GPU Programming with
CUDA

Ph.D. Pedro Velho

zlgle
Eng. Mbnica Liliana Hernandez Ariza

Disclaimer

| am not an expert on the subject

Working with GPU for less than one year

| wish | have had this course at the time!

Wednesday, July 11, 12

Download the slides and examples

http://190.168.117.201/~velho/cuda.html

http://190.168.117.201/~velho/cuda.html
http://190.168.117.201/~velho/cuda.html

Meeting the audience!

How many of you used concurrent programming
before!

How many threads!?

How many already used CUDA!

Wednesday, July 11, 12

Introduction
from games to science

Architecture

GPU Programming

cupn (%)
Final Remarks @

Wednesday, July 11, 12

CPU vs GPU

Wednesday, July 11, 12

Memory Controller &

- A few general purpose cores 3

- Blg cache memory __c_ B e

- Eg.: Nehalem L+ quad-core OFiabel - ERd
- 4 cores (2 threads) i

- cache is about 50% of die area

| thd |
x
g

Shared L3 Ca

CPU vs GPU

Wednesday, July 11, 12

- A few general purpose cores
- Blg cache memory
- Eg.: Nehalem L+ quad-core
- 4 cores (8 threads)
- cache is about 50% of die area

)

. "a*s

; . L ™
poee b0

'Jn l. .

e

__,.A e
ARz | L g S

yrzys=mryren jP -
o =gl | O

mEnSmEns

- Destgwn goal masswel,;j parallel graphics
- A Lot of veplicated functional wnits
- Ssmall cache size
- B9.: NVIDLA GTX2L0
- 240 SP (streaming processors)
- support for 20720 simultaneous threads

Wednesday, July 11, 12

Computer Graphics is a
Computational intensive application

Video game software sales: 1998-2007
$ Billions

100% = 5.
Console
gaming
8 1.4 _]

PC gaming

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Wednesday, July 11, 12

Computer Graphics is a
Computational intensive application

A Lot of $44 from game tndustry

Video game software sales: 1998-2007
$ Billions

100% = 5.5
Console
gaming
1.4 1.1

PCgaming | 1.8

B B b e e el el WLOM LLOM LOOY
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Wednesday, July 11, 12

Computer Graphics is a
Computational intensive application

A Lot of $44 from game tndustry

Video game software sales: 1998-2007
$ Billions

Expressive gain i performance
for parallel graphics rendering

100% = 5.5
Console
’ gaming
caught attention from the
1.4 1]

scientific community PCgaming | 1.8

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Wednesday, July 11, 12

GPU is also adapted to several
scientific applications

Molecular Biology Fluid Simulation Weather Forecast

Wednesday, July 11, 12

Model the application directly
usting Oompu’cbwg C,mphws
driver calls

Need to ‘POY‘t the ‘PYObLCIM. to a DilrectX or OPBV\’C'L' are wot

complete different domain easy to figure out

Wednesday, July 11, 12

Potential Gain in Performance

TSy, 100 times faster:

Wednesday, July 11, 12

Potential Gain in Performance

sy, 1 OO tinmes fa ster

Several guys from ntel

)

Victor W Lee et. al, Debunking the 100X GPU vs. CPU Myth: An Evaluation of
Throughput Computing on CPU and GPU

This Ls a W\,atlfl!

Core i7 - quadcore
VS,

6TX280

14 kernels

relative performance!

—_,—l.—__]
——

Normalized to Core i7

T R Y N Y

—i

I

e i S)
A —

B

¥ Y

|

Reason:
Rethink your
problew is
Cha"e"gi"g (a) Relative Performace

i
!
=

o
>
o=
O
O

Solv
Sort N
RC

SpMV
GJK

-
(T
.

