.6

667 MHz 

DDR2

Sun UltraSPARC T2 

5140 (Niagara 2)
Sparc 128 16 2 1.17 22

2 x 21.3 (read)

2 x 10.6 (write)

667 MHz 

FBDIMM

IBM Cell QS20 Cell 16 16 2 3.20 29 2 x 25.6 XDR
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FIGURE 7.19 Roofline model for multicore multiprocessors in Figure 7.15. The ceilings are the same as in Figure 7.13. Starting 
from the upper  left hand corner,  the computers are:  (a)  Intel Xeon e5345 (Clovertown), (b) AMD Opteron X4 2356 (Barcelona),  (c) Sun 
UltraSPARC T2 5140  (Niagara 2),  and  (d)  IBM Cell QS20. Note  the  ridge points  for  the  four microprocessors  intersect  the Xaxis  at  the 
arithmetic  intensities of 6, 4, 1/3, and 3/4, respectively. The dashed vertical  lines are for the two kernels of this section and the stars mark 
the performance achieved for these kernels after all the optimizations. SpMV is the pair of dashed vertical lines on the left. It has two lines 
because its arithmetic intensity improved from 0.166 to 0.255 based on register blocking optimizations. LBHMD is the dashed vertical lines 
on the right. It has a pair of lines in (a) and (b) because a cache optimization skips filling the cache block on a miss when the processor would 
write new data into the entire block. That optimization increases the arithmetic inten sity from 0.70 to 1.07. It’s a single  line in (c) at 0.70 
because UltraSPARC T2 does not offer the cache optimization. It is a single line at 1.07 in (d) because Cell has local store loaded by DMA, so 
the program doesn’t fetch unnecessary data as do caches. 
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The  IBM  Cell  QS20  is  again  different  from  the  two  x86  microarchitectures 
and  from  UltraSPARC  T2.  It  is  a  heterogeneous  design,  with  a  relatively  simple 
PowerPC core and with eight SPEs (Synergistic Processing Elements) that have their 
own unique SIMDstyle instruction set. Each SPE also has its own local memory 
instead of a cache. An SPE must transfer data from main memory into the local 
memory to operate on it and then back to main memory when it is completed. It 
uses DMA, which has some similarity to software prefetching. The two sockets are 
connected via links dedicated to multichip communications. The clock rate of this 
system is highest of the four multicores at 3.2 GHz, and it uses XDR DRAM chips, 
which are  typically  found  in game consoles. They have high bandwidth but  low 
capacity. Given that the Cell’s main application was graphics, it has much higher 
single precision performance than double precision performance. The peak double 
precision performance of the SPEs in the dual socket system is 29 GFLOPS, and the 
ridge point of arithmetic intensity is 0.75 FLOPs per byte.

While the two x86 architectures have many fewer cores per chip than the IBM 
and Sun offerings in early 2008, that is just where they are today. As the number 
of cores is expected to double every technology generation, it will be interesting to 
see whether the x86 architectures will close the “core gap” or if IBM and Sun can 
sustain a larger number of cores, given that their primary focus is on servers versus 
the desktop.

Note that these machines take very different approaches to the memory system. 
The Xeon e5345 uses a conventional private L1 cache and then pairs of processors 
each share an L2 cache. These are connected through an offchip memory controller 
to  a  common  memory  over  two  buses.  In  contrast,  Opteron  X4  has  a  separate 
memory controller and memory per chip, and each core has private L1 and L2 
caches.  UltraSPARC  T2  has  the  memory  controller  onchip  and  four  separate 
DRAM channels per chip, and the cores all share the L2 cache, which has four banks 
to  improve  bandwidth.  Its  finegrained  multithreading  on  top  of  its  multicore 
design allows it to keep many memory accesses in flight. The most radical is the 
Cell. It has local private memories per SPE and uses DMA to transfer data between 
the  DRAM  attached  to  each  chip  and  local  memory.  It  sustains  many memory 
accesses in flight by having many cores and then many DMA transfers per core.

Let’s see how these four contrasting multicores perform on two kernels.

Sparse Matrix

The  first  example  kernel  of  the  Sparse  Matrix  computational  design  pattern  is 
Sparse MatrixVector multiply (SpMV). SpMV is popular in scientific computing, 
economic  modeling,  and  information  retrieval.  Alas,  conventional  implementa
tions often run at less than 10% of peak performance of uniprocessors. One rea son 
is the irregular access to memory, which you might expect from a kernel working 
with sparse matrices. The computation is

 7.11 Real Stuff: Benchmarking Four Multicores Using the Roofline Model 679



680 Chapter 7 Multicores, Multiprocessors, and Clusters

y = A × x

where A is a sparse matrix and x and y are dense vectors. Fourteen sparse matrices 
taken from a variety of real applications were used to evaluate SpMV perfor mance, 
but only the median performance is reported here. The arithmetic inten sity varies 
from  0.166  before  a  register  blocking  optimization  to  0.250  FLOPS  per  byte 
afterward.

The code was first parallelized to utilize all the cores. Given that the low arithmetic 
intensity of SpMV was below the ridge point of all four multicores in Figure 7.19, 
most of the optimizations involved the memory system:

 ■ Prefetching. To get the most out of the memory systems, both software and 
hardware prefetching were used.

 ■ Memory Affinity. This optimization reduces accesses to the DRAM memory 
connected  to  the  other  socket  in  the  three  systems  that  have  local  DRAM 
memory.

 ■ Compressing Data Structures.  Since  memory  bandwidth  likely  limits  per
formance,  this  optimization  uses  smaller  data  structures  to  increase 
 performance—for example, using a 16bit  index  instead of a 32bit  index, 
and using more space efficient representations of the nonzeros in the rows 
of a sparse matrix.

Figure 7.20 shows the performance on SpMV for the four systems versus the 
number  of  cores.  (The  same  results  are  found  in  Figure  7.19,  but  it’s  hard  to 
com pare performance when on a log scale.) Note that despite having the highest 
peak  performance  in  Figure  7.18  and  the  highest  single  core  performance,  the 
Intel  Xeon  e5345  has  the  lowest  delivered  performance  of  the  four  multi cores. 
Opteron X4 doubles its performance. The Xeon e5345 bottle neck is the dual front 
side buses. Despite the lowest clock rate, the larger number of simple cores of the 
Sun UltraSPARC T2 outperforms the two x86 processors. The IBM Cell has the 
highest performance of the four. Note that all but the Xeon e5345 scale well with 
the number of cores, although  the Opteron X4 scales more  slowly with  four or 
more cores.

Structured Grid

The  second  kernel  is  an  example  of  the  structured  grid  design  pattern.  Lattice
Boltzmann  MagnetoHydrodynamics  (LBMHD)  is  popular  for  computational 
fluid dynamics; it is a structured grid code with a series of time steps.



Each  point  involves  reading  and  writing  about  75  double  precision  floating
point  numbers  and  about  1300  floatingpoint  operations.  Like  SpMV,  LBMHD 
tends to get a small fraction of peak performance on uniprocessors because of the 
complexity of the data structures and the irregularity of memory access patterns. 
The FLOPS to byte ratio is a much higher 0.70 versus less than 0.25 in SpMV. By 
not  filling  the  cache  block  from  memory  on  a  write  miss  when  the  program  is 
going to overwrite the whole block, the intensity rises to 1.07. All multicores but 
UltraSPARC T2 (Niagara 2) offer this cache optimization. 

Figure  7.19  shows  that  the  arithmetic  intensity  of  LBMHD  is  high  enough 
that  both  computational  and  memory  bandwidth  optimizations  make  sense  on 
all  multicores  but  UltraSPARC  T2,  whose  roofline  ridge  point  is  below  that  of 
LBMHD.  UltraSPARC  T2  can  reach  the  roofline  using  only  the  computational 
optimizations.

In addition to parallelizing the code so that it could use all the cores, the following 
optimizations were used for LBMHD:

 ■ Memory Affinity:  This  optimization  is  again  useful  for  the  same  reasons 
mentioned above.

 ■ TLB Miss Minimization:  To reduce TLB misses significantly in LBMHD, use 
a structure of arrays and combine some loops together rather than the con
ventional approach of using an array of structures. 

FIGURE 7.20 Performance of SpMV on the four multicores. 
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 ■ Loop Unrolling and Reordering:  To expose sufficient parallelism and improve 
cache utilization, the loops were unrolled and then reordered to group state
ments with similar addresses.

 ■ “SIMDize”:  The compilers of the two x86 systems could not generate good 
SSE code, so these had to be written by hand in assembly language.

Figure 7.21 shows the performance for the four systems versus the number of 
cores for LBMHD. Like the SpMV, the Intel Xeon e5345 has the worst scalability. 
This time the more powerful cores of Opteron X4 outperform the simple cores of 
UltraSPARC T2 despite having half the number of cores. Once again, the IBM Cell 
is the fastest system. All but Xeon e5345 scale with the number of cores, although 
T2 and Cell scale more smoothly than the Opteron X4.

FIGURE 7.21 Performance of LBMHD on the four multicores. 
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Productivity

In addition to performance, another  important  issue  for  the parallel computing 
revolution  is  productivity,  or  the  programming  difficulty  of  achieving  perfor
mance. To  illustrate  the differences, Figure 7.22 compares naïve performance  to 
fully optimized performance for the four cores on the two kernels.



FIGURE 7.22 Base versus fully optimized performance of the four cores on the two ker nels. 
Note the high fraction of fully optimized performance delivered by the Sun UltraSPARC T2 (Niagara 2). There 
is no base performance column for the IBM Cell because there is no way to port the code to the SPEs without 
caches. While you could run the code on the Power core, it has an order of magnitude lower performance than 
the SPES, so we ignore it in this figure. 
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The  easiest  was  UltraSPARC  T2,  due  to  its  large  memory  band width  and  its 
easytounderstand cores. The advice for these two kernels  in UltraSPARC T2 is 
simply to try to get good performing code from the compiler and then use as many 
threads as possible. The one caution for other kernels is that UltraS PARC T2 can 
come afoul of the pitfall about making sure set associativity matches the number 
of hardware threads (see page 545 of Chapter 5). Each chip supports 64 hardware 
threads, while the L2 cache is fourway set associative. This mismatch can require 
restructuring loops to reduce conflict misses.

The Xeon e5346 was difficult because  it was hard to understand the memory 
behavior  of  the  dual  front  side  buses,  it  was  hard  to  understand  how  hard ware 
prefetching worked, and it was difficult to get good SIMD code from the compiler. 
The  C  code  for  it  and  for  the  Opteron  X4  are  liberally  sprinkled  with  intrinsic 
statements involving SIMD instructions to get good performance.

The Opteron X4 benefited from the most types of optimizations, so it needed 
more effort than the Xeon e5345, although the memory behavior of the Opteron X4 
was easier to understand than that of the Xeon e5345.

Cell  provided  two  types  of  challenges.  First,  the  SIMD  instructions  of  the 
SPE were awkward  to compile  for,  so at  times you needed  to help  the compiler 
by  inserting  intrinsic statements with assembly  language  instructions  into the C 
code. Second, the memory system was more interesting. Since each SPE has local 
memory in a separate address space, you could not simply port the code and start 

 7.11 Real Stuff: Benchmarking Four Multicores Using the Roofline Model 683



684 Chapter 7 Multicores, Multiprocessors, and Clusters

running  on  the  SPE.  Hence,  there  is  no  base  code  column  for  the  IBM  Cell  in 
Figure 7.22, and you needed to change the program to issue DMA commands to 
transfer data back and forth between local store and memory. The good news is 
that DMA played the role of software prefetch in caches, and DMA is much easier 
to use and achieve good memory performance. Cell was able to deliver almost 90% 
of the memory bandwidth “roofline” to these kernels, compared to 50% or less for 
the other multicores.

 7.12 Fallacies and Pitfalls

The many assaults on parallel processing have uncovered numerous fallacies and 
pitfalls. We cover three here.

Fallacy: Amdahl’s law doesn’t apply to parallel computers.

In 1987, the head of a research organization claimed that Amdahl’s law had been 
broken by a multiprocessor machine. To try to understand the basis of the media 
reports, let’s see the quote that gave us Amdahl’s law [1967, p. 483]:

A fairly obvious conclusion which can be drawn at this point is that the effort 
 expended on achieving high parallel processing rates is wasted unless it is 
ac companied by achievements in sequential processing rates of very nearly the 
same  magnitude. 

This statement must still be true; the neglected portion of the program must limit 
performance.  One  interpretation  of  the  law  leads  to  the  following  lemma:  por
tions of every program must be sequential, so there must be an economic upper 
bound to the number of processors—say, 100. By showing  linear speedup with 
1000 processors, this lemma is disproved; hence the claim that Amdahl’s law was 
broken. 

The  approach  of  the  researchers  was  to  use  weak  scaling:  rather  than  going 
1000 times faster on the same data set, they computed 1000 times more work in 
comparable time. For their algorithm, the sequential portion of the program was 
constant,  independent  of  the  size  of  the  input,  and  the  rest  was  fully  parallel—
hence, linear speedup with 1000 processors.

Amdahl’s law obviously applies to parallel processors. What this research does 
point out is that one of the main uses of faster computers is to run larger prob lems, 
but to beware how the algorithm scales as you increase problem size.

Fallacy: Peak performance tracks observed performance.

For  example,  Section  7.11  shows  that  the  Intel  Xeon  e5345,  the  microprocessor 
with the highest peak performance, was the slowest of the four multicore micro
processors for two kernels. 

For over a decade 
prophets have voiced 
the contention that 
the organization of a 
single computer has 
reached its limits and 
that truly sig nificant 
advances can be made 
only by interconnec
tion of a multiplicity 
of com puters in such 
a manner as to  permit 
cooperative solu tion. . . . 
Demonstration is made 
of the continued valid ity 
of the single processor 
approach . . .

Gene Amdahl, “Validity 
of the single processor 
approach to achieving 
large scale com puting 
capabilities,” Spring 
Joint Computer 
 Conference, 1967



The  supercomputer  industry  used  this  metric  in  marketing,  and  the  fallacy 
is  exacerbated  with  parallel  machines.  Not  only  are  marketers  using  the  nearly 
unat tainable  peak  performance  of  a  uniprocessor  node,  but  also  they  are  then 
multi plying  it  by  the  total  number  of  processors,  assuming  perfect  speedup! 
Amdahl’s law  suggests how difficult it is to reach either peak; multiplying the two 
together multiplies  the  sins. The  roofline model helps put peak performance  in 
perspective.

Pitfall: Not developing the software to take advantage of, or optimize for, a multi
processor architecture.

There is a long history of software lagging behind on parallel processors, possibly 
because the software problems are much harder. We give one example to show the 
subtlety of the issues, but there are many examples we could choose!

One  frequently  encountered  problem  occurs  when  software  designed  for  a 
uni processor  is adapted  to a multiprocessor environment. For example,  the SGI 
 oper ating  system  originally  protected  the  page  table  with  a  single  lock,  assum
ing  that page allocation  is  infrequent.  In a uniprocessor,  this does not  represent 
a perfor mance problem. In a multiprocessor, it can become a major performance 
bottle neck for some programs. Consider a program that uses a  large number of 
pages that are initialized at startup, which UNIX does for statically allocated pages. 
Suppose the program is parallelized so that multiple processes allocate the pages. 
Because page allocation requires the use of the page table, which is locked when
ever it is in use, even an OS kernel that allows multiple threads in the OS will be 
serialized  if  the processes all  try  to allocate  their pages at once (which  is exactly 
what we might expect at initialization time!). 

This  page  table  serialization  eliminates  parallelism  in  initialization  and 
has  sig nificant  impact  on  overall  parallel  performance.  This  performance 
bottleneck persists even for joblevel parallelism. For example, suppose we split 
the parallel processing program apart into separate jobs and run them, one job 
per processor, so that there is no sharing between the jobs. (This is exactly what 
one user did, since he reasonably believed that the performance problem was 
due  to unin tended sharing or  interference  in his application.) Unfortunately, 
the lock still serializes all the jobs—so even the independent job performance 
is poor. 

This pitfall  indicates the kind of subtle but significant performance bugs that 
can arise when software runs on multiprocessors. Like many other key  software 
components, the OS algorithms and data structures must be rethought in a multi
processor context. Placing locks on smaller portions of the page table effectively 
eliminates the problem.
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 7.13 Concluding Remarks

The  dream  of  building  computers  by  simply  aggregating  processors  has  been 
around since the earliest days of computing. Progress in building and using effec
tive and efficient parallel processors, however, has been slow. This rate of progress 
has been limited by difficult software problems as well as by a long process of evolv
ing the architecture of multiprocessors to enhance usability and improve effi ciency. 
We have discussed many of the software challenges in this chapter, includ ing the 
difficulty of writing programs that obtain good speedup due to Amdahl’s law. The 
wide variety of different architectural approaches and the limited success and short 
life of many of the parallel architectures of the past have compounded the software 
difficulties. We discuss the history of the development of these multi processors in 

 Section 7.14 on the CD.
As we said in Chapter 1, despite this long and checkered past, the information 

technology industry has now tied its future to parallel computing. Although it is 
easy to make the case that this effort will fail like many in the past, there are rea sons 
to be hopeful:

 ■ Clearly,  software as a service  is  growing  in  importance,  and  clusters  have 
proven to be a very successful way to deliver such services. By providing redun
dancy  at  a  higherlevel,  including  geographically  distributed   datacenters, 
such services have delivered 24 × 7 × 365 availability for customers around 
the  world.  It’s  hard  not  to  imagine  that  both  the  number  of  servers  per 
 datacenter and the number of datacenters will continue to grow. Certainly, 
such  datacenters will embrace multicore designs, since they can already use 
thou sands of processors in their applications.

 ■ The use of parallel processing in domains such as scientific and engineering 
computation is popular. This application domain has an almost limitless thirst 
for more computation. It also has many applications that have lots of natural 
concurrency. Once again, clusters dominate this application area. For example, 
using the 2007 Linpack report, clusters represent more than 80% of the 500 
fastest computers. Nonetheless, it has not been easy: programming parallel 
processors even for these applications remains challenging. Yet this group too 
will  surely embrace multicore chips, since again they have experience with 
hundreds to thousand of processors.

 ■ All  desktop  and  server  microprocessor  manufacturers  are  building  multi
processors to achieve higher performance, so unlike the past, there is no easy 

We are dedicating all 
of our future product 
development to 
multicore designs. 
We believe this is a 
key inflection point 
for the industry. ... 
This is not a race. 
This is a sea change 
in computing...”

Paul Otellini, Intel 
President, Intel 
Developers Forum, 
2004.

softwareasa
service  Rather than 
selling software that 
is installed and run 
on customers own 
computers, software 
is run at a remote site 
and made avail able over 
the Internet typically 
via a Web interface to 
custom ers. Customers are 
charged based on use.



path to higher performance for sequential applications. Hence,  program mers 
who  need  higher  performance  must  parallelize  their  codes  or  write  new 
 parallel processing programs.

 ■ Multiple processors on the same chip allow a very different speed of commu
nication than multiple chip designs, offering both much lower latency and 
much higher bandwidth. These improvements may make it easier to deliver 
good performance.

 ■ In  the past, microprocessors  and multiprocessors were  subject  to different 
definitions  of  success. When  scaling  uniprocessor  performance,  micropro
cessor  architects  were  happy  if  single  thread  performance  went  up  by  the 
square root of the increased silicon area. Thus, they were happy with sublin
ear  performance  in  terms  of  resources.  Multiprocessor  success  used  to  be 
defined as linear speedup as a function of the number of processors, assum
ing that the cost of purchase or cost of administration of n processors was n 
times as much as one processor. Now that parallelism is happening onchip 
via multicore, we can use the traditional microprocessor of being suc cessful 
with sublinear performance improvement.

 ■ The success of  justintime runtime compilation makes  it  feasible to think 
of software adapting itself to take advance of the increasing number of cores 
per chip, which provides flexibility that is not available when limited to static 
compilers.

 ■ Unlike in the past, the open source movement has become a critical portion 
of the software industry. This movement is a meritocracy, where better engi
neering  solutions  can  win  the  mind  share  of  the  developers  over  legacy 
con cerns. It also embraces  innovation,  inviting change to old software and 
welcoming new languages and software products. Such an open culture could 
be extremely helpful in this time of rapid change.

This revolution in the hardware/software interface is perhaps the greatest chal
lenge facing the field in the last 50 years. It will provide many new research and 
business  opportunities  inside  and  outside  the  IT  field,  and  the  companies  that 
dominate the multicore era may not be the same ones that dominated the unipro
cessor era. Perhaps you will be one of the innovators who will seize the opportunities 
that are sure to appear in the uncertain times ahead.
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 7.14  
Historical Perspective and Further 
Reading

This section on the CD gives the rich and often disastrous history of multiproces
sors over the last 50 years.

 7.15 Exercises
Contributed by David Kaeli of Northeastern University

Exercise 7.1
First, write down a list of your daily activities that you typically do on a weekday. 
For instance, you might get out of bed, take a shower, get dressed, eat breakfast, dry 
your hair, brush your teeth, etc. Make sure to break down your list so you have a 
minimum of 10 activities.

7.1.1 [5] <7.2> Now consider which of these activities is already exploiting some 
form of parallelism (e.g., brushing multiple teeth at the same time, versus one at 
a time, carrying one book at a time to school, versus loading them all  into your 
backpack and then carry them “in parallel”). For each of your activities, discuss if 
they are already working in parallel, but if not, why they are not.

7.1.2 [5] <7.2> Next, consider which of the activities could be carried out con
currently (e.g., eating breakfast and listening to the news). For each of your activi
ties, describe which other activity could be paired with this activity.

7.1.3 [5]  <7.2>  For  7.1.2,  what  could  we  change  about  current  systems  (e.g., 
showers, clothes, TVs, cars) so that we could perform more tasks in parallel? 

7.1.4 [5] <7.2> Estimate how much shorter time it would take to carry out these 
activities if you tried to carry out as many tasks in parallel as possible.

Exercise 7.2
Many computer applications involve searching through a set of data and sorting 
the data. A number of efficient searching and sorting algorithms have been devised 
in order  to  reduce  the  runtime of  these  tedious  tasks.  In  this problem we will 
consider how best to parallelize these tasks. 



7.2.1 [10] <7.2> Consider the following binary search algorithm (a classic divide 
and conquer algorithm) that searches for a value X in an sorted Nelement array A 
and returns the index of matched entry: 

BinarySearch(A[0..N-1], X) {
       low = 0
       high = N - 1
       while (low <= high) {

   mid = (low + high) / 2
   if (A[mid] > X)
       high = mid - 1
   else if (A[mid] < X)
       low = mid + 1
   else
       return mid // found

       }
       return -1 // not found
 }

Assume  that  you  have  Y  cores  on  a  multicore  processor  to  run  BinarySearch. 
Assuming that Y  is much smaller  than N, express  the speedup factor you might 
expect to obtain for values of Y and N. Plot these on a graph.

7.2.2 [5] <7.2> Next, assume that Y is equal to N. How would this affect your 
conclusions in your previous answer? If you were tasked with obtaining the best 
speedup factor possible (i.e., strong scaling), explain how you might change this 
code to obtain it.

Exercise 7.3
Consider the following piece of C code: 

for (j=2;j<1000;j++)
    D[j] = D[j-1]+D[j-2];

The MIPS code corresponding to the above fragment is: 

       DADDIU  r2,r2,999
loop:  L.D     f1, -16(f1)
       L.D     f2, -8(f1)
       ADD.D   f3, f1, f2 
       S.D     f3, 0(r1)
       DADDIU  r1, r1, 8
       BNE     r1, r2, loop
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Instructions have the following associated latencies (in cycles):

ADD.D L.D S.D DADDIU

4 6 1 2

7.3.1 [10]  <7.2>  How  many  cycles  does  it  take  for  all  instructions  in  a  single 
iteration of the above loop to execute? 

7.3.2 [10] <7.2> When an instruction in a later iteration of a loop depends upon 
a data value produced in an earlier iteration of the same loop, we say that there is 
a loop carried dependence between iterations of the loop. Identify the loop carried 
dependences  in  the  above  code.  Identify  the  dependent  program  variable  and 
assemblylevel registers. You can ignore the loop induction variable j.

7.3.3 [10] <7.2> Loop unrolling was described in Chapter 4. Apply loop unroll
ing to this loop and then consider running this code on a 2node distributed mem
ory message passing  system. Assume  that we are going  to use message passing as 
described in Section 7.4, where we introduce a new operation send (x, y) that sends to 
node x the value y, and an operation receive( ) that waits for the value being sent to it. 
Assume that send operations take a cycle to issue (i.e., later instructions on the same 
node can proceed on the next cycle), but take 10 cycles be received on the receiving 
node. Receive instructions stall execution on the node where they are executed until 
they receive a message. Produce a schedule  for  the  two nodes assuming an unroll 
factor of 4 for the loop body (i.e., the loop body will appear 4 times). Compute the 
number of cycles it will take for the loop to run on the message passing system.

7.3.4 [10] <7.2> The latency of the interconnect network plays a large role in the 
efficiency of message passing systems. How fast does the interconnect need to be in 
order to obtain any speedup from using the distributed system described in 7.3.3?

Exercise 7.4
Consider the following recursive mergesort algorithm (another classic divide and 
conquer algorithm). Mergesort was first described by John Von Neumann in 1945. 
The basic  idea  is  to divide an unsorted  list x of m elements  into  two sublists of 
about half the size of the original list. Repeat this operation on each sublist, and 
continue until we have lists of size 1 in length. Then starting with sublists of length 
1, “merge” the two sublists into a single sorted list.

Mergesort(m)
    var list left, right, result
    if length(m) ≤ 1
        return m



    else
        var middle = length(m) / 2
        for each x in m up to middle
            add x to left
        for each x in m after middle
            add x to right
        left = Mergesort(left)
        right = Mergesort(right)
        result = Merge(left, right)
        return result

The merge step is carried out by the following code:

Merge(left,right)
    var list result
    while length(left) > 0 and length(right) > 0
        if first(left) ≤ first(right)
            append first(left) to result
            left = rest(left)
        else
            append first(right) to result
            right = rest(right)
    if length(left) > 0 
        append rest(left) to result
    if length(right) > 0 
        append rest(right) to result
    return result

7.4.1 [10] <7.2> Assume that you have Y cores on a multicore processor to run 
MergeSort. Assuming that Y is much smaller than length(m), express the speedup 
factor you might expect to obtain for values of Y and length(m). Plot these on a 
graph.

7.4.2 [10] <7.2> Next, assume that Y is equal to length(m). How would this affect 
your conclusions your previous answer? If you were tasked with obtaining the best 
speedup factor possible (i.e., strong scaling), explain how you might change this 
code to obtain it.

Exercise 7.5
You are trying to bake 3 blueberry pound cakes. Cake ingredients are as follows:

1 cup butter, softened
1 cup sugar  
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4 large eggs 
1 teaspoon vanilla extract
1/2 teaspoon salt
1/4 teaspoon nutmeg 
1 1/2 cups flour 
1 cup blueberries

The recipe for a single cake is as follows:

  Step 1: Preheat oven to 325°F (160°C). Grease and flour your cake pan. 

   Step  2:  In  large  bowl,  beat  together  with  a  mixer  butter  and  sugar  at 
medium speed until  light and fluffy. Add eggs, vanilla, salt and nutmeg. 
Beat until thoroughly blended. Reduce mixer speed to low and add flour, 
1/2 cup at a time, beating just until blended. 

   Step 3: Gently fold in blueberries. Spread evenly in prepared baking pan. 
Bake for 60 minutes.

7.5.1 [5] <7.2> Your  job is  to cook 3 cakes as efficiently as possible. Assuming 
that you only have one oven large enough to hold one cake, one large bowl, one 
cake pan, and one mixer, come up with a schedule to make three cakes as quickly as 
possible. Identify the bottlenecks in completing this task.

7.5.2 [5] <7.2> Assume now that you have three bowls, 3 cake pans and 3 mixers. 
How much faster is the process now that you have additional resources?

7.5.3 [5] <7.2> Assume now that you have two friends that will help you cook, 
and that you have a large oven that can accommodate all three cakes. How will this 
change the schedule you arrived at in 7.5.1 above?

7.5.4 [5] <7.2> Compare the cakemaking task to computing 3 iterations of a loop 
on a parallel computer. Identify datalevel parallelism and tasklevel  parallelism in 
the cakemaking loop. 

Exercise 7.6
Matrix multiplication plays an important role  in a number of applications. Two 
matrices can only be multiplied  if  the number of columns of  the first matrix  is 
equal to the number of rows in the second. 

Let’s assume we have an m × n matrix A and we want to multiply it by an n × p 
matrix B. We can express their product as an m × p matrix denoted by AB (or A · B). 
If we assign C = AB, and c

i,j
 denotes the entry in C at position (i, j), then

c
i,j
 =   

r = 1

   

n

  ai,
 
r
b

r, j
 = a

i,
 
1
b

1, j
 + a

i,2
b

2, j 
+ … + a

i,n
b

n,j 



for each element i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ p. Now we want to see if we can 
parallelize  the  computation of  C. Assume  that matrices  are  laid out  in memory 
sequentially as follows: a

1,1
, a

2,1
, a

3,1
, a

4,1
, …, etc..

7.6.1 [10] <7.3> Assume that we are going to compute C on both a single core 
shared  memory  machine  and  a  4core  sharedmemory  machine.  Compute  the 
speedup we would expect to obtain on the 4core machine, ignoring any memory 
issues.

7.6.2 [10] <7.3> Repeat 7.6.1, assuming that updates to C incur a cache miss due 
to false sharing when consecutive elements are in a row (i.e., index i) are updated. 

7.6.3 [10] <7.3> How would you fix the false sharing issue that can occur?

Exercise 7.7
Consider  the  following portions of  two different programs running at  the same 
time on four processors in a symmetric multicore processor (SMP). Assume that 
before this code is run, both x and y are 0. 

Core 1: x = 2;

Core 2: y = 2;

Core 3: w = x + y + 1; 

Core 4: z = x + y;

7.7.1 [10] <7.3> What are all the possible resulting values of w, x, y, and z? For 
each possible outcome, explain how we might arrive at those values. You will need 
to examine all possible interleavings of instructions.

7.7.2 [5] <7.3> How could you make the execution more deterministic so that 
only one set of values is possible?

Exercise 7.8
In a CCNUMA shared memory system, CPUs and physical memory are divided 
across compute nodes. Each CPU has local caches. To maintain the coherency of 
memory, we can add status bits into each cache block, or we can introduce dedi
cated memory directories. Using directories, each node provides a dedicated hard
ware table for managing the status of every block of memory that is “local” to that 
node. The size of each directory is a function of the size of the CCNUMA shared 
space (an entry is provided for each block of memory local to a node). If we store 
coherency  information  in  the  cache,  we  add  this  information  to  every  cache  in 
every system (i.e., the amount of storage space is a function of the number of cache 
lines available in all caches).
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In the following proplems, assume that all nodes have the same number of CPUs 
and the same amount memory (i.e., CPUs and memory are evenly divided between 
the nodes of the CCNUMA machine).

7.8.1 [15]  <7.3>  If  we  have  P  CPU  in  the  system,  with  T  nodes  in  the  CC
NUMA  system,  with  each  CPU  having  C  memory  blocks  stored  in  it,  and  we 
maintain a byte of coherency information in each cache line, provide an equation 
that expresses the amount of memory that will be present in the caches in a single 
node of the system to maintain coherency. Do not include the actual data storage 
space consumed in this equation, only account for space used to store coherency 
information.

7.8.2 [15] <7.3>If each directory entry maintains a byte of information for each 
CPU, if our CCNUMA system has S memory blocks, and the system has T nodes, 
provide an equation that expresses the amount of memory that will be present in 
each directory. 

Exercise 7.9
Considering the CCNUMA system described in the Exercise 7.8, assume that the 
system has 4 nodes, each with a singlecore CPU (each CPU has its own L1 data 
cache and L2 data cache). The L1 data cache is storethrough, though the L2 data 
cache is writeback. Assume that system has a workload where one CPU writes to 
an address, and the other CPUs all read that data that is written. Also assume that 
the address written to is initially only in memory and not in any local cache. Also, 
after the write, assume that the updated block is only present in the L1 cache of the 
core performing the write.

7.9.1 [10] <7.3>  For a system that maintains coherency using cachebased block 
status, describe the internode traffic that will be generated as each of the 4 cores 
writes to a unique address, after which each address written to is read from by each 
of the remaining 3 cores.

7.9.2 [10] <7.3>  For a directorybased coherency mechanism, describe the inter
node traffic generated when executing the same code pattern.   

7.9.3 [20] <7.3> Repeat 7.9.1 and 7.9.2 assuming that each CPU is now a multi
core CPU, with 4 cores per CPU, each maintaining an L1 data cache, but provided 
with a shared L2 data cache across the 4 cores. Each core will perform the write, 
followed by reads by each of the 15 other cores.

7.9.4 [10]  <7.3>  Consider  the  system  described  in  7.9.3,  now  assuming  that 
each core writes to byte stored in the same cache block. How does this impact bus 
 traffic? Explain.



Exercise 7.10 
On a CCNUMA system,  the cost of accessing nonlocal memory can  limit our 
ability  to  utilize  multiprocessing  effectively.  The  following  table  shows  the  costs 
associated  with  access  data  in  local  memory  versus  nonlocal  memory  and  the 
locality of our application expresses as the proportion of access that are local.

Local load/store (cycle) Non-local load/store (cycles) % local accesses

25 200 20

Answer the following questions. Assume that memory accesses are evenly distrib
uted through the application. Also, assume that only a single memory operation 
can be active during any cycle. State all assumptions about the ordering of  local 
versus nonlocal memory operations.

7.10.1 [10] <7.3> If on average we need to access memory once every 75 cycles, 
what is impact on our application? 

7.10.2 [10] <7.3> If on average we need to access memory once every 50 cycles, 
what is impact on our application?

7.10.3 [10] <7.3> If on average we need to access memory once every 100 cycles, 
what is impact on our application?

Exercise 7.11 
The dining philosopher’s problem is a classic problem of synchronization and con
currency. The general problem  is  stated as philosophers  sitting at  a  round  table 
doing one of  two things: eating or  thinking. When they are eating,  they are not 
thinking, and when they are thinking, they are not eating. There is a bowl of pasta 
in the center. A fork is placed in between each philosopher. The result is that each 
philosopher has one fork to her left and one fork to her right. Given the nature of 
eating pasta, the philosopher needs two forks to eat, and can only use the forks on 
her immediate left and right. The philosophers do not speak to one another.

7.11.1 [10] <7.4> Describe the scenario where none of philosophers ever eats (i.e., 
starvation). What is the sequence of events that happen that lead up to this problem?

7.11.2 [10] <7.4> Describe how we can solve this problem by introducing the 
concept of a priority? But can we guarantee that we will treat all the philosophers 
fairly? Explain.

Now assume we hire a waiter who is in charge of assigning forks to philosophers. 
Nobody can pick up a  fork until  the waiter says they can. The waiter has global 
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knowledge  of  all  forks.  Further,  if  we  impose  the  policy  that  philosophers  will 
always request  to pick up  their  left  fork before requesting  to pick up  their  right 
fork, then we can guarantee to avoid deadlock.

7.11.3 [10] <7.4>  We can implement requests to the waiter as either a queue of 
requests or as a periodic retry of a request. With a queue, requests are handled in 
the order they are received. The problem with using the queue is that we may not 
always be able to service the philosopher whose request is at the head of the queue 
(due to the unavailability of resources). Describe a scenario with 5 philosophers 
where a queue is provided, but service is not granted even though there are forks 
available for another philosopher (whose request is deeper in the queue) to eat.

7.11.4 [10] <7.4> If we implement requests to the waiter by periodically repeat
ing our request until  the resources become available, will  this solve the problem 
described in 7.11.3? Explain. 

Exercise 7.12 
Consider the following three CPU organizations:

CPU  SS:  A  2core  superscalar  microprocessor  that  provides  outoforder  issue 
capabilities on 2 function units (FUs).  Only a single thread can run on each core 
at a time.

CPU MT: A finegrained multithreaded processor that allows instructions from 2 
threads to be run concurrently (i.e., there are two functional units), though only 
instructions from a single thread can be issued on any cycle.

CPU SMT: An SMT processor that allows instructions from 2 threads to be run 
concurrently (i.e., there are two functional units), and instructions from either or 
both threads can be issued to run on any cycle.

Assume  we  have  two  threads  X  and  Y  to  run  on  these  CPUs  that  include  the 
 following operations:

Thread X Thread Y

A1 – takes 3 cycles to execute

A2 – no dependencies

A3 – conflicts for a functional unit with A1

A4 – depends on the result of A3

B1 – take 2 cycles to execute

B2 – conflicts for a functional unit with B1

B3 – depends on the result of B2

B4 – no dependencies and takes 2 cycles to execute

Assume all instructions take a single cycle to execute unless noted otherwise or they 
encounter a hazard.

7.12.1 [10] <7.5> Assume that you have 1 SS CPU. How many cycles will it take 
to execute these two threads? How many issue slots are wasted due to hazards?



7.12.2 [10] <7.5> Now assume you have 2 SS CPUs. How many cycles will it take 
to execute these two threads? How many issue slots are wasted due to hazards?

7.12.3 [10] <7.5> Assume that you have 1 MT CPU. How many cycles will it take 
to execute these two threads? How many issue slots are wasted due to hazards?

Exercise 7.13 
Virtualization software is being aggressively deployed to reduce the costs of man
aging today’s high performance servers. Companies like VMWare, Microsoft and 
IBM have all developed a range of virtualization products. The general concept, 
described in Chapter 5, is that a hypervisor layer can be introduced between the 
hardware and the operating system to allow multiple operating systems to share 
the same physical hardware. The hypervisor layer is then responsible for allocating 
CPU and memory resources, as well as handling services typically handled by the 
operating system (e.g., I/O).

Virtualization provides an abstract view of the underlying hardware to the hosted 
operating  system  and  application  software.  This  will  require  us  to  rethink  how 
multicore and multiprocessor systems will be designed in the future to support 
the sharing of CPUs and memories by a number of operating systems concurrently.

7.13.1 [30]  <7.5>  Select  two  hypervisors  on  the  market  today,  and  compare 
and contrast how they virtualize and manage the underlying hardware (CPUs and 
memory).  

7.13.2 [15] <7.5> Discuss what changes may be necessary in future multicore 
CPU  platforms  in  order  to  better  match  the  resource  demands  placed  on  these 
systems. For instance, can multithreading play an effective role in alleviating the 
competition for computing resources?

Exercise 7.14
We would like to execute the loop below as efficiently as possible. We have two dif
ferent machines, a MIMD machine and a SIMD machine. 

for (i=0; i < 2000; i++)
  for (j=0; j<3000; j++)

      X_array[i][j] = Y_array[j][i] + 200;

7.14.1 [10]  <7.6>  For  a  4  CPU  MIMD  machine,  show  the  sequence  of  MIPS 
instructions  that you would execute on each CPU. What  is  the  speedup  for  this 
MIMD machine?
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7.14.2 [20] <7.6> For an 8wide SIMD machine (i.e., 8 parallel SIMD functional 
units), write an assembly program in using your own SIMD extensions to MIPS 
to execute the loop. Compare the number of instructions executed on the SIMD 
machine to the MIMD machine.

Exercise 7.15 
A systolic array is an example of an MISD machine. A systolic array is a pipeline 
network or “wavefront” of data processing elements. Each of these elements does 
not  need  a  program  counter  since  execution  is  triggered  by  the  arrival  of  data. 
Clocked  systolic  arrays  compute  in “lockstep” with each processor undertaking 
alternate compute and communication phases. 

7.15.1 [10] <7.6> Consider proposed implementations of a systolic array (you 
can find  these  in on  the  Internet or  in  technical publications). Then attempt  to 
program the loop provided in Exercise 7.14 using this MISD model. Discuss any 
difficulties you encounter.

7.15.2 [10] <7.6> Discuss the similarities and differences between an MISD and 
SIMD machine. Answer this question in terms of datalevel parallelism.

Exercise 7.16
Assume we want to execute the DAXP loop show on page 651 in MIPS assembly 
on the NVIDIA 8800 GTX GPU described in this Chapter. In this problem, we will 
assume that all math operations are performed on singleprecision floatingpoint 
numbers (we will rename the loop SAXP). Assume that instructions take the fol
lowing number of cycles to execute.

Loads Stores Add.S Mult.S 

5 2 3 4

7.16.1 [20] <7.7> Describe how you will constructs warps for the SAXP loop to 
exploit the 8 cores provided in a single multiprocessor.

Exercise 7.17
Download the CUDA Toolkit and SDK from http://www.nvidia.com/object/cuda_
get.html. Make sure to use the “emurelease” (Emulation Mode) version of the code 
(you will not need actual NVIDIA hardware for this assignment). Build the exam
ple programs provided in the SDK, and confirm that they run on the emulator.

http://www.nvidia.com/object/cuda_get.html
http://www.nvidia.com/object/cuda_get.html


7.17.1 [90] <7.7> Using the “template” SDK sample as a starting point, write a 
CUDA program to perform the following vector operations: 

1)  a - b (vectorvector subtraction)

2)   a · b (vector dot product)

The dot product of two vectors a = [a
1
, a

2
, … , a

n
] and b = [b

1
, b

2
, … , b

n
] is defined as:

a · b =   
i = 1

   

n
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Submit code for each program that demonstrates each operation and verifies the 
correctness of the results.

7.17.2 [90] <7.7> If you have GPU hardware available, complete a performance 
analysis your program, examining the computation time for the GPU and a CPU 
version of your program for a range of vector sizes. Explain any results you see.

Exercise 7.18
AMD has recently announced that they will be integrating a graphics processing 
unit with their X86 cores in a single package, though with different clocks for each 
of the cores. This is an example of a heterogeneous multiprocessor system which 
we expect to see produced commericially in the near future. One of the key design 
points will be to allow for fast data communication between the CPU and the GPU. 
Presently  communications  must  be  performed  between  discrete  CPU  and  GPU 
chips. But this is changing in AMDs Fusion architecture. Presently the plan is to use 
multiple (at least 16) PCI express channels for facilitate intercommunication. Intel 
is also jumping into this arena with their Larrabee chip. Intel is considering to use 
their QuickPath interconnect technology.

7.18.1 [25] <7.7> Compare the bandwidth and latency associated with these two 
interconnect technologies. 

Exercise 7.19
Refer to Figure 7.7b that shows an ncube interconnect topology of order 3 that 
interconnects 8 nodes. One attractive  feature of an ncube  interconnection net
work topology is its ability to sustain broken links and still provide connectivity. 

7.19.1 [10] <7.8> Develop an equation  that  computes  how  many  links  in  the 
ncube (where n is  the order of the cube) can fail and we can still guarantee an 
unbroken link will exist to connect any node in the ncube. 
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7.19.2 [10] <7.8> Compare the resiliency to failure of ncube to a fully connected 
interconnection network. Plot a comparison of reliability as a function of the added 
number of links for the two topologies.

Exercise 7.20
Benchmarking is field of study that involves identifying representative workloads 
to run on specific computing platforms in order to be able to objectively compare 
performance of one system to another. In this exercise we will compare two classes 
of  benchmarks:  the  Whetstone  CPU  benchmark  and  the  PARSEC  Benchmark 
suite. Select one program from PARSEC. All programs should be freely available 
on the Internet. Consider running multiple copies of Whetstone versus running 
the PARSEC Benchmark on any of systems described in Section 7.11. 

7.20.1 [60] <7.9> What is inherently different between these two classes of work
load when run on these multicore systems?

7.20.2 [60] <7.9, 7.10> In terms of the Roofline Model, how dependent will the 
results you obtain when running these benchmarks be on the amount of sharing 
and synchronization present in the workload used?

Exercise 7.21
When performing computations on sparse matrices, latency in the memory hierar
chy becomes much more of a factor. Sparse matrices lack the spatial locality in the 
data stream typically found in matrix operations. As a result, new matrix represen
tations have been proposed. 

One the earliest sparse matrix representations is the Yale Sparse Matrix Format. It 
stores an initial sparse m×n matrix, M in row form using three onedimensional 
arrays.  Let  R  be  the  number  of  nonzero  entries  in  M. We  construct  an  array  A 
of length R that contains all nonzero entries of M (in lefttoright toptobottom 
order). We also construct a second array IA of length m + 1 (i.e., one entry per row, 
plus one). IA(i) contains the index in A of the first nonzero element of row i. Row 
i of the original matrix extends from A(IA(i)) to A(IA(i+1)–1). The third array, JA, 
contains the column index of each element of A, so it also is of length R.

7.21.1 [15]  <7.9>  Consider  the  sparse  matrix  X  below  and  write  C  code  that 
would store this code in Yale Sparse Matrix Format.

Row 1 [1, 2, 0, 0, 0, 0]
Row 2 [0, 0, 1, 1, 0, 0]
Row 3 [0, 0, 0, 0, 9, 0]
Row 4 [2, 0, 0, 0, 0, 2]
Row 5 [0, 0, 3, 3, 0, 7]
Row 6 [1, 3, 0, 0, 0, 1]



7.21.2 [10]  <7.9>  In  terms  of  storage  space,  assuming  that  each  element  in 
matrix X is single precision floating point, compute the amount of storage used to 
store the Matrix above in Yale Sparse Matrix Format.

7.21.3 [15] <7.9> Perform matrix multiplication of Matrix X by Matrix Y shown 
below. 

[2, 4, 1, 99, 7, 2]

Put this computation in a loop, and time its execution. Make sure to increase the 
number of times this loop is executed to get good resolution in your timing mea
surement.  Compare the runtime of using a naïve representation of the matrix, and 
the Yale Sparse Matrix Format.

7.21.4 [15] <7.9> Can you find a more efficient sparse matrix representation (in 
terms of space and computational overhead)?

Exercise 7.22
In  future  systems,  we  expect  to  see  heterogeneous  computing  platforms  con
structed out  of heterogeneous CPUs. We have begun  to  see  some appear  in  the 
embedded processing market in systems that contain both floating point DSPs and 
a microcontroller CPUs in a multichip module package.

Assume that you have three classes of CPU:

CPU A—A moderate speed multicore CPU (with a floating point unit) that can 
execute multiple instructions per cycle.

CPU B—A fast singlecore integer CPU (i.e., no floating point unit) that can exe
cute a single instruction per cycle.

CPU C—A slow vector CPU (with floating point capability) that can execute mul
tiple copies of the same instruction per cycle.

Assume that our processors run at the following frequencies:

CPU A CPU B CPU C

1 GHz 3 GHz 250 MHz

CPU A can execute 2 instructions per cycle, CPU B can execute 1 instruction per 
cycle,  and CPU C can execute 8  instructions  (though  the  same  instruction) per 
cycle. Assume all operations  can complete  execution  in a  single  cycle of  latency 
without any hazards.
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All three CPUs have the ability to perform integer arithmetic, though CPU B can
not perform floating point arithmetic. CPU A and B have an instruction set similar 
to  a  MIPS  processor.  CPU  C  can  only  perform  floating  point  add  and  subtract 
operations, as well as memory loads and stores. Assume all CPUs have access to 
shared memory and that synchronization has zero cost.

The task at hand is to compare two matrices X and Y that each contain 1024 × 1024 
floating point elements. The output should be a count of the number indices where 
the value in X was larger or equal to the value in Y. 

7.22.1 [10] <7.11> Describe how you would partition the problem on the 3 dif
ferent CPUs to obtain the best performance.

7.22.2 [10] <7.11> What kind of instruction would you add to the vector CPU C 
to obtain better performance?

Exercise 7.23
Assume a quadcore computer system can process database queries at a steady state 
rate of requests per second. Also assume that each transaction takes, on average, a 
fixed amount of  time to process. The  following table shows pairs of  transaction 
latency and processing rate.

Average Transaction Latency Maximum transaction processing rate 

1 ms 5000/sec

2 ms 5000/sec

1 ms 10,000/sec

2 ms 10,000/sec

For each of the pairs in the table, answer the following questions:

7.23.1 [10] <7.11> On average, how many requests are being processed at any 
given instant? 

7.23.2 [10] <7.11> If move to an 8core system, ideally, what will happen to the 
system throughput (i.e., how many queries/second will the computer process)?

7.22.3 [10] <7.11> Discuss why we rarely obtain this kind of speedup by simply 
increasing the number of cores.



§7.1,  page  634:  False.  Joblevel  parallelism  can  help  sequential  applications  and 
sequential  applications  can  be  made  to  run  on  parallel  hardware,  although  it  is 
more challenging.
§7.2,  page  638:  False.  Weak  scaling  can  compensate  for  a  serial  portion  of  the 
program that would otherwise limit scalability.
§7.3, page 640: False. Since the shared address is a physical address, multiple jobs 
each in their own virtual address spaces can run well on a shared memory multi
processor.
§7.4, page 645: 1. False. Sending and receiving a message is an implicit synchroni
zation, as well as a way to share data. 2. True.
§7.5, page 648: 1. True. 2. True.
§7.6, page 653: True.
§7.7, page 660: False. Graphics DRAM DIMMs are prized for their higher band
width.
§7.9, page 666: True. We likely need innovation at all  levels of the hardware and 
software stack to win the industry’s bet on parallel computing.

Answers to 
Check Yourself
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  A.1 Introduction

This appendix focuses on the GPU—the ubiquitous graphics processing unit 
in every PC, laptop, desktop computer, and workstation. In its most basic form, 
the GPU generates 2D and 3D graphics, images, and video that enable window-
based operating systems, graphical user interfaces, video games, visual imaging 
applications, and video. The modern GPU that we describe here is a highly 
parallel, highly multithreaded multiprocessor optimized for visual computing. 
To provide real-time visual interaction with computed objects via graphics, 
images, and video, the GPU has a unified graphics and computing architecture 
that serves as both a programmable graphics processor and a scalable parallel 
computing platform. PCs and game consoles combine a GPU with a CPU to form 
heterogeneous systems. 

A Brief History of GPU Evolution
Fifteen years ago, there was no such thing as a GPU. Graphics on a PC were 
performed by a video graphics array (VGA) controller. A VGA controller was 
simply a memory controller and display generator connected to some DRAM. In 
the 1990s, semiconductor technology advanced sufficiently that more functions 
could be added to the VGA controller. By 1997, VGA controllers were beginning 
to incorporate some three-dimensional (3D) acceleration functions, including 

graphics processing 
unit (GPU)  A processor 
optimized for 2D and 3D 
graphics, video, visual 
computing, and display. 

visual computing A mix 
of graphics processing 
and computing that lets 
you visually interact with 
computed objects via 
graphics, images, and 
video. 

heterogeneous system 
A system combining 
different processor types. 
A PC is a heterogeneous 
CPU–GPU system.



hardware for triangle setup and rasterization (dicing triangles into individual 
pixels) and texture mapping and shading (applying “decals” or patterns to pixels 
and blending colors).

In 2000, the single chip graphics processor incorporated almost every detail 
of the traditional high-end workstation graphics pipeline and therefore, deserved 
a new name beyond VGA controller. The term GPU was coined to denote that  
the graphics device had become a processor.

Over time, GPUs became more programmable, as programmable processors 
replaced fixed function dedicated logic while maintaining the basic 3D graphics 
pipeline organization. In addition, computations became more precise over time, 
progressing from indexed arithmetic, to integer and fixed point, to single precision 
floating-point, and recently to double precision floating-point. GPUs have become 
massively parallel programmable processors with hundreds of cores and thousands 
of threads.

Recently, processor instructions and memory hardware were added to support 
general purpose programming languages, and a programming environment was 
created to allow GPUs to be programmed using familiar languages, including C 
and C++. This innovation makes a GPU a fully general-purpose, programmable, 
manycore processor, albeit still with some special benefits and limitations.

GPU Graphics Trends

GPUs and their associated drivers implement the OpenGL and DirectX models of 
graphics processing. OpenGL is an open standard for 3D graphics programming 
available for most computers. DirectX is a series of Microsoft multimedia pro-
gramming interfaces, including Direct3D for 3D graphics. Since these application 
programming interfaces (APIs) have well-defined behavior, it is possible to build 
effective hardware acceleration of the graphics processing functions defined by the 
APIs. This is one of the reasons (in addition to increasing device density) that new 
GPUs are being developed every 12 to 18 months that double the performance of 
the previous generation on existing applications.

