
GPU Programming with
CUDA

Ph.D. Pedro Velho
and

Eng. Mônica Liliana Hernandez Ariza

Wednesday, July 11, 12

Disclaimer

I am not an expert on the subject

Working with GPU for less than one year

I wish I have had this course at the time!

Wednesday, July 11, 12

Download the slides and examples

http://190.168.117.201/~velho/cuda.html

Wednesday, July 11, 12

http://190.168.117.201/~velho/cuda.html
http://190.168.117.201/~velho/cuda.html

Meeting the audience!

How many of you used concurrent programming
before?

How many threads?

How many already used CUDA?

Wednesday, July 11, 12

Introduction
from games to science

4

5

CUDA

GPU Programming3

Architecture2

Final Remarks

1

Wednesday, July 11, 12

CPU vs GPU

Wednesday, July 11, 12

CPU vs GPU

- A few general purpose cores
- Big cache memory
- Eg.: Nehalem i7 quad-core

- 4 cores (8 threads)
- Cache is about 50% of die area

LItografia

Wednesday, July 11, 12

CPU vs GPU

- A few general purpose cores
- Big cache memory
- Eg.: Nehalem i7 quad-core

- 4 cores (8 threads)
- Cache is about 50% of die area

- Design goal massively parallel graphics
- A lot of replicated functional units
- Small cache size
- Eg.: NVIDIA GTX280

- 240 SP (streaming processors)
- support for 30720 simultaneous threads

Wednesday, July 11, 12

Computer Graphics is a
Computational intensive application

Wednesday, July 11, 12

Computer Graphics is a
Computational intensive application

A lot of $$$ from game industry

Wednesday, July 11, 12

Computer Graphics is a
Computational intensive application

A lot of $$$ from game industry

Expressive gain in performance
for parallel graphics rendering

Caught attention from the
scientific community

Wednesday, July 11, 12

GPU is also adapted to several
scientific applications

Molecular Biology Fluid Simulation Weather Forecast

Wednesday, July 11, 12

GPGPU

Driver Calls

GPU Device

User Application

Model the application directly
using Computing Graphics
driver calls

Need to port the problem to a
complete different domain

DirectX or OpenGL are not
easy to figure out

Wednesday, July 11, 12

Potential Gain in Performance

100 times faster!

Wednesday, July 11, 12

Potential Gain in Performance

Victor W Lee et. al., Debunking the 100X GPU vs. CPU Myth: An Evaluation of
Throughput Computing on CPU and GPU

100 times faster!

This is a myth!

T
GTX280

T
Core i7

Several guys from Intel

Core i7 - quadcore
vs.
GTX280

14 kernels

relative performance!

Reason:
Rethink your
problem is
challenging

Wednesday, July 11, 12

Potential Gain in Performance

Victor W Lee et. al., Debunking the 100X GPU vs. CPU Myth: An Evaluation of
Throughput Computing on CPU and GPU

100 times faster!

This is a myth!

T
GTX280

T
Core i7

We still have a 10 times factor

Several guys from Intel

Wednesday, July 11, 12

CPU vs GPU

Wednesday, July 11, 12

Substantial gain in execution time (10x)!

before GPU with GPU

one year one month plus a week

one day two hours and twinty
four minutes

one hour six minutes

Wednesday, July 11, 12

GPU Programming today

Driver Calls

GPU Device

User Application

OpenCl CUDA

Don’t need to port the application to
DirectX or OpenGL

Wednesday, July 11, 12

CUDA vs OpenCl

- Propretary (only work on NVIDIA)
- Enhanced software support
- Several software libraries and examples

- Open specification
- Work on NVIDIA and ATI video cards
- Aim at any computing device

Wednesday, July 11, 12

Introduction
from games to science

4

5

CUDA

GPU Programming3

Architecture2

Final Remarks

1

Wednesday, July 11, 12

Previously on parallel architectures

Wednesday, July 11, 12

Superscalar processors

Execute up to 8 instructions
simultaneously

4 stage
pipeline

8 Execution
units

+

&&

*

=

+

/

**

<<

Wednesday, July 11, 12

Superscalar processors make the illusion
of concurrent execution

CPU

Instruction from
one thread arrive

A hardware issue unit
decides which instructions
can execute simultaneously

Front end
issue unit

execution unit

waste due to
instruction
dependecy
(bubbles)

Wednesday, July 11, 12

A program has instructions for several
threads in memory

blue thread

red thread

green thread

yellow thread

DRAM

Wednesday, July 11, 12

Single threaded multicore

CPU CPU

DRAM

Wednesday, July 11, 12

Single threaded multicore

CPU CPU

DRAM

Twice more processing power

Wednesday, July 11, 12

Single threaded multicore

CPU CPU

DRAM

Twice more waste!!

