
From Theoretical/Concept Considerations to Weapons
for Efficient Coding

Debugging

Carlos J. Barrios H. PhD.
cbarrios@uis.edu.co

Sources of This Presentation:

Guest lecture DR. Robert Oates
Icos R esearch Group
University o f Nottingham
(http://www.cs.nott.ac.uk/~pszjg1/FSE12/FSE_9.pdf)

SC_CAMP Debbuing and Prolifing Lectures DR. Xavier Besseron
University of Luxembourg
(https://wwww.sc-camp.org)

http://www.cs.nott.ac.uk/~pszjg1/FSE12/FSE_9.pdf
https://wwww.sc-camp.org/

Why Debug Software?

• �It’s an important work skill

• ��You ‘re becoming professionals!

• ��It’s an important development skill

• ��It’s an important life skill

• You’ re not perfect (and perfect is
not good)

General Purpose Debugging
6

1. Understanding

2. Reproduction and Data Gathering

3. Hypothesis

4. Experiment Design

5. Test

1.
2.
3.

6. Implementation
Design
Implement
Test

General Purpose Debugging
Understanding the System

��Look at the system specifications if available
�� Inputs
�� Outputs

��How do the components of the system fit together?

��Information Flow
�� Output backwards
�� Input forwards

Reproduction and Data Gathering

��A hugely important part of debugging
�� Simple if bug is persistent
�� Hard if the bug is transient
�� Opportunity to study the system when the bug is
occurring

General Purpose Debugging

��Questions to ask
�� What state was the system in?

÷� Operating system
÷� Program Settings

�� When does the bug happen?
÷�When the system was first turned on
÷�After years of use
÷�When OK is clicked

��The program settings in particular will
rule out huge swathes of code!

Remember: A Machine makes what do you want
and order (or the architect orders!)

General Purpose Debugging

Hypothesis

��A hypothesis is an explanation which
explains the observed behaviour of the bug
IN CONTEXT

�� i.e. Knowing how the system works!

��Sometimes a hypothesis will only explain some
of the behaviour
�� There may be multiple bugs manifesting at the same
time!

General Purpose Debugging

Experiment Design

��Design an experiment which will falsify your
hypothesis

��If you can falsify it then it is an incorrect
hypothesis

��If you can’t then it MIGHT be the source of the
problem

General Purpose Debugging

Test

��If your test fails to falsify your hypothesis
�� Move on to step 6, implementation

��If your test falsifies your hypothesis
�� Move to step 3 (hypothesis)
OR
�� Move to step 1 (system understanding)

��Regardless, this test has given you more
information about the nature of the bug

Remember: It is important design your
workflow/roadmap of your system/implementation

General Purpose Debugging

Implementation

��Sometimes this makes up part of the Hypothesis and
Test phases
�� “If I ‘fix’ it and the problem goes away, then the
hypothesis isn’t falsified”

��Undefined scenarios
�� If the bug happens because a customer is using the software
in a way you hadn’t predicted
÷�Requires a whole new design cycle

General Purpose Debugging

Software Debugging

��Traces
�� Screen
�� Log

��Breakpoints
�� Code execution
�� Watches
�� Memory
inspection

Software Debugging

Traces

��Traces are streams of data taken from the
system

�� On-screen
�� Log File

��Uses
�� Embedded systems with no direct connection
�� Any system producing large volumes of data

Now, Debugging in Practice

www.sc-camp.org

http://www.sc-camp.org/

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Know Your Bugs:
Weapons for Efficient Debugging

Xavier Besseron

SuperComputing Summer Camp

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 16 /
36

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 17 /
36

Why debugging?
Bugs are in every programs
• Industry Average:

"about 15 - 50 errors per 1000 lines of delivered code" 1

Bugs in High Performance Computing
• Even more difficult due to concurrency
• Can crash super-computers
• Can waste large amount of CPU-time

Famous bugs and consequences
• Ariane 5 rocket destoryed in 1996: 1 billion US $
• Power blackout in US in 2003: 45 million people affected
• Medtronic heart device vulnerable to remote attack in 2008
• ...
1Code Complete by Steve McConnell

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Outline

2 Tools for Debugging
Compilers
GNU Debugger
Valgrind

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 18 /
36

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 19 /
36

Tools for debugging
Compilers
• It’s the first program to check your code
• GCC,Intel Compiler,CLang, MS Compiler, ...