SAXPY
LBM

SGEMM

Wednesday, July 11, 12

Potential Gain in Performance

100 times faster

Several guys from ntel

)

Victor W Lee et. al, Debunking the 100X GPU vs. CPU Myth: An Evaluation of
Throughput Computing on CPU and GPU

This Ls a WL%’CV!!

we still have a 10 times factor

©

2

S 4

(@]

‘é 3
1 GTx280 L

£ 1
TCore 17 > o

(a) Relative Performace

Wednesday, July 11, 12

CPU vs GPU

Theoretical
GFLOP/s

1500

NVIDIA GPU Single Precision
w=—p==NVIDIA GPU Double Precision
=== |ntel CPU Single Precision

Intel CPU Double Precision

Westmere

Tesla C 1060 / Bloomheld
Woodcrest

’L M
U . . v O N arpertown
Pentium 4

Sep-01 Jan-03 Jun-04 Oct-05 Mar-07 Jul-08 Dec-09

Wednesday, July 11, 12

Substantial gain in execution time (10x)!

before GPU with GPU

one year one month plus a week

two hours and twinty

one da .
4 four minutes

one hour SiX minutes

Wednesday, July 11, 12

GPU Programming today

Don't need to port the appLLoatiow to
DlrectX or Opengl

:Y}'
#
;
A
P
3

Wednesday, July 11, 12

- Propretary (only work on NVIDLA)
- BEnhanced software support
- Several software Libraries ano examples

CUD vs OpenC]

- Opew specification
- Work on. NVIDIA and AT video carols
- Alm at any computing device

Wednesday, July 11, 12

Introduction
from games to science

Architecture

GPU Programming

cupn (%)
Final Remarks @

Wednesday, July 11, 12

Previously on parallel architectures

Wednesday, July 11, 12

Superscalar processors

Execute up to nstructlons
sLmuLtaweousLH

8 Execution
units —

4 stage CJ"D ' >(= C]

pipeline —

Wednesday, July 11, 12

Superscalar processors make the illusion
of concurrent execution

A hardware Lssue untt

Instruction 'fYD decides which Lnstructions

, can execute stmultaneously
one thread arrive

waste due to
Lnstruction
dependecy
(bubbles)

Wednesday, July 11, 12

A program has instructions for several
threads in memory

blue thread

red thread

green thread
@ ycllow thread

Wednesday, July 11, 12

Single threaded multicore

Wednesday, July 11, 12

Single threaded multicore

Twice more processing power

Wednesday, July 11, 12

Single threaded multicore

Twice more processing power

Twlce more waste! !

Wednesday, July 11, 12

Super-threadeding

each stage 0wL5 rFun one
tnstruction from one threaol

Wednesday, July 11, 12

Multi-threadeding

R

caw execute Lnstruction from
more thaw 1 thread at a timee

Wednesday, July 11, 12

Back to GPU architecture

Wednesday, July 11, 12

Streaming Processor (SP)

Streaming Processor (SP)

Multi-banked Register File

Wednesday, July 11, 12

Streaming Processor (SP)

Streaming Processor (SP)

Multi-banked Register File

cacheless
PLPLLeweol
Single tssue

Wednesday, July 11, 12

Streaming Multiprocessor (SM)

Streaming
Multiprocessor (SM)

MT issue

Each SFU
4 FP multiply
for sin, cosin

Array of € (eight) SPs

Wednesday, July 11, 12

Streaming Multiprocessor (SM)

Streaming
Multiprocessor (SM)

MT issue

each SFU

4 FP multiply
for sin, cosin

MultL-threaded
can Lssue several tmstructions

Array of € (eight) SPs

Wednesday, July 11, 12

GPU Architecture (GT200)

TPC (GT200)

Texture Processor Cluster
3 SM’s

Texture Units

Texture L1

Wednesday, July 11, 12

GPU Architecture (GT200)

The beast

2 SM’s per TPC
8 SP's per SM
Total of 240 SP’s

10 TPC’s

Wednesday, July 11, 12

GPU Architecture (GT200)

TPC (GT200)

Geometry Controller

very small cache

To hide memory
Latewcg need

several threads — mmmes
: Texture Units
ava LLa bLC PCV SM Texture L1

Schedule per group of 32 threads,
called a warp

Wednesday, July 11, 12

GPU Architecture (GT200)

TPC (GT200)

Geometry Controller

Each SM handles 32 warps
simultaneously

1024 x 30 = 30720 simultaneous threads

Wednesday, July 11, 12

Introduction
from games to science

Architecture

GPU Programming

cupn (%)
Final Remarks @

Wednesday, July 11, 12

GPU Programming

CPU Ls the HOST Processor

r—— P LS O CO-PrOCESSOY

GPU has
Lts own DRAM

GPU Programming

Massively parallel processor (GT200 - 30720 Threads)

- CPU send burst of threads to execute on the GPU
Use DMA to transfer from CPU DRAM to GPU DRAM
CPU becomes free after dispatching the threads

- Can do something useful meanwhile

Applications must be rewritten to cope with GPU

Wednesday, July 11, 12

GPU Programming

Same code can run on both devices CPU and GPU

Wednesday, July 11, 12

GPU Programming

Single threaded application

int a[1024];
int b[1024]; . . .
int c[1024]; Multi threaded application

int main() int main()

{

int i = thread.id;

Need to instantiate 1024 threads e

GTRO0 supports up to 230720 threads simultaneously!!!

