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Disclaimer

| am not an expert on the subject

Working with GPU for less than one year

| wish | have had this course at the time!
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Download the slides and examples

http://190.168.117.201/~velho/cuda.html



http://190.168.117.201/~velho/cuda.html
http://190.168.117.201/~velho/cuda.html

Meeting the audience!

How many of you used concurrent programming
before!

How many threads!?

How many already used CUDA!
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CPU vs GPU
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Memory Controller &

- A few general purpose cores 3

- Blg cache memory __c_ B e

- Eg.: Nehalem L+ quad-core OFiabel - ERd
- 4 cores (2 threads) i

- cache is about 50% of die area
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- A few general purpose cores
- Blg cache memory
- Eg.: Nehalem L+ quad-core
- 4 cores (8 threads)
- cache is about 50% of die area
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- Destgwn goal masswel,;j parallel graphics
- A Lot of veplicated functional wnits
- Ssmall cache size
- B9.: NVIDLA GTX2L0
- 240 SP (streaming processors)
- support for 20720 simultaneous threads
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Computer Graphics is a
Computational intensive application

Video game software sales: 1998-2007
$ Billions

100% = 5.
Console
gaming
8 1.4 _]

PC gaming

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
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Computer Graphics is a
Computational intensive application

A Lot of $44 from game tndustry

Video game software sales: 1998-2007
$ Billions

100% = 5.5
Console
gaming
1.4 1.1

PCgaming | 1.8

B B b e e el el WLOM LLOM LOOY
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
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Computer Graphics is a
Computational intensive application

A Lot of $44 from game tndustry

Video game software sales: 1998-2007
$ Billions

Expressive gain i performance
for parallel graphics rendering

100% = 5.5
Console
’ gaming
caught attention from the
1.4 1]

scientific community PCgaming | 1.8

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
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GPU is also adapted to several
scientific applications

Molecular Biology Fluid Simulation Weather Forecast
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Model the application directly
usting Oompu’cbwg C,mphws
driver calls

Need to ‘POY‘t the ‘PYObLCIM. to a DilrectX or OPBV\’C'L' are wot

complete different domain easy to figure out
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Potential Gain in Performance

TSy, 100 times faster:
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Potential Gain in Performance

sy, 1 OO tinmes fa ster

Several guys from ntel

)

Victor W Lee et. al, Debunking the 100X GPU vs. CPU Myth: An Evaluation of
Throughput Computing on CPU and GPU

This Ls a W\,atlfl!

Core i7 - quadcore
VS,

6TX280

14 kernels

relative performance!
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Potential Gain in Performance

100 times faster

Several guys from ntel

)

Victor W Lee et. al, Debunking the 100X GPU vs. CPU Myth: An Evaluation of
Throughput Computing on CPU and GPU

This Ls a WL%’CV!!

we still have a 10 times factor
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(a) Relative Performace
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CPU vs GPU

Theoretical
GFLOP/s

1500

NVIDIA GPU Single Precision
w=—p==NVIDIA GPU Double Precision
=== |ntel CPU Single Precision

Intel CPU Double Precision

Westmere

Tesla C 1060 / Bloomheld
Woodcrest

’L M
U . . v O N arpertown
Pentium 4

Sep-01 Jan-03 Jun-04 Oct-05 Mar-07 Jul-08 Dec-09
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Substantial gain in execution time (10x)!

before GPU with GPU

one year one month plus a week

two hours and twinty

one da .
4 four minutes

one hour SiX minutes
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GPU Programming today

Don't need to port the appLLoatiow to
DlrectX or Opengl
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- Propretary (only work on NVIDLA)
- BEnhanced software support
- Several software Libraries ano examples

CUD vs OpenC]

- Opew specification
- Work on. NVIDIA and AT video carols
- Alm at any computing device
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Previously on parallel architectures
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Superscalar processors

Execute up to nstructlons
sLmuLtaweousLH

8 Execution
units —

4 stage CJ"D ' >( = C]

pipeline —
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Superscalar processors make the illusion
of concurrent execution

A hardware Lssue untt

Instruction 'fYD decides which Lnstructions

, can execute stmultaneously
one thread arrive

waste due to
Lnstruction
dependecy
(bubbles)
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A program has instructions for several
threads in memory

blue thread

red thread

green thread
@ ycllow thread
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Single threaded multicore
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Single threaded multicore

Twice more processing power
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Single threaded multicore