Twice more processing power

Wednesday, July 11, 12

Super-threadeding

CPU

each stage only run one
instruction from one thread

DRAM

Wednesday, July 11, 12

Multi-threadeding

CPU

Can execute instruction from
more than 1 thread at a time

DRAM

Wednesday, July 11, 12

Back to GPU architecture

Wednesday, July 11, 12

Streaming Processor (SP)

Wednesday, July 11, 12

Streaming Processor (SP)

Cacheless
Pipilened
Single issue

Wednesday, July 11, 12

Streaming Multiprocessor (SM)

Array of 8 (eight) SPs

Each SFU
4 FP multiply
for sin, cosin

Wednesday, July 11, 12

Streaming Multiprocessor (SM)

Multi-threaded
can issue several instructions

Array of 8 (eight) SPs

Each SFU
4 FP multiply
for sin, cosin

Wednesday, July 11, 12

Texture Processor Cluster
3 SM’s

GPU Architecture (GT200)

Wednesday, July 11, 12

The beast

10 TPC’s
3 SM’s per TPC
8 SP’s per SM

Total of 240 SP’s

GPU Architecture (GT200)

Wednesday, July 11, 12

GPU Architecture (GT200)

very small cache

To hide memory
latency need
several threads
available per SM

Schedule per group of 32 threads,
called a warp

Wednesday, July 11, 12

Each SM handles 32 warps
simultaneously

32 x 32 = 1024 threads per SM

1024 x 30 = 30720 simultaneous threads

GPU Architecture (GT200)

Wednesday, July 11, 12

Introduction
from games to science

4

5

CUDA

GPU Programming3

Architecture2

Final Remarks

1

Wednesday, July 11, 12

GPU Programming

CPU is the HOST Processor

GPU is a co-processor

GPU has
its own DRAM

Wednesday, July 11, 12

GPU Programming

Massively parallel processor (GT200 - 30720 Threads)

- CPU send burst of threads to execute on the GPU

Use DMA to transfer from CPU DRAM to GPU DRAM

CPU becomes free after dispatching the threads

- Can do something useful meanwhile

Applications must be rewritten to cope with GPU

Wednesday, July 11, 12

GPU Programming

GCC

GPU

Integrated CPU + GPU source

CPU Code GPU Code

CPU

Specific Compiler

Same code can run on both devices CPU and GPU

Wednesday, July 11, 12

Single threaded application
int a[1024];
int b[1024];
int c[1024];

int main()
{

for(int i=0; i<1024; i++){
c[i] = a[i] + b[i];

}
}

Multi threaded application

int main()
{

int i = thread.id;
c[i] = a[i] + b[i];

}

Need to instantiate 1024 threads

GT200 supports up to 30720 threads simultaneously!!!

GPU Programming

Wednesday, July 11, 12

Definition of a single thread computing
function (or kernel)

int kernel()
{

int i = thread.id;
a[i] = a[i] + b[i];

}

GPU Programming

1- How to Compute the thread ID?
2- How do we copy data from CPU to GPU?
3- How to dispatch kernel on the device?
4- How to get results back when done?