Frequent doubling of GPU performance enables new applications that were 
not previously possible. The intersection of graphics processing and parallel 
computing invites a new paradigm for graphics, known as visual computing. It 
replaces large sections of the traditional sequential hardware graphics pipeline 
model with programmable elements for geometry, vertex, and pixel programs. 
Visual computing in a modern GPU combines graphics processing and parallel 
computing in novel ways that permit new graphics algorithms to be implemented, 
and open the door to entirely new parallel processing applications on pervasive 
high-performance GPUs.

Heterogeneous System
Although the GPU is arguably the most parallel and most powerful processor in 
a typical PC, it is certainly not the only processor. The CPU, now multicore and 

application programming 
interface (API)  A set of 
function and data structure 
definitions providing an 
interface to a library of 
functions.
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soon to be manycore, is a complementary, primarily serial processor companion 
to the massively parallel manycore GPU. Together, these two types of processors 
comprise a heterogeneous multiprocessor system.

 The best performance for many applications comes from using both the CPU 
and the GPU. This appendix will help you understand how and when to best split 
the work between these two increasingly parallel processors.

GPU Evolves into Scalable Parallel Processor
GPUs have evolved functionally from hardwired, limited capability VGA controllers 
to programmable parallel processors. This evolution has proceeded by changing 
the logical (API-based) graphics pipeline to incorporate programmable elements 
and also by making the underlying hardware pipeline stages less specialized and 
more programmable. Eventually, it made sense to merge disparate programmable 
pipeline elements into one unified array of many programmable processors.

In the GeForce 8-series generation of GPUs, the geometry, vertex, and pixel 
processing all run on the same type of processor. This unification allows for 
dramatic scalability. More programmable processor cores increase the total system 
throughput. Unifying the processors also delivers very effective load balancing, 
since any processing function can use the whole processor array. At the other end 
of the spectrum, a processor array can now be built with very few processors, since 
all of the functions can be run on the same processors.

Why CUDA and GPU Computing?
This uniform and scalable array of processors invites a new model of programming 
for the GPU. The large amount of floating-point processing power in the GPU 
processor array is very attractive for solving nongraphics problems. Given the large 
degree of parallelism and the range of scalability of the processor array for graphics 
applications, the programming model for more general computing must express 
the massive parallelism directly, but allow for scalable execution.

GPU computing is the term coined for using the GPU for computing via a 
parallel programming language and API, without using the traditional graphics 
API and graphics pipeline model. This is in contrast to the earlier General Purpose 
computation on GPU (GPGPU) approach, which involves programming the GPU 
using a graphics API and graphics pipeline to perform nongraphics tasks. 

Compute Unified Device Architecture (CUDA) is a scalable parallel program-
ming model and software platform for the GPU and other parallel processors that 
allows the programmer to bypass the graphics API and graphics interfaces of the 
GPU and simply program in C or C++. The CUDA programming model has an 
SPMD (single-program multiple data) software style, in which a programmer 
writes a program for one thread that is instanced and executed by many threads 
in parallel on the multiple processors of the GPU. In fact, CUDA also provides a 
facility for programming multiple CPU cores as well, so CUDA is an environment 
for writing parallel programs for the entire heterogeneous computer system.

GPU computing Using 
a GPU for computing via 
a parallel programming 
language and API.

GPGPU  Using a GPU 
for general-purpose 
computation via a 
traditional graphics API 
and graphics pipeline. 

CUDA A scalable parallel 
programming model 
and language based on 
C/C++. It is a parallel 
programming platform 
for GPUs and multicore 
CPUs.
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GPU Unifies Graphics and Computing
With the addition of CUDA and GPU computing to the capabilities of the GPU, 
it is now possible to use the GPU as both a graphics processor and a computing 
processor at the same time, and to combine these uses in visual computing 
applications. The underlying processor architecture of the GPU is exposed in two 
ways: first, as implementing the programmable graphics APIs, and second, as a 
massively parallel processor array programmable in C/C++ with CUDA.

Although the underlying processors of the GPU are unified, it is not necessary 
that all of the SPMD thread programs are the same. The GPU can run graphics 
shader programs for the graphics aspect of the GPU, processing geometry, vertices, 
and pixels, and also run thread programs in CUDA.

The GPU is truly a versatile multiprocessor architecture, supporting a variety of 
processing tasks. GPUs are excellent at graphics and visual computing as they were 
specifically designed for these applications. GPUs are also excellent at many general-
purpose throughput applications that are “first cousins” of graphics, in that they 
perform a lot of parallel work, as well as having a lot of regular problem structure. 
In general, they are a good match to data-parallel problems (see Chapter 7), 
particularly large problems, but less so for less regular, smaller problems.

GPU Visual Computing Applications
Visual computing includes the traditional types of graphics applications plus many 
new applications. The original purview of a GPU was “anything with pixels,” but it 
now includes many problems without pixels but with regular computation and/or 
data structure. GPUs are effective at 2D and 3D graphics, since that is the purpose 
for which they are designed. Failure to deliver this application performance would 
be fatal. 2D and 3D graphics use the GPU in its “graphics mode,” accessing the pro-
cessing power of the GPU through the graphics APIs, OpenGLTM, and DirectXTM. 
Games are built on the 3D graphics processing capability. 

Beyond 2D and 3D graphics, image processing and video are important applica-
tions for GPUs. These can be implemented using the graphics APIs or as compu-
tational programs, using CUDA to program the GPU in computing mode. Using 
CUDA, image processing is simply another data-parallel array program. To the 
extent that the data access is regular and there is good locality, the program will 
be efficient. In practice, image processing is a very good application for GPUs. 
Video processing, especially encode and decode (compression and decompression 
according to some standard algorithms) is quite efficient. 

The greatest opportunity for visual computing applications on GPUs is to “break 
the graphics pipeline.” Early GPUs implemented only specific graphics APIs, albeit 
at very high performance. This was wonderful if the API supported the operations 
that you wanted to do. If not, the GPU could not accelerate your task, because early 
GPU functionality was immutable. Now, with the advent of GPU computing and 
CUDA, these GPUs can be programmed to implement a different virtual pipeline 
by simply writing a CUDA program to describe the computation and data flow 
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that is desired. So, all applications are now possible, which will stimulate new visual 
computing approaches.

 A.2 GPU System Architectures

In this section, we survey GPU system architectures in common use today. We 
discuss system configurations, GPU functions and services, standard programming 
interfaces, and a basic GPU internal architecture.

Heterogeneous CPU–GPU System Architecture
A heterogeneous computer system architecture using a GPU and a CPU can be 
described at a high level by two primary characteristics: first, how many functional 
subsystems and/or chips are used and what are their interconnection technologies 
and topology; and second, what memory subsystems are available to these functional 
subsystems. See Chapter 6 for background on the PC I/O systems and chip sets. 

The Historical PC (circa 1990)

Figure A.2.1 is a high-level block diagram of a legacy PC, circa 1990. The north 
bridge (see Chapter 6) contains high-bandwidth interfaces, connecting the CPU, 
memory, and PCI bus. The south bridge contains legacy interfaces and devices: 
ISA bus (audio, LAN), interrupt controller; DMA controller; time/counter. In 
this system, the display was driven by a simple framebuffer subsystem known 
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as a VGA (video graphics array) which was attached to the PCI bus. Graphics 
subsystems with built-in processing elements (GPUs) did not exist in the PC 
landscape of 1990. 

Figure A.2.2 illustrates two configurations in common use today. These are 
characterized by a separate GPU (discrete GPU) and CPU with respective memory 
subsystems. In Figure A.2.2a, with an Intel CPU, we see the GPU attached via a 
16-lane PCI-Express 2.0 link to provide a peak 16 GB/s transfer rate, (peak of 
8 GB/s in each direction). Similarly, in Figure A.2.2b, with an AMD CPU, the GPU 

PCI-Express (PCIe)  
A standard system I/O 
interconnect that uses 
point-to-point links. 
Links have a configurable 
number of lanes and 
bandwidth.
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FIGURE A.2.2 Contemporary PCs with Intel and AMD CPUs. See Chapter 6 for an explanation of 
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is attached to the chipset, also via PCI-Express with the same available bandwidth. 
In both cases, the GPUs and CPUs may access each other’s memory, albeit with 
less available bandwidth than their access to the more directly attached memories. 
In the case of the AMD system, the north bridge or memory controller is integrated 
into the same die as the CPU.

A low-cost variation on these systems, a unified memory architecture (UMA) 
system, uses only CPU system memory, omitting GPU memory from the system. 
These systems have relatively low performance GPUs, since their achieved 
performance is limited by the available system memory bandwidth and increased 
latency of memory access, whereas dedicated GPU memory provides high 
bandwidth and low latency. 

A high performance system variation uses multiple attached GPUs, typically 
two to four working in parallel, with their displays daisy-chained. An example is 
the NVIDIA SLI (scalable link interconnect) multi-GPU system, designed for high 
performance gaming and workstations.

The next system category integrates the GPU with the north bridge (Intel) or 
chipset (AMD) with and without dedicated graphics memory.

Chapter 5 explains how caches maintain coherence in a shared address space. 
With CPUs and GPUs, there are multiple address spaces. GPUs can access their 
own physical local memory and the CPU system’s physical memory using virtual 
addresses that are translated by an MMU on the GPU. The operating system kernel 
manages the GPU’s page tables. A system physical page can be accessed using either 
coherent or noncoherent PCI-Express transactions, determined by an attribute 
in the GPU’s page table. The CPU can access GPU’s local memory through an 
address range (also called aperture) in the PCI-Express address space. 

Game Consoles

Console systems such as the Sony PlayStation 3 and the Microsoft Xbox 360 
resemble the PC system architectures previously described. Console systems 
are designed to be shipped with identical performance and functionality over 
a lifespan that can last five years or more. During this time, a system may be 
reimplemented many times to exploit more advanced silicon manufacturing 
processes and thereby to provide constant capability at ever lower costs. Console 
systems do not need to have their subsystems expanded and upgraded the way PC 
systems do, so the major internal system buses tend to be customized rather than 
standardized.

GPU Interfaces and Drivers
In a PC today, GPUs are attached to a CPU via PCI-Express. Earlier generations 
used AGP. Graphics applications call OpenGL [Segal and Akeley, 2006] or 
Direct3D [Microsoft DirectX Specification] API functions that use the GPU as 
a coprocessor. The APIs send commands, programs, and data to the GPU via a 
graphics device driver optimized for the particular GPU. 

unified memory 
architecture (UMA)  
A system architecture in 
which the CPU and GPU 
share a common system 
memory.

AGP  An extended 
version of the original PCI 
I/O bus, which provided 
up to eight times the 
bandwidth of the original 
PCI bus to a single card 
slot. Its primary purpose 
was to connect graphics 
subsystems into PC 
systems.
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Graphics Logical Pipeline
The graphics logical pipeline is described in Section A.3. Figure A.2.3 illustrates 
the major processing stages, and highlights the important programmable stages 
(vertex, geometry, and pixel shader stages).

FIGURE A.2.3 Graphics logical pipeline. Programmable graphics shader stages are blue, and fixed-function blocks are white. 
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FIGURE A.2.4 Logical pipeline mapped to physical processors. The programmable shader 
stages execute on the array of unified processors, and the logical graphics pipeline dataflow recirculates 
through the processors. 

Mapping Graphics Pipeline to Unified GPU Processors
Figure A.2.4 shows how the logical pipeline comprising separate independent 
programmable stages is mapped onto a physical distributed array of processors. 

Basic Unified GPU Architecture
Unified GPU architectures are based on a parallel array of many programmable 
processors. They unify vertex, geometry, and pixel shader processing and parallel 
computing on the same processors, unlike earlier GPUs which had separate 
processors dedicated to each processing type. The programmable processor array is 
tightly integrated with fixed function processors for texture filtering, rasterization, 
raster operations, anti-aliasing, compression, decompression, display, video 
decoding, and high-definition video processing. Although the fixed-function 
processors significantly outperform more general programmable processors in 
terms of absolute performance constrained by an area, cost, or power budget, we 
will focus on the programmable processors here. 

Compared with multicore CPUs, manycore GPUs have a different architectural 
design point, one focused on executing many parallel threads efficiently on many 



processor cores. By using many simpler cores and optimizing for data-parallel 
behavior among groups of threads, more of the per-chip transistor budget is 
devoted to computation, and less to on-chip caches and overhead. 

Processor Array

A unified GPU processor array contains many processor cores, typically organized 
into multithreaded multiprocessors. Figure A.2.5 shows a GPU with an array of 
112 streaming processor (SP) cores, organized as 14 multithreaded streaming 
multiprocessors (SM). Each SP core is highly multithreaded, managing 96 
concurrent threads and their state in hardware. The processors connect with 
four 64-bit-wide DRAM partitions via an interconnection network. Each SM 
has eight SP cores, two special function units (SFUs), instruction and constant 
caches, a multithreaded instruction unit, and a shared memory. This is the basic 
Tesla architecture implemented by the NVIDIA GeForce 8800. It has a unified 
architecture in which the traditional graphics programs for vertex, geometry, and 
pixel shading run on the unified SMs and their SP cores, and computing programs 
run on the same processors. 
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The processor array architecture is scalable to smaller and larger GPU configu-
rations by scaling the number of multiprocessors and the number of memory 
partitions. Figure A.2.5 shows seven clusters of two SMs sharing a texture unit and 
a texture L1 cache. The texture unit delivers filtered results to the SM given a set of 
coordinates into a texture map. Because filter regions of support often overlap for 
successive texture requests, a small streaming L1 texture cache is effective to reduce 
the number of requests to the memory system. The processor array connects with 
raster operation (ROP) processors, L2 texture caches, external DRAM memories, 
and system memory via a GPU-wide interconnection network. The number of 
processors and number of memories can scale to design balanced GPU systems for 
different performance and market segments. 

 A.3 Programming GPUs

Programming multiprocessor GPUs is qualitatively different than programming 
other multiprocessors like multicore CPUs. GPUs provide two to three orders 
of magnitude more thread and data parallelism than CPUs, scaling to hundreds 
of processor cores and tens of thousands of concurrent threads in 2008. GPUs 
continue to increase their parallelism, doubling it about every 12 to 18 months, 
enabled by Moore’s law [1965] of increasing integrated circuit density and by 
improving architectural efficiency. To span the wide price and performance range 
of different market segments, different GPU products implement widely varying 
numbers of processors and threads. Yet users expect games, graphics, imaging, 
and computing applications to work on any GPU, regardless of how many parallel 
threads it executes or how many parallel processor cores it has, and they expect 
more expensive GPUs (with more threads and cores) to run applications faster. 
As a result, GPU programming models and application programs are designed to 
scale transparently to a wide range of parallelism. 

The driving force behind the large number of parallel threads and cores in a 
GPU is real-time graphics performance—the need to render complex 3D scenes 
with high resolution at interactive frame rates, at least 60 frames per second. 
Correspondingly, the scalable programming models of graphics shading languages 
such as Cg (C for graphics) and HLSL (high-level shading language) are designed 
to exploit large degrees of parallelism via many independent parallel threads and to 
scale to any number of processor cores. The CUDA scalable parallel programming 
model similarly enables general parallel computing applications to leverage large 
numbers of parallel threads and scale to any number of parallel processor cores, 
transparently to the application. 

In these scalable programming models, the programmer writes code for a single 
thread, and the GPU runs myriad thread instances in parallel. Programs thus scale 
transparently over a wide range of hardware parallelism. This simple paradigm 
arose from graphics APIs and shading languages that describe how to shade one 



vertex or one pixel. It has remained an effective paradigm as GPUs have rapidly 
increased their parallelism and performance since the late 1990s. 

This section briefly describes programming GPUs for real-time graphics 
applications using graphics APIs and programming languages. It then describes 
programming GPUs for visual computing and general parallel computing 
applications using the C language and the CUDA programming model. 

Programming Real-Time Graphics
APIs have played an important role in the rapid, successful development of GPUs 
and processors. There are two primary standard graphics APIs: OpenGL and 
Direct3D, one of the Microsoft DirectX multimedia programming interfaces. 
OpenGL, an open standard, was originally proposed and defined by Silicon 
Graphics Incorporated. The ongoing development and extension of the OpenGL 
standard [Segal and Akeley, 2006], [Kessenich, 2006] is managed by Khronos, 
an industry consortium. Direct3D [Blythe, 2006], a de facto standard, is defined 
and evolved forward by Microsoft and partners. OpenGL and Direct3D are 
similarly structured, and continue to evolve rapidly with GPU hardware advances. 
They define a logical graphics processing pipeline that is mapped onto the GPU 
hardware and processors, along with programming models and languages for the 
programmable pipeline stages. 

Logical Graphics Pipeline
Figure A.3.1 illustrates the Direct3D 10 logical graphics pipeline. OpenGL has a 
similar graphics pipeline structure. The API and logical pipeline provide a streaming 
dataflow infrastructure and plumbing for the programmable shader stages, shown in 
blue. The 3D application sends the GPU a sequence of vertices grouped into geometric 
primitives—points, lines, triangles, and polygons. The input assembler collects 
vertices and primitives. The vertex shader program executes per-vertex processing, 

OpenGL  An open-
standard graphics API.

Direct3D A graphics API 
defined by Microsoft and 
partners.
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FIGURE A.3.1 Direct3D 10 graphics pipeline. Each logical pipeline stage maps to GPU hardware or to a GPU processor. Programmable 
shader stages are blue, fixed-function blocks are white, and memory objects are grey. Each stage processes a vertex, geometric primitive, or pixel 
in a streaming dataflow fashion. 
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including transforming the vertex 3D position into a screen position and lighting the 
vertex to determine its color. The geometry shader program executes per-primitive 
processing and can add or drop primitives. The setup and rasterizer unit generates 
pixel fragments (fragments are potential contributions to pixels) that are covered by 
a geometric primitive. The pixel shader program performs per-fragment processing, 
including interpolating per-fragment parameters, texturing, and coloring. Pixel 
shaders make extensive use of sampled and filtered lookups into large 1D, 2D, or 
3D arrays called textures, using interpolated floating-point coordinates. Shaders use 
texture accesses for maps, functions, decals, images, and data. The raster operations 
processing (or output merger) stage performs Z-buffer depth testing and stencil 
testing, which may discard a hidden pixel fragment or replace the pixel’s depth with 
the fragment’s depth, and performs a color blending operation that combines the 
fragment color with the pixel color and writes the pixel with the blended color. 

The graphics API and graphics pipeline provide input, output, memory objects, 
and infrastructure for the shader programs that process each vertex, primitive, and 
pixel fragment. 

Graphics Shader Programs
Real-time graphics applications use many different shader programs to model 
how light interacts with different materials and to render complex lighting and 
shadows. Shading languages are based on a dataflow or streaming programming 
model that corresponds with the logical graphics pipeline. Vertex shader programs 
map the position of triangle vertices onto the screen, altering their position, color, 
or orientation. Typically a vertex shader thread inputs a floating-point (x, y, z, w) 
vertex position and computes a floating-point (x, y, z) screen position. Geometry 
shader programs operate on geometric primitives (such as lines and triangles) 
defined by multiple vertices, changing them or generating additional primitives. 
Pixel fragment shaders each “shade” one pixel, computing a floating-point red, 
green, blue, alpha (RGBA) color contribution to the rendered image at its pixel 
sample (x, y) image position. Shaders (and GPUs) use floating-point arithmetic 
for all pixel color calculations to eliminate visible artifacts while computing the 
extreme range of pixel contribution values encountered while rendering scenes with 
complex lighting, shadows, and high dynamic range. For all three types of graphics 
shaders, many program instances can be run in parallel, as independent parallel 
threads, because each works on independent data, produces independent results, 
and has no side effects. Independent vertices, primitives, and pixels further enable 
the same graphics program to run on differently sized GPUs that process different 
numbers of vertices, primitives, and pixels in parallel. Graphics programs thus scale 
transparently to GPUs with different amounts of parallelism and performance. 

Users program all three logical graphics threads with a common targeted high-
level language. HLSL (high-level shading language) and Cg (C for graphics) are 
commonly used. They have C-like syntax and a rich set of library functions for 
matrix operations, trigonometry, interpolation, and texture access and filtering, 
but are far from general computing languages: they currently lack general memory 

texture  A 1D, 2D, or 
3D array that supports 
sampled and filtered 
lookups with interpolated 
coordinates.

shader  A program that 
operates on graphics data 
such as a vertex or a pixel 
fragment. 

shading language 
A graphics rendering 
language, usually having 
a dataflow or streaming 
programming model.



access, pointers, file I/O, and recursion. HLSL and Cg assume that programs live 
within a logical graphics pipeline, and thus I/O is implicit. For example, a pixel 
fragment shader may expect the geometric normal and multiple texture coordinates 
to have been interpolated from vertex values by upstream fixed-function stages and 
can simply assign a value to the COLOR output parameter to pass it downstream 
to be blended with a pixel at an implied (x, y) position.

The GPU hardware creates a new independent thread to execute a vertex, geometry, 
or pixel shader program for every vertex, every primitive, and every pixel fragment. In 
video games, the bulk of threads execute pixel shader programs, as there are typically 
10 to 20 times or more pixel fragments than vertices, and complex lighting and 
shadows require even larger ratios of pixel to vertex shader threads. The graphics 
shader programming model drove the GPU architecture to efficiently execute 
thousands of independent fine-grained threads on many parallel processor cores.

Pixel Shader Example
Consider the following Cg pixel shader program that implements the “environment 
mapping” rendering technique. For each pixel thread, this shader is passed five 
parameters, including 2D floating-point texture image coordinates needed to 
sample the surface color, and a 3D floating-point vector giving the reflection of 
the view direction off the surface. The other three “uniform” parameters do not 
vary from one pixel instance (thread) to the next. The shader looks up color in 
two texture images: a 2D texture access for the surface color, and a 3D texture 
access into a cube map (six images corresponding to the faces of a cube) to obtain 
the external world color corresponding to the reflection direction. Then the final 
four-component (red, green, blue, alpha) floating-point color is computed using a 
weighted average called a “lerp” or linear interpolation function.
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void reflection(
   float2               texCoord       : TEXCOORD0,
   float3               reflection_dir  : TEXCOORD1,
   out float4           color          : COLOR,
   uniform float        shiny,
   uniform sampler2D   surfaceMap,
   uniform samplerCUBE envMap)
{

// Fetch the surface color from a texture 
   float4 surfaceColor = tex2D(surfaceMap, texCoord); 

// Fetch reflected color by sampling a cube map
   float4 reflectedColor = texCUBE(environmentMap, reflection_dir);

// Output is weighted average of the two colors 
   color = lerp(surfaceColor, reflectedColor, shiny); 
} 
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Although this shader program is only three lines long, it activates a lot of GPU 
hardware. For each texture fetch, the GPU texture subsystem makes multiple 
memory accesses to sample image colors in the vicinity of the sampling coordinates, 
and then interpolates the final result with floating-point filtering arithmetic. The 
multithreaded GPU executes thousands of these lightweight Cg pixel shader threads 
in parallel, deeply interleaving them to hide texture fetch and memory latency. 

Cg focuses the programmer’s view to a single vertex or primitive or pixel, which 
the GPU implements as a single thread; the shader program transparently scales to 
exploit thread parallelism on the available processors. Being application-specific, Cg 
provides a rich set of useful data types, library functions, and language constructs 
to express diverse rendering techniques. 

Figure A.3.2 shows skin rendered by a fragment pixel shader. Real skin appears 
quite different from flesh-color paint because light bounces around a lot before 
re-emerging. In this complex shader, three separate skin layers, each with unique 
subsurface scattering behavior, are modeled to give the skin a visual depth and 
translucency. Scattering can be modeled by a blurring convolution in a flattened 
“texture” space, with red being blurred more than green, and blue blurred less. 

FIGURE A.3.2 GPU-rendered image. To give the skin visual depth and translucency, the pixel shader 
program models three separate skin layers, each with unique subsurface scattering behavior. It executes 1400 
instructions to render the red, green, blue, and alpha color components of each skin pixel fragment. 



The compiled Cg shader executes 1400 instructions to compute the color of one 
skin pixel. 

As GPUs have evolved superior floating-point performance and very high 
streaming memory bandwidth for real-time graphics, they have attracted highly 
parallel applications beyond traditional graphics. At first, access to this power 
was available only by couching an application as a graphics-rendering algorithm, 
but this GPGPU approach was often awkward and limiting. More recently, 
the CUDA programming model has provided a far easier way to exploit the 
scalable high-performance floating-point and memory bandwidth of GPUs with 
the C programming language.

Programming Parallel Computing Applications
CUDA, Brook, and CAL are programming interfaces for GPUs that are focused on 
data parallel computation rather than on graphics. CAL (Compute Abstraction 
Layer) is a low-level assembler language interface for AMD GPUs. Brook is a 
streaming language adapted for GPUs by Buck, et. al. [2004]. CUDA, developed by 
NVIDIA [2007], is an extension to the C and C++ languages for scalable parallel 
programming of manycore GPUs and multicore CPUs. The CUDA programming 
model is described below, adapted from an article by Nickolls, Buck, Garland, and 
Skadron [2008]. 

With the new model the GPU excels in data parallel and throughput computing, 
executing high performance computing applications as well as graphics applications. 

Data Parallel Problem Decomposition

To map large computing problems effectively to a highly parallel processing 
architecture, the programmer or compiler decomposes the problem into many 
small problems that can be solved in parallel. For example, the programmer par-
titions a large result data array into blocks and further partitions each block into 
elements, such that the result blocks can be computed independently in parallel, 
and the elements within each block are computed in parallel. Figure A.3.3 shows 
a decomposition of a result data array into a 3 × 2 grid of blocks, where each 
block is further decomposed into a 5 × 3 array of elements. The two-level parallel 
decomposition maps naturally to the GPU architecture: parallel multiprocessors 
compute result blocks, and parallel threads compute result elements. 

The programmer writes a program that computes a sequence of result data 
grids, partitioning each result grid into coarse-grained result blocks that can be 
computed independently in parallel. The program computes each result block with 
an array of fine-grained parallel threads, partitioning the work among threads so 
that each computes one or more result elements.  

Scalable Parallel Programming with CUDA
The CUDA scalable parallel programming model extends the C and C++ 
languages to exploit large degrees of parallelism for general applications on highly 
parallel multiprocessors, particularly GPUs. Early experience with CUDA shows 
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that many sophisticated programs can be readily expressed with a few easily 
understood abstractions. Since NVIDIA released CUDA in 2007, developers have 
rapidly developed scalable parallel programs for a wide range of applications, 
including seismic data processing, computational chemistry, linear algebra, sparse 
matrix solvers, sorting, searching, physics models, and visual computing. These 
applications scale transparently to hundreds of processor cores and thousands of 
concurrent threads. NVIDIA GPUs with the Tesla unified graphics and computing 
architecture (described in sections A.4 and A.7) run CUDA C programs, and are 
widely available in laptops, PCs, workstations, and servers. The CUDA model is 
also applicable to other shared memory parallel processing architectures, including 
multicore CPUs [Stratton, 2008]. 

CUDA provides three key abstractions—a hierarchy of thread groups, shared 
memories, and barrier synchronization—that provide a clear parallel structure to con-
ventional C code for one thread of the hierarchy. Multiple levels of threads, memory, 
and synchronization provide fine-grained data parallelism and thread parallelism, 
nested within coarse-grained data parallelism and task parallelism. The abstractions 
guide the programmer to partition the problem into coarse subproblems that can 
be solved independently in parallel, and then into finer pieces that can be solved in 
parallel. The programming model scales transparently to large numbers of proces-
sor cores: a compiled CUDA program executes on any number of processors, and 
only the runtime system needs to know the physical processor count. 
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FIGURE A.3.3 Decomposing result data into a grid of blocks of elements to be computed 
in parallel. 
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The CUDA Paradigm

CUDA is a minimal extension of the C and C++ programming languages. The 
programmer writes a serial program that calls parallel kernels, which may be simple 
functions or full programs. A kernel executes in parallel across a set of parallel 
threads. The programmer organizes these threads into a hierarchy of thread blocks 
and grids of thread blocks. A thread block is a set of concurrent threads that can 
cooperate among themselves through barrier synchronization and through shared 
access to a memory space private to the block. A grid is a set of thread blocks that 
may each be executed independently and thus may execute in parallel.

When invoking a kernel, the programmer specifies the number of threads per 
block and the number of blocks comprising the grid. Each thread is given a unique 
thread ID number threadIdx within its thread block, numbered 0, 1, 2, ..., 
blockDim–1, and each thread block is given a unique block ID number blockIdx 
within its grid. CUDA supports thread blocks containing up to 512 threads. For 
convenience, thread blocks and grids may have 1, 2, or 3 dimensions, accessed via 
.x, .y, and .z index fields. 

As a very simple example of parallel programming, suppose that we are given 
two vectors x and y of n floating-point numbers each and that we wish to compute 
the result of y = ax + y for some scalar value a. This is the so-called SAXPY kernel 
defined by the BLAS linear algebra library. Figure A.3.4 shows C code for perform-
ing this computation on both a serial processor and in parallel using CUDA. 

The __global__ declaration specifier indicates that the procedure is a kernel 
entry point. CUDA programs launch parallel kernels with the extended function 
call syntax: 

kernel<<<dimGrid, dimBlock>>>(... parameter list ...);

where dimGrid and dimBlock are three-element vectors of type dim3 that specify 
the dimensions of the grid in blocks and the dimensions of the blocks in threads, 
respectively. Unspecified dimensions default to one.

In Figure A.3.4, we launch a grid of n threads that assigns one thread to each 
element of the vectors and puts 256 threads in each block. Each individual thread 
computes an element index from its thread and block IDs and then performs the 
desired calculation on the corresponding vector elements. Comparing the serial and 
parallel versions of this code, we see that they are strikingly similar. This represents 
a fairly common pattern. The serial code consists of a loop where each iteration is 
independent of all the others. Such loops can be mechanically transformed into 
parallel kernels: each loop iteration becomes an independent thread. By assigning 
a single thread to each output element, we avoid the need for any synchronization 
among threads when writing results to memory.

The text of a CUDA kernel is simply a C function for one sequential thread. 
Thus, it is generally straightforward to write and is typically simpler than writing 
parallel code for vector operations. Parallelism is determined clearly and explicitly 
by specifying the dimensions of a grid and its thread blocks when launching a 
kernel.

kernel A program or 
function for one thread, 
designed to be executed 
by many threads.

thread block  A set 
of concurrent threads 
that execute the same 
thread program and may 
cooperate to compute a 
result.

grid A set of thread 
blocks that execute the 
same kernel program.
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Parallel execution and thread management is automatic. All thread creation, 
scheduling, and termination is handled for the programmer by the underlying sys-
tem. Indeed, a Tesla architecture GPU performs all thread management directly in 
hardware. The threads of a block execute concurrently and may synchronize at a 
synchronization barrier by calling the __syncthreads() intrinsic. This guar-
antees that no thread in the block can proceed until all threads in the block have 
reached the barrier. After passing the barrier, these threads are also guaranteed to 
see all writes to memory performed by threads in the block before the barrier. 
Thus, threads in a block may communicate with each other by writing and reading 
per-block shared memory at a synchronization barrier. 

Since threads in a block may share memory and synchronize via barriers, they 
will reside together on the same physical processor or multiprocessor. The num ber 
of thread blocks can, however, greatly exceed the number of processors. The CUDA 
thread programming model virtualizes the processors and gives the programmer the 
flexibility to parallelize at whatever granularity is most convenient.  Virtualization 

synchronization barrier  
Threads wait at a synchro-
nization barrier until 
all threads in the thread 
block arrive at the barrier.

Computing y = ax + y with a serial loop:

void saxpy_serial(int n, float alpha, float *x, float *y)
{
    for(int i = 0; i<n; ++i)
        y[i] = alpha*x[i] + y[i];
}

// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

Computing y = ax + y in parallel using CUDA:

__global__
void saxpy_parallel(int n, float alpha, float *x, float *y)
{

    int i = blockIdx.x*blockDim.x + threadIdx.x;

    if( i<n )  y[i] = alpha*x[i] + y[i];
}

// Invoke parallel SAXPY kernel (256 threads per block)
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

FIGURE A.3.4 Sequential code (top) in C versus parallel code (bottom) in CUDA for SAXPY 
(see Chapter 7). CUDA parallel threads replace the C serial loop—each thread computes the same result as 
one loop iteration. The parallel code computes n results with n threads organized in blocks of 256 threads.  



into threads and thread blocks allows intuitive problem  decompositions, as the 
number of blocks can be dictated by the size of the data being processed rather 
than by the number of processors in the system. It also allows the same CUDA 
program to scale to widely varying numbers of processor cores.

To manage this processing element virtualization and provide scalability, CUDA 
requires that thread blocks be able to execute independently. It must be possible to 
execute blocks in any order, in parallel or in series. Different blocks have no means of 
direct communication, although they may coordinate their activities using atomic 
memory operations on the global memory visible to all threads—by atomically 
incrementing queue pointers, for example. This independence requirement allows 
thread blocks to be scheduled in any order across any number of cores, making 
the CUDA model scalable across an arbitrary number of cores as well as across a 
variety of parallel architectures. It also helps to avoid the possibility of deadlock. 
An application may execute multiple grids either independently or dependently. 
Independent grids may execute concurrently, given sufficient hardware resources. 
Dependent grids execute sequentially, with an implicit interkernel barrier between 
them, thus guaranteeing that all blocks of the first grid complete before any block 
of the second, dependent grid begins.

Threads may access data from multiple memory spaces during their execution. 
Each thread has a private local memory. CUDA uses local memory for thread-
private variables that do not fit in the thread’s registers, as well as for stack frames 
and register spilling. Each thread block has a shared memory, visible to all threads 
of the block, which has the same lifetime as the block. Finally, all threads have 
access to the same global memory. Programs declare variables in shared and 
global memory with the __shared__ and __device__ type qualifiers. On a 
Tesla architecture GPU, these memory spaces correspond to physically separate 
memories: per-block shared memory is a low-latency on-chip RAM, while global 
memory resides in the fast DRAM on the graphics board.

Shared memory is expected to be a low-latency memory near each processor, 
much like an L1 cache. It can therefore provide high-performance communication 
and data sharing among the threads of a thread block. Since it has the same lifetime 
as its corresponding thread block, kernel code will typically initialize data in 
shared variables, compute using shared variables, and copy shared memory results 
to global memory. Thread blocks of sequentially dependent grids communicate 
via global memory, using it to read input and write results.

Figure A.3.5 diagrams the nested levels of threads, thread blocks, and grids of 
thread blocks. It further shows the corresponding levels of memory sharing: local, 
shared, and global memories for per-thread, per-thread-block, and per-application 
data sharing.  

A program manages the global memory space visible to kernels through calls 
to the CUDA runtime, such as cudaMalloc() and cudaFree(). Kernels may 
execute on a physically separate device, as is the case when running kernels on 
the GPU. Consequently, the application must use cudaMemcpy() to copy data 
between the allocated space and the host system memory.

atomic memory 
operation  A memory 
read, modify, write 
operation sequence that 
completes without any 
intervening access.  

local memory Per-thread 
local memory private to 
the thread.

shared memory Per-
block memory shared by 
all threads of the block.

global memory Per-
application memory 
shared by all threads.
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The CUDA programming model is similar in style to the familiar single- program 
multiple data (SPMD) model—it expresses parallelism explicitly, and each kernel 
executes on a fixed number of threads. However, CUDA is more flexible than most 
realizations of SPMD, because each kernel call dynamically creates a new grid with 
the right number of thread blocks and threads for that application step. The pro-
grammer can use a convenient degree of parallelism for each kernel, rather than 
having to design all phases of the computation to use the same number of threads. 
Figure A.3.6 shows an example of an SPMD-like CUDA code sequence. It first 
instantiates kernelF on a 2D grid of 3 × 2 blocks where each 2D thread block con-
sists of 5 × 3 threads. It then instantiates kernelG on a 1D grid of four 1D thread 
blocks with six threads each. Because kernelG depends on the results of kernelF, 
they are separated by an interkernel synchronization barrier. 

The concurrent threads of a thread block express fine-grained data paral-
lelism and thread parallelism. The independent thread blocks of a grid express 

single-program multiple 
data (SPMD)  A style 
of parallel programming 
model in which all 
threads execute the same 
program. SPMD threads 
typically coordinate with 
barrier synchronization. 

Thread

per-Thread Local Memory

Thread Block

per-Block
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Grid 0 

. . . 

Grid 1 

. . . 
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Inter-Grid Synchronization

FIGURE A.3.5 Nested granularity levels—thread, thread block, and grid—have corresponding 
memory sharing levels—local, shared, and global. Per-thread local memory is private to the thread. 
Per-block shared memory is shared by all threads of the block. Per-application global memory is shared by all 
threads. 



coarse-grained data parallelism. Independent grids express coarse-grained task 
parallelism. A kernel is simply C code for one thread of the hierarchy. 

Restrictions
For efficiency, and to simplify its implementation, the CUDA programming model 
has some restrictions. Threads and thread blocks may only be created by invoking 
a parallel kernel, not from within a parallel kernel. Together with the required 
independence of thread blocks, this makes it possible to execute CUDA programs 

kernelG 1D Grid is 4 thread blocks, each block is 6 threads

Sequence

Interkernel Synchronization Barrier  

Block 2

Thread 5Thread 0 Thread 1 Thread 2 Thread 3 Thread 4

kernelF<<<(3, 2), (5, 3)>>>(params);

kernelF 2D Grid is 3  2 thread blocks; each block is 5  3 threads

Block 1, 1

Thread 0, 0 Thread 1, 0 Thread 2, 0 Thread 3, 0 Thread 4, 0

Thread 0, 1 Thread 1, 1 Thread 2, 1 Thread 3, 1 Thread 4, 1

Thread 0, 2 Thread 1, 2 Thread 2, 2 Thread 3, 2 Thread 4, 2

Block 0, 1 Block 2, 1Block 1, 1

Block 0, 0 Block 2, 0Block 1, 0

kernelG<<<4, 6>>>(params);

Block 0 Block 2Block 1 Block 3

FIGURE A.3.6 Sequence of kernel F instantiated on a 2D grid of 2D thread blocks, an interkernel 
synchronization barrier, followed by kernel G on a 1D grid of 1D thread blocks. 
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with a simple scheduler that introduces minimal runtime overhead. In fact, the 
Tesla GPU architecture implements hardware management and scheduling of 
threads and thread blocks.

Task parallelism can be expressed at the thread block level but is difficult to 
express within a thread block because thread synchronization barriers operate on 
all the threads of the block. To enable CUDA programs to run on any number of 
processors, dependencies among thread blocks within the same kernel grid are not 
allowed—blocks must execute independently. Since CUDA requires that thread 
blocks be independent and allows blocks to be executed in any order, combining 
results generated by multiple blocks must in general be done by launching a second 
kernel on a new grid of thread blocks (although thread blocks may coordinate their 
activities using atomic memory operations on the global memory visible to all 
threads—by atomically incrementing queue pointers, for example).

Recursive function calls are not currently allowed in CUDA kernels. Recursion 
is unattractive in a massively parallel kernel, because providing stack space for the 
tens of thousands of threads that may be active would require substantial amounts 
of memory. Serial algorithms that are normally expressed using recursion, such as 
quicksort, are typically best implemented using nested data parallelism rather than 
explicit recursion.

To support a heterogeneous system architecture combining a CPU and a 
GPU, each with its own memory system, CUDA programs must copy data and 
results between host memory and device memory. The overhead of CPU–GPU 
interaction and data transfers is minimized by using DMA block transfer engines 
and fast interconnects. Compute-intensive problems large enough to need a GPU 
performance boost amortize the overhead better than small problems. 

Implications for Architecture
The parallel programming models for graphics and computing have driven 
GPU architecture to be different than CPU architecture. The key aspects of GPU 
programs driving GPU processor architecture are:

 ■ Extensive use of fine-grained data parallelism: Shader programs describe how 
to process a single pixel or vertex, and CUDA programs describe how to 
compute an individual result.

 ■ Highly threaded programming model: A shader thread program processes a 
single pixel or vertex, and a CUDA thread program may generate a single 
result. A GPU must create and execute millions of such thread programs per 
frame, at 60 frames per second. 

 ■ Scalability: A program must automatically increase its performance when 
provided with additional processors, without recompiling.  

 ■ Intensive floating-point (or integer) computation. 

 ■ Support of high throughput computations. 



 A.4  
Multithreaded Multiprocessor 
Architecture

To address different market segments, GPUs implement scalable numbers of  
multi processors—in fact, GPUs are multiprocessors composed of multiprocessors. 
Furthermore, each multiprocessor is highly multithreaded to execute many fine-
grained vertex and pixel shader threads efficiently. A quality basic GPU has two to 
four multiprocessors, while a gaming enthusiast’s GPU or computing platform has 
dozens of them. This section looks at the architecture of one such multithreaded 
multiprocessor, a simplified version of the NVIDIA Tesla streaming multiprocessor 
(SM) described in Section A.7. 

Why use a multiprocessor, rather than several independent processors? The 
 parallelism within each multiprocessor provides localized high performance and 
supports extensive multithreading for the fine-grained parallel programming 
models described in Section A.3. The individual threads of a thread block execute 
together within a multiprocessor to share data. The multithreaded multiprocessor 
design we describe here has eight scalar processor cores in a tightly coupled archi-
tecture, and executes up to 512 threads (the SM described in Section A.7 executes 
up to 768 threads). For area and power efficiency, the multiprocessor shares large 
complex units among the eight processor cores, including the instruction cache, 
the multithreaded instruction unit, and the shared memory RAM. 

Massive Multithreading
GPU processors are highly multithreaded to achieve several goals:

 ■ Cover the latency of memory loads and texture fetches from DRAM

 ■ Support fine-grained parallel graphics shader programming models

 ■ Support fine-grained parallel computing programming models

 ■ Virtualize the physical processors as threads and thread blocks to provide 
transparent scalability

 ■ Simplify the parallel programming model to writing a serial program for one 
thread

Memory and texture fetch latency can require hundreds of processor clocks, 
because GPUs typically have small streaming caches rather than large working-set 
caches like CPUs. A fetch request generally requires a full DRAM access latency 
plus interconnect and buffering latency. Multithreading helps cover the latency 
with useful computing—while one thread is waiting for a load or texture fetch 
to complete, the processor can execute another thread. The fine-grained parallel 
programming models provide literally thousands of independent threads that can 
keep many processors busy despite the long memory latency seen by individual 
threads.
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A graphics vertex or pixel shader program is a program for a single thread that 
processes a vertex or a pixel. Similarly, a CUDA program is a C program for a 
single thread that computes a result. Graphics and computing programs instantiate 
many parallel threads to render complex images and compute large result arrays. 
To dynamically balance shifting vertex and pixel shader thread workloads, each 
multiprocessor concurrently executes multiple different thread programs and 
different types of shader programs. 

To support the independent vertex, primitive, and pixel programming model of 
graphics shading languages and the single-thread programming model of CUDA 
C/C++, each GPU thread has its own private registers, private per-thread memory, 
program counter, and thread execution state, and can execute an independent code 
path. To efficiently execute hundreds of concurrent lightweight threads, the GPU 
multiprocessor is hardware multithreaded—it manages and executes hundreds 
of concurrent threads in hardware without scheduling overhead. Concurrent 
threads within thread blocks can synchronize at a barrier with a single instruction. 
Lightweight thread creation, zero-overhead thread scheduling, and fast barrier 
synchronization efficiently support very fine-grained parallelism.

Multiprocessor Architecture
A unified graphics and computing multiprocessor executes vertex, geometry, and 
pixel fragment shader programs, and parallel computing programs. As Figure A.4.1 
shows, the example multiprocessor consists of eight scalar processor (SP) cores 
each with a large multithreaded register file (RF), two special function units (SFU), 
a multithreaded instruction unit, an instruction cache, a read-only constant cache, 
and a shared memory. 

The 16 KB shared memory holds graphics data buffers and shared computing 
data. CUDA variables declared as __shared__ reside in the shared memory. To 
map the logical graphics pipeline workload through the multiprocessor multiple 
times, as shown in Section A.2, vertex, geometry, and pixel threads have independent 
input and output buffers, and workloads arrive and depart independently of thread 
execution.

Each SP core contains scalar integer and floating-point arithmetic units that 
execute most instructions. The SP is hardware multithreaded, supporting up to 
64 threads. Each pipelined SP core executes one scalar instruction per thread per 
clock, which ranges from 1.2 GHz to 1.6 GHz in different GPU products. Each 
SP core has a large register file (RF) of 1024 general-purpose 32-bit registers, 
partitioned among its assigned threads. Programs declare their register demand, 
typically 16 to 64 scalar 32-bit registers per thread. The SP can concurrently run 
many threads that use a few registers or fewer threads that use more registers. The 
compiler optimizes register allocation to balance the cost of spilling registers versus 
the cost of fewer threads. Pixel shader programs often use 16 or fewer registers, 
enabling each SP to run up to 64 pixel shader threads to cover long-latency texture 
fetches. Compiled CUDA programs often need 32 registers per thread, limiting 
each SP to 32 threads, which limits such a kernel program to 256 threads per thread 
block on this example multiprocessor, rather than its maximum of 512 threads. 



The pipelined SFUs execute thread instructions that compute special functions 
and interpolate pixel attributes from primitive vertex attributes. These instructions 
can execute concurrently with instructions on the SPs. The SFU is described later. 

The multiprocessor executes texture fetch instructions on the texture unit via the 
texture interface, and uses the memory interface for external memory load, store, 
and atomic access instructions. These instructions can execute concurrently with 
instructions on the SPs. Shared memory access uses a low-latency interconnection 
network between the SP processors and the shared memory banks. 

Single-Instruction Multiple-Thread (SIMT)
To manage and execute hundreds of threads running several different programs 
efficiently, the multiprocessor employs a single-instruction multiple-thread 
(SIMT) architecture. It creates, manages, schedules, and executes concurrent 
threads in groups of parallel threads called warps. The term warp originates from 
weaving, the first parallel thread technology. The photograph in Figure A.4.2 shows 
a warp of parallel threads emerging from a loom. This example multiprocessor 
uses a SIMT warp size of 32 threads, executing four threads in each of the eight 
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FIGURE A.4.1 Multithreaded multiprocessor with eight scalar processor (SP) cores. The 
eight SP cores each have a large multithreaded register file (RF) and share an instruction cache, multithreaded 
instruction issue unit, constant cache, two special function units (SFUs), interconnection network, and a 
multibank shared memory. 

single-instruction 
multiple-thread (SIMT)  
A processor architecture 
that applies one 
instruction to multiple 
independent threads in 
parallel. 

warp The set of parallel 
threads that execute the 
same instruction together 
in a SIMT architecture. 
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SP cores over four clocks. The Tesla SM multiprocessor described in Section A.7 
also uses a warp size of 32 parallel threads, executing four threads per SP core for 
efficiency on plentiful pixel threads and computing threads. Thread blocks consist 
of one or more warps. 

This example SIMT multiprocessor manages a pool of 16 warps, a total of 512 
threads. Individual parallel threads composing a warp are the same type and start 
together at the same program address, but are otherwise free to branch and execute 
independently. At each instruction issue time, the SIMT multithreaded instruction 
unit selects a warp that is ready to execute its next instruction, then issues that 
instruction to the active threads of that warp. A SIMT instruction is broadcast 
synchronously to the active parallel threads of a warp; individual threads may be 
inactive due to independent branching or predication. In this multiprocessor, each 
SP scalar processor core executes an instruction for four individual threads of a 
warp using four clocks, reflecting the 4:1 ratio of warp threads to cores. 

SIMT processor architecture is akin to single-instruction multiple data (SIMD) 
design, which applies one instruction to multiple data lanes, but differs in that 
SIMT applies one instruction to multiple independent threads in parallel, not just 
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FIGURE A.4.2 SIMT multithreaded warp scheduling. The scheduler selects a ready warp and issues 
an instruction synchronously to the parallel threads composing the warp. Because warps are independent, 
the scheduler may select a different warp each time. 



to multiple data lanes. An instruction for a SIMD processor controls a vector of 
multiple data lanes together, whereas an instruction for a SIMT processor controls 
an individual thread, and the SIMT instruction unit issues an instruction to a warp 
of independent parallel threads for efficiency. The SIMT processor finds data-level 
parallelism among threads at runtime, analogous to the way a superscalar processor 
finds instruction-level parallelism among instructions at runtime. 

A SIMT processor realizes full efficiency and performance when all threads 
of a warp take the same execution path. If threads of a warp diverge via a data-
dependent conditional branch, execution serializes for each branch path taken, and 
when all paths complete, the threads converge to the same execution path. For equal 
length paths, a divergent if-else code block is 50% efficient. The multiprocessor uses 
a branch synchronization stack to manage independent threads that diverge and 
converge. Different warps execute independently at full speed regardless of whether 
they are executing common or disjoint code paths. As a result, SIMT GPUs are 
dramatically more efficient and flexible on branching code than earlier GPUs, as 
their warps are much narrower than the SIMD width of prior GPUs.  

In contrast with SIMD vector architectures, SIMT enables programmers to write 
thread-level parallel code for individual independent threads, as well as data-parallel 
code for many coordinated threads. For program correctness, the programmer can 
essentially ignore the SIMT execution attributes of warps; however, substantial 
performance improvements can be realized by taking care that the code seldom 
requires threads in a warp to diverge. In practice, this is analogous to the role of 
cache lines in traditional codes: cache line size can be safely ignored when designing 
for correctness but must be considered in the code structure when designing for 
peak performance.  

SIMT Warp Execution and Divergence
The SIMT approach of scheduling independent warps is more flexible than the 
scheduling of previous GPU architectures. A warp comprises parallel threads 
of the same type: vertex, geometry, pixel, or compute. The basic unit of pixel 
fragment shader processing is the 2-by-2 pixel quad implemented as four pixel 
shader threads. The multiprocessor controller packs the pixel quads into a warp. It 
similarly groups vertices and primitives into warps, and packs computing threads 
into a warp. A thread block comprises one or more warps. The SIMT design shares 
the instruction fetch and issue unit efficiently across parallel threads of a warp, but 
requires a full warp of active threads to get full performance efficiency. 

This unified multiprocessor schedules and executes multiple warp types 
concurrently, allowing it to concurrently execute vertex and pixel warps. Its warp 
scheduler operates at less than the processor clock rate, because there are four thread 
lanes per processor core. During each scheduling cycle, it selects a warp to execute 
a SIMT warp instruction, as shown in Figure A.4.2. An issued warp-instruction 
executes as four sets of eight threads over four processor cycles of throughput. The 
processor pipeline uses several clocks of latency to complete each instruction. If the 
number of active warps times the clocks per warp exceeds the pipeline latency, the 
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programmer can ignore the pipeline latency. For this multiprocessor, a round-robin 
schedule of eight warps has a period of 32 cycles between successive instructions 
for the same warp. If the program can keep 256 threads active per multiprocessor, 
instruction latencies up to 32 cycles can be hidden from an individual sequential 
thread. However, with few active warps, the processor pipeline depth becomes 
visible and may cause processors to stall. 

A challenging design problem is implementing zero-overhead warp scheduling 
for a dynamic mix of different warp programs and program types. The instruction 
scheduler must select a warp every four clocks to issue one instruction per clock 
per thread, equivalent to an IPC of 1.0 per processor core. Because warps are 
independent, the only dependencies are among sequential instructions from the 
same warp. The scheduler uses a register dependency scoreboard to qualify warps 
whose active threads are ready to execute an instruction. It prioritizes all such ready 
warps and selects the highest priority one for issue. Prioritization must consider 
warp type, instruction type, and the desire to be fair to all active warps. 