Static code analyzers
• Check the program without executing it
• Splint, Cppcheck, Coccinelle, ...

Debuggers
• Inspect/modify a program during its execution
• GDB: the GNU Project Debuggerfor serial and multi-thread programs
• Parallel debuggers (commercial): RogueWave Totalview, Allinea DDT

Dynamics code analyzers and profilers
• Check the program while executing it
• Valgrind, Gcov, Gprof, ...
• Commercial software: Purify, Intel Parallel Inspector, ..

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Compilers 1/2

What does a compiler do?
• Translate source code to machine code
• 3 phases:

• Lexical analysis: recognize "words" or tokens
• Syntax analysis: build syntax tree according to language grammar
• Semantic analysis: check rules of the language, variable declaration,

types, etc.

• With this knowledge, a compiler can find many bugs
→ Pay attention to compilerwarningsanderrorsof a program

A compiler can find out if your program makes sense according to the
language. However, it cannot guess what you are trying to do.

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 20 /
36

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Compilers 2/2
How to use the compiler
• Choose your compiler

GCC CLang Intel Compiler
clang

clang++
C gcc

C++ g++

Fortran gfortran

icc

icpc

ifort

• Activate warning messages with the -Wall parameters

• Warnings can be enabled/disabled individually, cf documentation
• Compile with debug symbols with -g parameters

Example
$ gcc -g -Wall program.c -o program
program.c: In function ’main’:
program.c:4:15:error: ’y’ undeclared (first use in this function)

int z = x + y;
^

program.c:4:15: note: each undeclared identifier is reported only once for
each program.c:4:7:warning: unused variable ’z’ [-Wunused-variable]

int z = x + y;
^

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 21 /
36

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

GNU Debugger 1/2

GDB is the GNU Debugger
• Allow to execute a program step by step
• Watch the value of variables
• Stop the execution on given condition
• Show the backtrace of an error
• Modify value of variables at runtime

Starting GDB
• Compile your program with the -g option
• Start program execution with GDB

gdb --args myprogram arg1 arg2

• Or open a core file (generated after a crash)
gdb myprogram corefile

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 22 /
36

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

GNU Debugger 2/2
Using GDB
• Command line tool
• Many graphical frontends available too:DDD,Qt Creator, ...
• Online documentation & tutorial:

http://sourceware.org/gdb/current/onlinedocs/gdb/
http://www.cs.swarthmore.edu/~newhall/unixhelp/howto_gdb.html

Main commands
• help <command>: get help about a command
• run: start execution
• continue: resume execute
• next: execute the next line
• break: set a breakpoint at a given line or function

• bracktrace: show the backtrace
• print: print the value of a variable
• quit: quit GDB

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 23 /
36

http://sourceware.org/gdb/current/onlinedocs/gdb/
http://www.cs.swarthmore.edu/~newhall/unixhelp/howto_gdb.html

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Valgrind 1/2
Valgrind is a dynamic analysis tool
• Execute your program with dynamic checking tool:

Memcheck,Callgrind, Helgrind, etc.

Memcheck: memory error detector
• Enable with -tool=memcheck (by default)

• Check for memory-related errors:
unitialized values, out of bound access, stack overflow, memory leak, etc.