Wednesday, July 11, 12

GPU Programming

Definition of a single thread computing
function (or kernel)

int kernel()

’

int i = thread.id;

a[i] = a[i] + b[i];

1- How to Compute the thread (D? }
2- How do we copy data from CPU to GPU?

=- How to dispatch kernel on the device?

4- How to get results back whew downe?

Wednesday, July 11, 12

GPU Programming

Have support for operations on the
Host (CPU) and Device (GPU)

1- Copy data from Host to Device
2- Execute Rernel on the device
2- wait for kernel to finish

4- Copy data from Device to Host

mallocDeviceMemory
copyFromHostToDevice
computeKernel
copyFromDeviceToHost

Depends on the programming interface

Wednesday, July 11, 12

Introduction
from games to science

Architecture

GPU Programming

cuon (@)
Final Remarks @

Wednesday, July 11, 12

CUDA Programming

- C extension

- Support for several platforms:
- Linux
- Windows
- MacOS

- Need to install NVIDIA Driver, Toolbox and SDK

Wednesday, July 11, 12

CUDA Programming

Provide several libraries

STL C++ Port to CUDA Linear Algebra
cuBLAS

Wednesday, July 11, 12

http://developer.nvidia.com/thrust
http://developer.nvidia.com/thrust

CUDA Programming Requirements for Linux

- | NVIDIA CUDA aware card

- GCC installed
Step-by-step installation: - Downloaded Toolkit, Driver,and SDK

- Exit GUI (Ctrl+Alt+Backspace) g/l‘]?ESTKAK

- Install the CUDA Toolkit
$./cudatoolkit 4.2.9 linux 64 ubuntul |.04.run

- Install the driver
$ sudo ./devdriver 4.2 linux 64 295.41.run

- Restart GUI
$ sudo /etc/init.d/gdm start

‘ ownly the driver requires superuser
- Install SDK priviledges

$./gpucomputingsdk 4.2.9 linux.run

Wednesday, July 11, 12

http://developer.download.nvidia.com/compute/cuda/4_2/rel/drivers/devdriver_4.2_linux_64_295.41.run
http://developer.download.nvidia.com/compute/cuda/4_2/rel/drivers/devdriver_4.2_linux_64_295.41.run

Exploring SDK demos

Wednesday, July 11, 12

CUDA Programming

SDK has many toy applications:
$ cd SHOME/NVIDIA CUDA SDK
$ make

$ make check

$ C/bin/linux/release/programName

Wednesday, July 11, 12

CUDA Programming Example

float *faHost, *bHost, *cHost;

__global__ void kernel(float *a, float *b, float *c){

inti = threadidx.x:
c[i] = a[i] + b[i];
}

int main(){
float *aDev, *bDeyv, *cDev;

cudaMalloc(void *aDeyv, 1024 * sizeof(float));
cudaMemcpy(aDeyv, aHost, 1024 * sizeof(float));

cudaMalloc(void *bDey, 1024 * sizeof(float));
cudaMemcpy(bDev, bHost, 1024 * sizeof(float));

kernel<<<l|,1024>>> (aDev, bDev, cDev);

cudaFree(aDev); cudaFree(bDev); cudaFree(cDev);

}

Wednesday, July 11, 12

Exercise Zero
Device query.

Wednesday, July 11, 12

CUDA Programming API Function directives

Kernel function has strict properties
must return votd
wo static variables
WO recurrency
wo variable arguments

Execute on | Called from
deve float DeviceFunc(...) device device
_ global__ void kernelFunc(...) device host
__host__ float HostFunc(...) host host

T can be useo combined with device

Wednesday, July 11, 12

CUDA Programming API

Memory allocation

Grid

Block (0, 0) Block (1, 0)

cudaMalloc(...)