Twice more processing power

Twlce more waste! !
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Super-threadeding

each stage 0wL5 rFun one
tnstruction from one threaol
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Multi-threadeding

R

caw execute Lnstruction from
more thaw 1 thread at a timee
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Back to GPU architecture
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Streaming Processor (SP)

Streaming Processor (SP)

Multi-banked Register File
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Streaming Processor (SP)

Streaming Processor (SP)

Multi-banked Register File

cacheless
PLPLLeweol
Single tssue
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Streaming Multiprocessor (SM)

Streaming
Multiprocessor (SM)

MT issue

Each SFU
4 FP multiply
for sin, cosin

Array of € (eight) SPs
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Streaming Multiprocessor (SM)

Streaming
Multiprocessor (SM)

MT issue

each SFU

4 FP multiply
for sin, cosin

MultL-threaded
can Lssue several tmstructions

Array of € (eight) SPs
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GPU Architecture (GT200)

TPC (GT200)

Texture Processor Cluster
3 SM’s

Texture Units

Texture L1
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GPU Architecture (GT200)

The beast

2 SM’s per TPC
8 SP's per SM
Total of 240 SP’s

10 TPC’s
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GPU Architecture (GT200)

TPC (GT200)

Geometry Controller

very small cache

To hide memory
Latewcg need

several threads — mmmes
: Texture Units
ava LLa bLC PCV SM Texture L1

Schedule per group of 32 threads,
called a warp

Wednesday, July 11, 12




GPU Architecture (GT200)

TPC (GT200)

Geometry Controller

Each SM handles 32 warps
simultaneously

1024 x 30 = 30720 simultaneous threads
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GPU Programming

CPU Ls the HOST Processor

r—— P LS O CO-PrOCESSOY

GPU has
Lts own DRAM




GPU Programming

Massively parallel processor (GT200 - 30720 Threads)

- CPU send burst of threads to execute on the GPU
Use DMA to transfer from CPU DRAM to GPU DRAM
CPU becomes free after dispatching the threads

- Can do something useful meanwhile

Applications must be rewritten to cope with GPU
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GPU Programming

Same code can run on both devices CPU and GPU
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GPU Programming

Single threaded application

int a[ 1024];
int b[1024]; . . .
int c[1024]; Multi threaded application

int main() int main()

{

int i = thread.id;

Need to instantiate 1024 threads e

GTRO0 supports up to 230720 threads simultaneously!!!
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GPU Programming

Definition of a single thread computing
function (or kernel)

int kernel()

’

int i = thread.id;

a[i] = a[i] + b[i];

1- How to Compute the thread (D? }
2- How do we copy data from CPU to GPU?

=- How to dispatch kernel on the device?

4- How to get results back whew downe?
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GPU Programming

Have support for operations on the
Host (CPU) and Device (GPU)

1- Copy data from Host to Device
2- Execute Rernel on the device
2- wait for kernel to finish

4- Copy data from Device to Host

mallocDeviceMemory
copyFromHostToDevice
computeKernel
copyFromDeviceToHost

Depends on the programming interface

Wednesday, July 11, 12
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CUDA Programming

- C extension

- Support for several platforms:
- Linux
- Windows
- MacOS

- Need to install NVIDIA Driver, Toolbox and SDK
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CUDA Programming

Provide several libraries

STL C++ Port to CUDA Linear Algebra
cuBLAS

Wednesday, July 11, 12


http://developer.nvidia.com/thrust
http://developer.nvidia.com/thrust

CUDA Programming Requirements for Linux

- | NVIDIA CUDA aware card

- GCC installed
Step-by-step installation: - Downloaded Toolkit, Driver,and SDK

- Exit GUI (Ctrl+Alt+Backspace) g/l‘]?ESTKAK

- Install the CUDA Toolkit
$ ./cudatoolkit 4.2.9 linux 64 ubuntul |.04.run

- Install the driver
$ sudo ./devdriver 4.2 linux 64 295.41.run

- Restart GUI
$ sudo /etc/init.d/gdm start

‘ ownly the driver requires superuser
- Install SDK priviledges

$ ./gpucomputingsdk 4.2.9 linux.run
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http://developer.download.nvidia.com/compute/cuda/4_2/rel/drivers/devdriver_4.2_linux_64_295.41.run
http://developer.download.nvidia.com/compute/cuda/4_2/rel/drivers/devdriver_4.2_linux_64_295.41.run