Managing Threads and Thread Blocks
The multiprocessor controller and instruction unit manage threads and thread 
blocks. The controller accepts work requests and input data and arbitrates access 
to shared resources, including the texture unit, memory access path, and I/O paths. 
For graphics workloads, it creates and manages three types of graphics threads 
concurrently: vertex, geometry, and pixel. Each of the graphics work types have 
independent input and output paths. It accumulates and packs each of these input 
work types into SIMT warps of parallel threads executing the same thread program. 
It allocates a free warp, allocates registers for the warp threads, and starts warp 
execution in the multiprocessor. Every program declares its per-thread register 
demand; the controller starts a warp only when it can allocate the requested register 
count for the warp threads. When all the threads of the warp exit, the controller 
unpacks the results and frees the warp registers and resources. 

The controller creates cooperative thread arrays (CTAs) which implement 
CUDA thread blocks as one or more warps of parallel threads. It creates a CTA 
when it can create all CTA warps and allocate all CTA resources. In addition to 
threads and registers, a CTA requires allocating shared memory and barriers. The 
program declares the required capacities, and the controller waits until it can 
allocate those amounts before launching the CTA. Then it creates CTA warps at the 
warp scheduling rate, so that a CTA program starts executing immediately at full 
multiprocessor performance. The controller monitors when all threads of a CTA 
have exited, and frees the CTA shared resources and its warp resources. 

Thread Instructions
The SP thread processors execute scalar instructions for individual threads, unlike 
earlier GPU vector instruction architectures, which executed four-component 
vector instructions for each vertex or pixel shader program. Vertex programs 

cooperative thread 
array (CTA)  A set 
of concurrent threads 
that executes the same 
thread program and may 
cooperate to compute 
a result. A GPU CTA 
implements a CUDA 
thread block.  
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generally compute (x, y, z, w) position vectors, while pixel shader programs 
compute (red, green, blue, alpha) color vectors. However, shader programs are 
becoming longer and more scalar, and it is increasingly difficult to fully occupy 
even two components of a legacy GPU four-component vector architecture. In 
effect, the SIMT architecture parallelizes across 32 independent pixel threads, 
rather than parallelizing the four vector components within a pixel. CUDA C/C++ 
programs have predominantly scalar code per thread. Previous GPUs employed 
vector packing (e.g., combining subvectors of work to gain efficiency) but that 
complicated the scheduling hardware as well as the compiler. Scalar instructions 
are simpler and compiler friendly. Texture instructions remain vector based, taking 
a source coordinate vector and returning a filtered color vector. 

To support multiple GPUs with different binary microinstruction formats, 
high-level graphics and computing language compilers generate intermediate 
assembler-level instructions (e.g., Direct3D vector instructions or PTX scalar 
instructions), which are then optimized and translated to binary GPU microin-
structions. The NVIDIA PTX (parallel thread execution) instruction set definition 
[2007] provides a stable target ISA for compilers, and provides compatibility over 
several generations of GPUs with evolving binary microinstruction-set architec-
tures. The optimizer readily expands Direct3D vector instructions to multiple sca-
lar binary microinstructions. PTX scalar instructions translate nearly one to one 
with scalar binary microinstructions, although some PTX instructions expand to 
multiple binary microinstructions, and multiple PTX instructions may fold into 
one binary microinstruction. Because the intermediate assembler-level instruc-
tions use virtual registers, the optimizer analyzes data dependencies and allocates 
real registers. The optimizer eliminates dead code, folds instructions together when 
feasible, and optimizes SIMT branch diverge and converge points. 

Instruction Set Architecture (ISA)
The thread ISA described here is a simplified version of the Tesla architecture PTX 
ISA, a register-based scalar instruction set comprising floating-point, integer, logical, 
conversion, special functions, flow control, memory access, and texture operations. 
Figure A.4.3 lists the basic PTX GPU thread instructions; see the NVIDIA PTX 
specification [2007] for details. The instruction format is: 

opcode.type d, a, b, c; 

where d is the destination operand, a, b, c are source operands, and .type is one of: 

Type .type Specifier

Untyped bits 8, 16, 32, and 64 bits .b8, .b16, .b32, .b64

Unsigned integer 8, 16, 32, and 64 bits .u8, .u16, .u32, .u64

Signed integer 8, 16, 32, and 64 bits .s8, .s16, .s32, .s64

Floating-point 16, 32, and 64 bits .f16, .f32, .f64
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Basic PTX GPU Thread Instructions

Group Instruction Example Meaning Comments

Arithmetic

arithmetic .type = .s32, .u32, .f32, .s64, .u64, .f64
add.type add.f32 d, a, b d = a + b;
sub.type sub.f32 d, a, b d = a – b;
mul.type mul.f32 d, a, b d = a * b;
mad.type mad.f32 d, a, b, c d = a * b + c; multiply-add

div.type div.f32 d, a, b d = a / b; multiple microinstructions

rem.type rem.u32 d, a, b d = a % b; integer remainder

abs.type abs.f32 d, a d = |a|;
neg.type neg.f32 d, a d = 0 - a;
min.type min.f32 d, a, b d = (a < b)? a:b; floating selects non-NaN

max.type max.f32 d, a, b d = (a > b)? a:b; floating selects non-NaN

setp.cmp.type setp.lt.f32 p, a, b p = (a < b); compare and set predicate

numeric .cmp = eq, ne, lt, le, gt, ge; unordered cmp = equ, neu, ltu, leu, gtu, geu, num, nan

mov.type mov.b32 d, a d = a; move

selp.type selp.f32 d, a, b, p d = p? a: b; select with predicate

cvt.dtype.atype cvt.f32.s32 d, a d = convert(a); convert atype to dtype

Special 
Function

special .type = .f32 (some .f64)

rcp.type rcp.f32 d, a d = 1/a; reciprocal

sqrt.type sqrt.f32 d, a d = sqrt(a); square root

rsqrt.type rsqrt.f32 d, a d = 1/sqrt(a); reciprocal square root

sin.type sin.f32 d, a d = sin(a); sine

cos.type cos.f32 d, a d = cos(a); cosine

lg2.type lg2.f32 d, a d = log(a)/log(2) binary logarithm

ex2.type ex2.f32 d, a d = 2 ** a; binary exponential

Logical

logic.type = .pred,.b32, .b64
and.type and.b32 d, a, b d = a & b;
or.type or.b32 d, a, b d = a | b;
xor.type xor.b32 d, a, b d = a ^ b;
not.type not.b32 d, a, b d = ~a; one’s complement

cnot.type cnot.b32 d, a, b d = (a==0)? 1:0; C logical not

shl.type shl.b32 d, a, b d = a << b; shift left

shr.type shr.s32 d, a, b d = a >> b; shift right

Memory
Access

memory .space = .global, .shared, .local, .const; .type = .b8, .u8, .s8, .b16, .b32, .b64
ld.space.type ld.global.b32 d, [a+off] d = *(a+off); load from memory space

st.space.type st.shared.b32 [d+off], a *(d+off) = a; store to memory space

tex.nd.dtyp.btype tex.2d.v4.f32.f32 d, a, b d = tex2d(a, b); texture lookup

atom.spc.op.type atom.global.add.u32 d,[a], b 
atom.global.cas.b32 d,[a], b, c

atomic { d = *a; 
  *a = op(*a, b); }

atomic read-modify-write  
operation

atom .op = and, or, xor, add, min, max, exch, cas; .spc = .global; .type = .b32

Control
Flow

branch @p bra target if (p) goto 
target;

conditional branch

call call (ret), func, (params) ret = func(params); call function

ret ret return; return from function call

bar.sync bar.sync d wait for threads barrier synchronization

exit exit exit; terminate thread execution

FIGURE A.4.3 Basic PTX GPU thread instructions. 



Source operands are scalar 32-bit or 64-bit values in registers, an immediate 
value, or a constant; predicate operands are 1-bit Boolean values. Destinations are 
registers, except for store to memory. Instructions are predicated by prefixing them 
with @p or @!p, where p is a predicate register. Memory and texture instructions 
transfer scalars or vectors of two to four components, up to 128 bits total. PTX 
instructions specify the behavior of one thread. 

The PTX arithmetic instructions operate on 32-bit and 64-bit floating-point, 
signed integer, and unsigned integer types. Recent GPUs support 64-bit double 
precision floating-point; see Section A.6. On current GPUs, PTX 64-bit integer 
and logical instructions are translated to two or more binary microinstructions 
that perform 32-bit operations. The GPU special function instructions are limited 
to 32-bit floating-point. The thread control flow instructions are conditional 
branch, function call and return, thread exit, and bar.sync (barrier 
synchronization). The conditional branch instruction @p bra target uses a 
predicate register p (or !p) previously set by a compare and set predicate setp 
instruction to determine whether the thread takes the branch or not. Other 
instructions can also be predicated on a predicate register being true or false. 

Memory Access Instructions

The tex instruction fetches and filters texture samples from 1D, 2D, and 3D 
texture arrays in memory via the texture subsystem. Texture fetches generally use 
interpolated floating-point coordinates to address a texture. Once a graphics pixel 
shader thread computes its pixel fragment color, the raster operations processor 
blends it with the pixel color at its assigned (x, y) pixel position and writes the final 
color to memory. 

To support computing and C/C++ language needs, the Tesla PTX ISA implements 
memory load/store instructions. They use integer byte addressing with register plus 
offset address arithmetic to facilitate conventional compiler code optimizations. 
Memory load/store instructions are common in processors, but are a significant 
new capability in the Tesla architecture GPUs, as prior GPUs provided only the 
texture and pixel accesses required by the graphics APIs.  

For computing, the load/store instructions access three read/write memory 
spaces that implement the corresponding CUDA memory spaces in Section A.3: 

 ■ Local memory for per-thread private addressable temporary data (imple-
mented in external DRAM) 

 ■ Shared memory for low-latency access to data shared by cooperating threads 
in the same CTA/thread block (implemented in on-chip SRAM) 

 ■ Global memory for large data sets shared by all threads of a computing 
application (implemented in external DRAM)

The memory load/store instructions ld.global, st.global, ld.shared, 
st.shared, ld.local, and st.local access the global, shared, and local mem-
ory spaces. Computing programs use the fast barrier synchronization instruction  
bar.sync to synchronize threads within a CTA/thread block that communicate 
with each other via shared and global memory.
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To improve memory bandwidth and reduce overhead, the local and global load/
store instructions coalesce individual parallel thread requests from the same SIMT 
warp together into a single memory block request when the addresses fall in the 
same block and meet alignment criteria. Coalescing memory requests provides a 
significant performance boost over separate requests from individual threads. The 
multiprocessor’s large thread count, together with support for many outstanding 
load requests, helps cover load-to-use latency for local and global memory imple-
mented in external DRAM. 

The latest Tesla architecture GPUs also provide efficient atomic memory opera-
tions on memory with the atom.op.u32 instructions, including integer operations 
add, min, max, and, or, xor, exchange, and cas (compare-and-swap) opera-
tions, facilitating parallel reductions and parallel data structure management. 

Barrier Synchronization for Thread Communication

Fast barrier synchronization permits CUDA programs to communicate frequently 
via shared memory and global memory by simply calling __syncthreads(); as 
part of each interthread communication step. The synchronization intrinsic func-
tion generates a single bar.sync instruction. However, implementing fast barrier 
synchronization among up to 512 threads per CUDA thread block is a challenge. 

Grouping threads into SIMT warps of 32 threads reduces the synchronization 
difficulty by a factor of 32. Threads wait at a barrier in the SIMT thread scheduler 
so they do not consume any processor cycles while waiting. When a thread executes 
a bar.sync instruction, it increments the barrier’s thread arrival counter and the 
scheduler marks the thread as waiting at the barrier. Once all the CTA threads 
arrive, the barrier counter matches the expected terminal count, and the scheduler 
releases all the threads waiting at the barrier and resumes executing threads. 

Streaming Processor (SP)
The multithreaded streaming processor (SP) core is the primary thread instruction 
processor in the multiprocessor. Its register file (RF) provides 1024 scalar  
32-bit registers for up to 64 threads. It executes all the fundamental floating-point 
operations, including add.f32, mul.f32, mad.f32 (floating multiply-add), 
min.f32, max.f32, and setp.f32 (floating compare and set predicate). The 
floating-point add and multiply operations are compatible with the IEEE 754 
standard for single precision FP numbers, including not-a-number (NaN) and 
infinity values. The SP core also implements all of the 32-bit and 64-bit integer 
arithmetic, comparison, conversion, and logical PTX instructions in Figure A.4.3. 

The floating-point add and mul operations employ IEEE round-to-nearest-even 
as the default rounding mode. The mad.f32 floating-point multiply-add operation 
performs a multiplication with truncation, followed by an addition with round-
to-nearest-even. The SP flushes input denormal operands to sign-preserved-zero. 
Results that underflow the target output exponent range are flushed to sign-
preserved-zero after rounding. 



Special Function Unit (SFU)
Certain thread instructions can execute on the SFUs, concurrently with other 
thread instructions executing on the SPs. The SFU implements the special function 
instructions of Figure A.4.3, which compute 32-bit floating-point approximations 
to reciprocal, reciprocal square root, and key transcendental functions. It also 
implements 32-bit floating-point planar attribute interpolation for pixel shaders, 
providing accurate interpolation of attributes such as color, depth, and texture 
coordinates.

Each pipelined SFU generates one 32-bit floating-point special function result 
per cycle; the two SFUs per multiprocessor execute special function instructions 
at a quarter the simple instruction rate of the eight SPs. The SFUs also execute the 
mul.f32 multiply instruction concurrently with the eight SPs, increasing the peak 
computation rate up to 50% for threads with a suitable instruction mixture. 

For functional evaluation, the Tesla architecture SFU employs quadratic 
interpolation based on enhanced minimax approximations for approximating the 
reciprocal, reciprocal square-root, log2x, 2x, and sin/cos functions. The accuracy of 
the function estimates ranges from 22 to 24 mantissa bits. See Section A.6 for more 
details on SFU arithmetic. 

Comparing with Other Multiprocessors
Compared with SIMD vector architectures such as x86 SSE, the SIMT multipro-
cessor can execute individual threads independently, rather than always executing 
them together in synchronous groups. SIMT hardware finds data parallelism among 
independent threads, whereas SIMD hardware requires the software to express data 
parallelism explicitly in each vector instruction. A SIMT machine  executes a warp 
of 32 threads synchronously when the threads take the same execution path, yet 
can execute each thread independently when they diverge. The advantage is signi-
ficant because SIMT programs and instructions simply describe the behavior of a 
single independent thread, rather than a SIMD data vector of four or more data 
lanes. Yet the SIMT multiprocessor has SIMD-like efficiency, spreading the area 
and cost of one instruction unit across the 32 threads of a warp and across the eight 
streaming processor cores. SIMT provides the performance of SIMD together with 
the productivity of multithreading, avoiding the need to explicitly code SIMD vec-
tors for edge conditions and partial divergence. 

The SIMT multiprocessor imposes little overhead because it is hardware 
multithreaded with hardware barrier synchronization. That allows graphics 
shaders and CUDA threads to express very fine-grained parallelism. Graphics and 
CUDA programs use threads to express fine-grained data parallelism in a per-
thread program, rather than forcing the programmer to express it as SIMD vector 
instructions. It is simpler and more productive to develop scalar single-thread code 
than vector code, and the SIMT multiprocessor executes the code with SIMD-like 
efficiency.
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Coupling eight streaming processor cores together closely into a multiprocessor 
and then implementing a scalable number of such multiprocessors makes a two-
level multiprocessor composed of multiprocessors. The CUDA programming model 
exploits the two-level hierarchy by providing individual threads for fine-grained 
parallel computations, and by providing grids of thread blocks for coarse-grained 
parallel operations. The same thread program can provide both fine-grained and 
coarse-grained operations. In contrast, CPUs with SIMD vector instructions must 
use two different programming models to provide fine-grained and coarse-grained 
operations: coarse-grained parallel threads on different cores, and SIMD vector 
instructions for fine-grained data parallelism. 

Multithreaded Multiprocessor Conclusion
The example GPU multiprocessor based on the Tesla architecture is highly 
multithreaded, executing a total of up to 512 lightweight threads concurrently to 
support fine-grained pixel shaders and CUDA threads. It uses a variation on SIMD 
architecture and multithreading called SIMT (single-instruction multiple-thread) 
to efficiently broadcast one instruction to a warp of 32 parallel threads, while 
permitting each thread to branch and execute independently. Each thread executes 
its instruction stream on one of the eight streaming processor (SP) cores, which are 
multithreaded up to 64 threads. 

The PTX ISA is a register-based load/store scalar ISA that describes the execution 
of a single thread. Because PTX instructions are optimized and translated to binary 
microinstructions for a specific GPU, the hardware instructions can evolve rapidly 
without disrupting compilers and software tools that generate PTX instructions. 

 A.5 Parallel Memory System

Outside of the GPU itself, the memory subsystem is the most important determiner 
of the performance of a graphics system. Graphics workloads demand very high 
transfer rates to and from memory. Pixel write and blend (read-modify-write) 
operations, depth buffer reads and writes, and texture map reads, as well as 
command and object vertex and attribute data reads, comprise the majority of 
memory traffic. 

Modern GPUs are highly parallel, as shown in Figure A.2.5. For example, the 
GeForce 8800 can process 32 pixels per clock, at 600 MHz. Each pixel typically 
requires a color read and write and a depth read and write of a 4-byte pixel. Usually 
an average of two or three texels of four bytes each are read to generate the pixel’s 
color. So for a typical case, there is a demand of 28 bytes times 32 pixels = 896 bytes 
per clock. Clearly the bandwidth demand on the memory system is enormous. 
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To supply these requirements, GPU memory systems have the following 
characteristics: 

 ■ They are wide, meaning there are a large number of pins to convey data 
between the GPU and its memory devices, and the memory array itself 
comprises many DRAM chips to provide the full total data bus width. 

 ■ They are fast, meaning aggressive signaling techniques are used to maximize 
the data rate (bits/second) per pin. 

 ■ GPUs seek to use every available cycle to transfer data to or from the memory 
array. To achieve this, GPUs specifically do not aim to minimize latency 
to the memory system. High throughput (utilization efficiency) and short 
latency are fundamentally in conflict. 

 ■ Compression techniques are used, both lossy, of which the programmer 
must be aware, and lossless, which is invisible to the application and 
opportunistic. 

 ■ Caches and work coalescing structures are used to reduce the amount of 
off-chip traffic needed and to ensure that cycles spent moving data are used 
as fully as possible.

DRAM Considerations
GPUs must take into account the unique characteristics of DRAM. DRAM chips 
are internally arranged as multiple (typically four to eight) banks, where each bank 
includes a power-of-2 number of rows (typically around 16,384), and each row 
contains a power-of-2 number of bits (typically 8192). DRAMs impose a variety of 
timing requirements on their controlling processor. For example, dozens of cycles 
are required to activate one row, but once activated, the bits within that row are 
randomly accessible with a new column address every four clocks. Double-data 
rate (DDR) synchronous DRAMs transfer data on both rising and falling edges 
of the interface clock (see Chapter 5). So a 1 GHz clocked DDR DRAM transfers 
data at 2 gigabits per second per data pin. Graphics DDR DRAMs usually have 
32 bidirectional data pins, so eight bytes can be read or written from the DRAM 
per clock.

GPUs internally have a large number of generators of memory traffic. 
Different stages of the logical graphics pipeline each have their own request 
streams: command and vertex attribute fetch, shader texture fetch and load/
store, and pixel depth and color read-write. At each logical stage, there are often 
multiple independent units to deliver the parallel throughput. These are each 
independent memory requestors. When viewed at the memory system, there 
are an enormous number of uncorrelated requests in flight. This is a natural 
mismatch to the reference pattern preferred by the DRAMs. A solution is for 
the GPU’s memory controller to maintain separate heaps of traffic bound for 
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different DRAM banks, and wait until enough traffic for a particular DRAM 
row is pending before activating that row and transferring all the traffic at once. 
Note that accumulating pending requests, while good for DRAM row locality 
and thus efficient use of the data bus, leads to longer average latency as seen by 
the requestors whose requests spend time waiting for others. The design must 
take care that no particular request waits too long, otherwise some processing 
units can starve waiting for data and ultimately cause neighboring processors to 
become idle.

GPU memory subsystems are arranged as multiple memory partitions, each of 
which comprises a fully independent memory controller and one or two DRAM 
devices that are fully and exclusively owned by that partition. To achieve the best 
load balance and therefore approach the theoretical performance of n partitions, 
addresses are finely interleaved evenly across all memory partitions. The partition 
interleaving stride is typically a block of a few hundred bytes. The number of 
memory partitions is designed to balance the number of processors and other 
memory requesters. 

Caches
GPU workloads typically have very large working sets—on the order of hundreds 
of megabytes to generate a single graphics frame. Unlike with CPUs, it is not 
practical to construct caches on chips large enough to hold anything close to the 
full working set of a graphics application. Whereas CPUs can assume very high 
cache hit rates (99.9% or more), GPUs experience hit rates closer to 90% and must 
therefore cope with many misses in flight. While a CPU can reasonably be designed 
to halt while waiting for a rare cache miss, a GPU needs to proceed with misses and 
hits intermingled. We call this a streaming cache architecture. 

GPU caches must deliver very high-bandwidth to their clients. Consider the case 
of a texture cache. A typical texture unit may evaluate two bilinear interpolations 
for each of four pixels per clock cycle, and a GPU may have many such texture 
units all operating independently. Each bilinear interpolation requires four 
separate texels, and each texel might be a 64-bit value. Four 16-bit components 
are typical. Thus, total bandwidth is 2 × 4 × 4 × 64 = 2048 bits per clock. Each 
separate 64-bit texel is independently addressed, so the cache needs to handle 
32 unique addresses per clock. This naturally favors a multibank and/or multiport 
arrangement of SRAM arrays. 

MMU
Modern GPUs are capable of translating virtual addresses to physical addresses. 
On the GeForce 8800, all processing units generate memory addresses in a  
40-bit virtual address space. For computing, load and store thread instructions use 
32-bit byte addresses, which are extended to a 40-bit virtual address by adding a 
40-bit offset. A memory management unit performs virtual to physical address 
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translation; hardware reads the page tables from local memory to respond to misses 
on behalf of a hierarchy of translation lookaside buffers spread out among the 
processors and rendering engines. In addition to physical page bits, GPU page table 
entries specify the compression algorithm for each page. Page sizes range from 4 to 
128 kilobytes.

Memory Spaces
As introduced in Section A.3, CUDA exposes different memory spaces to allow the 
programmer to store data values in the most performance-optimal way. For the 
following discussion, NVIDIA Tesla architecture GPUs are assumed.

Global memory
Global memory is stored in external DRAM; it is not local to any one physical 
streaming multiprocessor (SM) because it is meant for communication among 
different CTAs (thread blocks) in different grids. In fact, the many CTAs that 
reference a location in global memory may not be executing in the GPU at the 
same time; by design, in CUDA a programmer does not know the relative order 
in which CTAs are executed. Because the address space is evenly distributed 
among all memory partitions, there must be a read/write path from any streaming 
multiprocessor to any DRAM partition. 

Access to global memory by different threads (and different processors) is not 
guaranteed to have sequential consistency. Thread programs see a relaxed memory 
ordering model. Within a thread, the order of memory reads and writes to the same 
address is preserved, but the order of accesses to different addresses may not be 
preserved. Memory reads and writes requested by different threads are unordered. 
Within a CTA, the barrier synchronization instruction bar.sync can be used 
to obtain strict memory ordering among the threads of the CTA. The membar 
thread instruction provides a memory barrier/fence operation that commits prior 
memory accesses and makes them visible to other threads before proceeding. 
Threads can also use the atomic memory operations described in Section A.4 to 
coordinate work on memory they share.

Shared memory
Per-CTA shared memory is only visible to the threads that belong to that CTA, 
and shared memory only occupies storage from the time a CTA is created to the 
time it terminates. Shared memory can therefore reside on-chip. This approach has 
many benefits. First, shared memory traffic does not need to compete with limited 
off-chip bandwidth needed for global memory references. Second, it is practical to 
build very high-bandwidth memory structures on-chip to support the read/write 
demands of each streaming multiprocessor. In fact, the shared memory is closely 
coupled to the streaming multiprocessor. 
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Each streaming multiprocessor contains eight physical thread processors. 
During one shared memory clock cycle, each thread processor can process two 
threads’ worth of instructions, so 16 threads’ worth of shared memory requests 
must be handled in each clock. Because each thread can generate its own addresses, 
and the addresses are typically unique, the shared memory is built using 16 
independently addressable SRAM banks. For common access patterns, 16 banks are 
sufficient to maintain throughput, but pathological cases are possible; for example, 
all 16 threads might happen to access a different address on one SRAM bank. It 
must be possible to route a request from any thread lane to any bank of SRAM, so 
a 16-by-16 interconnection network is required.

Local Memory
Per-thread local memory is private memory visible only to a single thread. Local 
memory is architecturally larger than the thread’s register file, and a program 
can compute addresses into local memory. To support large allocations of local 
memory (recall the total allocation is the per-thread allocation times the number 
of active threads), local memory is allocated in external DRAM.

Although global and per-thread local memory reside off-chip, they are well-
suited to being cached on-chip.

Constant Memory
Constant memory is read-only to a program running on the SM (it can be written 
via commands to the GPU). It is stored in external DRAM and cached in the SM. 
Because commonly most or all threads in a SIMT warp read from the same address 
in constant memory, a single address lookup per clock is sufficient. The constant 
cache is designed to broadcast scalar values to threads in each warp.

Texture Memory
Texture memory holds large read-only arrays of data. Textures for computing have 
the same attributes and capabilities as textures used with 3D graphics. Although 
textures are commonly two-dimensional images (2D arrays of pixel values), 1D 
(linear) and 3D (volume) textures are also available. 

A compute program references a texture using a tex instruction. Operands 
include an identifier to name the texture, and 1, 2, or 3 coordinates based on the 
texture dimensionality. The floating-point coordinates include a fractional portion 
that specifies a sample location often in between texel locations. Noninteger 
coordinates invoke a bilinear weighted interpolation of the four closest values (for 
a 2D texture) before the result is returned to the program.

Texture fetches are cached in a streaming cache hierarchy designed to optimize 
throughput of texture fetches from thousands of concurrent threads. Some programs 
use texture fetches as a way to cache global memory. 



Surfaces
Surface is a generic term for a one-dimensional, two-dimensional, or three-
dimensional array of pixel values and an associated format. A variety of formats 
are defined; for example, a pixel may be defined as four 8-bit RGBA integer 
components, or four 16-bit floating-point components. A program kernel does 
not need to know the surface type. A tex instruction recasts its result values as 
floating-point, depending on the surface format.

Load/Store Access
Load/store instructions with integer byte addressing enable the writing and com-
piling of programs in conventional languages like C and C++. CUDA programs use 
load/store instructions to access memory. 

To improve memory bandwidth and reduce overhead, the local and global load/
store instructions coalesce individual parallel thread requests from the same warp 
together into a single memory block request when the addresses fall in the same 
block and meet alignment criteria. Coalescing individual small memory requests 
into large block requests provides a significant performance boost over separate 
requests. The large thread count, together with support for many outstanding load 
requests, helps cover load-to-use latency for local and global memory implemented 
in external DRAM. 

ROP
As shown in Figure A.2.5, NVIDIA Tesla architecture GPUs comprise a scalable 
streaming processor array (SPA), which performs all of the GPU’s programmable 
calculations, and a scalable memory system, which comprises external DRAM 
control and fixed function Raster Operation Processors (ROPs) that perform color 
and depth framebuffer operations directly on memory. Each ROP unit is paired 
with a specific memory partition. ROP partitions are fed from the SMs via an 
interconnection network. Each ROP is responsible for depth and stencil tests and 
updates, as well as color blending. The ROP and memory controllers cooperate 
to implement lossless color and depth compression (up to 8:1) to reduce external 
bandwidth demand. ROP units also perform atomic operations on memory. 

 A.6 Floating-point Arithmetic

GPUs today perform most arithmetic operations in the programmable processor 
cores using IEEE 754–compatible single precision 32-bit floating-point operations 
(see Chapter 3). The fixed-point arithmetic of early GPUs was succeeded by 16-bit, 
24-bit, and 32-bit floating-point, then IEEE 754–compatible 32-bit floating-point.  
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Some fixed-function logic within a GPU, such as texture-filtering hardware, 
 continues to use proprietary numeric formats. Recent GPUs also provide IEEE 754 
compatible double precision 64-bit floating-point instructions.

Supported Formats
The IEEE 754 standard for floating-point arithmetic [2008] specifies basic and 
storage formats. GPUs use two of the basic formats for computation, 32-bit and 
64-bit binary floating-point, commonly called single precision and double pre-
cision. The standard also specifies a 16-bit binary storage floating-point format, 
half precision. GPUs and the Cg shading language employ the narrow 16-bit 
half data format for efficient data storage and movement, while maintaining high 
dynamic range. GPUs perform many texture filtering and pixel blending computa-
tions at half precision within the texture filtering unit and the raster operations 
unit. The OpenEXR high dynamic-range image file format developed by Industrial 
Light and Magic [2003] uses the identical half format for color component values 
in computer imaging and motion picture applications. 

Basic Arithmetic 
Common single precision floating-point operations in GPU programmable cores 
include addition, multiplication, multiply-add, minimum, maximum, compare, 
set predicate, and conversions between integer and floating-point numbers. 
Floating-point instructions often provide source operand modifiers for negation 
and absolute value. 

The floating-point addition and multiplication operations of most GPUs today 
are compatible with the IEEE 754 standard for single precision FP numbers, includ-
ing not-a-number (NaN) and infinity values. The FP addition and multiplica-
tion operations use IEEE round-to-nearest-even as the default rounding mode. 
To increase floating-point instruction throughput, GPUs often use a compound 
multiply-add instruction (mad). The multiply-add operation performs FP multipli-
cation with truncation, followed by FP addition with round-to-nearest-even. It 
provides two floating-point operations in one issuing cycle, without requiring the 
instruction scheduler to dispatch two separate instructions, but the computation 
is not fused and truncates the product before the addition. This makes it different 
from the fused multiply-add instruction discussed in Chapter 3 and later in this 
section. GPUs typically flush denormalized source operands to sign-preserved zero, 
and they flush results that underflow the target output exponent range to sign-
 preserved zero after rounding.

Specialized Arithmetic
GPUs provide hardware to accelerate special function computation, attribute 
interpolation, and texture filtering. Special function instructions include cosine, 

half precision A 16-bit 
binary floating-point 
format, with 1 sign bit, 
5-bit exponent, 10-bit 
fraction, and an implied 
integer bit.

multiply-add (MAD) 
A single floating-point 
instruction that performs 
a compound operation: 
multiplication followed 
by addition. 

A-42 Appendix A Graphics and Computing GPUs



sine, binary exponential, binary logarithm, reciprocal, and reciprocal square root. 
Attribute interpolation instructions provide efficient generation of pixel attributes, 
derived from plane equation evaluation. The special function unit (SFU)
introduced in Section A.4 computes special functions and interpolates planar 
attributes [Oberman and Siu, 2005]. 

Several methods exist for evaluating special functions in hardware. It has been 
shown that quadratic interpolation based on Enhanced Minimax Approximations 
is a very efficient method for approximating functions in hardware, including 
reciprocal, reciprocal square-root, log2x, 2x, sin, and cos. 

We can summarize the method of SFU quadratic interpolation. For a binary 
input operand X with n-bit significand, the significand is divided into two parts: 
Xu is the upper part containing m bits, and Xl is the lower part containing n-m bits. 
The upper m bits Xu are used to consult a set of three lookup tables to return three 
finite-word coefficients C0, C1, and C2. Each function to be approximated requires 
a unique set of tables. These coefficients are used to approximate a given function 
f(X) in the range Xu <= X < Xu + 2-m by evaluating the expression:

f(X) = C0 + C1 Xl + C2 Xl
2

The accuracy of each of the function estimates ranges from 22 to 24 significand 
bits. Example function statistics are shown in Figure A.6.1.

The IEEE 754 standard specifies exact-rounding requirements for division 
and square root, however, for many GPU applications, exact compliance is not 
required. Rather, for those applications, higher computational throughput is more 
important than last-bit accuracy. For the SFU special functions, the CUDA math 
library provides both a full accuracy function and a fast function with the SFU 
instruction accuracy. 

Another specialized arithmetic operation in a GPU is attribute interpolation. 
Key attributes are usually specified for vertices of primitives that make up a scene 
to be rendered. Example attributes are color, depth, and texture coordinates. These 
attributes must be interpolated in the (x,y) screen space as needed to determine the 

special function unit 
(SFU) A hardware unit 
that computes special 
functions and interpolates 
planar attributes.

Function
Input  

interval
Accuracy

(good bits)
ULP* 
error

% exactly 
rounded Monotonic

1/x [1, 2) 24.02 0.98 87 Yes

1/sqrt(x) [1, 4) 23.40 1.52 78 Yes

2x [0, 1) 22.51 1.41 74 Yes

log2x [1, 2) 22.57 N/A** N/A Yes

sin/cos [0, p/2) 22.47 N/A N/A No

* **

FIGURE A.6.1 Special function approximation statistics. For the NVIDIA GeForce 8800 special 
function unit (SFU). 

ULP: unit in the last place. N/A: not applicable.
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values of the attributes at each pixel location. The value of a given attribute U in an 
(x,y) plane can be expressed using plane equations of the form: 

U(x,y) = Aux + Buy + Cu 

where A, B, and C are interpolation parameters associated with each attribute U. 
The interpolation parameters A, B, and C are all represented as single precision 
floating-point numbers. 

Given the need for both a function evaluator and an attribute interpolator in a 
pixel shader processor, a single SFU that performs both functions for efficiency can 
be designed. Both functions use a sum of products operation to interpolate results, 
and the number of terms to be summed in both functions is very similar. 

Texture Operations

Texture mapping and filtering is another key set of specialized floating-point 
arithmetic operations in a GPU. The operations used for texture mapping include:

1. Receive texture address (s, t) for the current screen pixel (x, y), where s and t 
are single precision floating-point numbers.

2. Compute the level of detail to identify the correct texture MIP-map level. 

3. Compute the trilinear interpolation fraction. 

4. Scale texture address (s, t) for the selected MIP-map level. 

5. Access memory and retrieve desired texels (texture elements). 

6. Perform filtering operation on texels. 

Texture mapping requires a significant amount of floating-point computation 
for full-speed operation, much of which is done at 16-bit half precision. As an 
example, the GeForce 8800 Ultra delivers about 500 GFLOPS of proprietary format 
floating-point computation for texture mapping instructions, in addition to its 
conventional IEEE single precision floating-point instructions. For more details on 
texture mapping and filtering, see Foley and van Dam [1995].

Performance
The floating-point addition and multiplication arithmetic hardware is fully 
pipelined, and latency is optimized to balance delay and area. While pipelined, the 
throughput of the special functions is less than the floating-point addition and 
multiplication operations. Quarter-speed throughput for the special functions 
is typical performance in modern GPUs, with one SFU shared by four SP cores. 
In contrast, CPUs typically have significantly lower throughput for similar 
functions, such as division and square root, albeit with more accurate results. The 
attribute interpolation hardware is typically fully pipelined to enable full-speed 
pixel shaders.

MIP-map A Latin phrase 
multum in parvo, or 
much in a small space. 
A MIP-map contains 
precalculated images of 
different resolutions, used 
to increase rendering 
speed and reduce artifacts.



Double precision
Newer GPUs such as the Tesla T10P also support IEEE 754 64-bit double  precision 
operations in hardware. Standard floating-point arithmetic operations in double 
precision include addition, multiplication, and conversions between different 
floating-point and integer formats. The 2008 IEEE 754 floating-point standard 
includes specification for the fused-multiply-add operation (FMA), as discussed in 
Chapter 3. The FMA operation performs a floating-point multiplication followed 
by an addition, with a single rounding. The fused multiplication and addition 
operations retain full accuracy in intermediate calculations. This behavior enables 
more accurate floating-point computations involving the accumulation of prod-
ucts, including dot products, matrix multiplication, and polynomial evaluation. 
The FMA instruction also enables efficient software implementations of exactly 
rounded division and square root, removing the need for a hardware division or 
square root unit. 

A double precision hardware FMA unit implements 64-bit addition, multipli-
cation, conversions, and the FMA operation itself. The architecture of a double 

FIGURE A.6.2 Double precision fused-multiply-add (FMA) unit. Hardware to implement floating-
point A × B + C for double precision. 
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precision FMA unit enables full-speed denormalized number support on both 
inputs and outputs. Figure A.6.2 shows a block diagram of an FMA unit. 

As shown in Figure A.6.2, the significands of A and B are multiplied to form 
a 106-bit product, with the results left in carry-save form. In parallel, the 53-bit 
addend C is conditionally inverted and aligned to the 106-bit product. The sum and 
carry results of the 106-bit product are summed with the aligned addend through a  
161-bit-wide carry-save adder (CSA). The carry-save output is then summed together 
in a carry-propagate adder to produce an unrounded result in nonredundant, two’s 
complement form. The result is conditionally recomplemented, so as to return a 
result in sign-magnitude form. The complemented result is normalized, and then 
it is rounded to fit within the target format.

 A.7 Real Stuff: The NVIDIA GeForce 8800

The NVIDIA GeForce 8800 GPU, introduced in November 2006, is a unified v ertex 
and pixel processor design that also supports parallel computing applications 
 written in C using the CUDA parallel programming model. It is the first imple-
mentation of the Tesla unified graphics and computing architecture described in 
Section A.4 and in Lindholm, Nickolls, Oberman, and Montrym [2008]. A family 
of Tesla architecture GPUs addresses the different needs of laptops, desktops, work-
stations, and servers. 

Streaming Processor Array (SPA)
The GeForce 8800 GPU shown in Figure A.7.1 contains 128 streaming processor 
(SP) cores organized as 16 streaming multiprocessors (SMs). Two SMs share 
a texture unit in each texture/processor cluster (TPC). An array of eight TPCs 
makes up the streaming processor array (SPA), which executes all graphics shader 
programs and computing programs. 

The host interface unit communicates with the host CPU via the PCI-Express 
bus, checks command consistency, and performs context switching. The input 
assembler collects geometric primitives (points, lines, triangles). The work distri-
bution blocks dispatch vertices, pixels, and compute thread arrays to the TPCs in 
the SPA. The TPCs execute vertex and geometry shader programs and computing 
programs. Output geometric data is sent to the viewport/clip/setup/raster/zcull 
block to be rasterized into pixel fragments that are then redistributed back into the 
SPA to execute pixel shader programs. Shaded pixels are sent across the intercon-
nection network for processing by the ROP units. The network also routes tex-
ture memory read requests from the SPA to DRAM and reads data from DRAM 
through a level-2 cache back to the SPA.



Texture/Processor Cluster (TPC)
Each TPC contains a geometry controller, an SM controller (SMC), two streaming 
multiprocessors (SMs), and a texture unit as shown in Figure A.7. 2.

The geometry controller maps the logical graphics vertex pipeline into recir-
culation on the physical SMs by directing all primitive and vertex attribute and 
topology flow in the TPC.

The SMC controls multiple SMs, arbitrating the shared texture unit, load/store 
path, and I/O path. The SMC serves three graphics workloads simultaneously: 
vertex, geometry, and pixel.

The texture unit processes a texture instruction for one vertex, geometry, or pixel 
quad, or four compute threads per cycle. Texture instruction sources are texture 
coordinates, and the outputs are weighted samples, typically a four- component 
(RGBA) floating-point color. The texture unit is deeply pipelined. Although it 

FIGURE A.7.1 NVIDIA Tesla unified graphics and computing GPU architecture. This GeForce 8800 has 128 streaming processor 
(SP) cores in 16 streaming multiprocessors (SM), arranged in eight texture/processor clusters (TPC). The processors connect with six 64-bit-wide 
DRAM partitions via an interconnection network. Other GPUs implementing the Tesla architecture vary the number of SP cores, SMs, DRAM 
partitions, and other units. 
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contains a streaming cache to capture filtering locality, it streams hits mixed with 
misses without stalling.

Streaming Multiprocessor (SM)
The SM is a unified graphics and computing multiprocessor that executes vertex, 
geometry, and pixel-fragment shader programs and parallel computing programs. 
The SM consists of eight SP thread processor cores, two SFUs, a multithreaded 
instruction fetch and issue unit (MT issue), an instruction cache, a read-only constant 
cache, and a 16 KB read/write shared memory. It executes scalar instructions for 
individual threads.

The GeForce 8800 Ultra clocks the SP cores and SFUs at 1.5 GHz, for a peak of 
36 GFLOPS per SM. To optimize power and area efficiency, some SM nondatapath 
units operate at half the SP clock rate.

SMC

Geometry Controller

TPC

Texture Unit

Tex L1

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU
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Memory

I-Cache

MT Issue

C-Cache

SFU SFU

SM

SM SM

SP

SP

SP

SP SP

SP

SP

SP

FIGURE A.7.2 Texture/processor cluster (TPC) and a streaming multiprocessor (SM). Each SM has eight streaming processor 
(SP) cores, two SFUs, and a shared memory. 



To efficiently execute hundreds of parallel threads while running several 
different programs, the SM is hardware multithreaded. It manages and executes up 
to 768 concurrent threads in hardware with zero scheduling overhead. Each thread 
has its own thread execution state and can execute an independent code path.

A warp consists of up to 32 threads of the same type—vertex, geometry, pixel, 
or compute. The SIMT design, previously described in Section A.4, shares the SM 
instruction fetch and issue unit efficiently across 32 threads but requires a full warp 
of active threads for full performance efficiency.

The SM schedules and executes multiple warp types concurrently. Each issue 
cycle, the scheduler selects one of the 24 warps to execute a SIMT warp instruction. 
An issued warp instruction executes as four sets of 8 threads over four processor 
cycles. The SP and SFU units execute instructions independently, and by issuing 
instructions between them on alternate cycles, the scheduler can keep both fully 
occupied. A scoreboard qualifies each warp for issue each cycle. The instruction 
scheduler prioritizes all ready warps and selects the one with highest priority for 
issue. Prioritization considers warp type, instruction type, and “fairness” to all 
warps executing in the SM. 

The SM executes cooperative thread arrays (CTAs) as multiple concurrent 
warps which access a shared memory region allocated dynamically for the CTA. 

Instruction Set
Threads execute scalar instructions, unlike previous GPU vector instruction 
architectures. Scalar instructions are simpler and compiler friendly. Texture 
instructions remain vector based, taking a source coordinate vector and returning 
a filtered color vector.

The register-based instruction set includes all the floating-point and integer 
arithmetic, transcendental, logical, flow control, memory load/store, and texture 
instructions listed in the PTX instruction table of Figure A.4.3. Memory load/store 
instructions use integer byte addressing with register-plus-offset address  arithmetic. 
For computing, the load/store instructions access three read-write memory spaces: 
local memory for per-thread, private, temporary data; shared memory for low-
latency per-CTA data shared by the threads of the CTA; and global memory for 
data shared by all threads. Computing programs use the fast barrier synchroniza-
tion bar.sync instruction to synchronize threads within a CTA that communicate 
with each other via shared and global memory. The latest Tesla architecture GPUs 
implement PTX atomic memory operations, which facilitate parallel  reductions 
and parallel data structure management.

Streaming Processor (SP)
The multithreaded SP core is the primary thread processor, as introduced in 
Section A.4. Its register file provides 1024 scalar 32-bit registers for up to 96 
threads (more threads than the example SP of Section A.4). Its floating-point 
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add and multiply operations are compatible with the IEEE 754 standard for 
single precision FP numbers, including not-a-number (NaN) and infinity. The 
add and multiply operations use IEEE round-to-nearest-even as the default 
rounding mode. The SP core also implements all of the 32-bit and 64-bit integer 
arithmetic, comparison, conversion, and logical PTX instructions in Figure A.4.3. 
The processor is fully pipelined, and latency is optimized to balance delay  
and area. 

Special Function Unit (SFU)
The SFU supports computation of both transcendental functions and planar 
attribute interpolation. As described in Section A.6, it uses quadratic interpola-
tion based on enhanced minimax approximations to approximate the reciprocal, 
reciprocal square root, log2x, 2x, and sin/cos functions at one result per cycle. The 
SFU also supports pixel attribute interpolation such as color, depth, and texture 
coordinates at four samples per cycle.

Rasterization
Geometry primitives from the SMs go in their original round-robin input order 
to the viewport/clip/setup/raster/zcull block. The viewport and clip units clip 
the primitives to the view frustum and to any enabled user clip planes, and then 
transform the vertices into screen (pixel) space.

Surviving primitives then go to the setup unit, which generates edge equations 
for the rasterizer. A coarse-rasterization stage generates all pixel tiles that are at 
least partially inside the primitive. The zcull unit maintains a hierarchical z surface, 
rejecting pixel tiles if they are conservatively known to be occluded by previously 
drawn pixels. The rejection rate is up to 256 pixels per clock. Pixels that survive 
zcull then go to a fine-rasterization stage that generates detailed coverage informa-
tion and depth values.

The depth test and update can be performed ahead of the fragment shader, or 
after, depending on current state. The SMC assembles surviving pixels into warps 
to be processed by an SM running the current pixel shader. The SMC then sends 
surviving pixel and associated data to the ROP.

Raster Operations Processor (ROP) and Memory System
Each ROP is paired with a specific memory partition. For each pixel fragment 
emitted by a pixel shader program, ROPs perform depth and stencil testing and 
updates, and in parallel, color blending and updates. Lossless color compression (up 
to 8:1) and depth compression (up to 8:1) are used to reduce DRAM bandwidth. 
Each ROP has a peak rate of four pixels per clock and supports 16-bit floating-
point and 32-bit floating-point HDR formats. ROPs support double-rate-depth 
processing when color writes are disabled.
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Antialiasing support includes up to 16× multisampling and supersampling. The 
coverage-sampling antialiasing (CSAA) algorithm computes and stores Boolean 
coverage at up to 16 samples and compresses redundant color, depth, and stencil 
information into the memory footprint and a bandwidth of four or eight samples 
for improved performance. 

The DRAM memory data bus width is 384 pins, arranged in six independent 
partitions of 64 pins each. Each partition supports double-data-rate DDR2 and 
graphics-oriented GDDR3 protocols at up to 1.0 GHz, yielding a bandwidth of 
about 16 GB/s per partition, or 96 GB/s.

The memory controllers support a wide range of DRAM clock rates, protocols, 
device densities, and data bus widths. Texture and load/store requests can occur 
between any TPC and any memory partition, so an interconnection network routes 
requests and responses.

Scalability
The Tesla unified architecture is designed for scalability. Varying the number of 
SMs, TPCs, ROPs, caches, and memory partitions provides the right balance for 
different performance and cost targets in GPU market segments. Scalable link 
interconnect (SLI) connects multiple GPUs, providing further scalability. 

Performance
The GeForce 8800 Ultra clocks the SP thread processor cores and SFUs at 1.5 GHz, 
for a theoretical operation peak of 576 GFLOPS. The GeForce 8800 GTX has a  
1.35 GHz processor clock and a corresponding peak of 518 GFLOPS. 

The following three sections compare the performance of a GeForce 8800 GPU 
with a multicore CPU on three different applications—dense linear algebra, fast 
Fourier transforms, and sorting. The GPU programs and libraries are compiled 
CUDA C code. The CPU code uses the single precision multithreaded Intel MKL 
10.0 library to leverage SSE instructions and multiple cores.

Dense Linear Algebra Performance
Dense linear algebra computations are fundamental in many applications. Volkov 
and Demmel [2008] present GPU and CPU performance results for single precision 
dense matrix-matrix multiplication (the SGEMM routine) and LU, QR, and 
Cholesky matrix factorizations. Figure A.7.3 compares GFLOPS rates on SGEMM 
dense matrix-matrix multiplication for a GeForce 8800 GTX GPU with a quad-core 
CPU. Figure A.7.4 compares GFLOPS rates on matrix factorization for a GPU with 
a quad-core CPU. 

Because SGEMM matrix-matrix multiply and similar BLAS3 routines are the 
bulk of the work in matrix factorization, their performance sets an upper bound on 
factorization rate. As the matrix order increases beyond 200 to 400, the factorization 
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FIGURE A.7.3 SGEMM dense matrix-matrix multiplication performance rates. The graph 
shows single precision GFLOPS rates achieved in multiplying square N×N matrices (solid lines) and thin 
N×64 and 64×N matrices (dashed lines). Adapted from Figure 6 of Volkov and Demmel [2008]. The black 
lines are a 1.35 GHz GeForce 8800 GTX using Volkov’s SGEMM code (now in NVIDIA CUBLAS 2.0) on 
matrices in GPU memory. The blue lines are a quad-core 2.4 GHz Intel Core2 Quad Q6600, 64-bit Linux, 
Intel MKL 10.0 on matrices in CPU memory. 
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FIGURE A.7.4 Dense matrix factorization performance rates. The graph shows GFLOPS rates 
achieved in matrix factorizations using the GPU and using the CPU alone. Adapted from Figure 7 of Volkov 
and Demmel [2008]. The black lines are a 1.35 GHz NVIDIA GeForce 8800 GTX, CUDA 1.1, Windows XP 
attached to a 2.67 GHz Intel Core2 Duo E6700 Windows XP, including all CPU–GPU data transfer times. The 
blue lines are a quad-core 2.4 GHz Intel Core2 Quad Q6600, 64-bit Linux, Intel MKL 10.0. 
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problem becomes large enough that SGEMM can leverage the GPU parallelism and 
overcome the CPU–GPU system and copy overhead. Volkov’s SGEMM matrix-
matrix multiply achieves 206 GFLOPS, about 60% of the GeForce 8800 GTX 
peak multiply-add rate, while the QR factorization reached 192 GFLOPS, about 
4.3 times the quad-core CPU. 

FFT Performance
Fast Fourier Transforms are used in many applications. Large transforms and 
multidimensional transforms are partitioned into batches of smaller 1D transforms.

Figure A.7.5 compares the in-place 1D complex single precision FFT perfor-
mance of a 1.35 GHz GeForce 8800 GTX (dating from late 2006) with a 2.8 GHz 
quad-Core Intel Xeon E5462 series (code named “Harpertown,” dating from late 
2007). CPU performance was measured using the Intel Math Kernel Library (MKL) 
10.0 FFT with four threads. GPU performance was measured using the NVIDIA 
CUFFT 2.1 library and batched 1D radix-16 decimation-in-frequency FFTs. Both 
CPU and GPU throughput performance was measured using batched FFTs, batch 
size was 224/n, where n is the transform size. Thus, the workload for every trans-
form size was 128 MB. To determine GFLOPS rate, the number of operations per 
transform was taken as 5n log2 n.

FIGURE A.7.5 Fast Fourier Transform throughput performance. The graph compares the 
performance of batched one-dimensional in-place complex FFTs on a 1.35 GHz GeForce 8800 GTX with 
a quad-core 2.8 GHz Intel Xeon E5462 series (code named “Harpertown”), 6MB L2 Cache, 4GB Memory, 
1600 FSB, Red Hat Linux, Intel MKL 10.0. 
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Sorting Performance
In contrast to the applications just discussed, sort requires far more substantial 
coordination among parallel threads, and parallel scaling is correspondingly 
harder to obtain. Nevertheless, a variety of well-known sorting algorithms can 
be efficiently parallelized to run well on the GPU. Satish, et al. [2008] detail the 
design of sorting algorithms in CUDA, and the results they report for radix sort are 
summarized below.

Figure A.7.6 compares the parallel sorting performance of a GeForce 8800 Ultra 
with an 8-core Intel Clovertown system, both of which date to early 2007. The 
CPU cores are distributed between two physical sockets. Each socket contains a 
multichip module with twin Core2 chips, and each chip has a 4MB L2 cache. All 
sorting routines were designed to sort key-value pairs where both keys and values 
are 32-bit integers. The primary algorithm being studied is radix sort, although 
the quicksort-based parallel_sort() procedure provided by Intel’s Threading 
Building Blocks is also included for comparison. Of the two CPU-based radix sort 
codes, one was implemented using only the scalar instruction set and the other 
utilizes carefully hand-tuned assembly language routines that take advantage of the 
SSE2 SIMD vector instructions.