Shared Memory Shared Memory
AI I Ocate gl O bal m e m O r’y Registers [Registers [Registers [Registers l
2 parameters: ‘ 3 ¢ i
P . t Thread (0,0) Thread (1, 0) Thread (0, 0) Thread (1, 0)
ointer
! ! ! !

N u m be r Of bYtes Local Local Local Local

Memory Memory Memory Memory

Global
Memory

Constant
Memory

Texture
Memory

Wednesday, July 11, 12

CUDA Programming API

Transfer data
cudaMemcpy(...)

4 parameters:

Grid

Source pointer
Destination pointer ? s
Bytes to copy il [| I
Tl"anSfel" type “""'-"'“" '3')‘ Thread (1, 0) Hn:-ul (0, u)‘ Thread (1, 0)

HostToHost

HostToDevice

DeviceToHost

DeviceToDevice

Wednesday, July 11, 12

CUDA Programming API

Memory allocation
cudaFree(...)
Frees global memory

| parameter:
Pointer

Wednesday, July 11, 12

Exercise |
Implementing the sum of two vectors using CUDA. You can
assume that the array has a maximum of 1024 elements.

Wednesday, July 11, 12

CUDA Programming API

Device

Thread indexing

Grid 1

Block
(0,0)

Threads are organized in blocks

Block .*

Blocks are organized in grids

Kernel 2

Legacy from CG applications

Block (1, 1)

Thread | Thread | Thread | Thread | Thread . o

©0) | (1,0 Indexing may be in 3D!!!

(0,1) | (1,1) | (2,1) | (3,1) | (4,1) C\:
AL) ey

\g 77/ B

0,2) | (1,2) | (222) | (3,2) | (4,2)

Wednesday, July 11, 12

CUDA Threads

Grid
Block Block Block
(0,0) (1,0) (2,0)
Block Block Block
(0,1) (I,1) (2,1)
Block Block Block
(0,2) (1,2) (2,2)

Wednesday, July 11, 12

CUDA Threads

Grid
Block 2] foYel ¢ Block
©0) | (1.0 | @0 Block
B(I)OICk Bllo;:k Block Thread | Thread | Thread | Thread
©O,1) (L) | _ZhH] 0,0 | (1,00 | 2,00 | (3,0)
Block Block Block Thread | Thread | Thread | Thread
©2 | .9 | 22 N | (L) | @h | @)
\
Thread | Thread | Thread | Thread
(0,2) (1,2) (2,2) (3,2)

Wednesday, July 11, 12

CUDA Threads

mapping threads

Block

(0,0)

Block

()

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(0,1)

Thread
(1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
O, 1)

Thread
(1,1)

Thread
O, 1)

Thread
(1,1)

dim3 Grid(2,2);
dim3 Block(2,2);
kernel<<<Grid,Block>>>(parameters);

Wednesday, July 11, 12

Block

)

Block

(1,1)

CUDA Threads

Multithreaded CUDA Program

Block0 Blockl1 Block2 Block3

Block 4 Block5 Block 6 Block 7

GPU with 2 Cores GPU with 4 Cores

Core O Core 1 Core O Core 1

Block0 Block1 Block0 Blockl Block2 Block3

Block2 Block 3 Block4 Block5 Block6 Block7

Block 4 Block 5

Block 6 Block 7

Wednesday, July 11, 12

CUDA Threads
How can we arrange 6 threads!?

Block (0,0)

Thread | Thread | Thread | Thread | Thread | Thread
0,0) | (1,0) [(20) | (3,00 | 40) [(50)

MAX
THREADS PER
BLOCK

PEPEND ON THE
ARCHITECTURE

Wednesday, July 11, 12

CUDA Threads

How can we arrange 6 threads!

Block (0,0)
Thread | Thread | Thread | Thread | Thread | Thread
(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

Block (0,0) | Block (1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Wednesday, July 11, 12

CUDA Threads

How can we arrange 6 threads!

Block (0,0) Block (1,0) Block (2,0)
Thread | Thread | Thread | Thread | Thread | Thread
0,00 | (1,0) t (00) | (1,O) { (0,0) | (1,0)

Wednesday, July 11, 12

CUDA Threads

How can we arrange 6 threads!