Exploring SDK demos
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CUDA Programming

SDK has many toy applications:
$ cd SHOME/NVIDIA CUDA SDK
$ make

$ make check

$ C/bin/linux/release/programName
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CUDA Programming Example

float *faHost, *bHost, *cHost;

__global__ void kernel(float *a, float *b, float *c){

inti = threadidx.x:
c[i] = a[i] + b[i];
}

int main(){
float *aDev, *bDeyv, *cDev;

cudaMalloc(void *aDeyv, 1024 * sizeof(float));
cudaMemcpy(aDeyv, aHost, 1024 * sizeof(float));

cudaMalloc(void *bDey, 1024 * sizeof(float));
cudaMemcpy(bDev, bHost, 1024 * sizeof(float));

kernel<<<l|,1024>>> (aDev, bDev, cDev);

cudaFree(aDev); cudaFree(bDev); cudaFree(cDev);

}
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Exercise Zero
Device query.
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CUDA Programming API Function directives

Kernel function has strict properties
must return votd
wo static variables
WO recurrency
wo variable arguments

Execute on | Called from
_deve_ float DeviceFunc(...) device device
_ global__ void kernelFunc(...) device host
__host__ float HostFunc(...) host host

T can be useo combined with  device
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CUDA Programming API

Memory allocation

Grid

Block (0, 0) Block (1, 0)

cudaMalloc(...)

Shared Memory Shared Memory
AI I Ocate gl O bal m e m O r’y Registers [ Registers [ Registers [ Registers l
2 parameters: ‘ 3 ¢ i
P . t Thread (0,0)  Thread (1, 0) Thread (0, 0)  Thread (1, 0)
ointer
! ! ! !

N u m be r Of bYtes Local Local Local Local

Memory Memory Memory Memory

Global
Memory

Constant
Memory

Texture
Memory
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CUDA Programming API

Transfer data
cudaMemcpy(...)

4 parameters:

Grid

Source pointer
Destination pointer ? s
Bytes to copy il [ | I
Tl"anSfel" type “""'-"'“" '3')‘ Thread (1, 0) Hn:-ul (0, u)‘ Thread (1, 0)

HostToHost

HostToDevice

DeviceToHost

DeviceToDevice
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CUDA Programming API

Memory allocation
cudaFree(...)
Frees global memory

| parameter:
Pointer
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Exercise |
Implementing the sum of two vectors using CUDA. You can
assume that the array has a maximum of 1024 elements.
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CUDA Programming API

Device

Thread indexing

Grid 1

Block
(0,0)

Threads are organized in blocks

Block .*

Blocks are organized in grids

Kernel 2

Legacy from CG applications

Block (1, 1)

Thread | Thread | Thread | Thread | Thread . o

©0) | (1,0 Indexing may be in 3D!!!

(0,1) | (1,1) | (2,1) | (3,1) | (4,1) C\:
AL ) ey

\g 77/ B

0,2) | (1,2) | (222) | (3,2) | (4,2)
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CUDA Threads

Grid
Block Block Block
(0,0) (1,0) (2,0)
Block Block Block
(0,1) (I,1) (2,1)
Block Block Block
(0,2) (1,2) (2,2)
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CUDA Threads

Grid
Block 2] foYel ¢ Block
©0) | (1.0 | @0 Block
B(I)OICk Bllo;:k Block Thread | Thread | Thread | Thread
©O,1) (L) | _ZhH] 0,0 | (1,00 | 2,00 | (3,0)
Block Block Block Thread | Thread | Thread | Thread
©2 | .9 | 22 N | (L) | @h | @)
\
Thread | Thread | Thread | Thread
(0,2) (1,2) (2,2) (3,2)
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CUDA Threads

mapping threads

Block

(0,0)

Block

()

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(0,1)

Thread
(1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
O, 1)

Thread
(1,1)

Thread
O, 1)

Thread
(1,1)

dim3 Grid(2,2);
dim3 Block(2,2);
kernel<<<Grid,Block>>>(parameters);

Wednesday, July 11, 12
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CUDA Threads

Multithreaded CUDA Program

Block0 Blockl1 Block2 Block3

Block 4 Block5 Block 6 Block 7

GPU with 2 Cores GPU with 4 Cores

Core O Core 1 Core O Core 1

Block0 Block1 Block0 Blockl Block2 Block3

Block2 Block 3 Block4 Block5 Block6 Block7

Block 4 Block 5

Block 6 Block 7
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CUDA Threads
How can we arrange 6 threads!?