Wednesday, July 11, 12

Have support for operations on the
Host (CPU) and Device (GPU)

mallocDeviceMemory
copyFromHostToDevice
computeKernel
copyFromDeviceToHost

GPU Programming

1- Copy data from Host to Device
2- Execute kernel on the device
3- Wait for kernel to finish
4- Copy data from Device to Host

Depends on the programming interface

Wednesday, July 11, 12

Introduction
from games to science

4

5

CUDA

GPU Programming3

Architecture2

Final Remarks

1

Wednesday, July 11, 12

CUDA Programming

- C extension

- Support for several platforms:
- Linux
- Windows
- MacOS

- Need to install NVIDIA Driver, Toolbox and SDK

Wednesday, July 11, 12

CUDA Programming

Provide several libraries

STL C++ Port to CUDA Linear Algebra
cuBLAS

Wednesday, July 11, 12

http://developer.nvidia.com/thrust
http://developer.nvidia.com/thrust

Step-by-step installation:

- Exit GUI (Ctrl+Alt+Backspace)

- Install the CUDA Toolkit
 $./cudatoolkit_4.2.9_linux_64_ubuntu11.04.run

- Install the driver
 $ sudo ./devdriver_4.2_linux_64_295.41.run

- Restart GUI
 $ sudo /etc/init.d/gdm start

- Install SDK
 $./gpucomputingsdk_4.2.9_linux.run

CUDA Programming Requirements for Linux

- 1 NVIDIA CUDA aware card
- GCC installed
- Downloaded Toolkit, Driver, and SDK

MOSTRAR
SITE

Only the driver requires superuser
priviledges

Wednesday, July 11, 12

http://developer.download.nvidia.com/compute/cuda/4_2/rel/drivers/devdriver_4.2_linux_64_295.41.run
http://developer.download.nvidia.com/compute/cuda/4_2/rel/drivers/devdriver_4.2_linux_64_295.41.run

Exploring SDK demos

Wednesday, July 11, 12

SDK has many toy applications:

 $ cd $HOME/NVIDIA_CUDA_SDK

 $ make

 $ make check

 $ C/bin/linux/release/programName

CUDA Programming

Wednesday, July 11, 12

...
float *aHost, *bHost, *cHost;
...
__global__ void kernel(float *a, float *b, float *c){

 int i = threadidx.x;
 c[i] = a[i] + b[i];

}

int main(){
float *aDev, *bDev, *cDev;

cudaMalloc(void *aDev, 1024 * sizeof(float));
 cudaMemcpy(aDev, aHost, 1024 * sizeof(float));

cudaMalloc(void *bDev, 1024 * sizeof(float));
 cudaMemcpy(bDev, bHost, 1024 * sizeof(float));

 kernel<<<1,1024>>> (aDev, bDev, cDev);

 cudaFree(aDev); cudaFree(bDev); cudaFree(cDev);
}

CUDA Programming Example

Wednesday, July 11, 12

Exercise Zero
Device query.

Wednesday, July 11, 12

Function directivesCUDA Programming API

Execute on Called from

__device__ float DeviceFunc(...) device device

__global__ void kernelFunc(...) device host

__host__ float HostFunc(...) host host

Kernel function has strict properties
must return void
no static variables
no recurrency
no variable arguments

Can be used combined with __device__

Wednesday, July 11, 12

H
os

t
C

PU

Memory allocation

cudaMalloc(...)

Allocate global memory
2 parameters:

Pointer
Number of bytes

CUDA Programming API

Wednesday, July 11, 12

H
os

t

Transfer data

cudaMemcpy(...)

4 parameters:
Source pointer
Destination pointer
Bytes to copy
Transfer type

HostToHost
HostToDevice
DeviceToHost
DeviceToDevice

CUDA Programming API

Wednesday, July 11, 12

Memory allocation

cudaFree(...)

Frees global memory
1 parameter:

Pointer

H
os

t

CUDA Programming API

Wednesday, July 11, 12

Exercise I
Implementing the sum of two vectors using CUDA. You can
assume that the array has a maximum of 1024 elements.

Wednesday, July 11, 12

Thread indexing

Threads are organized in blocks

Blocks are organized in grids

Legacy from CG applications

Indexing may be in 3D!!!

CUDA Programming API

Wednesday, July 11, 12

Block
(0,0)

Block
(1,0)

Block
(2,0)

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block
(0,2)

Block
(1,2)

Block
(2,2)

Grid

CUDA Threads

Wednesday, July 11, 12

Block
(0,0)

Block
(1,0)

Block
(2,0)

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block
(0,2)

Block
(1,2)

Block
(2,2)

Grid

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Block

CUDA Threads

Wednesday, July 11, 12

mapping threads

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(0,1)

Thread
(1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(0,1)

Thread
(1,1)

Block
(0,0)

Block
(1,0)

Block
(0,1)

Block
(1,1)

dim3 Grid(2,2);
dim3 Block(2,2);
kernel<<<Grid,Block>>>(parameters);

CUDA Threads

Wednesday, July 11, 12

CUDA Threads

Wednesday, July 11, 12

CUDA Threads

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(4,0)

Thread
(5,0)

Block (0,0)

How can we arrange 6 threads?