The graph itself shows the achieved sorting rate—defined as the number of ele-
ments sorted divided by the time to sort—for a range of sequence sizes. It is  apparent 

0

10

20

30

40

50

60

70

80

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

M
ill

io
ns

Sequence Size

S
or

tin
g 

R
at

e 
(p

ai
rs

/s
ec

)

CPU quick sort CPU radix sort (scalar)
GPU radix sort CPU radix sort (SIMD)

FIGURE A.7.6 Parallel sorting performance. This graph compares sorting rates for parallel radix sort implementations on a 1.5 GHz 
GeForce 8800 Ultra and an 8-core 2.33 GHz Intel Core2 Xeon E5345 system. 
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from this graph that the GPU radix sort achieved the highest sorting rate for all 
 sequences of 8K-elements and larger. In this range, it is on average 2.6 times faster 
than the quicksort-based routine and roughly 2 times faster than the radix sort rou-
tines, all of which were using the eight available CPU cores. The CPU radix sort per-
formance varies widely, likely due to poor cache locality of its global permutations. 

 A.8 Real Stuff: Mapping Applications to GPUs

The advent of multicore CPUs and manycore GPUs means that mainstream 
processor chips are now parallel systems. Furthermore, their parallelism continues 
to scale with Moore’s law. The challenge is to develop mainstream visual computing 
and high-performance computing applications that transparently scale their 
parallelism to leverage the increasing number of processor cores, much as 3D 
graphics applications transparently scale their parallelism to GPUs with widely 
varying numbers of cores. 

This section presents examples of mapping scalable parallel computing 
applications to the GPU using CUDA. 

Sparse Matrices
A wide variety of parallel algorithms can be written in CUDA in a fairly 
straightforward manner, even when the data structures involved are not simple 
regular grids. Sparse matrix-vector multiplication (SpMV) is a good example of 
an important numerical building block that can be parallelized quite directly using 
the abstractions provided by CUDA. The kernels we discuss below, when combined 
with the provided CUBLAS vector routines, make writing iterative solvers such as 
the conjugate gradient method straightforward.

A sparse n × n matrix is one in which the number of nonzero entries m is only 
a small fraction of the total. Sparse matrix representations seek to store only the 
nonzero elements of a matrix. Since it is fairly typical that a sparse n × n matrix will 
contain only m = O(n) nonzero elements, this represents a substantial savings in 
storage space and processing time.

One of the most common representations for general unstructured sparse 
matrices is the compressed sparse row (CSR) representation. The m nonzero 
elements of the matrix A are stored in row-major order in an array Av. A second 
array Aj records the corresponding column index for each entry of Av. Finally, an 
array Ap of n + 1 elements records the extent of each row in the previous arrays; the 
entries for row i in Aj and Av extend from index Ap[i] up to, but not including, 
index Ap[i + 1]. This implies that Ap[0] will always be 0 and Ap[n] will always 
be the number of nonzero elements in the matrix. Figure A.8.1 shows an example 
of the CSR representation of a simple matrix.
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Given a matrix A in CSR form and a vector x, we can compute a single row of 
the product y = Ax using the multiply_row() procedure shown in Figure A.8.2. 
Computing the full product is then simply a matter of looping over all rows and 
computing the result for that row using multiply_row(), as in the serial C code 
shown in Figure A.8.3.

This algorithm can be translated into a parallel CUDA kernel quite easily. We 
simply spread the loop in csrmul_serial() over many parallel threads. Each 
thread will compute exactly one row of the output vector y. The code for this kernel 
is shown in Figure A.8.4. Note that it looks extremely similar to the serial loop 
used in the csrmul_serial() procedure. There are really only two points of 
difference. First, the row index for each thread is computed from the block and 
thread indices assigned to each thread, eliminating the for-loop. Second, we have a 
conditional that only evaluates a row product if the row index is within the bounds 
of the matrix (this is necessary since the number of rows n need not be a multiple 
of the block size used in launching the kernel).

float multiply_row(unsigned int rowsize,
                   unsigned int *Aj, // column indices for row
                   float *Av,        // nonzero entries for row
                   float *x)         // the RHS vector
{
    float sum = 0;

    for(unsigned int column=0; column<rowsize; ++column)
        sum += Av[column] * x[Aj[column]];

    return sum;

FIGURE A.8.1 Compressed sparse row (CSR) matrix. 
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FIGURE A.8.2 Serial C code for a single row of sparse matrix-vector multiply. 
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void csrmul_serial(unsigned int *Ap, unsigned int *Aj,
                   float *Av, unsigned int num_rows,
                   float *x, float *y)
{
    for(unsigned int row=0; row<num_rows; ++row)
    {
        unsigned int row_begin = Ap[row];
        unsigned int row_end   = Ap[row+1];

        y[row] = multiply_row(row_end-row_begin, Aj+row_begin,
                              Av+row_begin, x);
    }
}

FIGURE A.8.3 Serial code for sparse matrix-vector multiply. 

__global__
void csrmul_kernel(unsigned int *Ap, unsigned int *Aj,
                   float *Av, unsigned int num_rows,
                   float *x, float *y)
{
    unsigned int row = blockIdx.x*blockDim.x + threadIdx.x;

    if( row<num_rows )
    {
        unsigned int row_begin = Ap[row];
        unsigned int row_end   = Ap[row+1];

        y[row] = multiply_row(row_end-row_begin, Aj+row_begin,
                              Av+row_begin, x);
    }
}

FIGURE A.8.4 CUDA version of sparse matrix-vector multiply. 

Assuming that the matrix data structures have already been copied to the GPU 
device memory, launching this kernel will look like:
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unsigned int blocksize = 128;  // or any size up to 512
unsigned int nblocks   = (num_rows + blocksize - 1) / blocksize;
csrmul_kernel<<<nblocks,blocksize>>>(Ap, Aj, Av, num_rows, x, y);
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The pattern that we see here is a very common one. The original serial 
algorithm is a loop whose iterations are independent of each other. Such loops 
can be parallelized quite easily by simply assigning one or more iterations of the 
loop to each parallel thread. The programming model provided by CUDA makes 
expressing this type of parallelism particularly straightforward.

This general strategy of decomposing computations into blocks of independent 
work, and more specifically breaking up independent loop iterations, is not unique 
to CUDA. This is a common approach used in one form or another by various 
parallel programming systems, including OpenMP and Intel’s Threading Building 
Blocks.

Caching in Shared memory
The SpMV algorithms outlined above are fairly simplistic. There are a number of 
optimizations that can be made in both the CPU and GPU codes that can improve 
performance, including loop unrolling, matrix reordering, and register blocking. 
The parallel kernels can also be reimplemented in terms of data parallel scan 
operations presented by Sengupta, et al. [2007].

One of the important architectural features exposed by CUDA is the presence 
of the per-block shared memory, a small on-chip memory with very low latency. 
 Taking advantage of this memory can deliver substantial performance improve-
ments. One common way of doing this is to use shared memory as a software-
 managed cache to hold frequently reused data. Modifications using shared memory 
are shown in Figure A.8.5.

In the context of sparse matrix multiplication, we observe that several rows of 
A may use a particular array element x[i]. In many common cases, and particularly 
when the matrix has been reordered, the rows using x[i] will be rows near row i. 
We can therefore implement a simple caching scheme and expect to achieve some 
performance benefit. The block of threads processing rows i through j will load 
x[i] through x[j] into its shared memory. We will unroll the multiply_row() 
loop and fetch elements of x from the cache whenever possible. The resulting 
code is shown in Figure A.8.5. Shared memory can also be used to make other 
optimizations, such as fetching Ap[row+1] from an adjacent thread rather than 
refetching it from memory.

Because the Tesla architecture provides an explicitly managed on-chip shared 
memory, rather than an implicitly active hardware cache, it is fairly common to add 
this sort of optimization. Although this can impose some additional development 
burden on the programmer, it is relatively minor, and the potential performance 
benefits can be substantial. In the example shown above, even this fairly simple 
use of shared memory returns a roughly 20% performance improvement on 
representative matrices derived from 3D surface meshes. The availability of an 
explicitly managed memory in lieu of an implicit cache also has the advantage 
that caching and prefetching policies can be specifically tailored to the application 
needs.



__global__ 
void csrmul_cached(unsigned int *Ap, unsigned int *Aj,
                   float *Av, unsigned int num_rows,
                   const float *x, float *y)
{
    // Cache the rows of x[] corresponding to this block.
    __shared__ float cache[blocksize];

    unsigned int block_begin = blockIdx.x * blockDim.x;
    unsigned int block_end   = block_begin + blockDim.x;
    unsigned int row         = block_begin + threadIdx.x;

    // Fetch and cache our window of x[].
    if( row<num_rows)  cache[threadIdx.x] = x[row];
    __syncthreads();

    if( row<num_rows )
    {
        unsigned int row_begin = Ap[row];
        unsigned int row_end   = Ap[row+1];
        float sum = 0, x_j;

        for(unsigned int col=row_begin; col<row_end; ++col)
        {
            unsigned int j = Aj[col];
            
            // Fetch x_j from our cache when possible
            if( j>=block_begin && j<block_end )
                x_j = cache[j-block_begin];
            else
                x_j = x[j];

            sum += Av[col] * x_j;
        }

        y[row] = sum;
    }
}

FIGURE A.8.5 Shared memory version of sparse matrix-vector multiply. 
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These are fairly simple kernels whose purpose is to illustrate basic techniques 
in writing CUDA programs, rather than how to achieve maximal performance. 
Numerous possible avenues for optimization are available, several of which are 
explored by Williams, et al. [2007] on a handful of different multicore architectures. 
Nevertheless, it is still instructive to examine the comparative performance of 
even these simplistic kernels. On a 2 GHz Intel Core2 Xeon E5335 processor, 
the csrmul_serial() kernel runs at roughly 202 million nonzeros processed 
per second, for a collection of Laplacian matrices derived from 3D triangulated 
surface meshes. Parallelizing this kernel with the parallel_for construct 
provided by Intel’s Threading Building Blocks produces parallel speed-ups of 2.0, 
2.1, and 2.3 running on two, four, and eight cores of the machine, respectively. 
On a GeForce 8800 Ultra, the csrmul_kernel() and csrmul_cached() 
kernels achieve processing rates of roughly 772 and 920 million nonzeros per 
second, corresponding to parallel speed-ups of 3.8 and 4.6 times over the serial 
performance of a single CPU core. 

Scan and Reduction
Parallel scan, also known as parallel prefix sum, is one of the most important 
building blocks for data-parallel algorithms [Blelloch, 1990]. Given a sequence a 
of n elements:

[a0, a1, . . ., an-1]

and a binary associative operator Å, the scan function computes the sequence:

scan(a, Å) = [a0, (a0 Å a1), . . ., (a0 Å a1 Å . . . Å an-1)]

As an example, if we take Å to be the usual addition operator, then applying scan 
to the input array

a = [3 1 7 0 4 1 6 3]

will produce the sequence of partial sums:

scan(a, +) = [3 4 11 11 15 16 22 25]

This scan operator is an inclusive scan, in the sense that element i of the  output 
sequence incorporates element a i of the input. Incorporating only  previous 
elements would yield an exclusive scan operator, also known as a prefix-sum 
 operation.

The serial implementation of this operation is extremely simple. It is simply a 
loop that iterates once over the entire sequence, as shown in Figure A.8.6.

At first glance, it might appear that this operation is inherently serial. However, 
it can actually be implemented in parallel efficiently. The key observation is that 
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because addition is associative, we are free to change the order in which elements are 
added together. For instance, we can imagine adding pairs of consecutive elements 
in parallel, and then adding these partial sums, and so on.

One simple scheme for doing this is from Hillis and Steele [1989]. An 
implementation of their algorithm in CUDA is shown in Figure A.8.7. It assumes 
that the input array x[] contains exactly one element per thread of the thread 
block. It performs log2 n iterations of a loop collecting partial sums together.

To understand the action of this loop, consider Figure A.8.8, which illustrates 
the simple case for n = 8 threads and elements. Each level of the diagram represents 
one step of the loop. The lines indicate the location from which the data is being 
fetched. For each element of the output (i.e., the final row of the diagram) we are 
building a summation tree over the input elements. The edges highlighted in blue 
show the form of this summation tree for the final element. The leaves of this tree 
are all the initial elements. Tracing back from any output element shows that it 
incorporates all input values up to and including itself.

template<class T>
__host__ T plus_scan(T *x, unsigned int n)
{
    for(unsigned int i=1; i<n; ++i)
        x[i] = x[i-1] + x[i];
}

FIGURE A.8.6 Template for serial plus-scan. 

template<class T>
__device__ T plus_scan(T *x)
{
    unsigned int i = threadIdx.x;
    unsigned int n = blockDim.x;

    for(unsigned int offset=1; offset<n; offset *= 2)
    {
        T t;

        if(i>=offset)  t = x[i-offset];
        __syncthreads();

        if(i>=offset)  x[i] = t + x[i];
        __syncthreads();
    }
    return x[i];
}

FIGURE A.8.7 CUDA template for parallel plus-scan. 
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While simple, this algorithm is not as efficient as we would like. Examining 
the serial implementation, we see that it performs O(n) additions. The parallel 
implementation, in contrast, performs O(n log n) additions. For this reason, it 
is not work efficient, since it does more work than the serial implementation to 
compute the same result. Fortunately, there are other techniques for implementing 
scan that are work efficient. Details on more efficient implementation techniques 
and the extension of this per-block procedure to multiblock arrays are provided by 
Sengupta, et al. [2007].

In some instances, we may only be interested in computing the sum of all elements 
in an array, rather than the sequence of all prefix sums returned by scan. This is the 
parallel reduction problem. We could simply use a scan algorithm to perform this 
computation, but reduction can generally be implemented more efficiently than scan.

Figure A.8.9 shows the code for computing a reduction using addition. In 
this example, each thread simply loads one element of the input sequence (i.e., 
it initially sums a subsequence of length 1). At the end of the reduction, we want 
thread 0 to hold the sum of all elements initially loaded by the threads of its block. 
The loop in this kernel implicitly builds a summation tree over the input elements, 
much like the scan algorithm above.

At the end of this loop, thread 0 holds the sum of all the values loaded by this 
block. If we want the final value of the location pointed to by total to contain the 
total of all elements in the array, we must combine the partial sums of all the blocks 
in the grid. One strategy to do this would be to have each block write its partial 
sum into a second array and then launch the reduction kernel again, repeating 
the process until we had reduced the sequence to a single value. A more attractive 
alternative supported by the Tesla GPU architecture is to use the atomicAdd() 

FIGURE A.8.8 Tree-based parallel scan data references. 
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__global__
void plus_reduce(int *input, unsigned int N, int *total)
{
    unsigned int tid = threadIdx.x;
    unsigned int i   = blockIdx.x*blockDim.x + threadIdx.x;

    // Each block loads its elements into shared memory, padding
    // with 0 if N is not a multiple of blocksize
    __shared__ int x[blocksize];
    x[tid] = (i<N) ? input[i] : 0;
    __syncthreads();

    // Every thread now holds 1 input value in x[]
    //
    // Build summation tree over elements.
    for(int s=blockDim.x/2; s>0; s=s/2)
    {
        if(tid < s)  x[tid] += x[tid + s];
        __syncthreads();
    }

    // Thread 0 now holds the sum of all input values
    // to this block. Have it add that sum to the running total
    if( tid == 0 )  atomicAdd(total, x[tid]);
}

FIGURE A.8.9 CUDA implementation of plus-reduction. 
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primitive, an efficient atomic read-modify-write primitive supported by the 
memory subsystem. This eliminates the need for additional temporary arrays and 
repeated kernel launches.

Parallel reduction is an essential primitive for parallel programming and 
highlights the importance of per-block shared memory and low-cost barriers in 
making cooperation among threads efficient. This degree of data shuffling among 
threads would be prohibitively expensive if done in off-chip global memory. 

Radix Sort
One important application of scan primitives is in the implementation of sorting 
routines. The code in Figure A.8.10 implements a radix sort of integers across a 
single thread block. It accepts as input an array values containing one 32-bit 
integer for each thread of the block. For efficiency, this array should be stored in 
per-block shared memory, but this is not required for the sort to behave correctly.

This is a fairly simple implementation of radix sort. It assumes the availability 
of a procedure partition_by_bit() that will partition the given array such that 
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all values with a 0 in the designated bit will come before all values with a 1 in that 
bit. To produce the correct output, this partitioning must be stable.

Implementing the partitioning procedure is a simple application of scan. Thread 
i holds the value xi and must calculate the correct output index at which to write 
this value. To do so, it needs to calculate (1) the number of threads j < i for which 
the designated bit is 1 and (2) the total number of bits for which the designated bit 
is 0. The CUDA code for partition_by_bit() is shown in Figure A.8.11.

__device__ void partition_by_bit(unsigned int *values,
                                 unsigned int bit)
{
    unsigned int i    = threadIdx.x;    
    unsigned int size = blockDim.x;
    unsigned int x_i  = values[i];
    unsigned int p_i  = (x_i >> bit) & 1;

    values[i] = p_i;
    __syncthreads();

    // Compute number of T bits up to and including p_i.
    // Record the total number of F bits as well.
    unsigned int T_before = plus_scan(values);    
    unsigned int T_total  = values[size-1];
    unsigned int F_total  = size - T_total;
    __syncthreads();

    // Write every x_i to its proper place
    if( p_i )
        values[T_before-1 + F_total] = x_i;
    else
        values[i - T_before] = x_i;
}

FIGURE A.8.11 CUDA code to partition data on a bit-by-bit basis, as part of radix sort. 

__device__ void radix_sort(unsigned int *values)
{
    for(int bit=0; bit<32; ++bit)
    {
        partition_by_bit(values, bit);
        __syncthreads();
    }
}

FIGURE A.8.10 CUDA code for radix sort. 



A similar strategy can be applied for implementing a radix sort kernel that sorts 
an array of large length, rather than just a one-block array. The fundamental step 
remains the scan procedure, although when the computation is partitioned across 
multiple kernels, we must double-buffer the array of values rather than doing the 
partitioning in place. Details on performing radix sorts on large arrays efficiently 
are provided by Satish, Harris, and Garland [2008]. 

N-Body Applications on a GPU1

Nyland, Harris, and Prins [2007] describe a simple yet useful computational 
kernel with excellent GPU performance—the all-pairs N-body algorithm. It is a 
time-consuming component of many scientific applications. N-body simulations 
calculate the evolution of a system of bodies in which each body continuously 
interacts with every other body. One example is an astrophysical simulation in 
which each body represents an individual star, and the bodies gravitationally attract 
each other. Other examples are protein folding, where N-body simulation is used 
to calculate electrostatic and van der Waals forces; turbulent fluid flow simulation; 
and global illumination in computer graphics.

The all-pairs N-body algorithm calculates the total force on each body in the 
system by computing each pair-wise force in the system, summing for each body. 
Many scientists consider this method to be the most accurate, with the only loss of 
precision coming from the floating-point hardware operations. The drawback is its 
O(n2) computational complexity, which is far too large for systems with more than 
106 bodies. To overcome this high cost, several simplifications have been proposed 
to yield O(n log n) and O(n) algorithms; examples are the Barnes-Hut algorithm, 
the Fast Multipole Method and Particle-Mesh-Ewald summation. All of the fast 
methods still rely on the all-pairs method as a kernel for accurate computation of 
short-range forces; thus it continues to be important. 

N-Body Mathematics

For gravitational simulation, calculate the body-body force using elementary 
physics. Between two bodies indexed by i and j, the 3D force vector is:

fij = G   
mimj

  
||rij||

2
   ×   

rij
  

||rij||
  

The force magnitude is calculated in the left term, while the direction is computed 
in the right (unit vector pointing from one body to the other). 

Given a list of interacting bodies (an entire system or a subset), the calculation 
is simple: for all pairs of interactions, compute the force and sum for each body. 
Once the total forces are calculated, they are used to update each body’s position 
and velocity, based on the previous position and velocity. The calculation of the 
forces has complexity O(n2), while the update is O(n).

1 Adapted from Nyland, Harris and Prins [2007], “Fast N-Body Simulation with CUDA,” 
Chapter 31 of GPU Gems 3.
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void accel_on_all_bodies()
{
 int i, j;
 float3 acc(0.0f, 0.0f, 0.0f);

 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 acc = body_body_interaction(acc, body[i], body[j]);
 }
 accel[i] = acc;
 }
}

FIGURE A.8.12 Serial code to compute all pair-wise forces on N bodies. 

__global__ void accel_on_one_body()
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int j;
 float3 acc(0.0f, 0.0f, 0.0f);

 for (j = 0; j < N; j++) {
 acc = body_body_interaction(acc, body[i], body[j]);
 }
 accel[i] = acc;
}

FIGURE A.8.13 CUDA thread code to compute the total force on a single body. 

The serial force-calculation code uses two nested for-loops iterating over pairs 
of bodies. The outer loop selects the body for which the total force is being calcu-
lated, and the inner loop iterates over all the bodies. The inner loop calls a function 
that computes the pair-wise force, then adds the force into a running sum.

To compute the forces in parallel, we assign one thread to each body, since the 
calculation of force on each body is independent of the calculation on all other 
bodies. Once all of the forces are computed, the positions and velocities of the 
bodies can be updated.

The code for the serial and parallel versions is shown in Figure A.8.12 and 
Figure A.8.13. The serial version has two nested for-loops. The conversion to CUDA, 
like many other examples, converts the serial outer loop to a per-thread kernel 
where each thread computes the total force on a single body. The CUDA kernel 
computes a global thread ID for each thread, replacing the iterator variable of the 
serial outer loop. Both kernels finish by storing the total acceleration in a global 
array used to compute the new position and velocity values in a subsequent step.  
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The outer loop is replaced by a CUDA kernel grid that launches N threads, one for 
each body.

Optimization for GPU Execution

The CUDA code shown is functionally correct, but is not efficient, as it ignores 
key architectural features. Better performance can be achieved with three main 
optimizations. First, shared memory can be used to avoid identical memory reads 
between threads. Second, using multiple threads per body improves performance 
for small values of N. Third, loop unrolling reduces loop overhead.

Using Shared memory

Shared memory can hold a subset of body positions, much like a cache, eliminating 
redundant global memory requests between threads. We optimize the code shown 
above to have each of p threads in a thread-block load one position into shared 
memory (for a total of p positions). Once all the threads have loaded a value into 
shared memory, ensured by __syncthreads(), each thread can then perform p 
interactions (using the data in shared memory). This is repeated N/p times to 
complete the force calculation for each body, which reduces the number of requests 
to memory by a factor of p (typically in the range 32–128).

The function called accel_on_one_body() requires a few changes to support 
this optimization. The modified code is shown in Figure A.8.14.

__shared__ float4 shPosition[256];
…
__global__ void accel_on_one_body()
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int j, k;
 int p = blockDim.x;
 float3 acc(0.0f, 0.0f, 0.0f);
 float4 myBody = body[i];

 for (j = 0; j < N; j += p) {  // Outer loops jumps by p each time
 shPosition[threadIdx.x] = body[j+threadIdx.x];
 __syncthreads();
 for (k = 0; k < p; k++) { // Inner loop accesses p positions
 acc = body_body_interaction(acc, myBody, shPosition[k]);
 }
 __syncthreads();
 }
 accel[i] = acc;
}

FIGURE A.8.14 CUDA code to compute the total force on each body, using shared memory to improve performance. 
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The loop that formerly iterated over all bodies now jumps by the block 
dimension p. Each iteration of the outer loop loads p successive positions into 
shared memory (one position per thread). The threads synchronize, and then 
p force calculations are computed by each thread. A second synchronization is 
required to ensure that new values are not loaded into shared memory prior to all 
threads completing the force calculations with the current data.

Using shared memory reduces the memory bandwidth required to less than 
10% of the total bandwidth that the GPU can sustain (using less than 5 GB/s). 
This optimization keeps the application busy performing computation rather than 
waiting on memory accesses, as it would have without the use of shared memory. 
The performance for varying values of N is shown in Figure A.8.15.

Using Multiple Threads per Body

Figure A.8.15 shows performance degradation for problems with small values of N 
(N < 4096) on the GeForce 8800 GTX. Many research efforts that rely on N-body 
calculations focus on small N (for long simulation times), making it a target of 
our optimization efforts. Our presumption to explain the lower performance was 
that there was simply not enough work to keep the GPU busy when N is small. 
The solution is to allocate more threads per body. We change the thread-block 
dimensions from (p, 1, 1) to (p, q, 1), where q threads divide the work of a single body 
into equal parts. By allocating the additional threads within the same thread block, 
partial results can be stored in shared memory. When all the force calculations are 

FIGURE A.8.15 Performance measurements of the N-body application on a GeForce 8800 
GTX and a GeForce 9600. The 8800 has 128 stream processors at 1.35 GHz, while the 9600 has 64 at 
0.80 GHz (about 30% of the 8800). The peak performance is 242 GFLOPS. For a GPU with more processors, 
the problem needs to be bigger to achieve full performance (the 9600 peak is around 2048 bodies, while the 
8800 doesn’t reach its peak until 16,384 bodies). For small N, more than one thread per body can significantly 
improve performance, but eventually incurs a performance penalty as N grows. 
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done, the q partial results can be collected and summed to compute the final result. 
Using two or four threads per body leads to large improvements for small N.

As an example, the performance on the 8800 GTX jumps by 110% when N = 1024 
(one thread achieves 90 GFLOPS, where four achieve 190 GFLOPS). Performance 
degrades slightly on large N, so we only use this optimization for N smaller than 
4096. The performance increases are shown in Figure A.8.15 for a GPU with 128 
processors and a smaller GPU with 64 processors clocked at two-thirds the speed. 

Performance Comparison

The performance of the N-body code is shown in Figure A.8.15 and Figure A.8.16. 
In Figure A.8.15, performance of high- and medium-performance GPUs is shown, 
along with the performance improvements achieved by using multiple threads 
per body. The performance on the faster GPU ranges from 90 to just under 250 
GFLOPS. 

Figure A.8.16 shows nearly identical code (C++ versus CUDA) running on Intel 
Core2 CPUs. The CPU performance is about 1% of the GPU, in the range of 0.2 to 
2 GFLOPS, remaining nearly constant over the wide range of problem sizes. 
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FIGURE A.8.16 Performance measurements on the N-body code on a CPU. The graph shows 
single precision N-body performance using Intel Core2 CPUs, denoted by their CPU model number. Note 
the dramatic reduction in GFLOPS performance (shown in GFLOPS on the y-axis), demonstrating how 
much faster the GPU is compared to the CPU. The performance on the CPU is generally independent of 
problem size, except for an anomalously low performance when N=16,384 on the X9775 CPU. The graph 
also shows the results of running the CUDA version of the code (using the CUDA-for-CPU compiler) on a 
single CPU core, where it outperforms the C++ code by 24%. As a programming language, CUDA exposes 
parallelism and locality that a compiler can exploit. The Intel CPUs are a 3.2 GHz Extreme X9775 (code 
named “Penryn”), a 2.66 GHz E8200 (code named “Wolfdale”), a desktop, pre-Penryn CPU, and a 1.83 GHz 
T2400 (code named “Yonah”), a 2007 laptop CPU. The Penryn version of the Core 2 architecture is particu-
larly interesting for N-body calculations with its 4-bit divider, allowing division and square root operations 
to execute four times faster than previous Intel CPUs. 
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The graph also shows the results of compiling the CUDA version of the code 
for a CPU, where the performance improves by 24%. CUDA, as a programming 
language, exposes parallelism, allowing the compiler to make better use of the SSE 
vector unit on a single core. The CUDA version of the N-body code naturally maps 
to multicore CPUs as well (with grids of blocks), where it achieves nearly perfect 
scaling on an eight-core system with N = 4096 (ratios of 2.0, 3.97, and 7.94 on two, 
four, and eight cores, respectively).

Results

With a modest effort, we developed a computational kernel that improves GPU 
performance over multicore CPUs by a factor of up to 157. Execution time for 
the N-body code running on a recent CPU from Intel (Penryn X9775 at 3.2 GHz, 
single core) took more than 3 seconds per frame to run the same code that runs at a 
44 Hz frame rate on a GeForce 8800 GPU. On pre-Penryn CPUs, the code requires 
6–16 seconds, and on older Core2 processors and Pentium IV processor, the time 
is about 25 seconds. We must divide the apparent increase in performance in half, 
as the CPU requires only half as many calculations to compute the same result 
(using the optimization that the forces on a pair of bodies are equal in strength and 
opposite in direction).

How can the GPU speed up the code by such a large amount? The answer 
requires inspecting architectural details. The pair-wise force calculation requires 
20 floating-point operations, comprised mostly of addition and multiplication 
instructions (some of which can be combined using a multiply-add instruction), 
but there are also division and square root instructions for vector normaliza-
tion. Intel CPUs take many cycles for single precision division and square root 
instructions,2 although this has improved in the latest Penryn CPU family with 
its faster 4-bit divider.3 Additionally, the limitations in register capacity leads to 
many MOV instructions in the x86 code (presumably to/from L1 cache). In con-
trast, the GeForce 8800 executes a reciprocal square-root thread instruction in four 
clocks; see Section A.6 for special function accuracy. It has a larger register file (per 
thread) and shared memory that can be accessed as an instruction operand. Finally, 
the CUDA compiler emits 15 instructions for one iteration of the loop, compared 
with more than 40 instructions from a variety of x86 CPU compilers. Greater 
 parallelism, faster execution of complex instructions, more register space, and an 
efficient compiler all combine to explain the dramatic performance improvement 
of the N-body code between the CPU and the GPU.

2 The x86 SSE instructions reciprocal-square-root (RSQRT*) and reciprocal (RCP*) were not 
considered, as their accuracy is too low to be comparable.
3 Intel Corporation, Intel 64 and IA-32 Architectures Optimization Reference Manual. November 
2007. Order Number: 248966-016. Also available at www3.intel.com/design/processor/manuals/ 
248966.pdf.
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On a GeForce 8800, the all-pairs N-body algorithm delivers more than 240 
GFLOPS of performance, compared to less than 2 GFLOPS on recent sequential 
processors. Compiling and executing the CUDA version of the code on a CPU 
demonstrates that the problem scales well to multicore CPUs, but is still significantly 
slower than a single GPU.

We coupled the GPU N-body simulation with a graphical display of the motion, 
and can interactively display 16K bodies interacting at 44 frames per second. 
This allows astrophysical and biophysical events to be displayed and navigated at 
interactive rates. Additionally, we can parameterize many settings, such as noise 
reduction, damping, and integration techniques, immediately displaying their 
effects on the dynamics of the system. This provides scientists with stunning 
visual imagery, boosting their insights on otherwise invisible systems (too large 
or small, too fast or too slow), allowing them to create better models of physical 
phenomena.

Figure A.8.17 shows a time-series display of an astrophysical simulation 
of 16K bodies, with each body acting as a galaxy. The initial configuration is a 

FIGURE A.8.17 12 images captured during the evolution of an N-body system with 16,384 bodies. 
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spherical shell of bodies rotating about the z-axis. One phenomenon of interest 
to  astrophysicists is the clustering that occurs, along with the merging of galaxies 
over time. For the interested reader, the CUDA code for this application is available 
in the CUDA SDK from www.nvidia.com/CUDA.

 A.9 Fallacies and Pitfalls

GPUs have evolved and changed so rapidly that many fallacies and pitfalls have 
arisen. We cover a few here. 

Fallacy: GPUs are just SIMD vector multiprocessors. It is easy to draw the false 
conclusion that GPUs are simply SIMD vector multiprocessors. GPUs do have a 
SPMD-style programming model, in that a programmer can write a single pro-
gram that is executed in multiple thread instances with multiple data. The execu-
tion of these threads is not purely SIMD or vector, however; it is single-instruction 
multiple-thread (SIMT), described in Section A.4. Each GPU thread has its own 
scalar registers, thread private memory, thread execution state, thread ID, indepen-
dent execution and branch path, and effective program counter, and can address 
memory independently. Although a group of threads (e.g., a warp of 32 threads) 
executes more efficiently when the PCs for the threads are the same, this is not 
 necessary. So, the multiprocessors are not purely SIMD. The thread execution 
model is MIMD with barrier synchronization and SIMT optimizations. Execution 
is more efficient if individual thread load/store memory accesses can be coalesced 
into block accesses, as well. However, this is not strictly necessary. In a purely SIMD 
vector architecture, memory/register accesses for different threads must be aligned 
in a regular vector pattern. A GPU has no such restriction for register or mem-
ory accesses; however, execution is more efficient if warps of threads access local  
blocks of data.

In a further departure from a pure SIMD model, an SIMT GPU can execute 
more than one warp of threads concurrently. In graphics applications, there may 
be multiple groups of vertex programs, pixel programs, and geometry programs 
running in the multiprocessor array concurrently. Computing programs may also 
execute different programs concurrently in different warps.

Fallacy: GPU performance cannot grow faster than Moore’s law. Moore’s law 
is simply a rate. It is not a “speed of light” limit for any other rate. Moore’s law 
describes an expectation that over time, as semiconductor technology advances 
and transistors become smaller, the manufacturing cost per transistor will decline 
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exponentially. Put another way, given a constant manufacturing cost, the number 
of transistors will increase exponentially. Gordon Moore [1965] predicted that 
this progression would provide roughly two times the number of transistors for 
the same manufacturing cost every year, and later revised it to doubling every 
two years. Although Moore made the initial prediction in 1965 when there were 
just 50 components per integrated circuit, it has proved remarkably consistent. The 
reduction of transistor size has historically had other benefits, such as lower power 
per transistor and faster clock speeds at constant power.

This increasing bounty of transistors is used by chip architects to build proces-
sors, memory, and other components. For some time, CPU designers have used 
the extra transistors to increase processor performance at a rate similar to Moore’s 
law, so much so that many people think that processor performance growth of two 
times every 18–24 months is Moore’s law. In fact, it is not.

Microprocessor designers spend some of the new transistors on processor cores, 
improving the architecture and design, and pipelining for more clock speed. The 
rest of the new transistors are used for providing more cache, to make memory 
access faster. In contrast, GPU designers use almost none of the new transistors to 
provide more cache; most of the transistors are used for improving the processor 
cores and adding more processor cores.

GPUs get faster by four mechanisms. First, GPU designers reap the Moore’s law 
bounty directly by applying exponentially more transistors to building more parallel, 
and thus faster, processors. Second, GPU designers can improve on the architecture 
over time, increasing the efficiency of the processing. Third, Moore’s law assumes 
constant cost, so the Moore’s law rate can clearly be exceeded by spending more for 
larger chips with more transistors. Fourth, GPU memory systems have increased 
their effective bandwidth at a pace nearly comparable to the processing rate, by 
using faster memories, wider memories, data compression, and better caches. The 
combination of these four approaches has historically allowed GPU performance 
to double regularly, roughly every 12 to 18 months. This rate, exceeding the rate 
of Moore’s law, has been demonstrated on graphics applications for approximately 
ten years and shows no sign of significant slowdown. The most challenging rate 
limiter appears to be the memory system, but competitive innovation is advancing 
that rapidly too. 

Fallacy: GPUs only render 3D graphics; they can’t do general computation.  
GPUs are built to render 3D graphics as well as 2D graphics and video. To meet 
the demands of graphics software developers as expressed in the interfaces and 
 performance/feature requirements of the graphics APIs, GPUs have become mas-
sively parallel programmable floating-point processors. In the graphics domain, 
these processors are programmed through the graphics APIs and with arcane 
graphics programming languages (GLSL, Cg, and HLSL, in OpenGL and Direct3D). 
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However, there is nothing preventing GPU architects from exposing the parallel 
processor cores to programmers without the graphics API or the arcane graphics 
languages.

In fact, the Tesla architecture family of GPUs exposes the processors through 
a software environment known as CUDA, which allows programmers to develop 
general application programs using the C language and soon C++. GPUs are 
Turing-complete processors, so they can run any program that a CPU can run, 
although perhaps less well. And perhaps faster.

Fallacy: GPUs cannot run double precision floating-point programs fast. In the 
past, GPUs could not run double precision floating-point programs at all, except 
through software emulation. And that’s not very fast at all. GPUs have made the 
progression from indexed arithmetic representation (lookup tables for colors) to 
8-bit integers per color component, to fixed-point arithmetic, to single precision 
floating-point, and recently added double precision. Modern GPUs perform 
virtually all calculations in single precision IEEE floating-point arithmetic, and are 
beginning to use double precision in addition.

For a small additional cost, a GPU can support double precision floating-point 
as well as single precision floating-point. Today, double precision runs more slowly 
than the single precision speed, about five to ten times slower. For incremental 
additional cost, double precision performance can be increased relative to single 
precision in stages, as more applications demand it.

Fallacy: GPUs don’t do floating-point correctly. GPUs, at least in the Tesla archi-
tecture family of processors, perform single precision floating-point processing at 
a level prescribed by the IEEE 754 floating-point standard. So, in terms of accuracy, 
GPUs are the equal of any other IEEE 754–compliant processors.

Today, GPUs do not implement some of the specific features described in the 
standard, such as handling denormalized numbers and providing precise floating-
point exceptions. However, the recently introduced Tesla T10P GPU provides full 
IEEE rounding, fused-multiply-add, and denormalized number support for double 
precision.

Pitfall: Just use more threads to cover longer memory latencies. CPU cores are 
typically designed to run a single thread at full speed. To run at full speed, every 
instruction and its data need to be available when it is time for that instruction to 
run. If the next instruction is not ready or the data required for that instruction is 
not available, the instruction cannot run and the processor stalls. External memory 
is distant from the processor, so it takes many cycles of wasted execution to fetch 
data from memory. Consequently, CPUs require large local caches to keep running 
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without stalling. Memory latency is long, so it is avoided by striving to run in the 
cache. At some point, program working set demands may be larger than any cache. 
Some CPUs have used multithreading to tolerate latency, but the number of threads 
per core has generally been limited to a small number. 

The GPU strategy is different. GPU cores are designed to run many threads 
concurrently, but only one instruction from any thread at a time. Another way to 
say this is that a GPU runs each thread slowly, but in aggregate runs the threads 
efficiently. Each thread can tolerate some amount of memory latency, because 
other threads can run.

The downside of this is that multiple—many multiple threads—are required 
to cover the memory latency. In addition, if memory accesses are scattered or not 
correlated among threads, the memory system will get progressively slower in 
responding to each individual request. Eventually, even the multiple threads will 
not be able to cover the latency. So, the pitfall is that for the “just use more threads” 
strategy to work for covering latency, you have to have enough threads, and the 
threads have to be well-behaved in terms of locality of memory access.

Fallacy: O(n) algorithms are difficult to speed up. No matter how fast the GPU is 
at processing data, the steps of transferring data to and from the device may limit 
the performance of algorithms with O(n) complexity (with a small amount of work 
per datum). The highest transfer rate over the PCIe bus is approximately 48 GB/
second when DMA transfers are used, and slightly less for nonDMA transfers. The 
CPU, in contrast, has typical access speeds of 8–12 GB/second to system memory. 
Example problems, such as vector addition, will be limited by the transfer of the 
inputs to the GPU and the returning output from the computation.

There are three ways to overcome the cost of transferring data. First, try to leave 
the data on the GPU for as long as possible, instead of moving the data back and 
forth for different steps of a complicated algorithm. CUDA deliberately leaves data 
alone in the GPU between launches to support this.

Second, the GPU supports the concurrent operations of copy-in, copy-out and 
computation, so data can be streamed in and out of the device while it is computing. 
This model is useful for any data stream that can be processed as it arrives. Examples 
are video processing, network routing, data compression/decompression, and even 
simpler computations such as large vector mathematics.

The third suggestion is to use the CPU and GPU together, improving performance 
by assigning a subset of the work to each, treating the system as a heterogeneous 
computing platform. The CUDA programming model supports allocation of work 
to one or more GPUs along with continued use of the CPU without the use of 
threads (via asynchronous GPU functions), so it is relatively simple to keep all 
GPUs and a CPU working concurrently to solve problems even faster.
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 A.10 Concluding Remarks

GPUs are massively parallel processors and have become widely used, not only 
for 3D graphics, but also for many other applications. This wide application 
was made possible by the evolution of graphics devices into programmable 
processors. The graphics application programming model for GPUs is usually an 
API such as DirectXtm or OpenGLtm. For more general-purpose computing, the 
CUDA programming model uses an SPMD (single-program multiple data) style, 
executing a program with many parallel threads. 

GPU parallelism will continue to scale with Moore’s law, mainly by increasing 
the number of processors. Only the parallel programming models that can readily 
scale to hundreds of processor cores and thousands of threads will be successful 
in supporting manycore GPUs and CPUs. Also, only those applications that have 
many largely independent parallel tasks will be accelerated by massively parallel 
manycore architectures.

Parallel programming models for GPUs are becoming more flexible, for both 
graphics and parallel computing. For example, CUDA is evolving rapidly in the 
direction of full C/C++ functionality. Graphics APIs and programming models will 
likely adapt parallel computing capabilities and models from CUDA. Its SPMD-
style threading model is scalable, and is a convenient, succinct, and easily learned 
model for expressing large amounts of parallelism. 

Driven by these changes in the programming models, GPU architecture is in 
turn becoming more flexible and more programmable. GPU fixed-function units 
are becoming accessible from general programs, along the lines of how CUDA 
programs already use texture intrinsic functions to perform texture lookups using 
the GPU texture instruction and texture unit.

GPU architecture will continue to adapt to the usage patterns of both graphics 
and other application programmers. GPUs will continue to expand to include more 
processing power through additional processor cores, as well as increasing the thread 
and memory bandwidth available for programs. In addition, the programming 
models must evolve to include programming heterogeneous manycore systems 
including both GPUs and CPUs.
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   Historical Perspective and Further 
Reading

This section, which appears on the CD, surveys the history of programmable real-
time graphics processing units (GPUs) from the early 1980s through today as 
they declined in price by two orders of magnitude and increased in performance 
by two orders of magnitude. It traces the evolution of the GPU from fixed func-
tion  pipelines to programmable graphics processors, with perspectives on GPU 
 computing, unified graphics and computing processors, visual computing, and 
scalable GPUs.
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 B.1 Introduction

Encoding instructions as binary numbers is natural and efficient for computers. 
Humans, however, have a great deal of difficulty understanding and manipulating 
these numbers. People read and write symbols (words) much better than long 
sequences of digits. Chapter 2 showed that we need not choose between numbers 
and words, because computer instructions can be represented in many ways. 
Humans can write and read symbols, and computers can execute the equivalent 
binary numbers. This appendix describes the process by which a human-readable 
program is translated into a form that a computer can execute, provides a few hints 
about writing assembly programs, and explains how to run these programs on 
SPIM, a simulator that executes MIPS programs. UNIX, Windows, and Mac OS X 
versions of the SPIM simulator are available on the CD.

Assembly language is the symbolic representation of a computer’s binary 
encoding—the machine language. Assembly language is more readable than 
machine lan guage, because it uses symbols instead of bits. The symbols in assembly 
language name commonly occurring bit patterns, such as opcodes and register 
specifiers, so people can read and remember them. In addition, assembly language 

machine language 
Binary representation 
used for com munication 
within a computer 
system.
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FIGURE B.1.1 The process that produces an executable file. An assembler translates a file of 
assembly language into an object file, which is linked with other files and libraries into an executable file. 
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permits programmers to use labels to identify and name particular memory words 
that hold instructions or data. 

A tool called an assembler translates assembly language into binary instruc-
tions. Assemblers provide a friendlier representation than a computer’s 0s and 
1s, which sim plifies writing and reading programs. Symbolic names for opera-
tions and locations are one facet of this representation. Another facet is program-
ming facilities that increase a program’s clarity. For example, macros, discussed in 
 Section B.2, enable a programmer to extend the assembly language by defining new 
operations.

An assembler reads a single assembly language source file and produces an 
object file containing machine instructions and bookkeeping information that 
helps combine several object files into a program. Figure B.1.1 illustrates how a 
program is built. Most programs consist of several files—also called modules—
that are written, compiled, and assembled independently. A program may also use 
prewritten routines supplied in a program library. A module typically contains ref
erences to subroutines and data defined in other modules and in libraries. The code 
in a module cannot be executed when it contains unresolved references to labels 
in other object files or libraries. Another tool, called a linker, combines a collection 
of object and library files into an executable file, which a computer can run.

To see the advantage of assembly language, consider the following sequence of 
figures, all of which contain a short subroutine that computes and prints the sum of 
the squares of integers from 0 to 100. Figure B.1.2 shows the machine language that 
a MIPS computer executes. With considerable effort, you could use the opcode and 
instruction format tables in Chapter 2 to translate the instructions into a symbolic 
program similar to that shown in Figure B.1.3. This form of the routine is much 

assembler A program 
that translates a symbolic 
version of instruction into 
the binary ver sion.

macro A pattern-
matching and replacement 
facility that pro vides a 
simple mechanism to name 
a frequently used sequence 
of instructions.

unresolved reference 
A  reference that requires 
more  information from 
an outside source to be 
complete.

linker Also called 
link editor. A systems 
program that com bines 
independently assembled 
machine  language 
programs and resolves all 
undefined labels into an 
executable file.
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easier to read, because operations and operands are written with symbols rather 
than with bit patterns. However, this assembly language is still difficult to follow, 
because memory locations are named by their address rather than by a symbolic 
label.

Figure B.1.4 shows assembly language that labels memory addresses with mne-
monic names. Most programmers prefer to read and write this form. Names that 
begin with a period, for example .data and .globl, are assembler directives 
that tell the assembler how to translate a program but do not produce machine 
instructions. Names followed by a colon, such as str: or main:, are labels that 
name the next memory location. This program is as readable as most assembly 
language programs (except for a glaring lack of comments), but it is still difficult 
to follow, because many simple operations are required to accomplish simple tasks 
and because assembly language’s lack of control flow constructs provides few hints 
about the program’s operation.

By contrast, the C routine in Figure B.1.5 is both shorter and clearer, since vari-
ables have mnemonic names and the loop is explicit rather than constructed with 
branches. In fact, the C routine is the only one that we wrote. The other forms of 
the program were produced by a C compiler and assembler.

In general, assembly language plays two roles (see Figure B.1.6). The first role 
is the output language of compilers. A compiler translates a program written in a 

assembler directive 
An opera tion that tells the 
assembler how to translate 
a program but does not 
produce machine instruc-
tions; always begins with 
a period.

00100111101111011111111111100000
10101111101111110000000000010100
10101111101001000000000000100000
10101111101001010000000000100100
10101111101000000000000000011000
10101111101000000000000000011100
10001111101011100000000000011100
10001111101110000000000000011000
00000001110011100000000000011001
00100101110010000000000000000001
00101001000000010000000001100101
10101111101010000000000000011100
00000000000000000111100000010010
00000011000011111100100000100001
00010100001000001111111111110111
10101111101110010000000000011000
00111100000001000001000000000000
10001111101001010000000000011000
00001100000100000000000011101100
00100100100001000000010000110000
10001111101111110000000000010100
00100111101111010000000000100000
00000011111000000000000000001000
00000000000000000001000000100001

FIGURE B.1.2 MIPS machine language code for a routine to compute and print the sum 
of the squares of integers between 0 and 100. 
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highlevel language (such as C or Pascal) into an equivalent program in machine or 
assembly language. The high-level language is called the source  language, and the 
compiler’s output is its target language.

Assembly language’s other role is as a language in which to write programs. This 
role used to be the dominant one. Today, however, because of larger main memo-
ries and better compilers, most programmers write in a high-level language and 
rarely, if ever, see the instructions that a computer executes. Nevertheless, assembly 
language is still important to write programs in which speed or size is critical or to 
exploit hardware features that have no analogues in high-level  languages.

Although this appendix focuses on MIPS assembly language, assembly pro-
gramming on most other machines is very similar. The additional instructions and 
address modes in CISC machines, such as the VAX, can make assembly pro grams 
shorter but do not change the process of assembling a program or provide assembly 
language with the advantages of high-level languages, such as type-checking and 
structured control flow.

source language The 
high-level language 
in which a pro gram is 
originally written.

	
addiu	 $29,	$29,	-32	
sw	 $31,	20($29)	
sw	 $4,		32($29)	
sw	 $5,		36($29)	
sw	 $0,		24($29)	
sw	 $0,		28($29)	
lw	 $14,	28($29)	
lw	 $24,	24($29)	
multu	 $14,	$14	
addiu	 $8,		$14,	1	
slti	 $1,		$8,	101	
sw	 $8,		28($29)	
mflo	 $15	
addu	 $25,	$24,	$15	
bne	 $1,		$0,	-9	
sw	 $25,	24($29)	
lui	 $4,		4096	
lw	 $5,		24($29)	
jal	 1048812	
addiu	 $4,		$4,	1072	
lw	 $31,	20($29)	
addiu	 $29,	$29,	32	
jr	 $31	
move	 $2,		$0

FIGURE B.1.3 The same routine written in assembly language. However, the code for the 
routine does not label registers or memory locations nor include comments. 
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When to Use Assembly Language
The primary reason to program in assembly language, as opposed to an available 
high-level language, is because the speed or size of a program is critically important. 
For example, consider a computer that controls a piece of machinery, such as a 
car’s brakes. A computer that is incorporated in another device, such as a car, is 
called an embedded computer. This type of computer needs to respond rapidly 
and predictably to events in the outside world. Because a compiler introduces 

	 .text	
	 .align	 2	
	 .globl	 main	
main:	
	 subu	 $sp,	$sp,	32	
	 sw	 $ra,	20($sp)	
	 sd	 $a0,	32($sp)	
	 sw	 $0,		24($sp)	
	 sw	 $0,		28($sp)	
loop:	
	 lw	 $t6,	28($sp)	
	 mul	 $t7,	$t6,	$t6	
	 lw	 $t8,	24($sp)	
	 addu	 $t9,	$t8,	$t7	
	 sw	 $t9,	24($sp)	
	 addu	 $t0,	$t6,	1	
	 sw	 $t0,	28($sp)	
	 ble	 $t0,	100,	loop	
	 la	 $a0,	str	
	 lw	 $a1,	24($sp)	
	 jal	 printf	
	 move	 $v0,	$0	
	 lw	 $ra,	20($sp)	
	 addu	 $sp,	$sp,	32	
	 jr	 $ra	
	
	
	 .data	
	 .align	 0	
str:	
	 .asciiz	"The	sum	from	0	..	100	is	%d\n"

FIGURE B.1.4 The same routine written in assembly language with labels, but no com-
ments. The commands that start with periods are assembler directives (see pages B-47–49). .text indicates 
that succeeding lines contain instructions. .data indicates that they contain data. .align	n indicates that 
the items on the succeeding lines should be aligned on a 2n byte boundary. Hence, .align	2 means the next 
item should be on a word boundary. .globl	main declares that main is a global symbol that should be 
visible to code stored in other files. Finally, .asciiz stores a null-terminated string in memory. 
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uncertainty about the time cost of operations, programmers may find it difficult 
to ensure that a high-level language program responds within a definite time 
interval—say, 1 millisecond after a sensor detects that a tire is skidding. An assembly 
language programmer, on the other hand, has tight control over which instruc-
tions execute. In addition, in embedded applications, reducing a program’s size, so 
that it fits in fewer memory chips, reduces the cost of the embedded computer.

A hybrid approach, in which most of a program is written in a high-level lan-
guage and time-critical sections are written in assembly language, builds on the 
strengths of both languages. Programs typically spend most of their time execut ing 
a small fraction of the program’s source code. This observation is just the prin ciple 
of locality that underlies caches (see Section 5.1 in Chapter 5).

Program profiling measures where a program spends its time and can find the 
time-critical parts of a program. In many cases, this portion of the program can 
be made faster with better data structures or algorithms. Sometimes, however, sig-
nificant performance improvements only come from recoding a critical portion of 
a program in assembly language.

#include	<stdio.h>	
	
int	
main	(int	argc,	char	*argv[])	
{	
		 int	i;	
		 int	sum	=	0;	
	
		 for	(i	=	0;	i	<=	100;	i	=	i	+	1)	sum	=	sum	+	i	*	i;	
		 printf	(“The	sum	from	0	..	100	is	%d\n”,	sum);	
}	

FIGURE B.1.5 The routine written in the C programming language. 