• For memory leaks, add option -leak-check=full

• http://valgrind.org/docs/manual/mc-manual.html

Callgrind: performance profiler
• Enable with -tool=callgrind

• Check the time you spend in each function of your code
• Visualize results withKCachegrind
• http://valgrind.org/docs/manual/cl-manual.html

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 9 / 36

http://valgrind.org/docs/manual/mc-manual.html
http://valgrind.org/docs/manual/cl-manual.html

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Valgrind 2/2

Example
$ valgrind --tool=memcheck --leak-check=full --track-origins=yes
./program [...]
==12534==Conditional jump or move depends on uninitialised value(s)
==12534== at 0x40055E: main (program.c:11)
==12534==Uninitialised value was created by a stack allocation
==12534== at 0x400536: main (program.c:5)
==12534==
==12534==Invalid write of size 8
==12534== at 0x4005CE: main (program.c:19)
==12534==Address 0x5203f80 is 0 bytes after a block of size 8,000 alloc’d
==12534== at 0x4C2BBA0: malloc (in /usr/lib/valgrind/vgpreload_memcheck-
amd64
==12534== by 0x400555: main (program.c:9)
==12534==
==12534==
==12534== HEAP SUMMARY:
==12534== in use at exit: 8,000 bytes in 1 blocks
==12534== total heap usage: 1 allocs, 0 frees, 8,000 bytes allocated
==12534==
==12534==8,000 bytes in 1 blocks are definitely lost in loss record 1 of 1
==12534== at 0x4C2BBA0: malloc (in /usr/lib/valgrind/vgpreload_memcheck-
amd64
==12534== by 0x400555: main (program.c:9)
[...]

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 25 / 36

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Outline

3 Common bugs
Logic and syntax bugs
Arithmetic bugs
Memory related bugs
Multi-thread programming bugs
Performance bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 26 / 36

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 27 / 36

Logic and syntax bugs

Due to careless programming
• Infinite loop / recursion
• Confusing syntax error,

eg use of = (affectation) instead of == (equality)
• Hard to detect, because everything is right in your mind

What to do?
• Compile with warnings enabled
• Get some rest and/or an external advice

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Integer overflow 1/2

Integer variables have limited size
Size Minimum Maximum

−215 215 − 1
0 216 − 1

−231 231 − 1
0 232 − 1

−263 263 − 1

signed short 16 bits
unsigned short 16 bits

signed int 32 bits
unsigned int 32 bits

signed long long int 64 bits
unsigned long long int 64 bits 0 264 − 1

If the result of an operation cannot fit in the variable,
most-significant bits are discarded
⇒ we have anIntegerOverflow

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 28 / 36

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Integer overflow 2/2

Overflow example
unsignedcharA = 200;

unsignedcharB = 60;

//Overflow!
unsignedcharS = A + B;

0 0 1 1 1 1 0 0

0 0 0 0 0 1 0 0

1 1 0 0 1 0 0 0

= 1

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 29 / 36

+

200

+ 60

= 4

→ No error at runtime!

What to do?
• Use the right integer type for your data
• In C/C++/Fortran, overflow needs to be checked manually
• CLang and GCC 5.X offer builtin functions to check for overflow

builtin_add_overflow, builtin_sub_overflow,
builtin_mul_overflow, ...

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Floating-Point Number bugs 1/2
Floating-Point Exceptions (FPE)
• Division by zero:

X
0.0 =∞

• Invalid operation:
√
−1.0 = NaN (Not A Number)

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 30 / 36

• Overflow / Underflow:

e1e30 =∞

Loss of precision

e−1e30 = 0.0

• The order of the operations matters:

(1060 + 1.0) − 1060 =0.0

(1060 − 1060)+1.0 = 1.0

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 31 / 36

Floating-Point Number bugs 2/2

Floating-Point Exceptions and Errors
• No error at runtime by default
• Errors can propagate through all the computation

What to do?
• Enable errors at runtime in C/C++

#define_GNU_SOURCE
#include<fenv.h>

intmain()
{

feenableexcept(FE_DIVBYZERO|FE_INVALID| FE_OVERFLOW);
...