MAX
THREADS PER
BLOCK
DEPEND ON THE
ARCHITECTURE

DEVICE
QUERY

Wednesday, July 11, 12

CUDA Threads

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(4,0)

Thread
(5,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Block (0,0)

Block (0,0) Block (1,0)

How can we arrange 6 threads?

Wednesday, July 11, 12

CUDA Threads

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Block (0,0)

How can we arrange 6 threads?

Block (2,0)Block (1,0)

Wednesday, July 11, 12

CUDA Threads

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

How can we arrange 6 threads?

Bl
oc

k
(0

,0)

Bl
oc

k
(1

,0)

Bl
oc

k
(2

,0)

Bl
oc

k
(3

,0)

Bl
oc

k
(4

,0)

Bl
oc

k
(5

,0)

Wednesday, July 11, 12

CUDA Threads

Mapping on an unique grid

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(0,1)

Thread
(1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(0,1)

Thread
(1,1)

Block
(0,0)

Block
(1,0)

Block
(0,1)

Block
(1,1)

Wednesday, July 11, 12

CUDA Threads

Mapping on an unique grid

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(0,1)

Thread
(1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(0,1)

Thread
(1,1)

Block
(0,0)

Block
(1,0)

Block
(0,1)

Block
(1,1)

idx = blockIdx.x*blockDim.x + threadIdx.x;

idy = blockIdx.y*blockDim.y + threadIdx.y;

Wednesday, July 11, 12

CUDA Threads

Mapping on an unique grid

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(0,1)

Thread
(1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(0,1)

Thread
(1,1)

Block
(0,0)

Block
(1,0)

Block
(0,1)

Block
(1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)idx = blockIdx.x*blockDim.x + threadIdx.x;

idy = blockIdx.y*blockDim.y + threadIdx.y;

Wednesday, July 11, 12

CUDA Threads

Get an unique thread index

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

k = idx + idy*blockDim.x*gridDim.x;

Wednesday, July 11, 12

CUDA Threads

Get an unique thread index

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

k = idx + idy*blockDim.x*gridDim.x;

Thread
(0)

Thread
(1)

Thread
(2)

Thread
(3)

Thread
(4)

Thread
(5)

Thread
(6)

Thread
(7)

Thread
(8)

Thread
(9)

Thread
(10)

Thread
(11)

Thread
(12)

Thread
(13)

Thread
(14)

Thread
(15)

Wednesday, July 11, 12

Exercise II
Implementing the sum of two vectors using CUDA of a
unlimited number of elements.

Wednesday, July 11, 12

Exercise III
Filling the gaps of the third example.

Wednesday, July 11, 12

Exercise IV
Implement a MPI/CUDA hybrid application.

Wednesday, July 11, 12

Introduction
from games to science

4

5

CUDA

GPU Programming3

Architecture2

Final Remarks

1

Wednesday, July 11, 12

GPU is good for...

loosely coupled threads (avoid synchronization)

computing bound applications

these architectures can not replace general purpose CPU

great insight for low power consumption and future architectures

Wednesday, July 11, 12

CUDA Pros

Support for several OS

A lot of documentation

Many libraries available

Great performance

CUDA Cons

NVIDIA propretary

Wednesday, July 11, 12

Architectures of
the Future

Intel SandBridge
AMD Fusion

NVIDIA Tegra

Highly heterogeneous

Wednesday, July 11, 12

Bibliography

Programming Massively Parallel Processors: A Handson
Approach, David B. Kirk and Wen-Mei Hwu, Second Edition,
Morgan Kaufmann, 2009

NVIDIA developer zone, http://developer.nvidia.com/

Wednesday, July 11, 12

http://developer.nvidia.com
http://developer.nvidia.com