FIGURE B.1.6 Assembly language either is written by a programmer or is the output of 
a compiler. 
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This improvement is not necessarily an indication that the high-level  language’s 
compiler has failed. Compilers typically are better than programmers at produc-
ing uniformly high-quality machine code across an entire program. Pro grammers, 
however, understand a program’s algorithms and behavior at a deeper level than 
a compiler and can expend considerable effort and ingenuity improving small 
sections of the program. In particular, programmers often consider several proce-
dures simultaneously while writing their code. Compilers typically compile each 
procedure in isolation and must follow strict conventions governing the use of 
registers at procedure boundaries. By retaining commonly used values in regis-
ters, even across procedure boundaries, programmers can make a program run 
faster.

Another major advantage of assembly language is the ability to exploit special-
ized instructions—for example, string copy or pattern-matching instructions. 
Compilers, in most cases, cannot determine that a program loop can be replaced 
by a single instruction. However, the programmer who wrote the loop can replace 
it easily with a single instruction.

Currently, a programmer’s advantage over a compiler has become difficult to 
maintain as compilation techniques improve and  machines’ pipelines increase in 
complexity (Chapter 4).

The final reason to use assembly language is that no high-level language is 
available on a particular computer. Many older or specialized computers do not 
have a compiler, so a programmer’s only alternative is assembly language.

Drawbacks of Assembly Language
Assembly language has many disadvantages that strongly argue against its wide-
spread use. Perhaps its major disadvantage is that programs written in assembly 
language are inherently machine-specific and must be totally rewritten to run on 
another computer architecture. The rapid evolution of computers discussed in 
Chapter 1 means that architectures become obsolete. An assembly language pro-
gram remains tightly bound to its original archi tecture, even after the computer is 
eclipsed by new, faster, and more cost-effective machines.

Another disadvantage is that assembly language programs are longer than the 
equivalent programs written in a high-level language. For example, the C program 
in Figure B.1.5 is 11 lines long, while the assembly program in Figure B.1.4 is 
31 lines long. In more complex programs, the ratio of assembly to high-level lan-
guage (its expansion factor) can be much larger than the factor of three in this exam-
ple. Unfortunately, empirical studies have shown that programmers write roughly 
the same number of lines of code per day in assembly as in high-level languages. 
This means that programmers are roughly x times more productive in a high-level 
language, where x is the assembly language expansion factor.
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To compound the problem, longer programs are more difficult to read and 
understand, and they contain more bugs. Assembly language exacerbates the prob-
lem because of its complete lack of structure. Common programming idioms, 
such as ifthen statements and loops, must be built from branches and jumps. The 
resulting programs are hard to read, because the reader must reconstruct every 
higher-level construct from its pieces and each instance of a statement may be 
slightly different. For example, look at Figure B.1.4 and answer these questions: 
What type of loop is used? What are its lower and upper bounds?

Elaboration: Compilers can produce machine language directly instead of relying on 
an assembler. These compilers typically execute much faster than those that invoke 
an assembler as part of compilation. However, a compiler that generates machine lan
guage must perform many tasks that an assembler normally handles, such as resolv
ing addresses and encoding instructions as binary numbers. The tradeoff is between 
compilation speed and compiler simplicity. 

Elaboration: Despite these considerations, some embedded applications are writ ten 
in a highlevel language. Many of these applications are large and complex pro grams that 
must be extremely reliable. Assembly language programs are longer and more difficult 
to write and read than highlevel language programs. This greatly increases the cost 
of writing an assembly language program and makes it extremely dif ficult to verify the 
correctness of this type of program. In fact, these considerations led the Department of 
Defense, which pays for many complex embedded systems, to develop Ada, a new high
level language for writing embedded systems.

 B.2 Assemblers

An assembler translates a file of assembly language statements into a file of binary 
machine instructions and binary data. The translation process has two major 
parts. The first step is to find memory locations with labels so that the relationship 
between symbolic names and addresses is known when instructions are trans lated. 
The second step is to translate each assembly statement by combining the numeric 
equivalents of opcodes, register specifiers, and labels into a legal instruc tion. As 
shown in Figure B.1.1, the assembler produces an output file, called an object file, 
which contains the machine instructions, data, and bookkeeping infor mation.

An object file typically cannot be executed, because it references procedures or 
data in other files. A label is external (also called global) if the labeled object can 

external label Also called 
 global label. A label 
referring to an object that 
can be referenced from 
files other than the one in 
which it is defined.



be referenced from files other than the one in which it is defined. A label is local 
if the object can be used only within the file in which it is defined. In most assem-
blers, labels are local by default and must be explicitly declared global. Subrou tines 
and global variables require external labels since they are referenced from many 
files in a program. Local labels hide names that should not be visible to other 
modules—for example, static functions in C, which can only be called by other 
functions in the same file. In addition, compiler-generated names—for example, a 
name for the instruction at the beginning of a loop—are local so that the compiler 
need not produce unique names in every file.

Local and Global Labels

Consider the program in Figure B.1.4. The subroutine has an external (global) 
label main. It also contains two local labels—loop and str—that are only 
visible with this assembly language file. Finally, the routine also contains an 
unresolved reference to an external label printf, which is the library routine 
that prints values. Which labels in Figure B.1.4 could be referenced from 
another file?

Only global labels are visible outside a file, so the only label that could be 
referenced from another file is main.

Since the assembler processes each file in a program individually and in isola tion, 
it only knows the addresses of local labels. The assembler depends on another tool, 
the linker, to combine a collection of object files and libraries into an executable 
file by resolving external labels. The assembler assists the linker by pro viding lists 
of labels and unresolved references.

However, even local labels present an interesting challenge to an assembler. 
Unlike names in most high-level languages, assembly labels may be used before 
they are defined. In the example, in Figure B.1.4, the label str is used by the la 
instruction before it is defined. The possibility of a forward reference, like this one, 
forces an assembler to translate a program in two steps: first find all labels and then 
produce instructions. In the example, when the assembler sees the la instruction, 
it does not know where the word labeled str is located or even whether str labels 
an instruction or datum.

local label A label 
referring to an object that 
can be used only within 
the file in which it is 
defined.

EXAMPLE

ANSWER

forward reference 
A label that is used 
before it is  defined.
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An assembler’s first pass reads each line of an assembly file and breaks it into 
its component pieces. These pieces, which are called lexemes, are individual words, 
numbers, and punctuation characters. For example, the line 

	 ble	 $t0,	100,	loop

contains six lexemes: the opcode ble, the register specifier $t0, a comma, the 
number 100, a comma, and the symbol loop.

If a line begins with a label, the assembler records in its symbol table the name 
of the label and the address of the memory word that the instruction occupies. 
The assembler then calculates how many words of memory the instruction on the 
current line will occupy. By keeping track of the instructions’ sizes, the assembler 
can determine where the next instruction goes. To compute the size of a variable-
length instruction, like those on the VAX, an assembler has to examine it in detail. 
However, fixed-length instructions, like those on MIPS, require only a cursory 
examination. The assembler performs a similar calculation to compute the space 
required for data statements. When the assembler reaches the end of an assembly 
file, the symbol table records the location of each label defined in the file.

The assembler uses the information in the symbol table during a second pass 
over the file, which actually produces machine code. The assembler again exam-
ines each line in the file. If the line contains an instruction, the assembler com-
bines the binary representations of its opcode and operands (register specifiers or 
memory address) into a legal instruction. The process is similar to the one used in 
Section 2.5 in Chapter 2. Instructions and data words that reference an external 
symbol defined in another file cannot be completely assembled (they are unre-
solved), since the symbol’s address is not in the symbol table. An assembler does 
not complain about unresolved references, since the corresponding label is likely to 
be defined in another file.

Assembly language is a programming language. Its principal difference 
from high-level languages such as BASIC, Java, and C is that assembly lan-
guage provides only a few, simple types of data and control flow. Assembly 
language programs do not specify the type of value held in a variable. 
Instead, a programmer must apply the appropriate operations (e.g., integer 
or floating-point addition) to a value. In addition, in assem bly language, 
programs must implement all control flow with go tos. Both factors make 
assembly language programming for any machine—MIPS or x86—more 
difficult and error-prone than writing in a high-level  language.

symbol table A table 
that matches names of 
labels to the addresses of 
the memory words that 
instructions  occupy.

The BIG
Picture



Elaboration: If an assembler’s speed is important, this twostep process can be done 
in one pass over the assembly file with a technique known as backpatching. In its 
pass over the file, the assembler builds a (possibly incomplete) binary representation 
of every instruction. If the instruction references a label that has not yet been defined, 
the assembler records the label and instruction in a table. When a label is defined, the 
assembler consults this table to find all instructions that contain a forward reference to 
the label. The assembler goes back and corrects their binary representation to incorpo
rate the address of the label. Backpatching speeds assembly because the assembler 
only reads its input once. However, it requires an assembler to hold the entire binary rep
resentation of a program in memory so instructions can be backpatched. This require
ment can limit the size of programs that can be assembled. The process is com plicated 
by machines with several types of branches that span different ranges of instructions. 
When the assembler first sees an unresolved label in a branch instruction, it must either 
use the largest possible branch or risk having to go back and readjust many instructions 
to make room for a larger branch.

Object File Format
Assemblers produce object files. An object file on UNIX contains six distinct 
sections (see Figure B.2.1): 

 ■ The object file header describes the size and position of the other pieces of 
the file.

 ■ The text segment contains the machine language code for routines in the 
source file. These routines may be unexecutable because of unresolved 
references.

 ■ The data segment contains a binary representation of the data in the source 
file. The data also may be incomplete because of unresolved references to 
labels in other files.

 ■ The relocation information identifies instructions and data words that 
depend on absolute addresses. These references must change if portions of 
the program are moved in memory.

 ■ The symbol table associates addresses with external labels in the source file 
and lists unresolved references. 

 ■ The debugging information contains a concise description of the way the 
program was compiled, so a debugger can find which instruction addresses 
correspond to lines in a source file and print the data structures in readable 
form.

The assembler produces an object file that contains a binary representation of 
the program and data and additional information to help link pieces of a  program. 

backpatching A 
method for translating 
from assembly lan guage 
to machine instructions 
in which the  assembler 
builds a (possibly 
incomplete) binary 
 representation of every 
instruc tion in one pass 
over a program and then 
returns to fill in previ-
ously  undefined labels.

text segment The 
segment of a UNIX 
object file that  contains 
the machine language 
code for rou tines in the 
source file.

data segment The 
segment of a UNIX object 
or executable file that 
contains a binary represen-
tation of the  initialized 
data used by the program.

relocation information 
The segment of a UNIX 
object file that identifies 
instructions and data 
words that  depend on 
absolute addresses.

absolute address 
A variable’s or routine’s 
actual  address in memory.

 B.2 Assemblers B-13



B-14 Appendix B Assemblers, Linkers, and the SPIM Simulator

This relocation information is necessary because the assembler does not know 
which memory locations a procedure or piece of data will occupy after it is linked 
with the rest of the program. Procedures and data from a file are stored in a con-
tiguous piece of memory, but the assembler does not know where this mem ory will 
be located. The assembler also passes some symbol table entries to the linker. In 
particular, the assembler must record which external symbols are defined in a file 
and what unresolved references occur in a file.

Elaboration: For convenience, assemblers assume each file starts at the same address 
(for example, location 0) with the expectation that the linker will relocate the code and 
data when they are assigned locations in memory. The assembler produces relocation 
information, which contains an entry describing each instruction or data word in the file 
that references an absolute address. On MIPS, only the subroutine call, load, and store 
instructions reference absolute addresses. Instructions that use PC relative addressing, 
such as branches, need not be relocated.

Additional Facilities
Assemblers provide a variety of convenience features that help make assembler 
programs shorter and easier to write, but do not fundamentally change assembly 
language. For example, data layout directives allow a programmer to describe data 
in a more concise and natural manner than its binary representation.

In Figure B.1.4, the directive 

	.asciiz	“The	sum	from	0	..	100	is	%d\n”

stores characters from the string in memory. Contrast this line with the alternative 
of writing each character as its ASCII value (Figure 2.15 in Chapter 2 describes the 
ASCII encoding for characters):

.byte	84,	104,	101,	32,	115,	117,	109,	32	

.byte	102,	114,	111,	109,	32,	48,	32,	46	

.byte	46,	32,	49,	48,	48,	32,	105,	115	

.byte	32,	37,	100,	10,	0

The .asciiz directive is easier to read because it represents characters as letters, 
not binary numbers. An assembler can translate characters to their binary repre-
sentation much faster and more accurately than a human can. Data layout directives 

FIGURE B.2.1 Object file. A UNIX assembler produces an object file with six distinct sections. 

Object file
header

Text
segment

Data
segment

Relocation
information

Symbol
table

Debugging
information



specify data in a human-readable form that the assembler translates to binary. Other 
layout directives are described in Section B.10.

String Directive

Define the sequence of bytes produced by this directive: 

.asciiz	“The	quick	brown	fox	jumps	over	the	lazy	dog”

.byte	84,		104,	101,	32,				113,	117,	105,	99

.byte	107,	32,		98,		114,		111,	119,	110,	32	

.byte	102,	111,	120,	32,		106,	117,	109,	112	

.byte	115,	32,		111,	118,	101,	114,			32,		116	

.byte	104,	101,	32,		108,			97,	 122,	121,	32	

.byte	100,	111,	103,	0

Macro is a pattern-matching and replacement facility that provides a simple 
mechanism to name a frequently used sequence of instructions. Instead of repeat-
edly typing the same instructions every time they are used, a programmer invokes 
the macro and the assembler replaces the macro call with the corresponding 
sequence of instructions. Macros, like subroutines, permit a programmer to create 
and name a new abstraction for a common operation. Unlike subroutines, how-
ever, macros do not cause a subroutine call and return when the program runs, 
since a macro call is replaced by the macro’s body when the program is assembled. 
After this replacement, the resulting assembly is indistinguishable from the equiv-
alent program written without macros.

Macros

As an example, suppose that a programmer needs to print many numbers. The 
library routine printf accepts a format string and one or more values to print 
as its arguments. A programmer could print the integer in register $7 with the 
following instructions: 

	 .data
int_str:	.asciiz“%d”
	 .text
	 la	 $a0,	int_str	#	Load	string	address
	 #	into	first	arg

EXAMPLE

ANSWER

EXAMPLE
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	 mov	 $a1,	$7	 #	Load	value	into	
	 	 	 #	second	arg	
	 jal	 printf	 #	Call	the	printf	routine

The .data directive tells the assembler to store the string in the program’s 
data segment, and the .text directive tells the assembler to store the instruc-
tions in its text segment.

However, printing many numbers in this fashion is tedious and produces a 
verbose program that is difficult to understand. An alternative is to introduce 
a macro, print_int, to print an integer: 

	 .data	
int_str:.asciiz	“%d”	
	 .text	
	 .macro	print_int($arg)	
	 la		$a0,	int_str	#	Load	string	address	into	
	 	 													#	first	arg	
	 mov	$a1,	$arg					#	Load	macro’s	parameter		
	 	 													#	($arg)	into	second	arg	
	 jal	printf								#	Call	the	printf	routine	
	 .end_macro	
print_int($7)

The macro has a formal parameter, $arg, that names the argument to the 
macro. When the macro is expanded, the argument from a call is substituted 
for the formal parameter throughout the macro’s body. Then the assembler 
replaces the call with the macro’s newly expanded body. In the first call on 
print_int, the argument is $7, so the macro expands to the code

la		$a0,	int_str	
mov	$a1,	$7	
jal	printf

In a second call on print_int, say, print_int($t0), the argument is $t0, 
so the macro expands to

la		$a0,	int_str		
mov	$a1,	$t0		
jal	printf

What does the call print_int($a0) expand to?

formal parameter 
A variable that is the 
argument to a proce dure 
or macro; replaced by that 
argument once the macro 
is expanded.



la		$a0,	int_str	
mov	$a1,	$a0		
jal	printf

This example illustrates a drawback of macros. A programmer who uses 
this macro must be aware that print_int uses register $a0 and so cannot 
correctly print the value in that register.

Some assemblers also implement pseudoinstructions, which are instructions pro-
vided by an assembler but not implemented in hardware. Chapter 2 contains 
many examples of how the MIPS assembler synthesizes pseudoinstructions 
and addressing modes from the spartan MIPS hardware instruction set. For 
example, Section 2.7 in Chapter 2 describes how the assembler synthesizes the 
blt instruc tion from two other instructions: slt and bne. By extending the 
instruction set, the MIPS assembler makes assembly language programming 
easier without complicating the hardware. Many pseudoinstructions could also 
be simulated with macros, but the MIPS assembler can generate better code for 
these instructions because it can use a dedicated register ($at) and is able to 
optimize the generated code.

Elaboration: Assemblers conditionally assemble pieces of code, which permits a 
programmer to include or exclude groups of instructions when a program is assembled. 
This feature is particularly useful when several versions of a program differ by a small 
amount. Rather than keep these programs in separate files—which greatly complicates 
fixing bugs in the common code—programmers typically merge the versions into a sin
gle file. Code particular to one version is conditionally assembled, so it can be excluded 
when other versions of the program are assembled.

If macros and conditional assembly are useful, why do assemblers for UNIX systems 
rarely, if ever, provide them? One reason is that most programmers on these systems 
write programs in higherlevel languages like C. Most of the assembly code is produced 
by compilers, which find it more convenient to repeat code rather than define macros. 
Another reason is that other tools on UNIX—such as cpp, the C preprocessor, or m4, a 
general macro processor—can provide macros and conditional assembly for assembly 
language programs.

ANSWER

Hardware/ 
Software 
Interface
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 B.3 Linkers

Separate compilation permits a program to be split into pieces that are stored in 
different files. Each file contains a logically related collection of subroutines and 
data structures that form a module in a larger program. A file can be compiled and 
assembled independently of other files, so changes to one module do not require 
recompiling the entire program. As we discussed above, separate compilation neces-
sitates the additional step of linking to combine object files from separate modules 
and fix their unresolved references.

The tool that merges these files is the linker (see Figure B.3.1). It performs three 
tasks: 

 ■ Searches the program libraries to find library routines used by the program

 ■ Determines the memory locations that code from each module will occupy 
and relocates its instructions by adjusting absolute references

 ■ Resolves references among files

A linker’s first task is to ensure that a program contains no undefined labels. The 
linker matches the external symbols and unresolved references from a pro gram’s 
files. An external symbol in one file resolves a reference from another file if both 
refer to a label with the same name. Unmatched references mean a symbol was used 
but not defined anywhere in the program.

Unresolved references at this stage in the linking process do not necessarily 
mean a programmer made a mistake. The program could have referenced a library 
routine whose code was not in the object files passed to the linker. After matching 
symbols in the program, the linker searches the system’s program librar ies to 
find predefined subroutines and data structures that the program references. The 
basic libraries contain routines that read and write data, allocate and deallo cate 
memory, and perform numeric operations. Other libraries contain routines to 
access a database or manipulate terminal windows. A program that references an 
unresolved symbol that is not in any library is erroneous and cannot be linked. 
When the program uses a library routine, the linker extracts the routine’s code 
from the library and incorporates it into the program text segment. This new 
rou tine, in turn, may depend on other library routines, so the linker continues to 
fetch other library routines until no external references are unresolved or a rou tine 
cannot be found.

If all external references are resolved, the linker next determines the memory 
locations that each module will occupy. Since the files were assembled in isolation, 

separate compilation  
Split ting a program across 
many files, each of which 
can be com piled without 
knowledge of what is in 
the other files.



the assembler could not know where a module’s instructions or data would be 
placed relative to other modules. When the linker places a module in memory, all 
abso lute references must be relocated to reflect its true location. Since the linker has 
relocation information that identifies all relocatable references, it can efficiently 
find and backpatch these references.

The linker produces an executable file that can run on a computer. Typically, 
this file has the same format as an object file, except that it contains no unresolved 
references or relocation information.

 B.4 Loading

A program that links without an error can be run. Before being run, the program 
resides in a file on secondary storage, such as a disk. On UNIX systems, the  operating 

FIGURE B.3.1 The linker searches a collection of object files and program libraries to 
find nonlocal routines used in a program, combines them into a single executable file, and 
resolves references between routines in different files. 
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system kernel brings a program into memory and starts it running. To start a program, 
the operating system performs the following steps: 

1. It reads the executable file’s header to determine the size of the text and data 
segments.

2. It creates a new address space for the program. This address space is large 
enough to hold the text and data segments, along with a stack segment (see 
Section B.5).

3. It copies instructions and data from the executable file into the new address 
space.

4. It copies arguments passed to the program onto the stack.

5. It initializes the machine registers. In general, most registers are cleared, but 
the stack pointer must be assigned the address of the first free stack location 
(see Section B.5).

6. It jumps to a start-up routine that copies the program’s arguments from the 
stack to registers and calls the program’s main routine. If the main routine 
returns, the start-up routine terminates the program with the exit system call. 

 B.5 Memory Usage

The next few sections elaborate the description of the MIPS architecture presented 
earlier in the book. Earlier chapters focused primarily on hardware and its relationship 
with low-level software. These sections focus primarily on how assembly language 
programmers use MIPS hardware. These sections describe a set of conventions 
followed on many MIPS systems. For the most part, the hardware does not impose 
these conventions. Instead, they represent an agreement among programmers to 
follow the same set of rules so that software written by different people can work 
together and make effective use of MIPS hardware.

Systems based on MIPS processors typically divide memory into three parts 
(see Figure B.5.1). The first part, near the bottom of the address space (starting at 
address 400000hex), is the text segment, which holds the program’s instructions.

The second part, above the text segment, is the data segment, which is further 
divided into two parts. Static data (starting at address 10000000hex) contains 
objects whose size is known to the compiler and whose lifetime—the interval 
dur ing which a program can access them—is the program’s entire execution. For 
example, in C, global variables are statically allocated, since they can be referenced 

static data The portion 
of memory that contains 
data whose size is known 
to the com piler and whose 
lifetime is the program’s 
entire execution.



FIGURE B.5.1 Layout of memory. 
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Because the data segment begins far above the program at address 10000000hex, 
load and store instructions cannot directly reference data objects with their 16-bit 
offset fields (see Section 2.5 in Chapter 2). For example, to load the word in the 
data segment at address 10010020hex into register $v0 requires two instructions:

lui	 $s0,	0x1001	#	0x1001	means	1001	base	16		
lw	 $v0,	0x0020($s0)	#	0x10010000	+	0x0020	=	0x10010020

(The 0x before a number means that it is a hexadecimal value. For example, 0x8000 
is 8000hex or 32,768ten.)

To avoid repeating the lui instruction at every load and store, MIPS systems 
typically dedicate a register ($gp) as a global pointer to the static data segment. This 
register contains address 10008000hex, so load and store instructions can use their 
signed 16-bit offset fields to access the first 64 KB of the static data segment. With 
this global pointer, we can rewrite the example as a single instruction: 

lw	$v0,	0x8020($gp)

Of course, a global pointer register makes addressing locations 10000000hex–
10010000hex faster than other heap locations. The MIPS compiler usually stores 
global variables in this area, because these variables have fixed locations and fit bet-
ter than other global data, such as arrays.

Hardware/ 
Software 
Interface
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anytime during a program’s execution. The linker both assigns static objects to 
locations in the data segment and resolves references to these objects.

Immediately above static data is dynamic data. This data, as its name implies, is 
allocated by the program as it executes. In C programs, the malloc library rou tine 
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finds and returns a new block of memory. Since a compiler cannot predict how 
much memory a program will allocate, the operating system expands the dynamic 
data area to meet demand. As the upward arrow in the figure indicates, malloc 
expands the dynamic area with the sbrk system call, which causes the operating 
system to add more pages to the program’s virtual address space (see Section 5.4 in 
Chapter 5) immediately above the dynamic data segment.

The third part, the program stack segment, resides at the top of the virtual 
address space (starting at address 7fffffffhex). Like dynamic data, the maximum size 
of a program’s stack is not known in advance. As the program pushes values on to 
the stack, the operating system expands the stack segment down toward the data 
segment.

This three-part division of memory is not the only possible one. However, it has 
two important characteristics: the two dynamically expandable segments are as far 
apart as possible, and they can grow to use a program’s entire address space.

 B.6 Procedure Call Convention

Conventions governing the use of registers are necessary when procedures in a pro-
gram are compiled separately. To compile a particular procedure, a compiler must 
know which registers it may use and which registers are reserved for other proce-
dures. Rules for using registers are called register use or procedure call conven-
tions. As the name implies, these rules are, for the most part, conventions fol lowed 
by software rather than rules enforced by hardware. However, most compilers and 
programmers try very hard to follow these conventions because violating them 
causes insidious bugs.

The calling convention described in this section is the one used by the gcc com-
piler. The native MIPS compiler uses a more complex convention that is slightly 
faster.

The MIPS CPU contains 32 general-purpose registers that are numbered  0–31. 
Register $0 always contains the hardwired value 0. 

 ■ Registers $at (1), $k0 (26), and $k1 (27) are reserved for the assembler and 
operating system and should not be used by user programs or compilers.

 ■ Registers $a0–$a3 (4–7) are used to pass the first four arguments to rou tines 
(remaining arguments are passed on the stack). Registers $v0 and $v1 (2, 3) 
are used to return values from functions.

stack segment The 
portion of memory used 
by a  program to hold 
procedure call frames.

register use convention 
Also called procedure 
call  convention. 
A software proto col 
governing the use of 
registers by procedures.



 ■ Registers $t0–$t9 (8–15, 24, 25) are caller-saved registers that are used 
to hold temporary quantities that need not be preserved across calls (see 
Section 2.8 in Chapter 2).

 ■ Registers $s0–$s7 (16–23) are callee-saved registers that hold long-lived 
values that should be preserved across calls.

 ■ Register $gp (28) is a global pointer that points to the middle of a 64K block 
of memory in the static data segment.

 ■ Register $sp (29) is the stack pointer, which points to the last location on 
the stack. Register $fp (30) is the frame pointer. The jal instruction writes 
register $ra (31), the return address from a procedure call. These two regis-
ters are explained in the next section.

The two-letter abbreviations and names for these registers—for example $sp 
for the stack pointer—reflect the registers’ intended uses in the procedure call 
convention. In describing this convention, we will use the names instead of regis ter 
numbers. Figure B.6.1 lists the registers and describes their intended uses.

Procedure Calls
This section describes the steps that occur when one procedure (the caller) invokes 
another procedure (the callee). Programmers who write in a high-level language 
(like C or Pascal) never see the details of how one procedure calls another, because 
the compiler takes care of this low-level bookkeeping. However, assembly language 
programmers must explicitly implement every procedure call and return.

Most of the bookkeeping associated with a call is centered around a block 
of memory called a procedure call frame. This memory is used for a variety of 
purposes: 

 ■ To hold values passed to a procedure as arguments

 ■ To save registers that a procedure may modify, but which the procedure’s 
caller does not want changed

 ■ To provide space for variables local to a procedure

In most programming languages, procedure calls and returns follow a strict  
last-in, first-out (LIFO) order, so this memory can be allocated and deallocated on 
a stack, which is why these blocks of memory are sometimes called stack frames.

Figure B.6.2 shows a typical stack frame. The frame consists of the memory 
between the frame pointer ($fp), which points to the first word of the frame, 
and the stack pointer ($sp), which points to the last word of the frame. The stack 
grows down from higher memory addresses, so the frame pointer points above the 

caller-saved register 
A regis ter saved by the 
routine  being called.

callee-saved register 
A regis ter saved by 
the routine making a 
procedure call.

procedure call frame 
A block of memory that 
is used to hold values 
passed to a procedure 
as arguments, to save 
registers that a procedure 
may modify but that 
the procedure’s caller 
does not want changed, 
and to pro vide space 
for variables local to a 
procedure.

 B.6 Procedure Call Convention B-23



B-24 Appendix B Assemblers, Linkers, and the SPIM Simulator

stack pointer. The executing procedure uses the frame pointer to quickly access 
values in its stack frame. For example, an argument in the stack frame can be loaded 
into register $v0 with the instruction

lw	$v0,	0($fp)

 Register name Number Usage

$zero 0 constant 0

$at 1 reserved for assembler 

$v0 2 expression evaluation and results of a function

$v1 3 expression evaluation and results of a function

$a0 4 argument 1 

$a1 5 argument 2 

$a2 6 argument 3 

$a3 7 argument 4 

$t0 8 temporary (not preserved across call) 

$t1 9 temporary (not preserved across call) 

$t2 10 temporary (not preserved across call) 

$t3 11 temporary (not preserved across call) 

$t4 12 temporary (not preserved across call) 

$t5 13 temporary (not preserved across call) 

$t6 14 temporary (not preserved across call) 

$t7 15 temporary (not preserved across call) 

$s0 16 saved temporary (preserved across call) 

$s1 17 saved temporary (preserved across call) 

$s2 18 saved temporary (preserved across call) 

$s3 19 saved temporary (preserved across call) 

$s4 20 saved temporary (preserved across call) 

$s5 21 saved temporary (preserved across call) 

$s6 22 saved temporary (preserved across call) 

$s7 23 saved temporary (preserved across call) 

$t8 24 temporary (not preserved across call) 

$t9 25 temporary (not preserved across call) 

$k0 26 reserved for OS kernel 

$k1 27 reserved for OS kernel 

$gp 28 pointer to global area 

$sp 29 stack pointer 

$fp 30 frame pointer 

$ra 31 return address (used by function call) 

FIGURE B.6.1 MIPS registers and usage convention. 



A stack frame may be built in many different ways; however, the caller and callee 
must agree on the sequence of steps. The steps below describe the calling convention 
used on most MIPS machines. This convention comes into play at three points 
during a procedure call: immediately before the caller invokes the callee, just as the 
callee starts executing, and immediately before the callee returns to the caller. In 
the first part, the caller puts the procedure call arguments in stan dard places and 
invokes the callee to do the following:

1. Pass arguments. By convention, the first four arguments are passed in regis-
ters $a0–$a3. Any remaining arguments are pushed on the stack and appear 
at the beginning of the called procedure’s stack frame.

2. Save caller-saved registers. The called procedure can use these registers  
($a0–$a3 and $t0–$t9) without first saving their value. If the caller expects 
to use one of these registers after a call, it must save its value before the call.

3. Execute a jal instruction (see Section 2.8 of Chapter 2), which jumps to the 
callee’s first instruction and saves the return address in register $ra.

FIGURE B.6.2 Layout of a stack frame. The frame pointer ($fp) points to the first word in the 
currently executing procedure’s stack frame. The stack pointer ($sp) points to the last word of the frame. 
The first four arguments are passed in registers, so the fifth argument is the first one stored on the stack. 
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Before a called routine starts running, it must take the following steps to set up 
its stack frame: 

1. Allocate memory for the frame by subtracting the frame’s size from the stack 
pointer.

2. Save callee-saved registers in the frame. A callee must save the values in these 
registers ($s0–$s7, $fp, and $ra) before altering them, since the caller 
expects to find these registers unchanged after the call. Register $fp is saved 
by every procedure that allocates a new stack frame. However, register $ra 
only needs to be saved if the callee itself makes a call. The other callee-saved 
registers that are used also must be saved.

3. Establish the frame pointer by adding the stack frame’s size minus 4 to $sp 
and storing the sum in register $fp.

The MIPS register use convention provides callee- and caller-saved registers, 
because both types of registers are advantageous in different circumstances. Callee-
saved registers are better used to hold long-lived values, such as variables from a 
user’s program. These registers are only saved during a procedure call if the callee 
expects to use the register. On the other hand, caller-saved registers are bet ter used 
to hold short-lived quantities that do not persist across a call, such as immediate 
values in an address calculation. During a call, the callee can also use these registers 
for short-lived temporaries.

Finally, the callee returns to the caller by executing the following steps: 

1. If the callee is a function that returns a value, place the returned value in 
register $v0.

2. Restore all callee-saved registers that were saved upon procedure entry.

3. Pop the stack frame by adding the frame size to $sp.

4. Return by jumping to the address in register $ra.

Elaboration: A programming language that does not permit recursive procedures—
procedures that call themselves either directly or indirectly through a chain of calls—need  
not allocate frames on a stack. In a nonrecursive language, each procedure’s frame 
may be statically allocated, since only one invocation of a procedure can be active at a 
time. Older versions of Fortran prohibited recursion, because statically allocated frames 
produced faster code on some older machines. However, on load store architec tures like 
MIPS, stack frames may be just as fast, because a frame pointer register points directly 

Hardware/ 
Software 
Interface

recursive procedures 
Procedures that call 
themselves  either directly 
or indirectly through a 
chain of calls.



to the active stack frame, which permits a single load or store instruc tion to access 
values in the frame. In addition, recursion is a valuable programming technique.

Procedure Call Example
As an example, consider the C routine

main	()	
{	
	 printf	(“The	factorial	of	10	is	%d\n”,	fact	(10));	
}	
	
int	fact	(int	n)	
{	
	 if	(n	<	1)	
	 	 return	(1);	
	 else	
	 	 return	(n	*	fact	(n	-	1));	
}

which computes and prints 10! (the factorial of 10, 10! = 10 × 9 × . . . × 1). fact is 
a recursive routine that computes n! by multiplying n times (n - 1)!. The assembly 
code for this routine illustrates how programs manipulate stack frames.

Upon entry, the routine main creates its stack frame and saves the two callee-
saved registers it will modify: $fp and $ra. The frame is larger than required for 
these two register because the calling convention requires the minimum size of a 
stack frame to be 24 bytes. This minimum frame can hold four argument registers 
($a0–$a3) and the return address $ra, padded to a double-word boundary 
(24 bytes). Since main also needs to save $fp, its stack frame must be two words 
larger (remember: the stack pointer is kept doubleword aligned).

	 .text	
	 .globl	main	
main:	
	 subu	 $sp,$sp,32	 #	Stack	frame	is	32	bytes	long	
	 sw	 $ra,20($sp)	 #	Save	return	address	
	 sw	 $fp,16($sp)	 #	Save	old	frame	pointer	
	 addiu	 $fp,$sp,28	 #	Set	up	frame	pointer

The routine main then calls the factorial routine and passes it the single argument 
10. After fact returns, main calls the library routine printf and passes it both 
a format string and the result returned from fact:
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	 li	 $a0,10	 #	Put	argument	(10)	in	$a0	
	 jal	 fact	 #	Call	factorial	function	
	
	 la	 $a0,$LC	 #	Put	format	string	in	$a0	
	 move	 $a1,$v0	 #	Move	fact	result	to	$a1	
	 jal	 printf	 #	Call	the	print	function

Finally, after printing the factorial, main returns. But first, it must restore the 
registers it saved and pop its stack frame:

	 lw	 $ra,20($sp)	 #	Restore	return	address	
	 lw	 $fp,16($sp)	 #	Restore	frame	pointer	
	 addiu	 $sp,$sp,32	 #	Pop	stack	frame	
	 jr	 $ra	 #	Return	to	caller	
	
	 .rdata	
$LC:	
	 .ascii	 “The	factorial	of	10	is	%d\n\000”

The factorial routine is similar in structure to main. First, it creates a stack frame 
and saves the callee-saved registers it will use. In addition to saving $ra and $fp, 
fact also saves its argument ($a0), which it will use for the recursive call:

	 .text	
fact:	
	 subu	 $sp,$sp,32	 #	Stack	frame	is	32	bytes	long	
	 sw	 $ra,20($sp)	 #	Save	return	address	
	 sw	 $fp,16($sp)	 #	Save	frame	pointer	
	 addiu	 $fp,$sp,28	 #	Set	up	frame	pointer	
	 sw	 $a0,0($fp)	 #	Save	argument	(n)

The heart of the fact routine performs the computation from the C program. 
It tests whether the argument is greater than 0. If not, the routine returns the 
value 1. If the argument is greater than 0, the routine recursively calls itself to 
compute fact(n-1) and multiplies that value times n:

	 lw	 $v0,0($fp)	 #	Load	n	
	 bgtz	 $v0,$L2	 #	Branch	if	n	>	0	
	 li	 $v0,1	 #	Return	1	
	 jr	 $L1	 #	Jump	to	code	to	return	
	
$L2:	
	 lw	 $v1,0($fp)	 #	Load	n	
	 subu	 $v0,$v1,1	 #	Compute	n	-	1	
	 move	 $a0,$v0	 #	Move	value	to	$a0	



	 jal	 fact	 #	Call	factorial	function	
	
	 lw	 $v1,0($fp)	 #	Load	n	
	 mul	 $v0,$v0,$v1	 #	Compute	fact(n-1)	*	n

Finally, the factorial routine restores the callee-saved registers and returns the 
value in register $v0:	

$L1:	 	 #	Result	is	in	$v0	
	 lw	 $ra,	20($sp)	 #	Restore	$ra	
	 lw	 $fp,	16($sp)	 #	Restore	$fp	
	 addiu	 $sp,	$sp,	32	 #	Pop	stack	
	 jr	 $ra	 #	Return	to	caller

Stack in Recursive Procedure

Figure B.6.3 shows the stack at the call fact(7). main runs first, so its frame 
is deepest on the stack. main calls fact(10), whose stack frame is next on the 
stack. Each invocation recursively invokes fact to compute the next-lowest 
factorial. The stack frames parallel the LIFO order of these calls. What does the 
stack look like when the call to fact(10) returns?

EXAMPLE
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FIGURE B.6.3 Stack frames during the call of fact(7). 
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ANSWER

Elaboration: The difference between the MIPS compiler and the gcc compiler is that 
the MIPS compiler usually does not use a frame pointer, so this register is available as 
another calleesaved register, $s8. This change saves a couple of instructions in the 
procedure call and return sequence. However, it complicates code generation, because 
a procedure must access its stack frame with $sp, whose value can change during a 
procedure’s execution if values are pushed on the stack.

Another Procedure Call Example
As another example, consider the following routine that computes the tak func-
tion, which is a widely used benchmark created by Ikuo Takeuchi. This function 
does not compute anything useful, but is a heavily recursive program that illustrates 
the MIPS calling convention.

int	tak	(int	x,	int	y,	int	z)	
{	
	 if	(y	<	x)	
	 	 return	1+	tak	(tak	(x	-	1,	y,	z),	
	 	 	 tak	(y	-	1,	z,	x),	
	 	 	 tak	(z	-	1,	x,	y));	
	 else	
	 	 return	z;	
}

int	main	()	
{	
	 tak(18,	12,	6);	
}

The assembly code for this program is shown below. The tak function first saves 
its return address in its stack frame and its arguments in callee-saved regis ters, 
since the routine may make calls that need to use registers $a0–$a2 and $ra. The 
function uses callee-saved registers, since they hold values that persist over the 

main
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lifetime of the function, which includes several calls that could potentially modify 
registers.

	 .text	
	 .globl	 tak	
	
tak:	
	 subu	 $sp,	$sp,	40	
	 sw	 $ra,	32($sp)	
	
	 sw	 $s0,	16($sp)	 #	x	
	 move	 $s0,	$a0	
	 sw	 $s1,	20($sp)	 #	y	
	 move	 $s1,	$a1	
	 sw	 $s2,	24($sp)	 #	z	
	 move	 $s2,	$a2	
	 sw	 $s3,	28($sp)	 #	temporary

The routine then begins execution by testing if y < x. If not, it branches to label 
L1, which is shown below.

	 bge	 $s1,	$s0,	L1	 #	if	(y	<	x)

If y < x, then it executes the body of the routine, which contains four recursive 
calls. The first call uses almost the same arguments as its parent:

	 addiu	 $a0,	$s0,	-1	
	 move	 $a1,	$s1	
	 move	 $a2,	$s2	
	 jal	 tak	 #	tak	(x	-	1,	y,	z)	
	 move	 $s3,	$v0

Note that the result from the first recursive call is saved in register $s3, so that it 
can be used later.

The function now prepares arguments for the second recursive call.

	 addiu	 $a0,	$s1,	-1	
	 move	 $a1,	$s2	
	 move	 $a2,	$s0	
	 jal	 tak	 #	tak	(y	-	1,	z,	x)

In the instructions below, the result from this recursive call is saved in register 
$s0. But first we need to read, for the last time, the saved value of the first argu-
ment from this register.
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	 addiu	 $a0,	$s2,	-1	
	 move	 $a1,	$s0	
	 move	 $a2,	$s1	
	 move	 $s0,	$v0	
	 jal	 tak	 #	tak	(z	-	1,	x,	y)

After the three inner recursive calls, we are ready for the final recursive call. After the 
call, the function’s result is in $v0 and control jumps to the function’s epilogue.

move	 $a0,	$s3	
move	 $a1,	$s0	
move	 $a2,	$v0	
jal	 tak	 #	tak	(tak(...),	tak(...),	tak(...))	
addiu	 $v0,	$v0,	1	
j	 L2

This code at label L1 is the consequent of the ifthenelse statement. It just moves 
the value of argument z into the return register and falls into the function epilogue.

L1:	
	 move	 $v0,	$s2

The code below is the function epilogue, which restores the saved registers and 
returns the function’s result to its caller.

L2:	
	 lw	 $ra,	32($sp)	
	 lw	 $s0,	16($sp)	
	 lw	 $s1,	20($sp)	
	 lw	 $s2,	24($sp)	
	 lw	 $s3,	28($sp)	
	 addiu	 $sp,	$sp,	40	
	 jr	 $ra

The main routine calls the tak function with its initial arguments, then takes the 
computed result (7) and prints it using SPIM’s system call for printing integers.

	 .globl	 main	
main:	
	 subu	 $sp,	$sp,	24	
	 sw	 $ra,	16($sp)

	 li	 $a0,	18	
	 li	 $a1,	12	



	 li	 $a2,	6	
	 jal	 tak	 #	tak(18,	12,	6)

	 move	 $a0,	$v0	
	 li	 $v0,	1	 #	print_int	syscall	
	 syscall

	 lw	 $ra,	16($sp)	
	 addiu	 $sp,	$sp,	24	
	 jr	 $ra

 B.7 Exceptions and Interrupts

Section 4.9 of Chapter 4 describes the MIPS exception facility, which responds both 
to exceptions caused by errors during an instruction’s execution and to external 
interrupts caused by I/O devices. This section describes exception and interrupt 
handling in more detail.1 In MIPS processors, a part of the CPU called coprocessor 0 
records the information the software needs to handle excep tions and interrupts. 
The MIPS simulator SPIM does not implement all of copro cessor 0’s registers, 
since many are not useful in a simulator or are part of the memory system, which 
SPIM does not implement. However, SPIM does provide the following coprocessor 
0 registers:

Register 
name

Register 
number Usage

BadVAddr 8 memory address at which an offending memory reference occurred 

Count 9 timer 

Compare 11 value compared against timer that causes interrupt when they match

Status 12 interrupt mask and enable bits

Cause 13 exception type and pending interrupt bits 

EPC 14 address of instruction that caused exception

Config 16 configuration of machine

1. This section discusses exceptions in the MIPS-32 architecture, which is what SPIM imple ments 
in Version 7.0 and later. Earlier versions of SPIM implemented the MIPS-1 architecture, which 
handled exceptions slightly differently. Converting programs from these versions to run on  
MIPS-32 should not be difficult, as the changes are limited to the Status and Cause register fields 
and the  replacement of the rfe instruction by the eret instruction.

interrupt handler A piece 
of code that is run as a 
result of an exception or an 
interrupt.

 B.7 Exceptions and Interrupts B-33



B-34 Appendix B Assemblers, Linkers, and the SPIM Simulator

These seven registers are part of coprocessor 0’s register set. They are accessed 
by the mfc0 and mtc0 instructions. After an exception, register EPC contains 
the address of the instruction that was executing when the exception occurred. If 
the exception was caused by an external interrupt, then the instruction will not 
have started executing. All other exceptions are caused by the execution of the 
instruc tion at EPC, except when the offending instruction is in the delay slot of a 
branch or jump. In that case, EPC points to the branch or jump instruction and 
the BD bit is set in the Cause register. When that bit is set, the exception handler 
must look at EPC + 4 for the offending instruction. However, in either case, an 
excep tion handler properly resumes the program by returning to the instruction 
at EPC.

If the instruction that caused the exception made a memory access, register 
BadVAddr contains the referenced memory location’s address.

The Count register is a timer that increments at a fixed rate (by default, every 
10 milliseconds) while SPIM is running. When the value in the Count register 
equals the value in the Compare register, a hardware interrupt at priority level 5 
occurs.

Figure B.7.1 shows the subset of the Status register fields implemented by the 
MIPS simulator SPIM. The interrupt	mask field contains a bit for each of the 
six hardware and two software interrupt levels. A mask bit that is 1 allows inter-
rupts at that level to interrupt the processor. A mask bit that is 0 disables inter-
rupts at that level. When an interrupt arrives, it sets its interrupt pending bit in the 
Cause register, even if the mask bit is disabled. When an interrupt is pending, it will 
interrupt the processor when its mask bit is subsequently enabled.

The user mode bit is 0 if the processor is running in kernel mode and 1 if it is 
running in user mode. On SPIM, this bit is fixed at 1, since the SPIM processor does 
not implement kernel mode. The exception level bit is normally 0, but is set to 1 
after an exception occurs. When this bit is 1, interrupts are disabled and the EPC 
is not updated if another exception occurs. This bit prevents an exception handler 
from being disturbed by an interrupt or exception, but it should be reset when the 
handler finishes. If the interrupt enable bit is 1, interrupts are allowed. If it is 
0, they are disabled.

Figure B.7.2 shows the subset of Cause register fields that SPIM implements. 
The branch delay bit is 1 if the last exception occurred in an instruction executed in 
the delay slot of a branch. The interrupt pending bits become 1 when an inter rupt 



is raised at a given hardware or software level. The exception code register describes 
the cause of an exception through the following codes:

Number Name Cause of exception

0 Int interrupt (hardware)

4 AdEL address error exception (load or instruction fetch) 

5 AdES address error exception (store) 

6 IBE bus error on instruction fetch 

7 DBE bus error on data load or store 

8 Sys syscall exception 

9 Bp breakpoint exception 

10 RI reserved instruction exception

11 CpU coprocessor unimplemented

12 Ov arithmetic overflow exception

13 Tr trap

15 FPE floating point

Exceptions and interrupts cause a MIPS processor to jump to a piece of code, 
at address 80000180hex (in the kernel, not user address space), called an exception 
handler. This code examines the exception’s cause and jumps to an appropriate 
point in the operating system. The operating system responds to an exception 
either by terminating the process that caused the exception or by performing 
some action. A process that causes an error, such as executing an unimplemented 
instruction, is killed by the operating system. On the other hand, other exceptions 

FIGURE B.7.1 The Status register. 
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such as page faults are requests from a process to the operating system to perform a 
service, such as bringing in a page from disk. The operating system processes these 
requests and resumes the process. The final type of exceptions are interrupts from 
external devices. These generally cause the operating system to move data to or 
from an I/O device and resume the interrupted process. 

The code in the example below is a simple exception handler, which invokes 
a routine to print a message at each exception (but not interrupts). This code is 
similar to the exception handler (exceptions.s) used by the SPIM simulator.

Exception Handler

The exception handler first saves register $at, which is used in pseudo-
instructions in the handler code, then saves $a0 and $a1, which it later uses to 
pass arguments. The exception handler cannot store the old values from these 
registers on the stack, as would an ordinary routine, because the cause of the 
exception might have been a memory reference that used a bad value (such 
as 0) in the stack pointer. Instead, the exception handler stores these registers 
in an exception handler register ($k1, since it can’t access memory without 
using $at) and two memory locations (save0 and save1). If the exception 
routine itself could be interrupted, two locations would not be enough since 
the second exception would overwrite values saved during the first exception. 
However, this simple exception handler finishes running before it enables 
interrupts, so the problem does not arise.

.ktext	0x80000180	
mov	$k1,	$at				#	Save	$at	register	
sw		$a0,	save0		#	Handler	is	not	re-entrant	and	can’t	use	
sw		$a1,	save1		#	stack	to	save	$a0,	$a1	
																#	Don’t	need	to	save	$k0/$k1

The exception handler then moves the Cause and EPC registers into CPU 
registers. The Cause and EPC registers are not part of the CPU register set. 
In stead, they are registers in coprocessor 0, which is the part of the CPU that 
han dles exceptions. The instruction mfc0 $k0, $13 moves coprocessor 0’s 
register 13 (the Cause register) into CPU register $k0. Note that the exception 
handler need not save registers $k0 and $k1, because user programs are not 
supposed to use these registers. The exception handler uses the value from the 
Cause reg ister to test whether the exception was caused by an interrupt (see 
the preceding ta ble). If so, the exception is ignored. If the exception was not an 
interrupt, the handler calls print_excp to print a message.

EXAMPLE



mfc0		 $k0,	$13								#	Move	Cause	into	$k0	
	
srl		 $a0,	$k0,	2					#	Extract	ExcCode	field	
andi		 $a0,	$a0,	Oxf	
	
bgtz		 $a0,	done							#	Branch	if	ExcCode	is	Int	(0)	
	
mov		 $a0,	$k0								#	Move	Cause	into	$a0	
mfco		 $a1,	$14								#	Move	EPC	into	$a1	
jal		 print_excp						#	Print	exception	error	message

Before returning, the exception handler clears the Cause register; resets 
the Status register to enable interrupts and clear the EXL bit, which allows 
subse quent exceptions to change the EPC register; and restores registers $a0, 
$a1,	and $at. It then executes the eret (exception return) instruction, which 
returns to the instruction pointed to by EPC. This exception handler returns 
to the instruction following the one that caused the exception, so as to not  
re-execute the faulting instruction and cause the same exception again.

done:				mfc0				$k0,	$14							#	Bump	EPC	
									addiu			$k0,	$k0,	4				#	Do	not	re-execute	
																																#	faulting	instruction	
									mtc0				$k0,	$14							#	EPC	
	
									mtc0				$0,	$13								#	Clear	Cause	register	
	
									mfc0				$k0,	$12							#	Fix	Status	register	
									andi				$k0,	Oxfffd				#	Clear	EXL	bit	
									ori					$k0,	Ox1							#	Enable	interrupts	
									mtc0				$k0,	$12

									lw						$a0,	save0					#	Restore	registers	
									lw						$a1,	save1	
									mov					$at,	$k1	
	
									eret																			#	Return	to	EPC	
	
									.kdata	
save0:			.word	0	
save1:			.word	0
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Elaboration: On real MIPS processors, the return from an exception handler is more 
complex. The exception handler cannot always jump to the instruction following EPC. For 
example, if the instruction that caused the exception was in a branch instruction’s delay 
slot (see Chapter 4), the next instruction to execute may not be the following instruction 
in memory.

 B.8 Input and Output

SPIM simulates one I/O device: a memory-mapped console on which a program 
can read and write characters. When a program is running, SPIM connects its 
own terminal (or a separate console window in the X-window version xspim or 
the Windows version PCSpim) to the processor. A MIPS program running on 
SPIM can read the characters that you type. In addition, if the MIPS program 
writes characters to the terminal, they appear on SPIM’s terminal or console win-
dow. One exception to this rule is control-C: this character is not passed to the 
program, but instead causes SPIM to stop and return to command mode. When 
the program stops running (for example, because you typed control-C or because 
the program hit a breakpoint), the terminal is reconnected to SPIM so you can type 
SPIM commands. 

To use memory-mapped I/O (see below), spim or xspim must be started 
with the -mapped_io flag. PCSpim can enable memory-mapped I/O through a 
command line flag or the “Settings” dialog.

The terminal device consists of two independent units: a receiver and a trans
mitter. The receiver reads characters from the keyboard. The transmitter displays 
characters on the console. The two units are completely independent. This means, 
for example, that characters typed at the keyboard are not automatically echoed on 
the display. Instead, a program echoes a character by reading it from the receiver 
and writing it to the transmitter.