• Read "What Every Computer Scientist Should Know About
Floating-Point Arithmetic" by David Goldberg

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 32 / 36

Memory allocation/deallocation
Dynamic memory management in C
• void *p = malloc(size) allocates memory
• free(p) de-allocates the corresponding memory
• In C++, equivalents are new and delete operations

Common mistakes
• Failed memory allocation
• Free non-allocated memory
• Free memory twice (double free error)

These mistakes might not trigger an error immediately
Later on, they can causecrashesandundefined behavior

What to do?
• Check return code (cf documentation)
• UseValgrindwith -leak-check=full to catch it

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 33 / 36

Memory leaks

Memory is allocated but never freed
• Allocated memory keeps growing until it fills the computer memory
• Can causes a crash of the program or of the full computer
• Very common is C program, almost impossible in Fortran, Java

What to do?
• For each malloc(), there should be a corresponding free()

• UseValgrindwith -leak-check=full to catch it

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 34 / 36

Using undefined values

Undefined values
• Uninitialized variable
• Not allocated or already freed memory

Can causeundefined/unpredictable behavior
• Difficult to track
• Error might not occur immediately
• It can compute incorrect result

What to do?
• Compile with -Wuninitialized or -Wall
• UseValgrind, it should show error
Conditional jump or move depends on
uninitialised value(s)

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Stack overflow

Program stack
• Each function call create a

new frame
• Function parameters and local

variables are allocated in the
frame

Stack overflow
• Too many function calls

usually not-ending recursive
calls

• Oversized local data

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 35 / 36

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 36 / 36

Buffer overflow

Buffer overflow
• Write data in a buffer with an insufficient size
• Overwrite other data (variable, function return address)
• Can be a major security issue
• Can make the stack trace unreadable

What to do?
• Use functions that check the buffer size:
strcpy() → strncpy(), sprintf() → snprintf(),
etc.

• GCC option -fstack-protector checks buffer overflow

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 37 / 36

Out of bound access

Read/write of the bound of an array
• Mismatch in the bound of an array: [0, N − 1] in C, [1, N] in Fortran
• Out of bound reading can cause undefined behavior
• Out of bound writing can cause memory corruption

What to do?
• UseValgrind, it should show error
Invalid read/write of size X

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 38 / 36

Input/Output errors

Errors when reading/writing in files
• Usually have an external cause:

• Disk full
• Quota exceeded
• Network interruption

• System call will return an error or hang

What to do?
• Always can check the return code
• Usually stop execution with an explicit message

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 39 / 36

Race condition 1/3

"Debugging programs containing race conditions is no fun at all."
Andrew S. Tanenbaum, Modern Operating Systems

Race condition
• A timing dependent error involving shared state
• It runs fine most of the time, and from time to time,

something weird and unexplained appears

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 25 / 36

Race condition 2/3
Code example

voiddeposit(Account * account,doubleamount)
{

account->balance += amount;

}

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 25 / 36

Race condition 2/3
Code example

voiddeposit(Account * account,doubleamount)
{

READ balance
ADD amount
WRITE balance

}

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Race condition 2/3
Code example

voiddeposit(Account * account,doubleamount)
{

READ balance
ADD amount
WRITE balance

}

Concurrent execution
Thread 1 calls deposit(A,10)

READ balance (0)

ADD 10
WRITE balance (10)

Thread 2 calls deposit(A,1000)

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 25 / 36

READ balance (0)
ADD 1000
WRITE balance (1000)

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Race condition 2/3
Code example

voiddeposit(Account * account,doubleamount)
{

READ balance
ADD amount
WRITE balance

}

Concurrent execution
Thread 1 calls deposit(A,10)

READ balance (0)

ADD 10
WRITE balance (10)

Thread 2 calls deposit(A,1000)

READ balance (0)
ADD 1000
WRITE balance (1000)

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 25 / 36

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Race condition 2/3
Code example

voiddeposit(Account * account,doubleamount)
{

READ balance
ADD amount
WRITE balance

}

Concurrent execution
Thread 1 calls deposit(A,10)

READ balance (0)

ADD 10
WRITE balance (10)

Thread 2 calls deposit(A,1000)

READ balance (0)
ADD 1000
WRITE balance (1000)

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 25 / 36

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Race condition 2/3
Code example

voiddeposit(Account * account,doubleamount)
{

READ balance
ADD amount
WRITE balance

}

Concurrent execution
Thread 1 calls deposit(A,10)