S S P
Q}o& ®O<‘}‘ §®Oc\}‘ §®O§‘ 560?}‘ §®O§‘
Thread | Thread | Thread | Thread | Thread | Thread
(0,0) (0X0)! (0,0) (0,0) (0X0) (0,0)

Wednesday, July 11, 12

CUDA Threads

Mapping on an unique grid

Thread | Thread | Thread | Thread

Block | ®9 | 10 | ©9 | (.0 | g1 Kk

Thread | Thread | Thread | Thread
(0.0) o, | (LD | ©n | (1,1 (1,0)

Thread | Thread | Thread | Thread
(0,0) (1,0) (0,0) (1,0)

Block Block

(O,1) |Thread| Thread | Thread | Thread (1,1)
O | (Lh) [@) | (1L1)

Wednesday, July 11, 12

CUDA Threads

Mapping on an unique grid

Thread | Thread | Thread | Thread

Block | ®9 | 10 | ©9 | (.0 | g1 Kk

Thread | Thread | Thread | Thread
(0.0) o, | (LD | ©n | (1,1 (1,0)

Thread | Thread | Thread | Thread
(0,0) (1,0) (0,0) (1,0)

Block Block

(O,1) |Thread| Thread | Thread | Thread (1,1)
O | (Lh) [@) | (1L1)

idx = blockldx.x*blockDim.x + threadldx.x;

idy = blockldx.y*blockDim.y + threadldx.y;

Wednesday, July 11, 12

CUDA Threads

Mapping on an unique grid

Thread | Thread | Thread | Thread

0,0 | (1LO) | 0,0 | (1,0)

Block Block

(O O) Thread | Thread | Thread | Thread (I O)
’ o, L1 | 1) | (L) ’ Thread | Thread | Thread | Thread
0,00 { (1,0) | (2,0) | (3,0

Thread | Thread | Thread | Thread

(0,0) (1,0) (0,0) (1,0) Thread | Thread | Thread | Thread
Block Block 170 | | @n | an

(O,1) |Thread| Thread | Thread | Thread (1,1)
O, | (I, [©,1) | (1,1 Thread | Thread | Thread | Thread
02) | (1L2) | (22) [3.2)
. . Thread | Thread | Thread | Thread
idx = blockldx.x*blockDim.x + threadldx.x; ©03) | (1,3) | 23) | 3,3)

idy = blockldx.y*blockDim.y + threadldx.y;

Wednesday, July 11, 12

CUDA Threads

Get an unique thread index

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

k = idx + idy*blockDim.x*gridDim.x;

Wednesday, July 11, 12

CUDA Threads

Get an unique thread index

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(0)

Thread
(1)

Thread
(2)

Thread
(3)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

Thread
(4)

Thread
(3)

Thread
(6)

Thread
(7)

k = idx + idy*blockDim.x*gridDim.x;

Thread
(8)

Thread
(9)

Thread
(10)

Thread
(1)

Thread
(12)

Thread
(13)

Thread
(14)

Thread
(15)

Wednesday, July 11, 12

Exercise I
Implementing the sum of two vectors using CUDA of a
unlimited number of elements.

Wednesday, July 11, 12

Exercise Il
Filling the gaps of the third example.

Wednesday, July 11, 12

Exercise 1V
Implement a MPI/CUDA hybrid application.

Wednesday, July 11, 12

Introduction
from games to science

Architecture

GPU Programming

cuon (@)
Final Remarks ‘

Wednesday, July 11, 12

GPU is good for...

loosely coupled threads (avoid synchronization)

computing bound applications
these architectures can not replace general purpose CPU

great insight for low power consumption and future architectures

Wednesday, July 11, 12

CUDA Pros CUDA Cons

Support for several OS NVIDIA propretary

A lot of documentation
Many libraries available

Great performance

Wednesday, July 11, 12

Architectures of
the Future

Highly heterogeneous

Intel SandBridge
AMD Fusion
NVIDIA Tegra

Wednesday, July 11, 12

Bibliography

Programming Massively Parallel Processors: A Handson
Approach, David B. Kirk and Wen-Mei Hwu, Second Edition,

Morgan Kaufmann, 2009

Programming Massively
Parallel Processors

WIDIA
M

Tomw i ot Ma

NVIDIA developer zone, http://developer.nvidia.com/

Wednesday, July 11, 12

http://developer.nvidia.com
http://developer.nvidia.com