A program controls the terminal with four memory-mapped device registers, 
as shown in Figure B.8.1. “Memory-mapped’’ means that each register  appears as 
a special memory location. The Receiver Control register is at location ffff0000hex. 
Only two of its bits are actually used. Bit 0 is called “ready’’: if it is 1, it means 
that a character has arrived from the keyboard but has not yet been read from the 
Receiver Data register. The ready bit is read-only: writes to it are ignored. The ready 
bit changes from 0 to 1 when a character is typed at the keyboard, and it changes 
from 1 to 0 when the character is read from the Receiver Data register.



Bit 1 of the Receiver Control register is the keyboard “interrupt enable.” This bit 
may be both read and written by a program. The interrupt enable is initially 0. If 
it is set to 1 by a program, the terminal requests an interrupt at hardware level 1 
whenever a character is typed, and the ready bit becomes 1. However, for the inter-
rupt to affect the processor, interrupts must also be enabled in the Status register 
(see Section B.7). All other bits of the Receiver Control register are unused.

The second terminal device register is the Receiver Data register (at address 
ffff0004hex). The low-order eight bits of this register contain the last character typed 
at the keyboard. All other bits contain 0s. This register is read-only and changes 
only when a new character is typed at the keyboard. Reading the Receiver Data 
register resets the ready bit in the Receiver Control register to 0. The value in this 
register is undefined if the Receiver Control register is 0.

The third terminal device register is the Transmitter Control register (at address 
ffff0008hex). Only the low-order two bits of this register are used. They behave much 
like the corresponding bits of the Receiver Control register. Bit 0 is called “ready’’ 

FIGURE B.8.1 The terminal is controlled by four device registers, each of which appears 
as a memory location at the given address. Only a few bits of these registers are actually used. The 
others always read as 0s and are ignored on writes. 
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and is read-only. If this bit is 1, the transmitter is ready to accept a new character 
for output. If it is 0, the transmitter is still busy writing the previous character. 
Bit 1 is “interrupt enable’’ and is readable and writable. If this bit is set to 1, then 
the terminal requests an interrupt at hardware level 0 whenever the transmitter is 
ready for a new character, and the ready bit becomes 1.

The final device register is the Transmitter Data register (at address ffff000chex). 
When a value is written into this location, its low-order eight bits (i.e., an ASCII 
character as in Figure 2.15 in Chapter 2) are sent to the console. When the Trans-
mitter Data register is written, the ready bit in the Transmitter Control register is 
reset to 0. This bit stays 0 until enough time has elapsed to transmit the character 
to the terminal; then the ready bit becomes 1 again. The Trans mitter Data register 
should only be written when the ready bit of the Transmitter Control register is 1. 
If the transmitter is not ready, writes to the Transmitter Data register are ignored 
(the write appears to succeed but the character is not output).

Real computers require time to send characters to a console or terminal. These 
time lags are simulated by SPIM. For example, after the transmitter starts to write a 
character, the transmitter’s ready bit becomes 0 for a while. SPIM measures time in 
instructions executed, not in real clock time. This means that the transmitter does 
not become ready again until the processor executes a fixed number of instructions. 
If you stop the machine and look at the ready bit, it will not change. However, if you 
let the machine run, the bit eventually changes back to 1. 

 B.9 SPIM

SPIM is a software simulator that runs assembly language programs written for 
processors that implement the MIPS-32 architecture, specifically Release 1 of this 
architecture with a fixed memory mapping, no caches, and only coprocessors 0 
and 1.2 SPIM’s name is just MIPS spelled backwards. SPIM can read and immedi-
ately execute assembly language files. SPIM is a self-contained system for running 

2. Earlier versions of SPIM (before 7.0) implemented the MIPS-1 architecture used in the origi nal 
MIPS R2000 processors. This architecture is almost a proper subset of the MIPS-32 architec ture, 
with the difference being the manner in which exceptions are handled. MIPS-32 also introduced 
approximately 60 new instructions, which are supported by SPIM. Programs that ran on the 
 earlier versions of SPIM and did not use exceptions should run unmodified on newer ver sions of 
SPIM. Programs that used exceptions will require minor changes.



MIPS programs. It contains a debugger and provides a few operating system–like 
services. SPIM is much slower than a real computer (100 or more times). How ever, 
its low cost and wide availability cannot be matched by real hardware!

An obvious question is, “Why use a simulator when most people have PCs that 
contain processors that run significantly faster than SPIM?” One reason is that 
the processor in PCs are Intel 80x86s, whose architecture is far less regular and 
far more complex to understand and program than MIPS processors. The MIPS 
architecture may be the epitome of a simple, clean RISC machine.

In addition, simulators can provide a better environment for assembly pro-
gramming than an actual machine because they can detect more errors and  provide 
a better interface than an actual computer. 

Finally, simulators are useful tools in studying computers and the programs that 
run on them. Because they are implemented in software, not silicon, simulators can 
be examined and easily modified to add new instructions, build new systems such 
as multiprocessors, or simply collect data.

Simulation of a Virtual Machine
The basic MIPS architecture is difficult to program directly because of delayed 
branches, delayed loads, and restricted address modes. This difficulty is tolerable 
since these computers were designed to be programmed in high-level languages 
and present an interface designed for compilers rather than assembly language 
programmers. A good part of the programming complexity results from delayed 
instructions. A delayed branch requires two cycles to execute (see the Elabora tions 
on pages 343 and 381 of Chapter 4). In the second cycle, the instruction imme-
diately following the branch executes. This instruction can perform useful work 
that normally would have been done before the branch. It can also be a nop (no 
operation) that does nothing. Similarly, delayed loads require two cycles to bring 
a value from memory, so the instruction immediately  following a load cannot use 
the value (see Section 4.2 of Chapter 4).

MIPS wisely chose to hide this complexity by having its assembler implement 
a virtual machine. This virtual computer appears to have nondelayed branches 
and loads and a richer instruction set than the actual hardware. The assembler 
reorga nizes (rearranges) instructions to fill the delay slots. The virtual computer 
also provides pseudoinstructions, which appear as real instructions in assembly 
lan guage programs. The hardware, however, knows nothing about pseudoinstruc-
tions, so the assembler must translate them into equivalent sequences of actual 
machine instructions. For example, the MIPS hardware only provides instructions 
to branch when a register is equal to or not equal to 0. Other conditional branches, 
such as one that branches when one register is greater than another, are synthesized 
by comparing the two registers and branching when the result of the comparison 
is true (nonzero).

virtual machine 
A virtual computer 
that appears to have 
nondelayed branches 
and loads and a richer 
 instruction set than the 
actual hardware.

 B.9 SPIM B-41



B-42 Appendix B Assemblers, Linkers, and the SPIM Simulator

By default, SPIM simulates the richer virtual machine, since this is the machine 
that most programmers will find useful. However, SPIM can also simulate the 
delayed branches and loads in the actual hardware. Below, we describe the virtual 
machine and only mention in passing features that do not belong to the actual 
hardware. In doing so, we follow the convention of MIPS assembly language pro-
grammers (and compilers), who routinely use the extended machine as if it was 
implemented in silicon.

Getting Started with SPIM
The rest of this appendix introduces SPIM and the MIPS R2000 Assembly lan-
guage. Many details should never concern you; however, the sheer volume of 
information can sometimes obscure the fact that SPIM is a simple, easy-to-use 
program. This section starts with a quick tutorial on using SPIM, which should 
enable you to load, debug, and run simple MIPS programs.

SPIM comes in different versions for different types of computer systems. The 
one constant is the simplest version, called spim, which is a command-line-driven 
pro gram that runs in a console window. It operates like most programs of this type: 
you type a line of text, hit the return key, and spim executes your command. 
Despite its lack of a fancy interface, spim can do everything that its fancy cousins 
can do.

There are two fancy cousins to spim. The version that runs in the X-windows 
environment of a UNIX or Linux system is called xspim. xspim is an easier pro-
gram to learn and use than spim, because its commands are always visible on the 
screen and because it continually displays the machine’s registers and memory. The 
other fancy version is called PCspim and runs on Microsoft Windows. The UNIX 
and Windows versions of SPIM  are on the CD (click on Tutorials). Tutorials on 
xspim, pcSpim, spim, and SPIM command-line options  are on the CD (click 
on Software).

If you are going to run SPIM on a PC running Microsoft Windows, you should 
first look at the tutorial on PCSpim  on the CD. If you are going to run SPIM 
on a computer running UNIX or Linux, you should read the tutorial on xspim  
(click on Tutorials).

Surprising Features
Although SPIM faithfully simulates the MIPS computer, SPIM is a simulator, and 
certain things are not identical to an actual computer. The most obvious differ-
ences are that instruction timing and the memory systems are not identical. 
SPIM does not simulate caches or memory latency, nor does it accurately reflect 
 floating-point operation or multiply and divide instruction delays. In addition, 
the floating-point instructions do not detect many error conditions, which would 
cause exceptions on a real machine.



Another surprise (which occurs on the real machine as well) is that a pseudo-
instruction expands to several machine instructions. When you single-step or exam-
ine memory, the instructions that you see are different from the source program. 
The correspondence between the two sets of instructions is fairly simple, since 
SPIM does not reorganize instructions to fill delay slots.

Byte Order
Processors can number bytes within a word so the byte with the lowest number is 
either the leftmost or rightmost one. The convention used by a machine is called 
its byte order. MIPS processors can operate with either bigendian or  littleendian 
byte order. For example, in a big-endian machine, the directive .byte 0, 1, 2, 3 
would result in a memory word containing

Byte #

0 1 2 3

while in a little-endian machine, the word would contain

Byte #

3 2 1 0

SPIM operates with both byte orders. SPIM’s byte order is the same as the byte 
order of the underlying machine that runs the simulator. For example, on an Intel 
80x86, SPIM is little-endian, while on a Macintosh or Sun SPARC, SPIM is big-
endian.

System Calls
SPIM provides a small set of operating system–like services through the system 
call (syscall) instruction. To request a service, a program loads the system call 
code (see Figure B.9.1) into register $v0 and arguments into registers $a0–$a3 (or 
$f12 for floating-point values). System calls that return values put their results in 
register $v0 (or $f0 for floating-point results). For example, the follow ing code 
prints "the	answer	=	5":

	 	.data	
str:	
	 	.asciiz	“the	answer	=	”	
	 	.text	
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	 li		 $v0,	4				#	system	call	code	for	print_str	
	 la	 $a0,	str		#	address	of	string	to	print	
	 syscall	 	#	print	the	string	

	 li	 $v0,	1				#	system	call	code	for	print_int	
	 li	 $a0,	5				#	integer	to	print
	 syscall	 	#	print	it

The print_int system call is passed an integer and prints it on the console. 
print_float prints a single floating-point number; print_double prints a 
double precision number; and print_string is passed a pointer to a null-
 terminated string, which it writes to the console.

The system calls read_int, read_float, and read_double to read an entire 
line of input up to and including the newline. Characters following the number 
are ignored. read_string has the same semantics as the UNIX library routine 
fgets. It reads up to n - 1 characters into a buffer and terminates the string with 
a null byte. If fewer than n - 1 characters are on the current line, read_string 
reads up to and including the newline and again null-terminates the string.  

Service System call code Arguments Result

print_int 1 $a0 = integer

print_float 2 $f12 = float

print_double 3 $f12 = double

print_string 4 $a0 = string

read_int 5 integer (in $v0) 

read_float 6 float (in $f0) 

read_double 7 double (in $f0) 

read_string 8 $a0 = buffer, $a1 = length

sbrk 9 $a0 = amount address (in $v0) 

exit 10

print_char 11 $a0 = char

read_char 12 char (in $v0)

open
13

$a0 = filename (string), 
$a1 = flags, $a2 = mode

file descriptor (in $a0)

read
14

$a0 = file descriptor, 
$a1 = buffer, $a2 = length

num chars read (in 
$a0)

write
15

$a0 = file descriptor, 
$a1 = buffer, $a2 = length

num chars written (in 
$a0)

close 16 $a0 = file descriptor

exit2 17 $a0 = result

FIGURE B.9.1 System services. 



Warning: Programs that use these syscalls to read from the terminal should not use 
memory-mapped I/O (see Section B.8).

sbrk returns a pointer to a block of memory containing n additional bytes. 
exit stops the program SPIM is running. exit2 terminates the SPIM pro gram, 
and the argument to exit2 becomes the value returned when the SPIM simulator 
itself terminates.

print_char and read_char write and read a single character. open, read, 
write, and close are the standard UNIX library calls.

  B.10 MIPS R2000 Assembly Language

A MIPS processor consists of an integer processing unit (the CPU) and a collec-
tion of coprocessors that perform ancillary tasks or operate on other types of 
data, such as floating-point numbers (see Figure B.10.1). SPIM simulates two 
coproces sors. Coprocessor 0 handles exceptions and interrupts. Coprocessor 1 is 
the floating-point unit. SPIM simulates most aspects of this unit.

Addressing Modes
MIPS is a load store architecture, which means that only load and store instruc tions 
access memory. Computation instructions operate only on values in regis ters. The 
bare machine provides only one memory-addressing mode: c(rx), which uses 
the sum of the immediate c and register rx as the address. The virtual machine 
provides the following addressing modes for load and store instructions:

Format Address computation

(register) contents of register 

imm immediate 

imm (register) immediate + contents of register 

label address of label 

label ± imm address of label + or – immediate 

label ± imm (register) address of label + or – (immediate + contents of register)

Most load and store instructions operate only on aligned data. A quantity is 
aligned if its memory address is a multiple of its size in bytes. Therefore, a half word 

 B.10 MIPS R2000 Assembly Language B-45



B-46 Appendix B Assemblers, Linkers, and the SPIM Simulator

object must be stored at even addresses, and a full word object must be stored at 
addresses that are a multiple of four. However, MIPS provides some instructions to 
manipulate unaligned data (lwl, lwr, swl, and swr).

Elaboration: The MIPS assembler (and SPIM) synthesizes the more complex address
ing modes by producing one or more instructions before the load or store to compute a 
complex address. For example, suppose that the label table referred to memory loca
tion 0´10000004 and a program contained the instruction

ld	$a0,	table	+	4($a1)

The assembler would translate this instruction into the instructions

FIGURE B.10.1 MIPS R2000 CPU and FPU. 
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lui	$at,	4096	
addu	$at,	$at,	$a1	
lw	$a0,	8($at)

The first instruction loads the upper bits of the label’s address into register $at, which 
is the register that the assembler reserves for its own use. The second instruction adds 
the contents of register $a1 to the label’s partial address. Finally, the load instruction 
uses the hardware address mode to add the sum of the lower bits of the label’s address 
and the offset from the original instruction to the value in register $at.

Assembler Syntax
Comments in assembler files begin with a sharp sign (#). Everything from the 
sharp sign to the end of the line is ignored.

Identifiers are a sequence of alphanumeric characters, underbars (_), and dots 
(.) that do not begin with a number. Instruction opcodes are reserved words that 
cannot be used as identifiers. Labels are declared by putting them at the beginning 
of a line followed by a colon, for example: 

	 .data	
item:	 .word	1	
	 .text	
	 .globl	main	 #	Must	be	global
main:	 lw	 $t0,	item

Numbers are base 10 by default. If they are preceded by 0x, they are interpreted 
as hexadecimal. Hence, 256 and 0x100 denote the same value.

Strings are enclosed in double quotes (”). Special characters in strings follow the 
C convention: 

 ■ newline \n

 ■ tab \t

 ■ quote \”

SPIM supports a subset of the MIPS assembler directives:

.align	n Align the next datum on a 2n byte boundary. For 
 example, .align 2 aligns the next value on a word 
boundary. .align 0 turns off automatic alignment 
of .half, .word, .float, and .double  directives 
until the next .data or .kdata directive.

.ascii	str Store the string str in memory, but do not null-
terminate it.
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.asciiz	str  Store the string str in memory and null- terminate it.

.byte	b1,...,	bn  Store the n values in successive bytes of memory.

.data	<addr> Subsequent items are stored in the data segment. 
If the optional argument addr is present, subse-
quent items are stored starting at address addr.

.double	d1,...,	dn  Store the n floating-point double precision  num-
bers in successive memory locations.

.extern	sym	size  Declare that the datum stored at sym is size bytes 
large and is a global label. This directive enables 
the assembler to store the datum in a portion of 
the data segment that is efficiently accessed via 
register $gp.

.float	f1,...,	fn  Store the n floating-point single precision num-
bers in successive memory locations.

.globl	sym Declare that label sym is global and can be refer-
enced from other files.

.half	h1,...,	hn	 Store the n 16-bit quantities in successive mem ory 
halfwords.

.kdata	<addr> Subsequent data items are stored in the kernel 
data segment. If the optional argument addr is 
present, subsequent items are stored starting at 
address addr.

.ktext	<addr> Subsequent items are put in the kernel text seg-
ment. In SPIM, these items may only be instruc-
tions or words (see the .word directive below). If 
the optional argument addr is present, subse quent 
items are stored starting at address addr.

.set	noat and .set	at  The first directive prevents SPIM from complain-
ing about subsequent instructions that use regis ter 
$at. The second directive re-enables the warning. 
Since pseudoinstructions expand into code that 
uses register $at, programmers must be very care-
ful about leaving values in this register.

.space	n Allocates n bytes of space in the current segment 
(which must be the data segment in SPIM).



.text <addr> Subsequent items are put in the user text seg ment. 
In SPIM, these items may only be instruc tions 
or words (see the .word directive below). If the 
 optional argument addr is present, subse quent 
items are stored starting at address addr.

.word	w1,...,	wn  Store the n 32-bit quantities in successive mem ory 
words. 

SPIM does not distinguish various parts of the data segment (.data, .rdata, and 
.sdata).

Encoding MIPS Instructions
Figure B.10.2 explains how a MIPS instruction is encoded in a binary number. 
Each column contains instruction encodings for a field (a contiguous group of 
bits) from an instruction. The numbers at the left margin are values for a field. 
For example, the j opcode has a value of 2 in the opcode field. The text at the top 
of a column names a field and specifies which bits it occupies in an instruction. 
For example, the op field is contained in bits 26–31 of an instruction. This field 
encodes most instructions. However, some groups of instructions use additional 
fields to distinguish related instructions. For example, the different floating-point 
instructions are specified by bits 0–5. The arrows from the first column show which 
opcodes use these additional fields.

Instruction Format
The rest of this appendix describes both the instructions implemented by actual 
MIPS hardware and the pseudoinstructions provided by the MIPS assembler. The 
two types of instructions are easily distinguished. Actual instructions depict the 
fields in their binary representation. For example, in 

Addition (with overflow)

add	rd,	rs,	rt
0 rs rt rd 0 0x20

6 5 5 5 5 6

the add instruction consists of six fields. Each field’s size in bits is the small num ber 
below the field. This instruction begins with six bits of 0s. Register specifiers begin 
with an r, so the next field is a 5-bit register specifier called rs. This is the same 
register that is the second argument in the symbolic assembly at the left of this 
line. Another common field is imm16, which is a 16-bit immediate number.
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FIGURE B.10.2 MIPS opcode map. The values of each field are shown to its left. The first column shows the values in base 10, and the 
second shows base 16 for the op field (bits 31 to 26) in the third column. This op field completely specifies the MIPS operation except for six 
op values: 0, 1, 16, 17, 18, and 19. These operations are determined by other fields, identified by pointers. The last field (funct) uses “f ” to 
mean “s” if rs = 16 and op = 17 or “d” if rs = 17 and op = 17. The second field (rs) uses “z” to mean “0”, “1”, “2”, or “3” if op = 16, 17, 18, or 19, 
respectively. If rs = 16, the operation is specified elsewhere: if z = 0, the operations are specified in the fourth field (bits 4 to 0); if z = 1, then the 
operations are in the last field with f = s. If rs = 17 and z = 1, then the operations are in the last field with f = d. 
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3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

16
00
01
02
03
04
05
06
07
08
09
0a
0b
0c
0d
0e
0 f
10
11
12
13
14
15
16
17
18
19
1a
1b
1c
1d
1e
1 f
20
21
22
23
24
25
26
27
28
29
2a
2b
2c
2d
2e
2 f
30
31
32
33
34
35
36
37
38
39
3a
3b
3c
3d
3e
3 f

    rs
(25:21)
mfcz

cfcz

mtcz

ctcz

copz
copz

(17:16)
bczf
bczt
bczfl
bcztl

tlbr
tlbwi

tlbwr

tlbp

eret

deret

rt
(20:16)
bltz
bgez
bltzl
bgezl

tgei
tgeiu
tlti
tltiu
tegi

tnei

bltzal
bgezal
bltzall
bgczall

cvt.s.f
cvt.d.f

cvt.w.f

c.f.f
c.un.f
c.eq.f
c.ueq.f
c.olt.f
c.ult.f
c.ole.f
c.ule.f
c.sf.f
c.ngle.f
c.seq.f
c.ngl.f
c.lt.f
c.nge.f
c.le.f
c.ngt.f

funct(5:0)funct(5:0)
sll

srl
sra
sllv

srlv
srav
jr
jalr
movz
movn
syscall
break

sync
mfhi
mthi
mflo
mtlo

mult
multu
div
divu

add
addu
sub
subu
and
or
xor
nor

slt
sltu

tge
tgeu
tlt
tltu
teq

tne

if z = 1,
f = d

if z = 1,
f = s

if z = 0

if z = 1 or z = 2

0
1
2
3

funct
(4:0)

sub.f
add.f

mul.f
div.f
sqrt.f
abs.f
mov.f
neg.f

round.w.f
trunc.w.f
cell.w.f
floor.w.f

movz.f
movn.f

 
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

clz
clo

funct(5:0)
madd
maddu
mul

msub
msubu

(16:16)
movf
movt

0
1

(16:16)
movf.f
movt.f

0
1

op(31:26)

j
jal
beq
bne
blez
bgtz
addi
addiu
slti
sltiu
andi
ori
xori
lui
z = 0
z = 1
z = 2

beql
bnel
blezl
bgtzl

lb
lh
lwl
lw
lbu
lhu
lwr

sb
sh
swl
sw

swr
cache
ll
lwc1
lwc2
pref

ldc1
ldc2

sc
swc1
swc2

sdc1
sdc2



Pseudoinstructions follow roughly the same conventions, but omit instruction 
encoding information. For example:

Multiply (without overflow)

mul	rdest,	rsrc1,	src2 pseudoinstruction

In pseudoinstructions, rdest and rsrc1 are registers and src2 is either a regis-
ter or an immediate value. In general, the assembler and SPIM translate a more 
general form of an instruction (e.g., add	$v1, $a0, 0x55) to a specialized form 
(e.g., addi $v1, $a0, 0x55).

Arithmetic and Logical Instructions

Absolute value

abs	rdest,	rsrc pseudoinstruction

Put the absolute value of register rsrc in register rdest.

Addition (with overflow)

add	rd,	rs,	rt
0 rs rt rd 0 0x20

6 5 5 5 5 6

Addition (without overflow)

addu	rd,	rs,	rt
0 rs rt rd 0 0x21

6 5 5 5 5 6

Put the sum of registers rs and rt into register rd.

Addition immediate (with overflow)

addi	rt,	rs,	imm
8 rs rt imm

6 5 5 16

Addition immediate (without overflow)

addiu	rt,	rs,	imm
9 rs rt imm

6 5 5 16

Put the sum of register rs and the sign-extended immediate into register rt.
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AND

and	rd,	rs,	rt
0 rs rt rd 0 0x24
6 5 5 5 5 6

Put the logical AND of registers rs and rt into register rd.

AND immediate

andi	rt,	rs,	imm
0xc rs rt imm
6 5 5 16

Put the logical AND of register rs and the zero-extended immediate into reg-
ister rt.

Count leading ones

clo	rd,	rs
0x1c rs 0 rd 0 0x21
6 5 5 5 5 6

Count leading zeros

clz	rd,	rs
0x1c rs 0 rd 0 0x20
6 5 5 5 5 6

Count the number of leading ones (zeros) in the word in register rs and put 
the result into register rd. If a word is all ones (zeros), the result is 32.

Divide (with overflow)

div	rs,	rt
0 rs rt 0 0x1a
6 5 5 10 6

Divide (without overflow)

divu	rs,	rt
0 rs rt 0 0x1b
6 5 5 10 6

Divide register rs by register rt. Leave the quotient in register lo and the remain-
der in register hi. Note that if an operand is negative, the remainder is unspecified 
by the MIPS architecture and depends on the convention of the machine on which 
SPIM is run.



Divide (with overflow)

div	rdest,	rsrc1,	src2 pseudoinstruction

Divide (without overflow)

divu	rdest,	rsrc1,	src2 pseudoinstruction

Put the quotient of register rsrc1 and src2 into register rdest.

Multiply

mult	rs,	rt
0 rs rt 0 0x18
6 5 5 10 6

Unsigned multiply

multu	rs,	rt
0 rs rt 0 0x19
6 5 5 10 6

Multiply registers rs and rt. Leave the low-order word of the product in register 
lo and the high-order word in register hi.

Multiply (without overflow)

mul	rd,	rs,	rt
0x1c rs rt rd 0 2
6 5 5 5 5 6

Put the low-order 32 bits of the product of rs and rt into register rd.

Multiply (with overflow)

mulo	rdest,	rsrc1,	src2 pseudoinstruction

Unsigned multiply (with overflow)

mulou	rdest,	rsrc1,	src2 pseudoinstruction

Put the low-order 32 bits of the product of register rsrc1 and src2 into register 
rdest.
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Multiply add

madd	rs,	rt
0x1c rs rt 0 0
6 5 5 10 6

Unsigned multiply add

maddu	rs,	rt
0x1c rs rt 0 1
6 5 5 10 6

Multiply registers rs and rt and add the resulting 64-bit product to the 64-bit 
value in the concatenated registers lo and hi.

Multiply subtract

msub	rs,	rt
0x1c rs rt 0 4
6 5 5 10 6

Unsigned multiply subtract

msub	rs,	rt
0x1c rs rt 0 5
6 5 5 10 6

Multiply registers rs and rt and subtract the resulting 64-bit product from the 
64-bit value in the concatenated registers lo and hi.

Negate value (with overflow)

neg	rdest,	rsrc pseudoinstruction

Negate value (without overflow)

negu	rdest,	rsrc pseudoinstruction

Put the negative of register rsrc into register rdest.

NOR

nor	rd,	rs,	rt
0 rs rt rd 0 0x27
6 5 5 5 5 6

Put the logical NOR of registers rs and rt into register rd.



NOT

not	rdest,	rsrc pseudoinstruction

Put the bitwise logical negation of register rsrc into register rdest.

OR

or	rd,	rs,	rt
0 rs rt rd 0 0x25
6 5 5 5 5 6

Put the logical OR of registers rs and rt into register rd.

OR immediate

ori	rt,	rs,	imm
0xd rs rt imm
6 5 5 16

Put the logical OR of register rs and the zero-extended immediate into register rt.

Remainder

rem	rdest,	rsrc1,	rsrc2 pseudoinstruction

Unsigned remainder

remu	rdest,	rsrc1,	rsrc2 pseudoinstruction

Put the remainder of register rsrc1 divided by register rsrc2 into register 
 rdest. Note that if an operand is negative, the remainder is unspecified by the 
MIPS architecture and depends on the convention of the machine on which SPIM 
is run.

Shift left logical

sll	rd,	rt,	shamt
0 rs rt rd shamt 0
6 5 5 5 5 6

Shift left logical variable

sllv	rd,	rt,	rs
0 rs rt rd 0 4
6 5 5 5 5 6
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Shift right arithmetic

sra	rd,	rt,	shamt
0 rs rt rd shamt 3
6 5 5 5 5 6

Shift right arithmetic variable

srav	rd,	rt,	rs
0 rs rt rd 0 7
6 5 5 5 5 6

Shift right logical

srl	rd,	rt,	shamt
0 rs rt rd shamt 2
6 5 5 5 5 6

Shift right logical variable

srlv	rd,	rt,	rs
0 rs rt rd 0 6
6 5 5 5 5 6

Shift register rt left (right) by the distance indicated by immediate shamt or the 
register rs and put the result in register rd. Note that argument rs is ignored for 
sll, sra, and srl.

Rotate left

rol	rdest,	rsrc1,	rsrc2 pseudoinstruction

Rotate right

ror	rdest,	rsrc1,	rsrc2 pseudoinstruction

Rotate register rsrc1 left (right) by the distance indicated by rsrc2 and put the 
result in register rdest.

Subtract (with overflow)

sub	rd,	rs,	rt
0 rs rt rd 0 0x22
6 5 5 5 5 6



Subtract (without overflow)

subu	rd,	rs,	rt
0 rs rt rd 0 0x23
6 5 5 5 5 6

Put the difference of registers rs and rt into register rd.

Exclusive OR

xor	rd,	rs,	rt
0 rs rt rd 0 0x26
6 5 5 5 5 6

Put the logical XOR of registers rs and rt into register rd.

XOR immediate

xori	rt,	rs,	imm
0xe rs rt Imm
6 5 5 16

Put the logical XOR of register rs and the zero-extended immediate into reg-
ister rt.

Constant-Manipulating Instructions

Load upper immediate

lui	rt,	imm
0xf O rt imm
6 5 5 16

Load the lower halfword of the immediate imm into the upper halfword of reg-
ister rt. The lower bits of the register are set to 0.

Load immediate

li	rdest,	imm pseudoinstruction

Move the immediate imm into register rdest.

Comparison Instructions

Set less than

slt	rd,	rs,	rt
0 rs rt rd 0 0x2a
6 5 5 5 5 6
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Set less than unsigned

sltu	rd,	rs,	rt
0 rs rt rd 0 0x2b
6 5 5 5 5 6

Set register rd to 1 if register rs is less than rt, and to 0 otherwise.

Set less than immediate

slti	rt,	rs,	imm
0xa rs rt imm
6 5 5 16

Set less than unsigned immediate

sltiu	rt,	rs,	imm
0xb rs rt imm
6 5 5 16

Set register rt to 1 if register rs is less than the sign-extended immediate, and to 
0 otherwise.

Set equal

seq	rdest,	rsrc1,	rsrc2 pseudoinstruction

Set register rdest to 1 if register rsrc1 equals rsrc2, and to 0 otherwise.

Set greater than equal

sge	rdest,	rsrc1,	rsrc2 pseudoinstruction

Set greater than equal unsigned

sgeu	rdest,	rsrc1,	rsrc2 pseudoinstruction

Set register rdest to 1 if register rsrc1 is greater than or equal to rsrc2, and to 
0 otherwise.

Set greater than

sgt	rdest,	rsrc1,	rsrc2 pseudoinstruction



Set greater than unsigned

sgtu	rdest,	rsrc1,	rsrc2 pseudoinstruction

Set register rdest to 1 if register rsrc1 is greater than rsrc2, and to 0 otherwise.

Set less than equal

sle	rdest,	rsrc1,	rsrc2 pseudoinstruction

Set less than equal unsigned

sleu	rdest,	rsrc1,	rsrc2 pseudoinstruction

Set register rdest to 1 if register rsrc1 is less than or equal to rsrc2, and to 0 
otherwise.

Set not equal

sne	rdest,	rsrc1,	rsrc2 pseudoinstruction

Set register rdest to 1 if register rsrc1 is not equal to rsrc2, and to 0 
otherwise.

Branch Instructions
Branch instructions use a signed 16-bit instruction offset field; hence, they can 
jump 215 - 1 instructions (not bytes) forward or 215 instructions backward. The 
jump instruction contains a 26-bit address field. In actual MIPS processors, branch 
instructions are delayed branches, which do not transfer control until the instruc tion 
following the branch (its “delay slot”) has executed (see Chapter 4). Delayed branches 
affect the offset calculation, since it must be computed relative to the address of the 
delay slot instruction (PC + 4), which is when the branch occurs. SPIM does not 
simulate this delay slot, unless the -bare or -delayed_branch flags are specified.

In assembly code, offsets are not usually specified as numbers. Instead, an 
instructions branch to a label, and the assembler computes the distance between 
the branch and the target instructions.

In MIPS-32, all actual (not pseudo) conditional branch instructions have a 
“likely” variant (for example, beq’s likely variant is beql), which does not execute 
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the instruction in the branch’s delay slot if the branch is not taken. Do not use 
these instructions; they may be removed in subsequent versions of the architec ture. 
SPIM implements these instructions, but they are not described further.

Branch instruction

b	label pseudoinstruction

Unconditionally branch to the instruction at the label.

Branch coprocessor false

bclf	cc	label
0x11 8 cc 0 Offset
6 5 3 2 16

Branch coprocessor true

bclt	cc	label
0x11 8 cc 1 Offset
6 5 3 2 16

Conditionally branch the number of instructions specified by the offset if the 
floating-point coprocessor’s condition flag numbered cc is false (true). If cc is 
omitted from the instruction, condition code flag 0 is assumed.

Branch on equal

beq	rs,	rt,	label
4 rs rt Offset
6 5 5 16

Conditionally branch the number of instructions specified by the offset if  register 
rs equals rt.

Branch on greater than equal zero

bgez	rs,	label
1 rs 1 Offset
6 5 5 16

Conditionally branch the number of instructions specified by the offset if  register 
rs is greater than or equal to 0.



Branch on greater than equal zero and link

bgezal	rs,	label
1 rs 0x11 Offset
6 5 5 16

Conditionally branch the number of instructions specified by the offset if  register 
rs is greater than or equal to 0. Save the address of the next instruction in reg-
ister 31.

Branch on greater than zero

bgtz	rs,	label
7 rs 0 Offset
6 5 5 16

Conditionally branch the number of instructions specified by the offset if  register 
rs is greater than 0.

Branch on less than equal zero

blez	rs,	label
6 rs 0 Offset
6 5 5 16

Conditionally branch the number of instructions specified by the offset if  register 
rs is less than or equal to 0.

Branch on less than and link

bltzal	rs,	label
1 rs 0x10 Offset
6 5 5 16

Conditionally branch the number of instructions specified by the offset if  register 
rs is less than 0. Save the address of the next instruction in register 31.

Branch on less than zero

bltz	rs,	label	
1 rs 0 Offset
6 5 5 16

Conditionally branch the number of instructions specified by the offset if  register 
rs is less than 0.

 B.10 MIPS R2000 Assembly Language B-61



B-62 Appendix B Assemblers, Linkers, and the SPIM Simulator

Branch on not equal

bne	rs,	rt,	label
5 rs rt Offset
6 5 5 16

Conditionally branch the number of instructions specified by the offset if  register 
rs is not equal to rt.

Branch on equal zero

beqz	rsrc,	label pseudoinstruction

Conditionally branch to the instruction at the label if rsrc equals 0.

Branch on greater than equal

bge	rsrc1,	rsrc2,	label pseudoinstruction

Branch on greater than equal unsigned

bgeu	rsrc1,	rsrc2,	label pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc1 is greater than 
or equal to rsrc2.

Branch on greater than

bgt	rsrc1,	src2,	label pseudoinstruction

Branch on greater than unsigned

bgtu	rsrc1,	src2,	label pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc1 is greater than 
src2.

Branch on less than equal

ble	rsrc1,	src2,	label pseudoinstruction



Branch on less than equal unsigned

bleu	rsrc1,	src2,	label pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc1 is less than 
or equal to src2.

Branch on less than

blt	rsrc1,	rsrc2,	label pseudoinstruction

Branch on less than unsigned

bltu	rsrc1,	rsrc2,	label pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc1 is less than 
rsrc2.

Branch on not equal zero

bnez	rsrc,	label pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc is not equal to 0.

Jump Instructions

Jump

j	target
2 target
6 26

Unconditionally jump to the instruction at target.

Jump and link

jal	target
3 target
6 26

Unconditionally jump to the instruction at target. Save the address of the next 
instruction in register $ra.
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Jump and link register

jalr	rs,	rd
0 rs 0 rd 0 9
6 5 5 5 5 6

Unconditionally jump to the instruction whose address is in register rs. Save the 
address of the next instruction in register rd (which defaults to 31).

Jump register

jr	rs
0 rs 0 8
6 5 15 6

Unconditionally jump to the instruction whose address is in register rs.

Trap Instructions

Trap if equal

teq	rs,	rt
0 rs rt 0 0x34
6 5 5 10 6

If register rs is equal to register rt, raise a Trap exception.

Trap if equal immediate

teqi	rs,	imm
1 rs 0xc imm
6 5 5 16

If register rs is equal to the sign-extended value imm, raise a Trap exception.

Trap if not equal

teq	rs,	rt
0 rs rt 0 0x36
6 5 5 10 6

If register rs is not equal to register rt, raise a Trap exception.

Trap if not equal immediate

teqi	rs,	imm
1 rs 0xe imm
6 5 5 16

If register rs is not equal to the sign-extended value imm, raise a Trap exception.



Trap if greater equal

tge	rs,	rt
0 rs rt 0 0x30
6 5 5 10 6

Unsigned trap if greater equal

tgeu	rs,	rt
0 rs rt 0 0x31
6 5 5 10 6

If register rs is greater than or equal to register rt, raise a Trap exception.

Trap if greater equal immediate

tgei	rs,	imm
1 rs 8 imm
6 5 5 16

Unsigned trap if greater equal immediate

tgeiu	rs,	imm
1 rs 9 imm
6 5 5 16

If register rs is greater than or equal to the sign-extended value imm, raise a Trap 
exception.

Trap if less than

tlt	rs,	rt
0 rs rt 0 0x32
6 5 5 10 6

Unsigned trap if less than

tltu	rs,	rt
0 rs rt 0 0x33
6 5 5 10 6

If register rs is less than register rt, raise a Trap exception.

Trap if less than immediate

tlti	rs,	imm
1 rs a imm
6 5 5 16
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Unsigned trap if less than immediate

tltiu	rs,	imm
1 rs b imm
6 5 5 16

If register rs is less than the sign-extended value imm, raise a Trap exception.

Load Instructions

Load address

la	rdest,	address pseudoinstruction

Load computed address—not the contents of the location—into register rdest.

Load byte

lb	rt,	address
0x20 rs rt Offset
6 5 5 16

Load unsigned byte

lbu	rt,	address
0x24 rs rt Offset
6 5 5 16

Load the byte at address into register rt. The byte is sign-extended by lb, but not 
by lbu.

Load halfword

lh	rt,	address
0x21 rs rt Offset
6 5 5 16

Load unsigned halfword

lhu	rt,	address
0x25 rs rt Offset
6 5 5 16

Load the 16-bit quantity (halfword) at address into register rt. The halfword is 
sign-extended by lh, but not by lhu.



Load word

lw	rt,	address
0x23 rs rt Offset
6 5 5 16

Load the 32-bit quantity (word) at address into register rt.

Load word coprocessor 1

lwcl	ft,	address
0x31 rs rt Offset
6 5 5 16

Load the word at address into register ft in the floating-point unit.

Load word left

lwl	rt,	address
0x22 rs rt Offset
6 5 5 16

Load word right

lwr	rt,	address
0x26 rs rt Offset
6 5 5 16

Load the left (right) bytes from the word at the possibly unaligned address into 
register rt.

Load doubleword

ld	rdest,	address pseudoinstruction

Load the 64-bit quantity at address into registers rdest and rdest	+	1.

Unaligned load halfword

ulh	rdest,	address pseudoinstruction
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Unaligned load halfword unsigned

ulhu	rdest,	address pseudoinstruction

Load the 16-bit quantity (halfword) at the possibly unaligned address into  register 
rdest. The halfword is sign-extended by ulh, but not ulhu.

Unaligned load word

ulw	rdest,	address pseudoinstruction

Load the 32-bit quantity (word) at the possibly unaligned address into register 
rdest.

Load linked

ll	rt,	address
0x30 rs rt Offset
6 5 5 16

Load the 32-bit quantity (word) at address into register rt and start an atomic 
read-modify-write operation. This operation is completed by a store conditional 
(sc) instruction, which will fail if another processor writes into the block contain-
ing the loaded word. Since SPIM does not simulate multiple processors, the store 
conditional operation always succeeds.

Store Instructions

Store byte

sb	rt,	address
0x28 rs rt Offset
6 5 5 16

Store the low byte from register rt at address.

Store halfword

sh	rt,	address
0x29 rs rt Offset
6 5 5 16

Store the low halfword from register rt at address.



Store word

sw	rt,	address
0x2b rs rt Offset
6 5 5 16

Store the word from register rt at address.

Store word coprocessor 1

swcl	ft,	address
0x31 rs ft Offset
6 5 5 16

Store the floating-point value in register ft of floating-point coprocessor at 
address.

Store double coprocessor 1

sdcl	ft,	address
0x3d rs ft Offset
6 5 5 16

Store the doubleword floating-point value in registers ft and ft + l of floating-
point coprocessor at address. Register ft must be even numbered.

Store word left

swl	rt,	address
0x2a rs rt Offset
6 5 5 16

Store word right

swr	rt,	address
0x2e rs rt Offset

 
6 5 5 16

Store the left (right) bytes from register rt at the possibly unaligned address.

Store doubleword

sd	rsrc,	address pseudoinstruction

Store the 64-bit quantity in registers rsrc and rsrc	+	1 at address.
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Unaligned store halfword

ush	rsrc,	address pseudoinstruction

Store the low halfword from register rsrc at the possibly unaligned address.

Unaligned store word

usw	rsrc,	address pseudoinstruction

Store the word from register rsrc at the possibly unaligned address.

Store conditional

sc	rt,	address
0x38 rs rt Offset
6 5 5 16

Store the 32-bit quantity (word) in register rt into memory at address and com plete 
an atomic read-modify-write operation. If this atomic operation is success ful, the 
memory word is modified and register rt is set to 1. If the atomic operation fails 
because another processor wrote to a location in the block contain ing the addressed 
word, this instruction does not modify memory and writes 0 into register rt. Since 
SPIM does not simulate multiple processors, the instruc tion always succeeds.

Data Movement Instructions
Move

move	rdest,	rsrc pseudoinstruction

Move register rsrc to rdest.

Move from hi

mfhi	rd
0 0 rd 0 0x10
6 10 5 5 6



Move from lo

mflo	rd
0 0 rd 0 0x12
6 10 5 5 6

The multiply and divide unit produces its result in two additional registers, hi 
and lo. These instructions move values to and from these registers. The multiply, 
divide, and remainder pseudoinstructions that make this unit appear to operate on 
the general registers move the result after the computation finishes.

Move the hi (lo) register to register rd.

Move to hi

mthi	rs
0 rs 0 0x11
6 5 15 6

Move to lo

mtlo	rs
0 rs 0 0x13
6 5 15 6

Move register rs to the hi (lo) register.

Move from coprocessor 0

mfc0	rt,	rd
0x10 0 rt rd 0
6 5 5 5 11

Move from coprocessor 1

mfcl	rt,	fs
0x11 0 rt fs 0
6 5 5 5 11

Coprocessors have their own register sets. These instructions move values between 
these registers and the CPU’s registers.

Move register rd in a coprocessor (register fs in the FPU) to CPU register rt. The 
floating-point unit is coprocessor 1.
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Move double from coprocessor 1

mfc1.d	rdest,	frsrc1 pseudoinstruction

Move floating-point registers frsrc1 and frsrc1	+	1 to CPU registers rdest 
and rdest	+	1.

Move to coprocessor 0

mtc0	rd,	rt
0x10 4 rt rd 0
6 5 5 5 11

Move to coprocessor 1

mtc1	rd,	fs
0x11 4 rt fs 0
6 5 5 5 11

Move CPU register rt to register rd in a coprocessor (register fs in the FPU).

Move conditional not zero

movn	rd,	rs,	rt
0 rs rt rd 0xb
6 5 5 5 11

Move register rs to register rd if register rt is not 0.

Move conditional zero

movz	rd,	rs,	rt
0 rs rt rd 0xa
6 5 5 5 11

Move register rs to register rd if register rt is 0.

Move conditional on FP false

movf	rd,	rs,	cc
0 rs cc 0 rd 0 1
6 5 3 2 5 5 6

Move CPU register rs to register rd if FPU condition code flag number cc is 0. If 
cc is omitted from the instruction, condition code flag 0 is assumed.



Move conditional on FP true

movt	rd,	rs,	cc
0 rs cc 1 rd 0 1
6 5 3 2 5 5 6

Move CPU register rs to register rd if FPU condition code flag number cc is 1. If cc 
is omitted from the instruction, condition code bit 0 is assumed.

Floating-Point Instructions
The MIPS has a floating-point coprocessor (numbered 1) that operates on single 
precision (32-bit) and double precision (64-bit) floating-point numbers. This 
coprocessor has its own registers, which are numbered $f0–$f31. Because these 
registers are only 32 bits wide, two of them are required to hold doubles, so only 
floating-point registers with even numbers can hold double precision values. The 
floating-point coprocessor also has eight condition code (cc) flags, numbered 0–7, 
which are set by compare instructions and tested by branch (bclf or bclt) and 
conditional move instructions.

Values are moved in or out of these registers one word (32 bits) at a time by 
lwc1, swc1, mtc1, and mfc1 instructions or one double (64 bits) at a time by ldcl 
and sdcl, described above, or by the l.s, l.d, s.s, and s.d pseudoinstructions 
described below. 

In the actual instructions below, bits 21–26 are 0 for single precision and 1 
for double precision. In the pseudoinstructions below, fdest is a floating-point 
register (e.g., $f2).

Floating-point absolute value double

abs.d	fd,	fs
0x11 1 0 fs fd 5
6 5 5 5 5 6

Floating-point absolute value single

abs.s	fd,	fs
0x11 0 0 fs fd 5

Compute the absolute value of the floating-point double (single) in register fs and 
put it in register fd.

Floating-point addition double

add.d	fd,	fs,	ft
0x11 0x11 ft fs fd 0
6 5 5 5 5 6
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Floating-point addition single

add.s	fd,	fs,	ft
0x11 0x10 ft fs fd 0
6 5 5 5 5 6

Compute the sum of the floating-point doubles (singles) in registers fs and ft 
and put it in register fd.

Floating-point ceiling to word

ceil.w.d	fd,	fs
0x11 0x11 0 fs fd 0xe
6 5 5 5 5 6

ceil.w.s	fd,	fs
0x11 0x10 0 fs fd 0xe

Compute the ceiling of the floating-point double (single) in register fs, convert to 
a 32-bit fixed-point value, and put the resulting word in register fd.

Compare equal double

c.eq.d	cc	fs,	ft
0x11 0x11 ft fs cc 0 FC 2
6 5 5 5 3 2 2 4

Compare equal single

c.eq.s	cc	fs,	ft
0x11 0x10 ft fs cc 0 FC 2
6 5 5 5 3 2 2 4

Compare the floating-point double (single) in register fs against the one in ft 
and set the floating-point condition flag cc to 1 if they are equal. If cc is omitted, 
condition code flag 0 is assumed.

Compare less than equal double

c.le.d	cc	fs,	ft
0x11 0x11 ft fs cc 0 FC 0xe
6 5 5 5 3 2 2 4

Compare less than equal single

c.le.s	cc	fs,	ft
0x11 0x10 ft fs cc 0 FC 0xe
6 5 5 5 3 2 2 4



Compare the floating-point double (single) in register fs against the one in ft and 
set the floating-point condition flag cc to 1 if the first is less than or equal to the 
second. If cc is omitted, condition code flag 0 is assumed.

Compare less than double

c.lt.d	cc	fs,	ft
0x11 0x11 ft fs cc 0 FC 0xc
6 5 5 5 3 2 2 4

Compare less than single

c.lt.s	cc	fs,	ft
0x11 0x10 ft fs cc 0 FC 0xc
6 5 5 5 3 2 2 4

Compare the floating-point double (single) in register fs against the one in ft 
and set the condition flag cc to 1 if the first is less than the second. If cc is omitted, 
condition code flag 0 is assumed.

Convert single to double

cvt.d.s	fd,	fs
0x11 0x10 0 fs fd 0x21
6 5 5 5 5 6

Convert integer to double

cvt.d.w	fd,	fs
0x11 0x14 0 fs fd 0x21
6 5 5 5 5 6

Convert the single precision floating-point number or integer in register fs to a 
double (single) precision number and put it in register fd.

Convert double to single

cvt.s.d	fd,	fs
0x11 0x11 0 fs fd 0x20
6 5 5 5 5 6

Convert integer to single

cvt.s.w	fd,	fs
0x11 0x14 0 fs fd 0x20
6 5 5 5 5 6

Convert the double precision floating-point number or integer in register fs to a 
single precision number and put it in register fd.
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Convert double to integer

cvt.w.d	fd,	fs
0x11 0x11 0 fs fd 0x24
6 5 5 5 5 6

Convert single to integer

cvt.w.s	fd,	fs
0x11 0x10 0 fs fd 0x24
6 5 5 5 5 6

Convert the double or single precision floating-point number in register fs to an 
integer and put it in register fd.

Floating-point divide double

div.d	fd,	fs,	ft
0x11 0x11 ft fs fd 3
6 5 5 5 5 6

Floating-point divide single

div.s	fd,	fs,	ft
0x11 0x10 ft fs fd 3
6 5 5 5 5 6

Compute the quotient of the floating-point doubles (singles) in registers fs and 
ft and put it in register fd.

Floating-point floor to word

floor.w.d	fd,	fs
0x11 0x11 0 fs fd 0xf
6 5 5 5 5 6

floor.w.s	fd,	fs
0x11 0x10 0 fs fd 0xf

Compute the floor of the floating-point double (single) in register fs and put the 
resulting word in register fd.

Load floating-point double

l.d	fdest,	address pseudoinstruction



Load floating-point single

l.s	fdest,	address pseudoinstruction

Load the floating-point double (single) at address into register fdest.

Move floating-point double

mov.d	fd,	fs
0x11 0x11 0 fs fd 6
6 5 5 5 5 6

Move floating-point single

mov.s	fd,	fs
0x11 0x10 0 fs fd 6
6 5 5 5 5 6

Move the floating-point double (single) from register fs to register fd.

Move conditional floating-point double false

movf.d	fd,	fs,	cc
0x11 0x11 cc 0 fs fd 0x11
6 5 3 2 5 5 6

Move conditional floating-point single false

movf.s	fd,	fs,	cc
0x11 0x10 cc 0 fs fd 0x11
6 5 3 2 5 5 6

Move the floating-point double (single) from register fs to register fd if condi tion 
code flag cc is 0. If cc is omitted, condition code flag 0 is assumed.

Move conditional floating-point double true

movt.d	fd,	fs,	cc
0x11 0x11 cc 1 fs fd 0x11
6 5 3 2 5 5 6

Move conditional floating-point single true

movt.s	fd,	fs,	cc
0x11 0x10 cc 1 fs fd 0x11
6 5 3 2 5 5 6
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Move the floating-point double (single) from register fs to register fd if condi tion 
code flag cc is 1. If cc is omitted, condition code flag 0 is assumed.

Move conditional floating-point double not zero

movn.d	fd,	fs,	rt
0x11 0x11 rt fs fd 0x13
6 5 5 5 5 6

Move conditional floating-point single not zero

movn.s	fd,	fs,	rt
0x11 0x10 rt fs fd 0x13
6 5 5 5 5 6

Move the floating-point double (single) from register fs to register fd if proces sor 
register rt is not 0.

Move conditional floating-point double zero

movz.d	fd,	fs,	rt
0x11 0x11 rt fs fd 0x12
6 5 5 5 5 6

Move conditional floating-point single zero

movz.s	fd,	fs,	rt
0x11 0x10 rt fs fd 0x12
6 5 5 5 5 6

Move the floating-point double (single) from register fs to register fd if proces sor 
register rt is 0.

Floating-point multiply double

mul.d	fd,	fs,	ft
0x11 0x11 ft fs fd 2
6 5 5 5 5 6

Floating-point multiply single

mul.s	fd,	fs,	ft
0x11 0x10 ft fs fd 2
6 5 5 5 5 6

Compute the product of the floating-point doubles (singles) in registers fs and ft 
and put it in register fd.

Negate double

neg.d	fd,	fs
0x11 0x11 0 fs fd 7
6 5 5 5 5 6



Negate single

neg.s	fd,	fs
0x11 0x10 0 fs fd 7
6 5 5 5 5 6

Negate the floating-point double (single) in register fs and put it in register fd.

Floating-point round to word

round.w.d	fd,	fs
0x11 0x11 0 fs fd 0xc
6 5 5 5 5 6

round.w.s	fd,	fs 0x11 0x10 0 fs fd 0xc

Round the floating-point double (single) value in register fs, convert to a 32-bit 
fixed-point value, and put the resulting word in register fd.