Block (0,0)

Thread | Thread | Thread | Thread | Thread | Thread
0,0) | (1,0) [ (20) | (3,00 | 40) [ (50)

MAX
THREADS PER
BLOCK

PEPEND ON THE
ARCHITECTURE
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CUDA Threads

How can we arrange 6 threads!

Block (0,0)
Thread | Thread | Thread | Thread | Thread | Thread
(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

Block (0,0) | Block (1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)
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CUDA Threads

How can we arrange 6 threads!

Block (0,0) Block (1,0) Block (2,0)
Thread | Thread | Thread | Thread | Thread | Thread
0,00 | (1,0) t (00) | (1,O) { (0,0) | (1,0)
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CUDA Threads

How can we arrange 6 threads!

S S P
Q}o& ®O<‘}‘ §®Oc\}‘ §®O§‘ 560?}‘ §®O§‘
Thread | Thread | Thread | Thread | Thread | Thread
(0,0) (0X0)! (0,0) (0,0) (0X0) (0,0)
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CUDA Threads

Mapping on an unique grid

Thread | Thread | Thread | Thread

Block | ®9 | 10 | ©9 | (.0 | g1 Kk

Thread | Thread | Thread | Thread
(0.0) o, | (LD | ©n | (1,1 (1,0)

Thread | Thread | Thread | Thread
(0,0) (1,0) (0,0) (1,0)

Block Block

(O,1) |Thread| Thread | Thread | Thread (1,1)
O | (Lh) [ @) | (1L1)
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CUDA Threads

Mapping on an unique grid

Thread | Thread | Thread | Thread

Block | ®9 | 10 | ©9 | (.0 | g1 Kk

Thread | Thread | Thread | Thread
(0.0) o, | (LD | ©n | (1,1 (1,0)

Thread | Thread | Thread | Thread
(0,0) (1,0) (0,0) (1,0)

Block Block

(O,1) |Thread| Thread | Thread | Thread (1,1)
O | (Lh) [ @) | (1L1)

idx = blockldx.x*blockDim.x + threadldx.x;

idy = blockldx.y*blockDim.y + threadldx.y;
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CUDA Threads

Mapping on an unique grid

Thread | Thread | Thread | Thread

0,0 | (1LO) | 0,0 | (1,0)

Block Block

(O O) Thread | Thread | Thread | Thread (I O)
’ o, L1 | 1) | (L) ’ Thread | Thread | Thread | Thread
0,00 { (1,0) | (2,0) | (3,0

Thread | Thread | Thread | Thread

(0,0) (1,0) (0,0) (1,0) Thread | Thread | Thread | Thread
Block Block 170 | | @n | an

(O,1) |Thread| Thread | Thread | Thread (1,1)
O, | (I, [ ©,1) | (1,1 Thread | Thread | Thread | Thread
02) | (1L2) | (22) [ 3.2)
. . Thread | Thread | Thread | Thread
idx = blockldx.x*blockDim.x + threadldx.x; ©03) | (1,3) | 23) | 3,3)

idy = blockldx.y*blockDim.y + threadldx.y;
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CUDA Threads

Get an unique thread index

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

k = idx + idy*blockDim.x*gridDim.x;
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CUDA Threads

Get an unique thread index

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(0)

Thread
(1)

Thread
(2)

Thread
(3)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

Thread
(4)

Thread
(3)

Thread
(6)

Thread
(7)

k = idx + idy*blockDim.x*gridDim.x;

Thread
(8)

Thread
(9)

Thread
(10)

Thread
(1)

Thread
(12)

Thread
(13)

Thread
(14)

Thread
(15)
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Exercise I
Implementing the sum of two vectors using CUDA of a
unlimited number of elements.
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Exercise Il
Filling the gaps of the third example.
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Exercise 1V
Implement a MPI/CUDA hybrid application.
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GPU is good for...

loosely coupled threads (avoid synchronization)

computing bound applications
these architectures can not replace general purpose CPU

great insight for low power consumption and future architectures
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CUDA Pros CUDA Cons

Support for several OS NVIDIA propretary

A lot of documentation
Many libraries available

Great performance
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Architectures of
the Future

Highly heterogeneous

Intel SandBridge
AMD Fusion
NVIDIA Tegra
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