Square root double

sqrt.d	fd,	fs
0x11 0x11 0 fs fd 4
6 5 5 5 5 6

Square root single

sqrt.s	fd,	fs
0x11 0x10 0 fs fd 4
6 5 5 5 5 6

Compute the square root of the floating-point double (single) in register fs and 
put it in register fd.

Store floating-point double

s.d	fdest,	address pseudoinstruction

Store floating-point single

s.s	fdest,	address pseudoinstruction

Store the floating-point double (single) in register fdest at address.

Floating-point subtract double

sub.d	fd,	fs,	ft
0x11 0x11 ft fs fd 1
6 5 5 5 5 6
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Floating-point subtract single

sub.s	fd,	fs,	ft
0x11 0x10 ft fs fd 1
6 5 5 5 5 6

Compute the difference of the floating-point doubles (singles) in registers fs and 
ft and put it in register fd.

Floating-point truncate to word

trunc.w.d	fd,	fs
0x11 0x11 0 fs fd 0xd
6 5 5 5 5 6

trunc.w.s	fd,	fs 0x11 0x10 0 fs fd 0xd

Truncate the floating-point double (single) value in register fs, convert to a 32-bit 
fixed-point value, and put the resulting word in register fd.

Exception and Interrupt Instructions
Exception return

eret
0x10 1 0 0x18
6 1 19 6

Set the EXL bit in coprocessor 0’s Status register to 0 and return to the instruction 
pointed to by coprocessor 0’s EPC register.

System call

syscall
0 0 0xc
6 20 6

Register $v0 contains the number of the system call (see Figure B.9.1) provided 
by SPIM.

Break

break	code
0 code 0xd
6 20 6

Cause exception code. Exception 1 is reserved for the debugger.

No operation

nop
0 0 0 0 0 0
6 5 5 5 5 6

Do nothing. 



  B.11 Concluding Remarks

Programming in assembly language requires a programmer to trade helpful fea-
tures of high-level languages—such as data structures, type checking, and control 
constructs—for complete control over the instructions that a computer executes. 
External constraints on some applications, such as response time or program size, 
require a programmer to pay close attention to every instruction. However, the 
cost of this level of attention is assembly language programs that are longer, more 
time-consuming to write, and more difficult to maintain than high-level language 
programs.

Moreover, three trends are reducing the need to write programs in assembly lan-
guage. The first trend is toward the improvement of compilers. Modern com pilers 
produce code that is typically comparable to the best handwritten code—and is 
sometimes better. The second trend is the introduction of new processors that are 
not only faster, but in the case of processors that execute multiple instructions 
simultaneously, also more difficult to program by hand. In addition, the rapid 
evolution of the modern computer favors high-level language programs that are 
not tied to a single architecture. Finally, we witness a trend toward increasingly 
complex applications, characterized by complex graphic interfaces and many more 
features than their predecessors. Large applications are written by teams of pro-
grammers and require the modularity and semantic checking features pro vided by 
high-level languages.

Further Reading

Aho, A., R. Sethi, and J. Ullman [1985]. Compilers: Principles, Techniques, and Tools, Reading, MA: Addison-Wesley.

Slightly dated and lacking in coverage of modern architectures, but still the standard reference on compilers.

Sweetman, D. [1999]. See MIPS Run, San Francisco, CA: Morgan Kaufmann Publishers.

A complete, detailed, and engaging introduction to the MIPS instruction set and assembly language program ming 
on these machines.

Detailed documentation on the MIPS-32 architecture is available on the Web:

MIPS32™ Architecture for Programmers Volume I: Introduction to the MIPS32™ Architecture 
(http://mips.com/content/Documentation/MIPSDocumentation/ProcessorArchitecture/
ArchitectureProgrammingPublicationsforMIPS32/MD000822BMIPS32INTAFP02.00.pdf/ 
getDownload)

MIPS32™ Architecture for Programmers Volume II: The MIPS32™ Instruction Set 
(http://mips.com/content/Documentation/MIPSDocumentation/ProcessorArchitecture/
ArchitectureProgrammingPublicationsforMIPS32/MD000862BMIPS32BISAFP02.00.pdf/getDownload)

MIPS32™ Architecture for Programmers Volume III: The MIPS32™ Privileged Resource Architecture
(http://mips.com/content/Documentation/MIPSDocumentation/ProcessorArchitecture/
ArchitectureProgrammingPublicationsforMIPS32/MD000902BMIPS32PRAAFP02.00.pdf/getDownload)
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  B.12 Exercises

B.1 [5] <§B.5> Section B.5 described how memory is partitioned on most MIPS 
systems. Propose another way of dividing memory that meets the same goals.

B.2 [20] <§B.6> Rewrite the code for fact to use fewer instructions.

B.3 [5] <§B.7> Is it ever safe for a user program to use registers $k0 or $k1?

B.4 [25] <§B.7> Section B.7 contains code for a very simple exception handler. One 
serious problem with this handler is that it disables interrupts for a long time. This 
means that interrupts from a fast I/O device may be lost. Write a better exception 
handler that is interruptable and enables interrupts as quickly as possible.

B.5 [15] <§B.7> The simple exception handler always jumps back to the instruc-
tion following the exception. This works fine unless the instruction that causes the 
exception is in the delay slot of a branch. In that case, the next instruction is the 
target of the branch. Write a better handler that uses the EPC register to determine 
which instruction should be executed after the exception.

B.6 [5] <§B.9> Using SPIM, write and test an adding machine program that 
repeatedly reads in integers and adds them into a running sum. The program 
should stop when it gets an input that is 0, printing out the sum at that point. Use 
the SPIM system calls described on pages B-43 and B-45.

B.7 [5] <§B.9> Using SPIM, write and test a program that reads in three integers 
and prints out the sum of the largest two of the three. Use the SPIM system calls 
described on pages B-43 and B-45. You can break ties arbitrarily.

B.8 [5] <§B.9> Using SPIM, write and test a program that reads in a positive inte-
ger using the SPIM system calls. If the integer is not positive, the program should 
terminate with the message “Invalid Entry”; otherwise the program should print 
out the names of the digits of the integers, delimited by exactly one space. For 
example, if the user entered “728,” the output would be “Seven Two Eight.”

B.9 [25] <§B.9> Write and test a MIPS assembly language program to compute 
and print the first 100 prime numbers. A number n is prime if no numbers except 
1 and n divide it evenly. You should implement two routines: 

	■ test_prime	(n)   Return 1 if n is prime and 0 if n is not prime.

	■ main	()   Iterate over the integers, testing if each is prime. Print the first 
100 numbers that are prime.

Test your programs by running them on SPIM.



B.10 [10] <§§B.6, B.9> Using SPIM, write and test a recursive program for solv ing 
the classic mathematical recreation, the Towers of Hanoi puzzle. (This will require 
the use of stack frames to support recursion.) The puzzle consists of three pegs  
(1, 2, and 3) and n disks (the number n can vary; typical values might be in the 
range from 1 to 8). Disk 1 is smaller than disk 2, which is in turn smaller than disk 
3, and so forth, with disk n being the largest. Initially, all the disks are on peg 1, 
starting with disk n on the bottom, disk n - 1 on top of that, and so forth, up to 
disk 1 on the top. The goal is to move all the disks to peg 2. You may only move one 
disk at a time, that is, the top disk from any of the three pegs onto the top of either 
of the other two pegs. Moreover, there is a constraint: You must not place a larger 
disk on top of a smaller disk.

The C program below can be used to help write your assembly language program.

/*	move	n	smallest	disks	from	start	to	finish	using		
extra	*/

void	hanoi(int	n,	int	start,	int	finish,	int	extra){	
	 if(n	!=	0){

	 	hanoi(n-1,	start,	extra,	finish);	
	 	print_string(“Move	disk”);	
	 	print_int(n);	
	 	print_string(“from	peg”);	
	 	print_int(start);	
	 	print_string(“to	peg”);	
	 	print_int(finish);	
	 	print_string(“.\n”);	
	 	hanoi(n-1,	extra,	finish,	start);

	 }	
}	
main(){	
	 int	n;	
	 print_string(“Enter	number	of	disks>“);	
	 n	=	read_int();	
	 hanoi(n,	1,	2,	3);	
	 return	0;	
}
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CD information is listed by chap-
ter and section number followed 
by page ranges (CD3.10:6–9). Page 
references preceded by a single 
 letter refer to appendixes.

1-bit ALU, C-26–29
adder, C-27
CarryOut, C-28
illustrated, C-29
logical unit for AND/OR, C-27
for most significant bit, C-33
performing AND, OR, and  addition, 

C-31, C-33
See also Arithmetic logic unit (ALU)

32-bit ALU, C-29–38
from 31 copies of 1-bit ALU, C-34
with 32 1-bit ALUs, C-30
defining in Verilog, C-35–38
illustrated, C-36
ripple carry adder, C-29
tailoring to MIPS, C-31–35
See also Arithmetic logic unit (ALU)

32-bit immediate operands, 128–29
7090/7094 hardware, CD3.10:6

A

Absolute references, 142
Abstractions

defined, 20
hardware/software interface,  

20–21
principle, 21

Accumulator architectures, CD2.20:1
Accumulators, CD2.20:1
Acronyms, 8

add (Add), 78
Addition, 224–29

binary, 224–25
floating-point, 250–54, 259,  

B-73–74
instructions, B-51
operands, 225
significands, 250
speed, 229
See also Arithmetic

addiu (Add Imm. Unsigned), 135
Address-control lines, D-26
Addresses

32-bit immediates, 128–36
base, 83
byte, 84
defined, 82
memory, 91
virtual, 493–95, 514

Addressing
32-bit immediates, 128–36
base, 133
displacement, 133
intermediate, 132, 133
in jumps and branches, 129–32
MIPS modes, 132–33
PC-relative, 130, 133
pseudodirect, 133
register, 132, 133
x86 modes, 168, 170

Addressing modes, B-45–47
desktop architectures, E-6

addu (Add Unsigned), 78
andi (And Immediate), 78
Address select logic, D-24, D-25
Address space, 492, 496

extending, 545
flat, 545

ID (ASID), 510
inadequate, CD5.13:5
shared, 639–40
single physical, 638
unmapped, 514
virtual, 510

Address translation
AMD Opteron X4, 540
defined, 493
fast, 502–4
Intel Nehalem, 540
TLB for, 502–4

Add unsigned instruction, 226
add.d (FP Add Double), B-73
add.s (FP Add Single), B-74
addi (Add Immediate), 78
Advanced Technology Attachment (ATA) 

disks, 577, 613, 614
AGP, A-9
Algol-60, CD2.20:6–7
Aliasing, 508
Alignment restriction, 84
All-pairs N-body algorithm, A-65
Alpha architecture

bit count instructions, E-29
defined, 527
floating-point instructions, E-28
instructions, E-27–29
no divide, E-28
PAL code, E-28
unaligned load-store, E-28
VAX floating-point formats, E-29

ALU control, 316–18
bits, 317
logic, D-6
mapping to gates, D-4–7
truth tables, D-5
See also Arithmetic logic unit (ALU)
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ALU control block, 320
defined, D-4
generating ALU control bits,  

D-6
ALUOp, 316, D-6

bits, 317, 318
control signal, 320

AMD64, 167, CD2.20:5
Amdahl’s law, 477, 635

corollary, 52
defined, 51
fallacy, 684

AMD Opteron X4 (Barcelona),  
20, 44–50, 300

address translation, 540
architectural registers, 404
base versus fully optimized 

 performance, 683
caches, 541
characteristics, 677
CPI, miss rates, and DRAM accesses, 

542
defined, 677
illustrated, 676
LBMHD performance, 682
memory hierarchies, 540–43
microarchitecture, 404, 405
miss penalty reduction techniques, 

541–43
pipeline, 404–6
pipeline illustration, 406
roofline model, 678
shared L3 cache, 543
SPEC CPU benchmark, 48–49
SPEC power benchmark,  

49–50
SpMV performance, 681
TLB hardware, 540

American Standard Code for   
Information Interchange. 
See ASCII

and (AND), 78
AND gates, C-12, D-7
AND operation, 103–4, B-52, C-6
andi (And Immediate), 78
Annual failure rate (AFR), 573, 613
Antidependence, 397
Antifuse, C-78
Apple computer, CD1.10:6–7
Application binary interface  

(ABI), 21

Application programming interfaces 
(APIs)

defined, A-4
graphics, A-14

Architectural registers, 404
Arithmetic, 222–83

addition, 224–29
division, 236–42
floating point, 242–70
for multimedia, 227–28
multiplication, 230–36
subtraction, 224–29

Arithmetic instructions
desktop RISC, E-11
embedded RISC, E-14
logical, 308
MIPS, B-51–57
operands, 80
See also Instructions

Arithmetic intensity, 668
Arithmetic logic unit (ALU)

1-bit, C-26–29
32-bit, C-29–38
before forwarding, 368
branch datapath, 312
hardware, 226
memory-reference instruction  

use, 301
for register values, 308
R-format operations, 310
signed-immediate input, 371
See also ALU control; Control units

ARM instructions, 161–65
12-bit immediate field, 164
addressing modes, 161–63
block loads and stores, 165
brief history, CD2.20:4
calculations, 161–63
compare and conditional branch, 

163–64
condition field, 383
data transfer, 162
features, 164–65
formats, 164
logical, 165
MIPS similarities, 162
register-register, 162
unique, E-36–37

ARPANET, CD6.14:7
Arrays

logic elements, C-18–19

multiple dimension, 266
pointers versus, 157–61
procedures for setting to zero, 158

ASCII
binary numbers versus, 123
character representation, 122
defined, 122
symbols, 126

Assembler directives, B-5
Assemblers, 140–42, B-10–17

conditional code assembly, B-17
defined, 11, B-4
function, 141, B-10
macros, B-4, B-15–17
microcode, D-30
number acceptance, 141
object file, 141–42
pseudoinstructions, B-17
relocation information, B-13, B-14
speed, B-13
symbol table, B-12

Assembly language
defined, 11, 139
drawbacks, B-9–10
floating-point, 260
high-level languages versus, B-12
illustrated, 12
MIPS, 78, 98–99, B-45–80
production of, B-8–9
programs, 139
translating into machine language, 

98–99
when to use, B-7–9

Asserted signals, 305, C-4
Associativity

in caches, 482–83
degree, increasing, 481, 518
floating-point addition, testing,  

270–71
increasing, 486–87
set, tag size versus, 486–87

Asynchronous interconnect, 583
Atomic compare and swap, 139
Atomic exchange, 137
Atomic fetch-and-increment, 139
Atomic memory operation, A-21
Attribute interpolation, A-43–44
Availability, 573
Average memory access time (AMAT), 478

calculating, 478–79
defined, 478
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B

Backpatching, B-13
Backplane bus, 582
Backups, 615–16
Bandwidth

bisection, 661
external to DRAM, 474
I/O, 618
L2 cache, 675
memory, 471, 472
network, 661

Barrier synchronization, A-18
defined, A-20
for thread communication, A-34

Base addressing, 83, 133
Base registers, 83
Basic block, 108–9
bc1t (Branch On FP True) – Green 

Card Column 1
bc1f (Branch On FP False) – Green 

Card Column 1 
Benchmarks

defined, 48
I/O, 596–98
Linpack, 664, CD3.10:3
multicores, 657–84
multiprocessor, 664–66
NAS parallel, 666
parallel, 665
PARSEC suite, 666
SPEC CPU, 48–49
SPEC power, 49–50
SPECrate, 664
SPLASH/SPLASH 2, 664–66
Stream, 675

beq (Branch On Equal), 78
bge (Branch Greater Than or 

Equal), 141
bgt (Branch Greater Than), 141
Biased notation, 94, 247
Big-endian byte order, 84, B-43
Binary digits. See Bits
Binary numbers

ASCII versus, 123
conversion to decimal numbers, 90
conversion to hexadecimal 

 numbers, 96
defined, 87

Bisection bandwidth, 661
Bit error rate (BER), CD6.11:9

Bit-interleaved parity, 602
Bit maps, 17

defined, 16, 87
goal, 17
storing, 17

Bits
ALUOp, 317, 318
defined, 11
dirty, 501
done, 588
error, 588
guard, 266–67
patterns, 269
reference, 499
rounding, 268
sign, 90
state, D-8
sticky, 268
valid, 458

ble (Branch Less Than or Equal), 141
Blocking assignment, C-24
Block-interleaved parity, 602–3
Blocks

combinational, C-4
defined, 454
finding, 519–20
flexible placement, 479–84
least recently used (LRU), 485
loads/stores, 165
locating in cache, 484–85
miss rate and, 465
multiword, mapping addresses  

to, 463–64
placement locations, 518–19
placement strategies, 481
replacement selection, 485
replacement strategies, 520–21
spatial locality exploitation, 464
state, C-4
valid data, 458

blt (Branch Less Than), 141
bne (Branch On Not Equal), 78
Boolean algebra, C-6
Bounds check shortcut, 110
Branch datapath

ALU, 312
operations, 311

Branch delay slots
defined, 381
scheduling, 382

Branch equal, 377

Branches
addressing in, 129–32
compiler creation, 107
condition, 313
decision, moving up, 377
delayed, 111, 313, 343, 377–79, 

381, 382
ending, 108
execution in ID stage, 378
pipelined, 378
target address, 378
unconditional, 106
See also Conditional branches

Branch hazards. See 
Control hazards

Branch history tables. See Branch 
 prediction, buffers

Branch instructions, B-59–63
jump instruction versus, 328
list of, B-60–63
pipeline impact, 376

Branch not taken
assumption, 377
defined, 311

Branch-on-equal instruction, 326
Branch prediction

buffers, 380, 381
as control hazard solution, 342
defined, 341
dynamic, 341, 342, 380–83
static, 393

Branch predictors
accuracy, 381
correlation, 383
information from, 382
tournament, 383

Branch taken
cost reduction, 377
defined, 311

Branch target
addresses, 310
buffers, 383

Bubbles, 374
Bubble Sort, 156
Bus-based coherent multiprocessors, 

CD7.14:6
Buses, 584, 585

backplane, 582
defined, C-19
processor-memory, 582
synchronous, 583
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Bytes
addressing, 84
order, 84, B-43

C

Cache-aware instructions, 547
Cache coherence, 534–38

coherence, 534
consistency, 535
enforcement schemes, 536
implementation techniques, 

CD5.9:10–11
migration, 536
problem, 534, 535, 538
protocol example, CD5.9:11–15
protocols, 536
replication, 536
snooping protocol, 536–537–538
snoopy, CD5.9:16
state diagram, CD5.9:15

Cache coherency protocol, CD5.9:11–15
finite-state transition diagram, 

CD5.9:12, CD5.9:14
functioning, CD5.9:12
mechanism, CD5.9:13
state diagram, CD5.9:15
states, CD5.9:11–12
write-back cache, CD5.9:12

Cache controllers, 538
cache coherency protocol,  

CD5.9:11–15
coherent cache implementation  

techniques, CD5.9:10–11
implementing, CD5.9:1–16
snoopy cache coherence, CD5.9:16
SystemVerilog, CD5.9:1–9

Cache hits, 508
Cache misses

block replacement on, 520–21
capacity, 523
compulsory, 523
conflict, 523
defined, 465
direct-mapped cache, 482
fully associative cache, 483
handling, 465–66
memory-stall clock cycles, 475
reducing with flexible block 

 placement, 479–84
set-associative cache, 482–83

steps, 466
in write-through cache, 467

Cache performance, 475–92
calculating, 477
hit time and, 478
impact on processor  

performance, 476–77
Caches, 457–75

accessing, 459–65
associativity in, 482–83
bits in, 463
bits needed for, 460
contents illustration, 461
defined, 20, 457
direct-mapped, 457, 459, 463, 479
disk controller, 578
empty, 460
flushing, 595
FSM for controlling, 529–39
fully associative, 479
GPU, A-38
inconsistent, 466
index, 460
Intrinsity FastMATH example, 

468–70
locating blocks in, 484–85
locations, 458
memory system design, 471–74
multilevel, 475, 487–91
nonblocking, 541
physically addressed, 508
physically indexed, 507
physically tagged, 507
primary, 488, 489, 492
secondary, 488, 489, 492
set-associative, 479
simulating, 543–44
size, 462
split, 470
summary, 474–75
tag field, 460
tags, CD5.9:10, CD5.9:11
virtually addressed, 508
virtually indexed, 508
virtually tagged, 508
virtual memory and TLB  integration, 

504–8
write-back, 467, 468, 521, 522
writes, 466–68
write-through, 467, 468, 521, 522
See also Blocks

Callee, 113, 116
Callee-saved register, B-23
Caller, 113
Caller-saved register, B-23
Capabilities, CD5.13:7
Capacity misses, 523
Carry lookahead, C-38–47

4-bit ALUs using, C-45
adder, C-39
fast, with first level of abstraction, 

C-39–40
fast, with “infinite” hardware,  

C-38–39
fast, with second level of  abstraction, 

C-40–46
plumbing analogy, C-42, C-43
ripple carry speed versus, C-46
summary, C-46–47

Carry save adders, 235
Cause register, 590

defined, 386
fields, B-34, B-35
illustrated, 591

CDC 6600, CD1.10:6, CD4.15:2
Central processor unit (CPU)

classic performance equation, 35–37
coprocessor 0, B-33–34
defined, 19
execution time, 30, 31, 32
performance, 30–32
system, time, 30
time, 475
time measurements, 31
user, time, 30
See also Processors

Cg pixel shader program, A-15–17
Channel controllers, 593
Characters

ASCII representation, 122
in Java, 126–27

Chips. See Integrated circuits (ICs)
C++ language, CD2.15:26, CD2.20:7
C language

assignment, compiling into MIPS, 
79–80

compiling, 161, CD2.15:1–2
compiling assignment with  registers, 

81–82
compiling while loops in, 107–8
sort algorithms, 157
translation hierarchy, 140
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translation to MIPS assembly 
 language, 79

variables, 118
Classes

defined, CD2.15:14
packages, CD2.15:20

Clock cycles
defined, 31
memory-stall, 475, 476
number of registers and, 81
worst-case delay and, 330

Clock cycles per instruction (CPI), 33–34, 
341

one level of caching, 488
two levels of caching, 488

Clocking methodology, 305–7, C-48
defined, 305
edge-triggered, 305, 306, C-48,  

C-73
level-sensitive, C-74, C-75–76
for predictability, 305

Clock rate
defined, 31
frequency switched as  

function of, 40
power and, 39

Clocks, C-48–50
edge, C-48, C-50
in edge-triggered design, C-73
skew, C-74
specification, C-57
synchronous system, C-48–49

Clusters, CD7.14:7–8
defined, 632, 641, CD7.14:7
drawbacks, 642
isolation, 644
organization, 631
overhead in division of memory, 642
scientific computing on, CD7.14:7

Cm*, CD7.14:3–4
C.mmp, CD7.14:3
c.x.d (FP Compare Double) – Green 

Card Column 1 
c.x.s (FP Compare Single) – Green 

Card Column 1
Coarse-grained multithreading, 645–46
Cobol, CD2.20:6
Code generation, CD2.15:12
Code motion, CD2.15:6
Combinational blocks, C-4
Combinational control units, D-4–8

Combinational elements, 304
Combinational logic, 306, C-3, C-9–20

arrays, C-18–19
decoders, C-9
defined, C-5
don’t cares, C-17–18
multiplexors, C-10
ROMs, C-14–16
two-level, C-11–14
Verilog, C-23–26

Commands, to I/O devices, 588–89
Commercial computer development, 

CD1.10:3–9
Commit units

buffer, 399
defined, 399
in update control, 402

Common case fast, 177
Common subexpression elimination, 

CD2.15:5
Communication, 24–25

overhead, reducing, 43
thread, A-34

Compact code, CD2.20:3
Compact disks (CDs), 23, 24
Comparison instructions, B-57–59

floating-point, B-74–75
list of, B-57–59

Comparisons, 108–9
constant operands in, 109
signed versus unsigned, 110

Compilers, 139
branch creation, 107
brief history, CD2.20:8
conservative, CD2.15:5–6
defined, 11
front end, CD2.15:2
function, 13, 139, B-5–6
high-level optimizations,  

CD2.15:3–4
ILP exploitation, CD4.15:4–5
Just In Time (JIT), 148
machine language production, B-8–9, 

B-10
optimization, 160, CD2.20:8
speculation, 392–93
structure, CD2.15:1

Compiling
C assignment statements, 79–80
C language, 107–8, 161, CD2.15:1–2
floating-point programs, 262–65

if-then-else, 106
in Java, CD2.15:18–19
procedures, 114, 117–18
recursive procedures, 117–18
while loops, 107–8

Compressed sparse row (CSR) matrix, 
A-55, A-56

Compulsory misses, 523
Computers

application classes, 5–7
applications, 4
arithmetic for, 222–83
characteristics, CD1.10:12
commercial development,  

CD1.10:3–9
component organization, 14
components, 14, 223, 569
design measure, 55
desktop, 5, 15
embedded, 5–7, B-7
first, CD1.10:1–3
in information revolution, 4
instruction representation, 94–101
laptop, 18
performance measurement, CD1.10:9
principles, 100
rack mount, 606
servers, 5

Compute Unified Device Architecture. 
See CUDA programming 
environment

Conditional branches
ARM, 163
changing program counter  

with, 383
compiling if-then-else into, 106
defined, 105
desktop RISC, E-16
embedded RISC, E-16
implementation, 112
in loops, 130
PA-RISC, E-34, E-35
PC-relative addressing, 130
RISC, E-10–16
SPARC, E-10–12

Conditional move instructions,  
383

Condition field, 383
Conflict misses, 523
Constant-manipulating  

instructions, B-57
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Constant memory, A-40
Constant operands, 86–87

in comparisons, 109
frequent occurrence, 87

Content Addressable Memory  
(CAM), 485

Context switch, 510
Control

ALU, 316–18
challenge, 384
finishing, 327
forwarding, 366
FSM, D-8–21
implementation, optimizing,  

D-27–28
for jump instruction, 329
mapping to hardware, D-2–32
memory, D-26
organizing, to reduce logic,  

D-31–32
pipelined, 359–63

Control flow graphs, CD2.15:8–9
defined, CD2.15:8
illustrated examples, CD2.15:8, 

CD2.15:9
Control functions

ALU, mapping to gates, D-4–7
defining, 321
PLA, implementation, D-7,  

D-20–21
ROM, encoding, D-18–19
for single-cycle implementation,  

327
Control hazards, 339–43, 375–84

branch delay reduction, 377–79
branch not taken assumption, 377
branch prediction as solution, 342
defined, 339, 376
delayed decision approach, 343
dynamic branch prediction, 380–83
logic implementation in Verilog, 

CD4.12:7–9
pipeline stalls as solution, 340
pipeline summary, 383–84
simplicity, 376
solutions, 340
static multiple-issue processors and, 

394
Control lines

asserted, 323
in datapath, 320

execution/address calculation, 361
final three stages, 361
instruction decode/register file read, 

361
instruction fetch, 361
memory access, 362
setting of, 321, 323
values, 360
write-back, 362

Control signals
ALUOp, 320
defined, 306
effect of, 321
multi-bit, 322
pipelined datapaths with, 359
truth tables, D-14

Control units, 303
address select logic, D-24, D-25
combinational, implementing,  

D-4–8
with explicit counter, D-23
illustrated, 322
logic equations, D-11
main, designing, 318–26
as microcode, D-28
MIPS, D-10
next-state outputs, D-10, D-12–13
output, 316–17, D-10
See also Arithmetic logic unit (ALU)

Conversion instructions, B-75–76
Cooperative thread arrays (CTAs),  

A-30
Coprocessors

coprocessor 0, B-33–34
defined, 266
move instructions, B-71–72

Copy back. See Write-back
Core MIPS instruction set, 282

abstract view, 302
desktop RISC, E-9–11
implementation, 300–303
implementation illustration, 304
overview, 301–3
subset, 300–301
See also MIPS

Cores
defined, 41
number per chip, 42

Correcting code, 602
Correlation predictor, 383
Cosmic Cube, CD7.14:6

Count register, B-34
Cray computers, CD3.10:4, CD3.10:5
Critical word first, 465
Crossbar networks, 662
CTSS (Compatible Time-Sharing 

 System), CD5.13:8
CUDA programming environment, 659, 

A-5, CDA.11:5
barrier synchronization, A-18, A-34
defined, A-5
development, A-17, A-18
hierarchy of thread groups, A-18
kernels, A-19, A-24
key abstractions, A-18
paradigm, A-19–23
parallel plus-scan template, A-61
per-block shared memory, A-58
plus-reduction implementation,  

A-63
programs, A-6, A-24
scalable parallel programming with, 

A-17–23
SDK, 172
shared memories, A-18
threads, A-36

D

Databases
brief history, CD6.14:4
Integrated Data Store (IDS), CD6.14:4
relational, CD6.14:5

Datacenters, 5
Data flow analysis, CD2.15:8
Data hazards, 336–39, 363–75

defined, 336
forwarding, 336, 363–75
load-use, 338, 377
stalls and, 371–74
See also Hazards

Data layout directives, B-14
Data-level parallelism, 649
Data movement instructions, B-70–73
Data parallel problem decomposition, 

A-17, A-18
Datapath elements

defined, 307
sharing, 313

Datapaths
branch, 311, 312
building, 307–16
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control signal truth tables, D-14
control unit, 322
defined, 19
design, 307
exception handling, 387
for fetching instructions, 309
for hazard resolution via  forwarding, 

370
for jump instruction, 329
for memory instructions, 314
for MIPS architecture, 315
in operation for branch-on-equal 

instruction, 326
in operation for load instruction, 325
in operation for R-type  

instruction, 324
operation of, 321–26
pipelined, 344–58
for R-type instructions, 314, 323
single, creating, 313–16
single-cycle, 345
static two-issue, 395

Data race, 137
Data rate, 596
Data segment, B-13
Data selectors, 303
Data structure compression, 680
Data transfer instructions

defined, 82
load, 83
offset, 83
store, 85
See also Instructions

Deasserted signals, 305, C-4
Debugging information, B-13
DEC disk drive, CD6.14:3
Decimal numbers

binary number conversion to, 90
defined, 87

Decision-making instructions, 105–12
Decoders, C-9

defined, C-9
two-level, C-65

Decoding machine language, 134
DEC PDP-8, CD1.10:5
Deep Web, CD6.14:8
Delayed branches, 111

as control hazard solution, 343
defined, 313
embedded RISCs and, E-23
for five-stage pipelines, 382

reducing, 377–79
scheduling limitations, 381
See also Branches

Delayed decision, 343
DeMorgan’s theorems, C-11
Denormalized numbers, 270
Dependences

bubble insertion and, 374
detection, 365
name, 397
between pipeline registers, 367
between pipeline registers and ALU 

inputs, 366
sequence, 363

Design
compromises and, 177
datapath, 307
digital, 406–7
I/O system, 598–99
logic, 303–7, C-1–79
main control unit, 318–26
memory hierarchy, challenges, 525
pipelining instruction sets, 335

Desktop and server RISCs
addressing modes, E-6
architecture summary, E-4
arithmetic/logical instructions, E-11
conditional branches, E-16
constant extension summary, E-9
control instructions, E-11
conventions equivalent to MIPS core, 

E-12
data transfer instructions, E-10
features added to, E-45
floating-point instructions, E-12
instruction formats, E-7
multimedia extensions, E-16–18
multimedia support, E-18
types of, E-3
See also Reduced instruction set 

computer (RISC) architectures
Desktop computers

defined, 5
illustrated, 15

D flip-flops, C-51, C-53
Dicing, 46
Dies, 46
Digital design pipeline, 406–7
Digital signal-processing (DSP) 

 extensions, E-19
Digital video disks (DVDs), 23, 24

DIMMs (dual inline memory  modules), 
CD5.13:4

Direct3D, A-13
Direct-mapped caches

address portions, 484
choice of, 520
defined, 457, 479
illustrated, 459
memory block location, 480
misses, 482
single comparator, 485
total number of bits, 463
See also Caches

Direct memory access (DMA)
defined, 592
multiple devices, 593
setup, 593
transfers, 593, 595

Dirty bit, 501
Dirty pages, 501
Disk controllers

caches, 578
defined, 576
time, 576

Disk read time, 577
Disk storage, 575–79

characteristics, 579
densities, 577
history, CD6.14:1–4
interfaces, 577–78
as nonvolatile, 575
rotational latency, 576
sectors, 575
seek time, 575
tracks, 575
transfer time, 576

Displacement addressing, 133
div (Divide), B-52
div.d (FP Divide Double), B-76
div.s (FP Divide Single), B-76
Divide algorithm, 239
Dividend, 237
Division, 236–42

algorithm, 238
dividend, 237
divisor, 237

divu (Divide Unsigned), B-52
faster, 241
floating-point, 259, B-76
hardware, 237–39
hardware, improved version, 240
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divu (Divide Unsigned) (continued)
instructions, B-52–53
in MIPS, 241–42
operands, 237
quotient, 237
remainder, 237
signed, 239–41
SRT, 241
See also Arithmetic

Divisor, 237
D latches, C-51, C-52
Done bit, 588
Don’t cares, C-17–18

example, C-17–18
term, 318

Double Data Rate RAMs (DDRRAMs), 
473, C-65

Double precision
defined, 245
FMA, A-45–46
GPU, A-45–46, A-74
representation, 249
See also Single precision

Double words, 168
Dynamically linked libraries (DLLs), 

145–46
defined, 146
lazy procedure linkage version,  

146, 147
Dynamic branch prediction, 380–83

branch prediction buffer, 380
defined, 380
loops and, 380
See also Control hazards

Dynamic hardware predictors, 341
Dynamic multiple-issue processors, 392, 

397–400
pipeline scheduling, 398–400
superscalar, 397
See also Multiple issue

Dynamic pipeline scheduling,  
399–400

commit unit, 399
concept, 400
defined, 398
hardware-based speculation, 400
primary units, 399
reorder buffer, 399
reservation station, 399

Dynamic random access memory 
(DRAM), 453, 471, C-63–65

bandwidth external to, 474

cost, 23
defined, 18–19, C-63
DIMM, CD5.13:4
Double Date Rate (DDR), 473
early board, CD5.13:4
GPU, A-37–38
growth of capacity, 27
history, CD5.13:3–4
pass transistor, C-63
SIMM, CD5.13:4, CD5.13:5
single-transistor, C-64
size, 474
speed, 23
synchronous (SDRAM), 473, C-60, 

C-65
two-level decoder, C-65

E

Early restart, 465
Edge-triggered clocking methodology, 

305, 306, C-48, C-73
advantage, C-49
clocks, C-73
defined, C-48
drawbacks, C-74
illustrated, C-50
rising edge/falling edge, C-48

EDSAC (Electronic Delay  Storage  
Automatic Calculator), CD1.10:2, 
CD5.13:1–2

Eispack, CD3.10:3
Electrically erasable programmable  

read-only memory (EEPROM), 
581

Elements
combinational, 304
datapath, 307, 313
memory, C-50–58
state, 305, 306, 308, C-48, C-50

Embedded computers
application requirements, 7
defined, B-7
design, 6
growth, CD1.10:11–12

Embedded Microprocessor   
Benchmark Consortium 
(EEMBC), CD1.10:11–12

Embedded RISCs
addressing modes, E-6
architecture summary, E-4
arithmetic/logical instructions, E-14

conditional branches, E-16
constant extension summary, E-9
control instructions, E-15
data transfer instructions, E-13
delayed branch and, E-23
DSP extensions, E-19
general purpose registers, E-5
instruction conventions, E-15
instruction formats, E-8
multiply-accumulate approaches, E-19
types of, E-4
See also Reduced instruction set 

 computer (RISC) architectures
Encoding

defined, D-31
floating-point instruction, 261
MIPS instruction, 98, 135, B-49
ROM control function, D-18–19
ROM logic function, C-15
x86 instruction, 171–72

ENIAC (Electronic Numerical  Integrator 
and Calculator), CD1.10:1, 
CD1.10:2, CD1.10:3, CD5.13:1

EPIC, CD4.15:4
Error bit, 588
Error correction, C-65–67
Error detection, 602, C-66
Ethernet, 24, 25, CD6.14:8

defined, CD6.11:5
multiple, CD6.11:6
success, CD6.11:5

Exception enable, 512
Exception handlers, B-36–38

defined, B-35
return from, B-38

Exception program counters  
(EPCs), 385

address capture, 390
copying, 227
defined, 227, 386
in restart determination, 385
transferring, 229

Exceptions, 384–91, B-33–38
association, 390
datapath with controls for  

handling, 387
defined, 227, 385
detecting, 385
event types and, 385
imprecise, 390
instructions, B-80
interrupts versus, 384–85
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in MIPS architecture, 385–86
overflow, 387
PC, 509, 511
pipelined computer example, 388
in pipelined implementation,  

386–91
precise, 390
reasons for, 385–86
result due to overflow in add  

instruction, 389
saving/restoring stage on, 515

Exclusive OR (XOR) instructions,  
B-57

Executable files, B-4
defined, 142
linker production, B-19

Execute/address calculation
control line, 361
load instruction, 350
store instruction, 352

Execute or address calculation stage, 
350, 352

Execution time
CPU, 30, 31, 32
pipelining and, 344
as valid performance measure, 54

Explicit counters, D-23, D-26
Exponents, 244–45
EX stage

load instructions, 350
overflow exception detection, 387
store instructions, 353

External labels, B-10

F

Facilities, B-14–17
Failures

disk, rates, 613–14
mean time between (MTBF), 573
mean time to (MTTF), 573, 574,  

613, 630
reasons for, 574
synchronizer, C-77

Fallacies
add immediate unsigned, 276
Amdahl’s law, 684
assembly language for performance, 

174–75
commercial binary compatibility 

importance, 175
defined, 51

disk failure rates, 613–14
GPUs, A-72–74, A-75
low utilization uses little power, 52
MTTF, 613
peak performance, 684–85
pipelining, 407
powerful instructions mean higher 

performance, 174
right shift, 275–76
See also Pitfalls

False sharing, 537
Fast carry

with first level of abstraction,  
C-39–40

with “infinite” hardware, C-38–39
with second level of abstraction,  

C-40–46
Fast Fourier Transforms (FFT), A-53
Fiber Distributed Data Interface (FDDI), 

CD6.14:8
Fibre Channel Arbitrated Loop  

(FC-AL), CD6.11:11
Field programmable devices (FPDs), 

C-78
Field programmable gate arrays (FPGAs), 

C-78
Fields

Cause register, B-34, B-35
defined, 95
format, D-31
MIPS, 96–97
names, 97
Status register, B-34, B-35

Filebench, 597
Files, register, 308, 314, C-50, C-54–56
File server benchmark (SPECFS), 597
Fine-grained multithreading, 645, 647
Finite-state machines (FSMs), 529–34, 

C-67–72
control, D-8–22
controllers, 532
defined, 531, C-67
implementation, 531, C-70
Mealy, 532
Moore, 532
for multicycle control, D-9
next-state function, 531, C-67
output function, C-67, C-69
for simple cache controller, 533
state assignment, C-70
state register implementation, C-71
style of, 532

synchronous, C-67
SystemVerilog, CD5.9:6–9
traffic light example, C-68–70

Fixed-function graphics pipelines, 
CDA.11:1

Flash-based removable memory  
cards, 23

Flash memory, 580–82
brief history, CD6.14:4
characteristics, 23, 580
defined, 22, 580
as EEPROM, 581
NAND, CD6.14:4
NOR, 581, CD6.14:4
wear leveling, 581

Flat address space, 545
Flip-flops

defined, C-51
D flip-flops, C-51, C-53

Floating point, 242–70
assembly language, 260
backward step, CD3.10:3–4
binary to decimal conversion, 249
branch, 259
challenges, 280
defined, 244
diversity versus portability,  

CD3.10:2–3
division, 259
first dispute, CD3.10:1–2
form, 245
fused multiply add, 268
guard digits, 266–67
history, CD3.10:1–10
IEEE 754 standard, 246, 247
immediate calculations, 266
instruction encoding, 261
machine language, 260
MIPS instruction frequency for, 282
MIPS instructions, 259–61
operands, 260
operands variation in x86, 274
overflow, 245
packed format, 274
precision, 271
procedure with two-dimensional 

matrices, 263–65
programs, compiling, 262–65
registers, 265
representation, 244–50
rounding, 266–67
sign and magnitude, 245
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Floating point (continued)
SSE2 architecture, 274–75
subtraction, 259
underflow, 245
units, 267
in x86, 272–74

Floating-point addition, 250–54
arithmetic unit block diagram, 254
associativity, testing, 270–71
binary, 251, 253
illustrated, 252
instructions, 259, B-73–74
steps, 250–51

Floating-point arithmetic (GPUs),  
A-41–46

basic, A-42
double precision, A-45–46, A-74
performance, A-44
specialized, A-42–44
supported formats, A-42
texture operations, A-44

Floating-point instructions, B-73–80
absolute value, B-73
addition, B-73–74
comparison, B-74–75
conversion, B-75–76
desktop RISC, E-12
division, B-76
load, B-76–77
move, B-77–78
multiplication, B-78
negation, B-78–79
SPARC, E-31
square root, B-79
store, B-79
subtraction, B-79–80
truncation, B-80

Floating-point multiplication,  
255–59

binary, 256–57
illustrated, 258
instructions, 259
significands, 255
steps, 255–56

Floating vectors, CD3.10:2
Flow-sensitive information,  

CD2.15:14
Flushing instructions, 377, 378

defined, 377
exceptions and, 390

For loops, 157

inner, CD2.15:25
SIMD and, CD7.14:2

Formal parameters, B-16
Format fields, D-31
Fortran, CD2.20:6
Forwarding, 363–75

ALU before, 368
control, 366
datapath for hazard resolution, 370
defined, 336
functioning, 364–65
graphical representation, 337
illustrations, CD4.12:25–30
multiple results and, 339
multiplexors, 370
pipeline registers before, 368
with two instructions, 336–37
Verilog implementation,  

CD4.12:3–5
Forward references, B-11
Fractions, 244, 245, 246
Frame buffer, 17
Frame pointers, 119
Front end, CD2.15:2
Fully associative caches

block replacement strategies, 521
choice of, 520
defined, 479
memory block location, 480
misses, 483
See also Caches

Fully connected networks, 661, 662
Function code, 97
Fused-multiply-add (FMA) operation, 

268, A-45–46

G

Game consoles, A-9
Gates, C-3, C-8

AND, C-12, D-7
defined, C-8
delays, C-46
mapping ALU control function to, 

D-4–7
NAND, C-8
NOR, C-8, C-50

Gateways, CD6.11:6
General Purpose GPUs (GPGPUs), 656, 

A-5, CDA.11:3
General-purpose registers

architectures, CD2.20:2–3
embedded RISCs, E-5

Generate
defined, C-40
example, C-44
super, C-41

Gigabytes, 23
Global common subexpression 

 elimination, CD2.15:5
Global memory, A-21, A-39
Global miss rates, 489
Global optimization, CD2.15:4–6

code, CD2.15:6
defined, CD2.15:4
implementing, CD2.15:7–10

Global pointers, 118
GPU computing

defined, A-5
visual applications, A-6–7
See also Graphics processing 

units (GPUs)
GPU system architectures, A-7–12

graphics logical pipeline, A-10
heterogeneous, A-7–9
implications for, A-24
interfaces and drivers, A-9
unified, A-10–12

Graph coloring, CD2.15:11
Graphics displays

computer hardware support, 17
LCD, 16

Graphics logical pipeline, A-10
Graphics processing units (GPUs), 

654–60
as accelerators, 654
attribute interpolation, A-43–44
computing, CDA.11:4
defined, 44, 634, A-3
driver software, 655
evolution, A-5, CDA.11:2
fallacies and pitfalls, A-72–75
floating-point arithmetic, A-17,  

A-41–46, A-74
future trends, CDA.11:5
GeForce 8-series generation, A-5
general computation, A-73–74
General Purpose (GPGPUs), 656, A-5, 

CDA.11:3
graphics mode, A-6
graphics trends, A-4
history, A-3–4
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logical graphics pipeline, A-13–14
main memory, 655
mapping applications to, A-55–72
memory, 656
multilevel caches and, 655
N-body applications, A-65–72
NVIDIA architecture, 656–59
parallelism, 655, A-76
parallel memory system, A-36–41
performance doubling, A-4
perspective, 659–60
programmable real-time, CDA.11:2–3
programming, A-12–24
programming interfaces to, 654, A-17
real-time graphics, A-13
scalable, CDA.11:4–5
summary, A-76
See also GPU computing

Graphics shader programs, A-14–15
Gresham’s Law, 283, CD3.10:1
Grids, A-19
Guard digits

defined, 266
rounding with, 267

H
Half precision, A-42
Halfwords, 126
Handlers

defined, 513
TLB miss, 514

Handshaking protocol, 584
Hard disks

access times, 23
defined, 22
diameters, 23
illustrated, 22
read-write head, 22

Hardware
as hierarchical layer, 10
language of, 11–13
operations, 77–80
supporting procedures in, 112–22
synthesis, C-21
translating microprograms to, D-28–32
virtualizable, 527

Hardware-based speculation, 400
Hardware description languages

defined, C-20
using, C-20–26
VHDL, C-20–21

See also Verilog
Hardware multithreading, 645–48

coarse-grained, 645–46
defined, 645
fine-grained, 645, 647
options, 646
simultaneous, 646–48

Harvard architecture, CD1.10:3
Hazard detection units, 372

functions, 373
pipeline connections for, 373

Hazards, 335–43
control, 339–43, 375–84
data, 336–39, 363–75
defined, 335
forwarding and, 371
structural, 335–36, 352
See also Pipelining

Heap
allocating space on, 120–22
defined, 120

Heterogeneous systems, A-4–5
architecture, A-7–9
defined, A-3

Hexadecimal numbers, 95–96
binary number conversion to, 96
defined, 95

High-level languages, 11–13, B-6
benefits, 13
computer architectures, CD2.20:4
defined, 12
importance, 12

High-level optimizations, CD2.15:3–4
Hit rate, 454
Hit time

cache performance and, 478
defined, 455

Hit under miss, 541
Hold time, C-54
Horizontal microcode, D-32
Hot-swapping, 605
Hubs, CD6.11:6, CD6.11:7
Hybrid hard disks, 581

I
IBM 360/85, CD5.13:6
IBM 370, CD6.14:2
IBM 701, CD1.10:4
IBM 7030, CD4.15:1
IBM ALOG, CD3.10:6
IBM Blue Genie, CD7.14:8–9

IBM Cell QS20
base versus fully optimized 

 performance, 683
characteristics, 677
defined, 679
illustrated, 676
LBMHD performance, 682
roofline model, 678
SpMV performance, 681

IBM Personal Computer, CD1.10:7, 
CD2.20:5

IBM System/360 computers, CD1.10:5, 
CD3.10:4, CD3.10:5, CD5.13:5

IBM z/VM, CD5.13:7
ID stage

branch execution in, 378
load instructions, 349
store instruction in, 349

IEEE 754 floating-point standard, 246, 
247, CD3.10:7–9

first chips, CD3.10:7–9
in GPU arithmetic, A-42–43
implementation, CD3.10:9
rounding modes, 268
today, CD3.10:9
See also Floating point

IEEE 802.11, CD6.11:8–10
with base stations, CD6.11:9
cellular telephony versus, CD6.11:10
defined, CD6.11:8
Wired Equivalent privacy,  

CD6.11:10
IEEE 802.3, CD6.14:8
I-format, 97
If statements, 130
If-then-else, 106
Immediate instructions, 86
Imprecise interrupts, 390, CD4.15:3
Index-out-of-bounds check, 110
Induction variable elimination,  

CD2.15:6
Inheritance, CD2.15:14
In-order commit, 400
Input devices, 15
Inputs, 318
Instances, CD2.15:14
Instruction count, 35, 36
Instruction decode/register file read stage

control line, 361
load instruction, 348
store instruction, 352
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Instruction execution illustrations, 
CD4.12:16–30

clock cycles 1 and 2, CD4.12:20
clock cycles 3 and 4, CD4.12:21
clock cycles 5 and 6, CD4.12:22
clock cycles 7 and 8, CD4.12:23
clock cycle 9, CD4.12:24
examples, CD4.12:19–24
forwarding, CD4.12:25,  

CD4.12:26–27
no hazard, CD4.12:16–19
pipelines with stalls and forwarding, 

CD4.12:25, CD4.12:28–30
Instruction fetch stage

control line, 361
load instruction, 348
store instruction, 352

Instruction formats
ARM, 164
defined, 95
desktop/server RISC architectures, 

E-7
embedded RISC architectures, E-8
I-type, 97
J-type, 129
jump instruction, 328
MIPS, 164
R-type, 97, 319
x86, 173

Instruction latency, 408
Instruction-level parallelism (ILP)

compiler exploitation, CD4.15:4–5
defined, 41, 391
exploitation, increasing, 402
See also Parallelism

Instruction mix, 37, CD1.10:9
Instructions, 74–221

add immediate, 86
addition, 226, B-51
Alpha, E-27–29
arithmetic-logical, 308, B-51–57
ARM, 161–65, E-36–37
assembly, 80
basic block, 108–9
branch, B-59–63
cache-aware, 547
comparison, B-57–59
conditional branch, 105
conditional move, 383
constant-manipulating, B-57
conversion, B-75–76

core, 282
data movement, B-70–73
data transfer, 82
decision-making, 105–12
defined, 11, 76
desktop RISC conventions, E-12
division, B-52–53
as electronic signals, 94
embedded RISC conventions, E-15
encoding, 98
exception and interrupt, B-80
exclusive OR, B-57
fetching, 309
fields, 95
floating-point, 259–61, B-73–80
floating-point (x86), 273
flushing, 377, 378, 390
immediate, 86
introduction to, 76–77
I/O, 589
jump, 111, 113, B-63–64
left-to-right flow, 346
load, 83, B-66–68
load linked, 138
logical operations, 102–5
M32R, E-40
memory access, A-33–34
memory-reference, 301
MIPS-16, E-40–42
MIPS-64, E-25–27
multiplication, 235, B-53–54
negation, B-54
nop, 373
PA-RISC, E-34–36
performance, 33–34
pipeline sequence, 372
PowerPC, E-12–13, E-32–34
PTX, A-31, A-32
remainder, B-55
representation in computer, 94–101
restartable, 513
resuming, 516
R-type, 308–9
shift, B-55–56
SPARC, E-29–32
store, 85, B-68–70
store conditional, 138–39
subtraction, 226, B-56–57
SuperH, E-39–40
thread, A-30–31
Thumb, E-38

trap, B-64–66
vector, 652
as words, 76
x86, 165–74
See also Arithmetic instructions; 

MIPS; Operands
Instruction set architecture

ARM, 161–65
branch address calculation, 310
defined, 21, 54
history, 179
maintaining, 54
protection and, 528–29
thread, A-31–34
virtual machine support, 527–28

Instruction sets
ARM, 383
design for pipelining, 335
MIPS, 77, 178, 279
MIPS-32, 281
NVIDIA GeForce 8800, A-49
Pseudo MIPS, 281
x86 growth, 176

Instructions per clock cycle (IPC), 391
Integrated circuits (ICs)

cost, 46
defined, 26
manufacturing process, 45
very large-scale (VLSIs), 26
See also specific chips

Integrated Data Store (IDS), CD6.14:4
Intel IA-64 architecture, CD4.15:4
Intel Nehalem

address translation for, 540
caches, 541
die processor photo, 539
memory hierarchies, 540–43
miss penalty reduction techniques, 

541–43
TLB hardware for, 540

Intel Paragon, CD7.14:7
Intel Threading Building Blocks, A-60
Intel Xeon e5345

base versus fully optimized 
 performance, 683

characteristics, 677
defined, 677
illustrated, 677
LBMHD performance, 682
roofline model, 678
SpMV performance, 681
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Interference graphs, CD2.15:11
Interleaving, 472, 474
Intermediate addressing, 132, 133
Internetworking, CD6.11:1–3
Interprocedural analysis,  

CD2.15:13
Interrupt-driven I/O, 589
Interrupt enable, 512
Interrupt handlers, B-33
Interrupt priority levels (IPLs),  

590–92
defined, 591
higher, 592

Interrupts
defined, 227, 385
event types and, 385
exceptions versus, 384–85
imprecise, 390, CD4.15:3
instructions, B-80
precise, 390
vectored, 386

Intrinsity FastMATH processor,  
468–70

caches, 469
data miss rates, 470, 484
defined, 468
read processing, 506
TLB, 504
write-through processing, 506

Inverted page tables, 500
I/O, B-38–40, CD6.14:1–8

bandwidth, 618
chip sets, 586
coherence problem for, 595
controllers, 593, 615
future directions, 618
instructions, 589
interrupt-driven, 589
memory-mapped, 588, B-38
parallelism and, 599–606
performance, 572
performance measures, 596–98
processor communication,  

589–90
rate, 596, 610, 611
requests, 572, 618
standards, 584
system performance impact,  

599–600
systems, 570
transactions, 583

I/O benchmarks, 596–97
file system, 597–98
transaction processing, 596–97
Web, 597–98
See also Benchmarks

I/O devices
characteristics, 571
commands to, 588–89
diversity, 571
expandability, 572
illustrated, 570
interfacing, 586–95
maximum number, 617
multiple paths to, 618
priorities, 590–92
reads/writes to, 572
transfers, 585, 592–93

I/O interconnects
function, 583
of x86 processors, 584–86

I/O systems
design, 598–99
design example, 609–11
history, 618
operating system responsibilities  

and, 587–88
organization, 585
peak transfer rate, 617
performance, 618
power evaluation, 611–12
weakest link, 598

Issue packets, 393

J

j (Jump), 78
jal (Jump And Link), 78
Java

bytecode, 147
bytecode architecture, CD2.15:16
characters in, 126–27
compiling in, CD2.15:18–19
goals, 146
interpreting, 148, 161, CD2.15:14–15
keywords, CD2.15:20
method invocation in, CD2.15:19–20
pointers, CD2.15:25
primitive types, CD2.15:25
programs, starting, 146–48
reference types, CD2.15:25
sort algorithms, 157

strings in, 126–27
translation hierarchy, 148
while loop compilation in, 

CD2.15:17–18
Java Virtual Machine (JVM), 147, 

CD2.15:15
Job-level parallelism, 632
jr (Jump Register), 78
J-type instruction format, 129
Jump instructions, 312

branch instruction versus, 328
control and datapath for, 329
implementing, 328
instruction format, 328
list of, B-63–64
MIPS-64, E-26

Just In Time (JIT) compilers,  
148, 687

K

Karnaugh maps, C-18
Kernel mode, 509
Kernels

CUDA, A-19, A-24
defined, A-19

L

Labels
global, B-10, B-11
local, B-11

LAPACK, 271
Laptop computers, 18
Large-scale multiprocessors,  

CD7.14:6–7, CD7.14:8–9
Latches

defined, C-51
D latch, C-51, C-52

Latency
constraints, 598
instruction, 408
memory, A-74–75
pipeline, 344
rotational, 576
use, 395, 396

Lattice Boltzmann Magneto- 
Hydrodynamics (LBMHD), 
680–82

defined, 680
optimizations, 681–82
performance, 682
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lbu (Load Byte Unsigned), 78
ldc1 (Load FP Double) – Green Card 

Column 1
Leaf procedures

defined, 116
example, 126
See also Procedures

Least recently used (LRU)
as block replacement strategy, 521
defined, 485
pages, 499

Least significant bits, C-32
defined, 88
SPARC, E-31

Left-to-right instruction flow, 346
Level-sensitive clocking, C-74,  

C-75–76
defined, C-74
two-phase, C-75

lhu (Load Halfword Unsigned), 78
li (Load Immediate), 178
Lines. See Blocks
Linkers, 142–45, B-18–19

defined, 142, B-4
executable files, 142, B-19
function illustration, B-19
steps, 142
using, 143–45

Linking object files, 143–45
Linpack, 664, CD3.10:3
Liquid crystal displays (LCDs), 16
LISP, SPARC support, E-30
Little-endian byte order, B-43
Live range, CD2.15:10
Livermore Loops, CD1.10:10
ll (Load Linked), 78
Load balancing, 637–38
Loaders, 145
Loading, B-19–20
Load instructions

access, A-41
base register, 319
block, 165
compiling with, 85
datapath in operation for, 325
defined, 83
details, B-66–68
EX stage, 350
floating-point, B-76–77
halfword unsigned, 126
ID stage, 349

IF stage, 349
linked, 138, 139
list of, B-66–68
load byte unsigned, 124
load half, 126
load upper immediate, 128, 129
MEM stage, 351
pipelined datapath in, 355
signed, 124
unit for implementing, 311
unsigned, 124
WB stage, 351
See also Store instructions

Load-store architectures, CD2.20:2
Load-use data hazard, 338, 377
Load-use stalls, 377
Load word, 83, 85
Local area networks (LANs), CD6.11:5–8, 

CD6.14:8
defined, 25
Ethernet, CD6.11:5–6
hubs, CD6.11:6, CD6.11:7
routers, CD6.11:6
switches, CD6.11:6–7
wireless, CD6.11:8–11
See also Networks

Locality
principle, 452, 453
spatial, 452–53, 456
temporal, 452, 453, 456

Local labels, B-11
Local memory, A-21, A-40
Local miss rates, 489
Local optimization, CD2.15:4–6

defined, CD2.15:4
implementing, CD2.15:7
See also Optimization

Locks, 639
Lock synchronization, 137
Logic

address select, D-24, D-25
ALU control, D-6
combinational, 306, C-5, C-9–20
components, 305
control unit equations, D-11
design, 303–7, C-1–79
equations, C-7
minimization, C-18
programmable array (PAL), C-78
sequential, C-5, C-56–58
two-level, C-11–14

Logical operations, 102–5
AND, 103–4, B-52
ARM, 165
defined, 102–5
desktop RISC, E-11
embedded RISC, E-14
MIPS, B-51–57
NOR, 104–5, B-54
NOT, 104, B-55
OR, 104, B-55
shifts, 102

Long-haul networks,  
CD6.11:5

Long instruction word (LIW),  
CD4.15:4

Lookup tables (LUTs), C-79
Loops, 107–8

conditional branches in, 130
defined, 107
for, 157, CD2.15:25
prediction and, 380
test, 158, 159
while, compiling, 107–8

lui (Load Upper Imm.), 78
lw (Load Word), 78
lwc1 (Load FP Single), B-73
Loop unrolling

defined, 397, CD2.15:3
for multiple-issue pipelines, 397
register renaming and, 397

M

M32R, E-15, E-40
Machine code, 95
Machine instructions, 95
Machine language

branch offset in, 131–32
decoding, 134
defined, 11, 95, B-3
floating-point, 260
illustrated, 12
MIPS, 100
SRAM, 20
translating MIPS assembly language 

into, 98–99
Macros

defined, B-4
example, B-15–17
use of, B-15

Magnetic disks. See Hard disks
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Magnetic tapes, 615–16
defined, 23
use history, 615–16

Main memory, 493
defined, 21
page tables, 501
physical addresses, 492, 493
See also Memory

Mapping applications, A-55–72
Mark computers, CD1.10:3
Mealy machine, 532, C-68, C-71, C-72
Mean time between failures  

(MTBF), 573
Mean time to failure (MTTF), 573, 574

fallacies, 613
ratings, 600

Mean time to repair (MTTR), 573, 574
Memory

addresses, 91
affinity, 680, 681
atomic, A-21
bandwidth, 471, 472
cache, 20, 457–92
CAM, 485
constant, A-40
control, D-26
defined, 17
DRAM, 18–19, 453, 471, 473, C-63–65
efficiency, 642
flash, 22, 23, 580–82, CD6.14:4
global, A-21, A-39
GPU, 656
instructions, datapath for, 314
layout, B-21
local, A-21, A-40
main, 21
nonvolatile, 21
operands, 82–83
parallel system, A-36–41
read-only (ROM), C-14–16
SDRAM, 473
secondary, 22
shared, A-21, A-39–40
spaces, A-39
SRAM, C-58–62
stalls, 478
technologies for building, 25–26
texture, A-40
usage, B-20–22
virtual, 492–517
volatile, 21

Memory access instructions, A-33–34
Memory access stage

control line, 362
load instruction, 350
store instruction, 352

Memory consistency model, 538
Memory elements, C-50–58

clocked, C-51
D flip-flop, C-51, C-53
D latch, C-52
DRAMs, C-63–67
flip-flop, C-51
hold time, C-54
latch, C-51
setup time, C-53, C-54
SRAMs, C-58–62
unclocked, C-51

Memory hierarchies
block (or line), 454
cache performance, 475–92
caches, 457–75
common framework, 518–25
defined, 453
design challenges, 525
development, CD5.13:5–7
exploiting, 450–548
inclusion, 542
level pairs, 455
multiple levels, 454
overall operation of, 507
parallelism and, 534–38
pitfalls, 543–47
program execution time and, 491
quantitative design parameters, 518
reliance on, 455
structure, 454
structure diagram, 456
variance, 491
virtual memory, 492–517

Memory-mapped I/O
defined, 588
use of, B-38

Memory-stall clock cycles, 475, 476
Message passing

defined, 641
multiprocessors, 641–45

Metastability, C-76
Methods

defined, CD2.15:14
invoking in Java, CD2.15:19–20
static, B-20

mfc0 (Move From Control), B-71
mfhi (Move From Hi), B-71
mflo (Move From Lo), B-71
Microarchitectures

AMD Opteron X4 (Barcelona), 405
defined, 404

Microcode
assembler, D-30
control unit as, D-28
defined, D-27
dispatch ROMs, D-30–31
field translation, D-29
horizontal, D-32
vertical, D-32

Microinstructions, D-31
Microprocessors

design shift, 633
multicore, 8, 41, 632

Microprograms
as abstract control representation, D-30
translating to hardware, D-28–32

Migration, 536
Million instructions per second (MIPS), 53
Minterms

defined, C-12, D-20
in PLA implementation, D-20

MIP-map, A-44
MIPS, 78, 98–99, B-45–80

addressing for 32-bit immediates, 
128–36

addressing modes, B-45–47
arithmetic core, 280
arithmetic instructions, 77, B-51–57
ARM similarities, 162
assembler directive support, B-47–49
assembler syntax, B-47–49
assembly instruction, mapping, 95
branch instructions, B-59–63
comparison instructions, B-57–59
compiling C assignment statements 

into, 79
compiling complex C assignment 

into, 79–80
constant-manipulating instructions, 

B-57
control registers, 511
control unit, D-10
CPU, B-46
divide in, 241–42
exceptions in, 385–86
fields, 96–97
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MIPS (continued) 
floating-point instructions, 259–61
FPU, B-46
instruction classes, 179
instruction encoding, 98, 135, B-49
instruction formats, 136, 164, B-49–51
instruction set, 77, 178, 279
jump instructions, B-63–66
logical instructions, B-51–57
machine language, 100
memory addresses, 84
memory allocation for program and 

data, 120
multiply in, 235
opcode map, B-50
operands, 78
Pseudo, 280, 281
register conventions, 121
static multiple issue with, 394–97

MIPS-16, E-15–16
16-bit instruction set, E-41–42
immediate fields, E-41
instructions, E-40–42
MIPS core instruction changes, E-42
PC-relative addressing, E-41

MIPS-32 instruction set, 281
MIPS-64 instructions, E-25–27

conditional procedure call 
 instructions, E-27

constant shift amount, E-25
jump/call not PC-relative, E-26
move to/from control registers, E-26
nonaligned data transfers, E-25
NOR, E-25
parallel single precision floating-point 

operations, E-27
reciprocal and reciprocal square root, 

E-27
SYSCALL, E-25
TLB instructions, E-26–27

MIPS core
architecture, 243
arithmetic/logical instructions  

not in, E-21, E-23
common extensions to, E-20–25
control instructions not in, E-21
data transfer instructions not in,  

E-20, E-22
floating-point instructions  

not in, E-22
instruction set, 282, 300–303, E-9–10

Mirroring, 602
Miss penalty

defined, 455
determination, 464
multilevel caches, reducing, 487–91
reduction techniques, 541–43

Miss rates
block size versus, 465
data cache, 519
defined, 454
global, 489
improvement, 464
Intrinsity FastMATH processor, 470
local, 489
miss sources, 524
split cache, 470

Miss under miss, 541
Modules, B-4
Moore machines, 532, C-68, C-71, C-72
Moore’s law, 654, A-72–73
Most significant bit

1-bit ALU for, C-33
defined, 88

Motherboards, 17
Mouse anatomy, 16
Move instructions, B-70–73

coprocessor, B-71–72
details, B-70–73
floating-point, B-77–78

MS-DOS, CD5.13:10–11
move (Move), 155
mul.d (FP Multiply Double), B-78
mul.s (FP Multiply Single), B-78
mult (Multiply), B-53
Multicore multiprocessors, 41

benchmarking with roofline model, 
675–84

characteristics, 677
defined, 8, 632
system organization, 676
two sockets, 676

MULTICS (Multiplexed  Information 
and Computing Service), 
CD5.13:8–9

Multilevel caches
complications, 489
defined, 475, 489
miss penalty, reducing, 487–91
performance of, 487–88
summary, 491–92
See also Caches

Multimedia arithmetic, 227–28
Multimedia extensions

desktop/server RISCs, E-16–18
vector versus, 653

Multiple-clock-cycle pipeline  
diagrams, 356

defined, 356
five instructions, 357
illustrated, 357

Multiple dimension arrays, 266
Multiple instruction multiple data 

(MIMD), 659
defined, 648
first multiprocessor, CD7.14:3

Multiple instruction single data 
(MISD), 649

Multiple issue, 391–400
code scheduling, 396
defined, 391
dynamic, 392, 397–400
issue packets, 393
loop unrolling and, 397
processors, 391, 392
static, 392, 393–97
throughput and, 401

Multiplexors, C-10
controls, 531
in datapath, 320
defined, 302
forwarding, control values, 370
selector control, 314
two-input, C-10

Multiplicand, 230
Multiplication, 230–36

fast, hardware, 236
faster, 235
first algorithm, 232
floating-point, 255–58, B-78
hardware, 231–33
instructions, 235, B-53–54
in MIPS, 235
multiplicand, 230
multiplier, 230
operands, 230
product, 230
sequential version, 231–33
signed, 234
See also Arithmetic

Multiplier, 230
Multiply-add (MAD), A-42
Multiply algorithm, 234
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Multiprocessors
benchmarks, 664–66
bus-based coherent, CD7.14:6
defined, 632
historical perspective, 688
large-scale, CD7.14:6–7, CD7.14:8–9
message-passing, 641–45
multithreaded architecture,  

A-26–27, A-35–36
organization, 631, 641
for performance, 686–87
shared memory, 633, 638–40
software, 632
TFLOPS, CD7.14:5
UMA, 639

Multistage networks, 662
Multithreaded multiprocessor 

 architecture, A-25–36
conclusion, A-36
ISA, A-31–34
massive multithreading, A-25–26
multiprocessor, A-26–27
multiprocessor comparison, A-35–36
SIMT, A-27–30
special function units (SFUs), A-35
streaming processor (SP), A-34
thread instructions, A-30–31
threads/thread blocks management, 

A-30
Multithreading, A-25–26

coarse-grained, 645–46
defined, 634
fine-grained, 645, 647
hardware, 645–48
simultaneous (SMT), 646–48

multu (Multiply Unsigned), B-54
Must-information, CD2.15:14
Mutual exclusion, 137

N

Name dependence, 397
NAND flash memory, CD6.14:4
NAND gates, C-8
NAS (NASA Advanced  Supercomputing), 

666
N-body

all-pairs algorithm, A-65
GPU simulation, A-71
mathematics, A-65–67
multiple threads per body, A-68–69

optimization, A-67
performance comparison, A-69–70
results, A-70–72
shared memory use, A-67–68

Negation instructions, B-54, B-78–79
Negation shortcut, 91–92
Nested procedures, 116–18

compiling recursive procedure  
showing, 117–18

defined, 116
Network of Workstations, CD7.14:7–8
Networks, 24–25, 612–13, CD6.11:1–11

advantages, 24
bandwidth, 661
characteristics, CD6.11:1
crossbar, 662
fully connected, 661, 662
local area (LANs), 25, CD6.11:5–8, 

CD6.14:8
long-haul, CD6.11:5
multistage, 662
OSI model layers, CD6.11:2
peer-to-peer, CD6.11:2
performance, CD6.11:7–8
protocol families/suites, CD6.11:1
switched, CD6.11:5
wide area (WANs), 25, CD6.14:7–8

Network topologies, 660–63
implementing, 662–63
multistage, 663

Newton’s iteration, 266
Next state

nonsequential, D-24
sequential, D-23

Next-state function, 531, C-67
defined, 531
implementing, with sequencer,  

D-22–28
Next-state outputs, D-10, D-12–13

example, D-12–13
implementation, D-12
logic equations, D-12–13
truth tables, D-15

Nonblocking assignment, C-24
Nonblocking caches, 403, 541
Nonuniform memory access  

(NUMA), 639
Nonvolatile memory, 21
Nonvolatile storage, 575
Nops, 373
nor (NOR), 78

NOR flash memory, 581, CD6.14:4
NOR gates, C-8

cross-coupled, C-50
D latch implemented with, C-52

NOR operation, 104–5, B-54, E-25
North bridge, 584
NOT operation, 104, B-55, C-6
No write allocation, 467
Numbers

binary, 87
computer versus real-world, 269
decimal, 87, 90
denormalized, 270
hexadecimal, 95–96
signed, 87–94
unsigned, 87–94

NVIDIA GeForce 3, CDA.11:1
NVIDIA GeForce 8800, A-46–55, 

CDA.11:3
all-pairs N-body algorithm, A-71
dense linear algebra computations, 

A-51–53
FFT performance, A-53
instruction set, A-49
performance, A-51
rasterization, A-50
ROP, A-50–51
scalability, A-51
sorting performance, A-54–55
special function approximation 

 statistics, A-43
special function unit (SFU), A-50
streaming multiprocessor (SM),  

A-48–49
streaming processor, A-49–50
streaming processor array (SPA),  

A-46
texture/processor cluster (TPC),  

A-47–48
NVIDIA GPU architecture, 656–59

O

Object files, 141, B-4
debugging information, 142
defined, B-10
format, B-13–14
header, 141, B-13
linking, 143–45
relocation information, 141
static data segment, 141



I-18� Index

Object files (continued)
symbol table, 141, 142
text segment, 141

Object-oriented languages
brief history, CD2.20:7
defined, 161, CD2.15:14
See also Java

One’s complement, 94, C-29
Opcodes

control line setting and, 323
defined, 97, 319

OpenGL, A-13
OpenMP (Open MultiProcessing), 666
Open Systems Interconnect (OSI) model, 

CD6.11:2
Operands, 80–87

32-bit immediate, 128–29
adding, 225
arithmetic instructions, 80
compiling assignment when in 

memory, 83
constant, 86–87
division, 237
floating-point, 260
memory, 82–83
MIPS, 78
multiplication, 230
shifting, 164
See also Instructions

Operating systems
brief history, CD5.13:8–11
defined, 10
disk access scheduling pitfall, 616–17
encapsulation, 21

Operations
atomic, implementing, 138
hardware, 77–80
logical, 102–5
x86 integer, 168–71

Optical disks
defined, 23
technology, 24

Optimization
class explanation, CD2.15:13
compiler, 160
control implementation, D-27–28
global, CD2.15:4–6
high-level, CD2.15:3
local, CD2.15:4–6, CD2.15:7
manual, 160

or (OR), 78

OR operation, 104, B-55, C-6
ori (Or Immediate), 78
Out-of-order execution

defined, 400
performance complexity, 489
processors, 403

Output devices, 15
Overflow

defined, 89, 245
detection, 226
exceptions, 387
floating point, 245
occurrence, 90
saturation and, 227–28
subtraction, 226

P

Packed floating-point format, 274
Page faults, 498

for data access, 513
defined, 493, 494
handling, 495, 510–16
virtual address causing, 514
See also Virtual memory

Pages
defined, 493
dirty, 501
finding, 496
LRU, 499
offset, 494
physical number, 494
placing, 496
size, 495
virtual number, 494
See also Virtual memory

Page tables, 520
defined, 496
illustrated, 499
indexing, 497
inverted, 500
levels, 500–501
main memory, 501
register, 497
storage reduction techniques, 500–501
updating, 496
VMM, 529

Parallelism, 41, 391–403
data-level, 649
debates, CD7.14:4–6
GPUs and, 655, A-76

instruction-level, 41, 391, 402
I/O and, 599–606
job-level, 632
memory hierarchies and, 534–38
multicore and, 648
multiple issue, 391–400
multithreading and, 648
performance benefits, 43
process-level, 632
subword, E-17
task, A-24
thread, A-22

Parallel memory system, A-36–41
caches, A-38
constant memory, A-40
DRAM considerations, A-37–38
global memory, A-39
load/store access, A-41
local memory, A-40
memory spaces, A-39
MMU, A-38–39
ROP, A-41
shared memory, A-39–40
surfaces, A-41
texture memory, A-40
See also Graphics processing units 

(GPUs)
Parallel processing programs, 634–38

creation difficulty, 634–38
defined, 632
for message passing, 642–43
for shared address space, 639–40
use of, 686

Parallel reduction, A-62
Parallel scan, A-60–63

CUDA template, A-61
defined, A-60
inclusive, A-60
tree-based, A-62

Parallel software, 633
Paravirtualization, 547
PA-RISC, E-14, E-17

branch vectored, E-35
conditional branches, E-34, E-35
debug instructions, E-36
decimal operations, E-35
extract and deposit, E-35
instructions, E-34–36
load and clear instructions, E-36
multiply/add and multiply/ 

subtract, E-36
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nullification, E-34
nullifying branch option, E-25
store bytes short, E-36
synthesized multiply and divide,  

E-34–35
Parity, 602

bit-interleaved, 602
block-interleaved, 602–04
code, C-65
disk, 603
distributed block-interleaved,  

603–4
PARSEC (Princeton Application  

Repository for Shared Memory 
Computers), 666

Pass transistor, C-63
PCI-Express (PCIe), A-8
PC-relative addressing, 130, 133
Peak floating-point performance, 668
Peak transfer rate, 617
Peer-to-peer networks, CD6.11:2
Pentium bug morality play, 276–79
Performance, 26–38

assessing, 26–27
classic CPU equation, 35–37
components, 37
CPU, 30–32
defining, 27–30
equation, using, 34
improving, 32–33
instruction, 33–34
measuring, 30–32, CD1.10:9
networks, CD6.11:7–8
program, 38
ratio, 30
relative, 29
response time, 28, 29
sorting, A-54–55
throughput, 28
time measurement, 30

Petabytes, 5
Physical addresses, 493

defined, 492
mapping to, 494
space, 638, 640

Physically addressed caches, 508
Physical memory. See Main memory
Pipelined branches, 378
Pipelined control, 359–63

control lines, 360, 361
overview illustration, 375

specifying, 361
See also Control

Pipelined datapaths, 344–58
with connected control signals, 362
with control signals, 359
corrected, 355
illustrated, 347
in load instruction stages, 355

Pipelined dependencies, 364
Pipeline registers

before forwarding, 368
dependences, 366, 367
forwarding unit selection, 371

Pipelines
AMD Opteron X4 (Barcelona), 404–6
branch instruction impact, 376
effectiveness, improving, CD4.15:3–4
execute and address calculation stage, 

350, 352
five-stage, 333, 348–50, 358
fixed-function graphics, CDA.11:1
graphic representation, 337,  

356–58
instruction decode and register file 

read stage, 348, 352
instruction fetch stage, 348, 352
instructions sequence, 372
latency, 344
memory access stage, 350, 352
multiple-clock-cycle diagrams, 356
performance bottlenecks, 402
single-clock-cycle diagrams, 356
stages, 333
static two-issue, 394
write-back stage, 350, 352

Pipeline stalls, 338–39
avoiding with code reordering, 

338–39
data hazards and, 371–74
defined, 338
insertion, 374
load-use, 377
as solution to control hazards, 340

Pipelining, 330–44
advanced, 402–3
benefits, 331
control hazards, 339–43
data hazards, 336–39
defined, 330
exceptions and, 386–91
execution time and, 344

fallacies, 407
hazards, 335–43
instruction set design for, 335
laundry analogy, 331
overview, 330–44
paradox, 331
performance improvement, 335
pitfall, 407–8
simultaneous executing  instructions, 

344
speed-up formula, 333
structural hazards, 335–36, 352
summary, 343
throughput and, 344

Pitfalls
address space extension, 545
associativity, 545
defined, 51
GPUs, A-74–75
ignoring memory system  

behavior, 544
magnetic tape backups, 615–16
memory hierarchies, 543–47
moving functions to I/O  

processor, 615
network feature provision, 614–15
operating system disk accesses, 

616–17
out-of-order processor  

evaluation, 545
peak transfer rate performance, 617
performance equation subset, 52–53
pipelining, 407–8
pointer to automatic variables, 175
sequential word addresses, 175
simulating cache, 543–44
software development with  

multiprocessors, 685
VMM implementation, 545–47
See also Fallacies

Pixel shader example, A-15–17
Pizza boxes, 607
Pointers

arrays versus, 157–61
frame, 119
global, 118
incrementing, 159
Java, CD2.15:25
stack, 114, 116

Polling, 589
Pop, 114
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Power
clock rate and, 39
critical nature of, 55
efficiency, 402–3
relative, 40

PowerPC
algebraic right shift, E-33
branch registers, E-32–33
condition codes, E-12
instructions, E-12–13
instructions unique to, E-31–33
load multiple/store multiple, E-33
logical shifted immediate, E-33
rotate with mask, E-33

P + Q redundancy, 604
Precise interrupts, 390
Prediction

2-bit scheme, 381
accuracy, 380, 381
dynamic branch, 380–83
loops and, 380
steady-state, 380

Prefetching, 547, 680
Primary memory. See Main memory
Primitive types, CD2.15:25
Priority levels, 590–92
Procedure calls

convention, B-22–33
examples, B-27–33
frame, B-23
preservation across, 118

Procedures, 112–22
compiling, 114
compiling, showing nested  procedure 

linking, 117–18
defined, 112
execution steps, 112
frames, 119
leaf, 116
nested, 116–18
recursive, 121, B-26–27
for setting arrays to zero, 158
sort, 150–55
strcpy, 124–25, 126
string copy, 124–26
swap, 149–50

Process identifiers, 510
Process-level parallelism, 632
Processor-memory bus, 582
Processors, 298–409

control, 19

as cores, 41
datapath, 19
defined, 14, 19
dynamic multiple-issue, 392
I/O communication with, 589–90
multiple-issue, 391, 392
out-of-order execution, 403, 489
performance growth, 42
ROP, A-12, A-41
speculation, 392–93
static multiple-issue, 392, 393–97
streaming, 657, A-34
superscalar, 397, 398, 399–400, 646, 

CD4.15:4
technologies for building, 25–26
two-issue, 395
vector, 650–53
VLIW, 394

Product, 230
Product of sums, C-11
Program counters (PCs), 307

changing with conditional branch, 383
defined, 113, 307
exception, 509, 511
incrementing, 307, 309
instruction updates, 348

Program libraries, B-4
Programmable array logic (PAL), C-78
Programmable logic arrays (PLAs)

component dots illustration, C-16
control function implementation,  

D-7, D-20–21
defined, C-12
example, C-13–14
illustrated, C-13
ROMs and, C-15–16
size, D-20
truth table implementation, C-13

Programmable logic devices (PLDs), 
C-78

Programmable real-time graphics, 
CDA.11:2–3

Programmable ROMs (PROMs), C-14
Programming languages

brief history of, CD2.20:6–7
object-oriented, 161
variables, 81
See also specific languages

Program performance
elements affecting, 38
understanding, 9

Programs
assembly language, 139
Java, starting, 146–48
parallel processing, 634–38
starting, 139–48
translating, 139–48

Propagate
defined, C-40
example, C-44
super, C-41

Protected keywords, CD2.15:20
Protection

defined, 492
group, 602
implementing, 508–10
mechanisms, CD5.13:7
VMs for, 526

Protocol families/suites
analogy, CD6.11:2–3
defined, CD6.11:1
goal, CD6.11:2

Protocol stacks, CD6.11:3
Pseudodirect addressing, 133
Pseudoinstructions

defined, 140
summary, 141

Pseudo MIPS
defined, 280
instruction set, 281

Pthreads (POSIX threads), 666
PTX instructions, A-31, A-32
Public keywords, CD2.15:20
Push

defined, 114
using, 116

Q

Quad words, 168
Quicksort, 489, 490
Quotient, 237

R

Race, C-73
Radix sort, 489, 490, A-63–65

CUDA code, A-64
implementation, A-63–65

RAID. See Redundant arrays of 
 inexpensive disks
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RAMAC (Random Access Method 
of Accounting and Control), 
CD6.14:1, CD6.14:2

Rank units, 606, 607
Rasterization, A-50
Raster operation (ROP) processors,  

A-12, A-41
fixed function, A-41
GeForce 8800, A-50–51

Raster refresh buffer, 17
Read-only memories (ROMs), C-14–16

control entries, D-16–17
control function encoding, D-18–19
defined, C-14
dispatch, D-25
implementation, D-15–19
logic function encoding, C-15
overhead, D-18
PLAs and, C-15–16
programmable (PROM), C-14
total size, D-16

Read-stall cycles, 476
Receive message routine, 641
Receiver Control register, B-39
Receiver Data register, B-38, B-39
Recursive procedures, 121, B-26–27

clone invocation, 116
defined, B-26
stack in, B-29–30
See also Procedures

Reduced instruction set computer (RISC) 
architectures, E-2–45, CD2.20:4, 
CD4.15:3

group types, E-3–4
instruction set lineage, E-44
See also Desktop and server RISCs; 

Embedded RISCs
Reduction, 640
Redundant arrays of inexpensive disks 

(RAID), 600–606
calculation of, 605
defined, 600
example illustration, 601
history, CD6.14:6–7
PCI controller, 611
popularity, 600
RAID 0, 601
RAID 1, 602, CD6.14:6
RAID 1 + 0, 606
RAID 2, 602, CD6.14:6
RAID 3, 602, CD6.14:6, CD6.14:7

RAID 4, 602–3, CD6.14:6
RAID 5, 603–4, CD6.14:6, CD6.14:7
RAID 6, 604
spread of, CD6.14:7
summary, 604–5
use statistics, CD6.14:7

Reference bit, 499
References

absolute, 142
forward, B-11
types, CD2.15:25
unresolved, B-4, B-18

Register addressing, 132, 133
Register allocation, CD2.15:10–12
Register files, C-50, C-54–56

in behavioral Verilog, C-57
defined, 308, C-50, C-54
single, 314
two read ports implementation,  

C-55
with two read ports/one write port, 

C-55
write port implementation, C-56

Register-memory architecture, CD2.20:2
Registers

architectural, 404
base, 83
callee-saved, B-23
caller-saved, B-23
Cause, 386, 590, 591, B-35
clock cycle time and, 81
compiling C assignment with, 81–82
Count, B-34
defined, 80
destination, 98, 319
floating-point, 265
left half, 348
mapping, 94
MIPS conventions, 121
number specification, 309
page table, 497
pipeline, 366, 367, 368, 371
primitives, 80–81
Receiver Control, B-39
Receiver Data, B-38, B-39
renaming, 397
right half, 348
spilling, 86
Status, 386, 590, 591, B-35
temporary, 81, 115
Transmitter Control, B-39–40

Transmitter Data, B-40
usage convention, B-24
use convention, B-22
variables, 81
x86, 168

Relational databases, CD6.14:5
Relative performance, 29
Relative power, 40
Reliability, 573
Relocation information, B-13, B-14
Remainder

defined, 237
instructions, B-55

Reorder buffers, 399, 402, 403
Replication, 536
Requested word first, 465
Reservation stations

buffering operands in, 400
defined, 399

Response time, 28, 29
Restartable instructions, 513
Restorations, 573
Return address, 113
Return from exception (ERET), 509
R-format, 319

ALU operations, 310
defined, 97

Ripple carry
adder, C-29
carry lookahead speed versus, C-46

RISC. See Desktop and server RISCs; 
Embedded RISCs; Reduced 
instruction set computer (RISC) 
architectures

Roofline model, 667–75
benchmarking multicores with, 

675–84
with ceilings, 672, 674
computational roofline, 673
IBM Cell QS20, 678
illustrated, 669
Intel Xeon e5345, 678
I/O intensive kernel, 675
Opteron generations, 670
with overlapping areas shaded, 674
peak floating-point performance,  

668
peak memory performance, 669
Sun UltraSPARC T2, 678
with two kernels, 674

Rotational latency, 576
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Rounding
accurate, 266
bits, 268
defined, 266
with guard digits, 267
IEEE 754 modes, 268

Routers, CD6.11:6
Row-major order, 265
R-type instructions, 308–9

datapath for, 323
datapath in operation for, 324

S

Saturation, 227–28
sb (Store Byte), 78
sc (Store Conditional), 78
Scalable GPUs, CDA.11:4–5
SCALAPAK, 271
Scaling

strong, 637, 638
weak, 637

Scientific notation
adding numbers in, 250
defined, 244
for reals, 244

sdc1 (Store FP Double) – Green Card 
Column 1

Secondary memory, 22
Sectors, 575
Seek time, 575
Segmentation, 495
Selector values, C-10
Semiconductors, 45
Send message routine, 641
Sensitivity list, C-24
Sequencers

explicit, D-32
implementing next-state function 

with, D-22–28
Sequential logic, C-5
Servers

cost and capability, 5
defined, 5
See also Desktop and server RISCs

Set-associative caches, 479–80
address portions, 484
block replacement strategies, 521
choice of, 520
defined, 479
four-way, 481, 486

memory-block location, 480
misses, 482–83
n-way, 479
two-way, 481
See also Caches

Set instructions, 109
Setup time, C-53, C-54
sh (Store Halfword), 78
Shaders, CDA.11:3

defined, A-14
floating-point arithmetic, A-14
graphics, A-14–15
pixel example, A-15–17

Shading languages, A-14
Shared memory

caching in, A-58–60
CUDA, A-58
defined, A-21
as low-latency memory, A-21
N-body and, A-67–68
per-CTA, A-39
SRAM banks, A-40
See also Memory

Shared memory multiprocessors (SMP), 
638–40

defined, 633, 638
single physical address  

space, 638
synchronization, 639

Shift amount, 97
Shift instructions, 102, B-55–56
Signals

asserted, 305, C-4
control, 306, 320, 321, 322
deasserted, 305, C-4

Sign and magnitude, 245
Sign bit, 90
Signed division, 239–41
Signed multiplication, 234
Signed numbers, 87–94

sign and magnitude, 89
treating as unsigned, 110

Sign extension, 310
defined, 124
shortcut, 92–93

Significands, 246
addition, 250
multiplication, 255

Silicon
crystal ingot, 45
defined, 45

as key hardware technology, 54
wafers, 45

SIMD (Single Instruction Multiple Data), 
649, 659

computers, CD7.14:1–3
data vector, A-35
extensions, CD7.14:3
for loops and, CD7.14:2
massively parallel multiprocessors, 

CD7.14:1
small-scale, CD7.14:3
vector architecture, 650–53
in x86, 649–50

SIMMs (single inline memory  modules), 
CD5.13:4, CD5.13:5

Simple programmable logic devices 
(SPLDs), C-78

Simplicity, 176
Simultaneous multithreading  

(SMT), 646–48
defined, 646
support, 647
thread-level parallelism, 647
unused issue slots, 648

Single-clock-cycle pipeline  
diagrams, 356

defined, 356
illustrated, 358

Single-cycle datapaths
illustrated, 345
instruction execution, 346
See also Datapaths

Single-cycle implementation
control function for, 327
defined, 327
nonpipelined execution versus 

 pipelined execution, 334
non-use of, 328–30
penalty, 330
pipelined performance versus,  

332–33
Single-instruction multiple-thread 

(SIMT), A-27–30
defined, A-27
multithreaded warp scheduling, A-28
overhead, A-35
processor architecture, A-28
warp execution and divergence,  

A-29–30
Single instruction single data  

(SISD), 648
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Single precision
binary representation, 248
defined, 245
See also Double precision

Single-program multiple data (SPMD), 
648, A-22

sll (Shift Left Logical), 78
slt (Set Less Than), 78
slti (Set Less Than Imm.), 78
sltiu (Set Less Than Imm. 

Unsigned), 78
sltu (Set Less Than Unsig.), 78
Small Computer Systems Interface (SCSI) 

disks, 577, 613
Smalltalk

Smalltalk-80, CD2.20:7
SPARC support, E-30

Snooping protocol, 536–37, 538
Snoopy cache coherence, CD5.9:16
Software

GPU driver, 655
layers, 10
multiprocessor, 632
parallel, 633
as service, 606, 686
systems, 10

Sort algorithms, 157
Sorting performance, A-54–55
Sort procedure, 150–55

code for body, 151–53
defined, 150
full procedure, 154–55
passing parameters in, 154
preserving registers in, 154
procedure call, 153
register allocation for, 151
See also Procedures

Source files, B-4
Source language, B-6
South bridge, 584
Space allocation

on heap, 120–22
on stack, 119

SPARC
annulling branch, E-23
CASA, E-31
conditional branches, E-10–12
fast traps, E-30
floating-point operations, E-31
instructions, E-29–32
least significant bits, E-31

multiple precision floating-point 
results, E-32

nonfaulting loads, E-32
overlapping integer operations,  

E-31
quadruple precision floating-point 

arithmetic, E-32
register windows, E-29–30
support for LISP and Smalltalk,  

E-30
Sparse matrices, A-55–58
Sparse Matrix-Vector multiply (SpMV), 

679–80, 681, A-55,  
A-57, A-58

CUDA version, A-57
serial code, A-57
shared memory version, A-59

Spatial locality, 452–53
defined, 452
large block exploitation of, 464
tendency, 456

SPEC, CD1.10:10–11
CPU benchmark, 48–49
defined, CD1.10:10
power benchmark, 49–50
SPEC89, CD1.10:10
SPEC92, CD1.10:11
SPEC95, CD1.10:11
SPEC2000, CD1.10:11
SPEC2006, 282, CD1.10:11
SPECPower, 597
SPECrate, 664
SPECratio, 48

Special function units (SFUs), A-35
defined, A-43
GeForce 8800, A-50

Speculation, 392–93
defined, 392
hardware-based, 400
implementation, 392
performance and, 393
problems, 393
recovery mechanism, 393

Speed-up challenge, 635–38
balancing load, 637–38
bigger problem, 636–37

Spilling registers, 86, 115
SPIM, B-40–45

byte order, B-43
defined, B-40
features, B-42–43

getting started with, B-42
MIPS assembler directives support, 

B-47–49
speed, B-41
system calls, B-43–45
versions, B-42
virtual machine simulation,  

B-41–42
SPLASH/SPLASH 2 (Stanford Parallel  

Applications for Shared Memory), 
664–66

Split caches, 470
Square root instructions, B-79
sra (Shift Right Arith.), B-56
srl (Shift Right Logical), 78
Stack architectures, CD2.20:3
Stack pointers

adjustment, 116
defined, 114
values, 116

Stacks
allocating space on, 119
for arguments, 156
defined, 114
pop, 114
push, 114, 116
recursive procedures, B-29–30

Stack segment, B-22
Stalls, 338–39

avoiding with code reordering, 
338–39

behavioral Verilog with detection, 
CD4.12:5–9

data hazards and, 371–74
defined, 338
illustrations, CD4.12:25,  

CD4.12:28–30
insertion into pipeline, 374
load-use, 377
memory, 478
as solution to control hazard, 340
write-back scheme, 476
write buffer, 476

Standby spares, 605
State

in 2-bit prediction scheme, 381
assignment, C-70, D-27
bits, D-8
exception, saving/restoring, 515
logic components, 305
specification of, 496
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State elements
clock and, 306
combinational logic and, 306
defined, 305, C-48
inputs, 305
register file, C-50
in storing/accessing instructions,  

308
Static branch prediction, 393
Static data

defined, B-20
as dynamic data, B-21
segment, 120

Static multiple-issue processors, 392, 
393–97

control hazards and, 394
instruction sets, 393
with MIPS ISA, 394–97
See also Multiple issue

Static random access memories (SRAMs), 
C-58–62

array organization, C-62
basic structure, C-61
defined, 20, C-58
fixed access time, C-58
large, C-59
read/write initiation, C-59
synchronous (SSRAMs), C-60
three-state buffers, C-59, C-60

Static variables, 118
Status register, 590

fields, B-34, B-35
illustrated, 591

Steady-state prediction, 380
Sticky bits, 268
Storage

disk, 575–79
flash, 580–82
nonvolatile, 575

Storage area networks (SANs),  
CD6.11:11

Store buffers, 403
Stored program concept, 77

as computer principle, 100
illustrated, 101
principles, 176

Store instructions
access, A-41
base register, 319
block, 165
compiling with, 85

conditional, 138–39
defined, 85
details, B-68–70
EX stage, 353
floating-point, B-79
ID stage, 349
IF stage, 349
instruction dependency, 371
list of, B-68–70
MEM stage, 354
unit for implementing, 311
WB stage, 354
See also Load instructions

Store word, 85
Strcpy procedure, 124–25

defined, 124
as leaf procedure, 126
pointers, 126
See also Procedures

Stream benchmark, 675
Streaming multiprocessor (SM),  

A-48–49
Streaming processors, 657, A-34

array (SPA), A-41, A-46
GeForce 8800, A-49–50

Streaming SIMD Extension 2 (SSE2) 
floating-point architecture, 
274–75

Stretch computer, CD4.15:1
Strings

defined, 124
in Java, 126–27
representation, 124

Striping, 601
Strong scaling, 637, 638
Structural hazards, 335–36, 352
Structured Query Language (SQL), 

CD6.14:5
sub (Subtract), 78
sub.d (FP Subtract Double), B-79
sub.s (FP Subtract Single), B-80
Subnormals, 270
Subtracks, 606
Subtraction, 224–29

binary, 224–25
floating-point, 259, B-79–80
instructions, B-56–57
negative number, 226
overflow, 226
See also Arithmetic

subu (Subtract Unsigned), 135

Subword parallelism, E-17
Sum of products, C-11, C-12
Sun Fire x4150 server, 606–12

front/rear illustration, 608
idle and peak power, 612
logical connections and 

 bandwidths, 609
minimum memory, 611

Sun UltraSPARC T2 (Niagara 2),  
647, 658

base versus fully optimized 
 performance, 683

characteristics, 677
defined, 677
illustrated, 676
LBMHD performance, 682
roofline model, 678
SpMV performance, 681

Supercomputers, 5, CD4.15:1
SuperH, E-15, E-39–40
Superscalars

defined, 397, CD4.15:4
dynamic pipeline scheduling,  

398, 399–400
multithreading options, 646

Surfaces, A-41
sw (Store Word), 78
Swap procedure, 149–50

body code, 150
defined, 149
full, 150, 151
register allocation, 149–50
See also Procedures

Swap space, 498
swc1 (Store FP Single), B-73
Switched networks, CD6.11:5
Switches, CD6.11:6–7
Symbol tables, 141, B-12, B-13
Synchronization, 137–39

barrier, A-18, A-20, A-34
defined, 639
lock, 137
overhead, reducing, 43
unlock, 137

Synchronizers
defined, C-76
from D flip-flop, C-76
failure, C-77

Synchronous bus, 583
Synchronous DRAM (SRAM),  

473, C-60, C-65
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Synchronous SRAM (SSRAM), C-60
Synchronous system, C-48
Syntax tree, CD2.15:3
System calls, B-43–45

code, B-43–44
defined, 509
loading, B-43

System Performance Evaluation 
 Cooperative. See SPEC

Systems software, 10
SystemVerilog

cache controller, CD5.9:1–9
cache data and tag modules, CD5.9:5
FSM, CD5.9:6–9
simple cache block diagram, CD5.9:3
type declarations, CD5.9:1, CD5.9:2

T

Tags
defined, 458
in locating block, 484
page tables and, 498
size of, 486–87

Tail call, 121
Task identifiers, 510
Task parallelism, A-24
TCP/IP packet format, CD6.11:4
Telsa PTX ISA, A-31–34

arithmetic instructions, A-33
barrier synchronization, A-34
GPU thread instructions, A-32
memory access instructions,  

A-33–34
Temporal locality, 453

defined, 452
tendency, 456

Temporary registers, 81, 115
Terabytes, 5
Tesla multiprocessor, 658
Text segment, B-13
Texture memory, A-40
Texture/processor cluster (TPC), A-47–48
TFLOPS multiprocessor, CD7.14:5
Thrashing, 517
Thread blocks, 659

creation, A-23
defined, A-19
managing, A-30
memory sharing, A-20
synchronization, A-20

Thread dispatch, 659
Thread parallelism, A-22
Threads

creation, A-23
CUDA, A-36
ISA, A-31–34
managing, A-30
memory latencies and, A-74–75
multiple, per body, A-68–69
warps, A-27

Three Cs model, 523
Three-state buffers, C-59, C-60
Throughput

defined, 28
multiple issue and, 401
pipelining and, 344, 401

Thumb, E-15, E-38
Timing

asynchronous inputs, C-76–77
level-sensitive, C-75–76
methodologies, C-72–77
two-phase, C-75

TLB misses, 503
entry point, 514
handler, 514
handling, 510–16
minimization, 681
occurrence, 510
problem, 517
See also Translation-lookaside  buffer 

(TLB)
Tomasulo’s algorithm, CD4.15:2
Tournament branch predicators, 383
Tracks, 575
Transaction Processing Council  

(TPC), 596
Transaction processing (TP)

defined, 596
I/O benchmarks, 596–97

Transfer time, 576
Transistors, 26
Translation-lookaside buffer (TLB), 

502–4, CD5.13:5
associativities, 503
defined, 502
illustrated, 502
integration, 504–8
Intrinsity FastMATH, 504
MIPS-64, E-26–27
typical values, 503
See also TLB misses

Transmitter Control register,  
B-39–40

Transmitter Data register, B-40
Trap instructions, B-64–66
Tree-based parallel scan, A-62
Truth tables, C-5

ALU control lines, D-5
for control bits, 318
datapath control outputs, D-17
datapath control signals, D-14
defined, 317
example, C-5
next-state output bits, D-15
PLA implementation, C-13

Two-level logic, C-11–14
Two-phase clocking, C-75
Two’s complement representation,  

89, 90
advantage, 90
defined, 89
negation shortcut, 91–92
rule, 93
sign extension shortcut, 92–93

TX-2 computer, CD7.14:3

U

Unconditional branches, 106
Underflow, 245
Unicode

alphabets, 126
defined, 126
example alphabets, 127

Unified GPU architecture, A-10–12
illustrated, A-11
processor array, A-11–12

Uniform memory access (UMA),  
638–39, A-9

defined, 638
multiprocessors, 639

Units
commit, 399, 402
control, 303, 316–17, D-4–8, D-10, 

D-12–13
defined, 267
floating point, 267
hazard detection, 372, 373
for load/store implementation, 311
rank, 606, 607
special function (SFUs), A-35,  

A-43, A-50
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UNIVAC I, CD1.10:4
UNIX, CD2.20:7, CD5.13:8–11

AT&T, CD5.13:9
Berkeley version (BSD), CD5.13:9
genius, CD5.13:11
history, CD5.13:8–11

Unlock synchronization, 137
Unresolved references

defined, B-4
linkers and, B-18

Unsigned numbers, 87–94
Use latency

defined, 395
one-instruction, 396

V

Vacuum tubes, 26
Valid bit, 458
Variables

C language, 118
programming language, 81
register, 81
static, 118
storage class, 118
type, 118

VAX architecture, CD2.20:3,  
CD5.13:6

Vectored interrupts, 386
Vector processors, 650–53

conventional code comparison, 
650–51

instructions, 652
multimedia extensions and, 653
scalar versus, 652
See also Processors

Verilog
behavioral definition of MIPS  

ALU, C-25
behavioral definition with  bypassing, 

CD4.12:4–5
behavioral definition with stalls 

for loads, CD4.12:6–7,  
CD4.12:8–9

behavioral specification, C-21, 
CD4.12:2–3

behavioral specification of 
 multicycle MIPS design, 
CD4.12:11–12

behavioral specification with 
 simulation, CD4.12:1–5

behavioral specification with stall 
detection, CD4.12:5–9

behavioral specification with 
 synthesis, CD4.12:10–16

blocking assignment, C-24
branch hazard logic implementation, 

CD4.12:7–9
combinational logic, C-23–26
datatypes, C-21–22
defined, C-20
forwarding implementation, 

CD4.12:3
MIPS ALU definition in, C-35–38
modules, C-23
multicycle MIPS datapath,  

CD4.12:13
nonblocking assignment, C-24
operators, C-22
program structure, C-23
reg, C-21–22
sensitivity list, C-24
sequential logic specification, 

C-56–58
structural specification, C-21
wire, C-21–22

Vertical microcode, D-32
Very large-scale integrated (VLSI) 

 circuits, 26
Very Long Instruction Word (VLIW)

defined, 393
first generation computers,  

CD4.15:4
processors, 394

VHDL, C-20–21
Video graphics array (VGA)  controllers, 

A-3–4
Virtual addresses

causing page faults, 514
defined, 493
mapping from, 494
size, 495

Virtualizable hardware, 527
Virtually addressed caches, 508
Virtual machine monitors (VMMs)

defined, 526
implementing, 545–47
laissez-faire attitude, 546
page tables, 529

in performance improvement,  
528

requirements, 527
Virtual machines (VMs), 525–29

benefits, 526
defined, B-41
illusion, 529
instruction set architecture  support, 

527–28
performance improvement, 528
for protection improvement, 526
simulation of, B-41–42

Virtual memory, 492–517
address translation, 493, 502–4
defined, 492
integration, 504–8
mechanism, 516
motivations, 492–93
page faults, 493, 498
protection implementation,  

508–10
segmentation, 495
summary, 516
virtualization of, 529
writes, 501
See also Pages

Visual computing, A-3
Volatile memory, 21

W

Wafers, 46
defects, 46
defined, 45
dies, 46
yield, 46

Warps, 657, A-27
Weak scaling, 637
Wear leveling, 581
Web server benchmark (SPECWeb),  

597
While loops, 107–8
Whirlwind, CD5.13:1, CD5.13:3
Wide area networks (WANs),  

CD6.14:7–8
defined, 25
history of, CD6.14:7–8
See also Networks

Winchester disk, CD6.14:2–4
Wireless LANs, CD6.11:8–10
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Words
accessing, 82
defined, 81
double, 168
load, 83, 85
quad, 168
store, 85

Working set, 517
Worst-case delay, 330
Write-back caches

advantages, 522
cache coherency protocol,  

CD5.9:12
complexity, 468
defined, 467, 521
stalls, 476
write buffers, 468
See also Caches

Write-back stage
control line, 362
load instruction, 350
store instruction, 352

Write buffers
defined, 467
stalls, 476
write-back cache, 468

Write invalidate protocols, 536, 537
Writes

complications, 467
expense, 516
handling, 466–68
memory hierarchy handling of, 

521–22
schemes, 467
virtual memory, 501
write-back cache, 467, 468
write-through cache, 467, 468

Write serialization, 535–36
Write-stall cycles, 476
Write-through caches

advantages, 522
defined, 467, 521
tag mismatch, 468
See also Caches

X

X86, 165–74
brief history, CD2.20:5
conclusion, 172
data addressing modes, 168, 170
evolution, 165–68
first address specifier encoding, 174
floating point, 272–74
floating-point instructions, 273
historical timeline, 166–67
instruction encoding, 171–72
instruction formats, 173
instruction set growth, 176
instruction types, 169
integer operations, 168–71
I/O interconnects, 584–86
registers, 168
SIMD in, 649–50
typical instructions/functions, 171
typical operations, 172

Xerox Alto computer, CD1.10:7–8
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