READ balance (0)

ADD 10
WRITE balance (10)

Thread 2 calls deposit(A,1000)

READ balance (0)
ADD 1000
WRITE balance (1000)

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 25 / 36

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Race condition 2/3
Code example

voiddeposit(Account * account,doubleamount)
{

READ balance
ADD amount
WRITE balance

}

Concurrent execution
Thread 1 calls deposit(A,10)

READ balance (0)

ADD 10
WRITE balance (10)

Thread 2 calls deposit(A,1000)

READ balance (0)
ADD 1000
WRITE balance (1000)

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 25 / 36

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Race condition 2/3
Code example

voiddeposit(Account * account,doubleamount)
{

READ balance
ADD amount
WRITE balance

}

Concurrent execution
Thread 1 calls deposit(A,10)

READ balance (0)

ADD 10
WRITE balance (10)

Thread 2 calls deposit(A,1000)

READ balance (0)
ADD 1000
WRITE balance (1000)

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 25 / 36

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Race condition 2/3
Code example

voiddeposit(Account * account,doubleamount)
{

READ balance
ADD amount
WRITE balance

}

Concurrent execution
Thread 1 calls deposit(A,10)

READ balance (0)

ADD 10
WRITE balance (10)

Thread 2 calls deposit(A,1000)

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 25 / 36

READ balance (0)
ADD 1000
WRITE balance (1000)

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Race condition 2/3
Code example

voiddeposit(Account * account,doubleamount)
{

READ balance
ADD amount
WRITE balance

}

Concurrent execution
Thread 1 calls deposit(A,10)

READ balance (0)

Thread 2 calls deposit(A,1000)

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 25 / 36

READ balance (0)
ADD 1000
WRITE balance (1000)

ADD 10
WRITE balance (10)

Result: balance is 10 instead of 1010
Without protection, any interleave combination is possible!

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Race condition 3/3

Different kind of race conditions
• Data race: Concurrent accesses to a shared variable
• Atomicity bugs: Code does not enforce the atomicity for a group of

memory accesses, eg Time of check to time of use
• Order bugs: Operations are not executed in order

Compilers and processors can actually re-order instructions

What to do?
• Protect critical sections:Mutexes,Semaphores, etc.
• Use atomic instructions and memory barriers (low level)
• Use compiler builtin for atomic operations2 (higher level)

2https://gcc.gnu.org/onlinedocs/gcc-5.1.0/gcc/_005f_
005fatomic-Builtins.html

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 26 / 36

https://gcc.gnu.org/onlinedocs/gcc-5.1.0/gcc/_005f_005fatomic-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc-5.1.0/gcc/_005f_005fatomic-Builtins.html

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Deadlock 1/3

Deadlock, photograph by David Maitland

"I would love to have seen them go their separate ways, but I
was exhausted. The frog was all the time trying to pull the
snake off, but the snake just wouldn’t let go."

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 27 / 36

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Deadlock 2/3

Code example

voiddeposit(Account * account,
doubleamount)

{
lock(account->mutex);
account->balance += amount;
unlock(account->mutex);

}

voidtransfer(Account * accA,
Account* accB,
amount)

{
lock(accA->mutex);
lock(accB->mutex);
accA->balance += amount;
accB->balance -= amount;
unlock(accA->mutex);
unlock(accB->mutex);

}

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 28 / 36

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Deadlock 3/3

lock(A->mutex);

...

Concurrent execution

Thread 1 calls transfer(A,B,10) Thread 2 calls transfer(B,A,20)

What to do?
Think before writing multithread code
Use high level programming model:Open MP,Intel TBB,MPI, etc.
Theoretical analysis
Software for thread safety analysis

•
•
•
•

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 29 / 36

lock(B->mutex);
lock(B->mutex); // wait until

B is unlocked
lock(A->mutex); // wait until

A is unlocked
...

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Deadlock 3/3

...

Concurrent execution

Thread 1 calls transfer(A,B,10) Thread 2 calls transfer(B,A,20)

lock(A->mutex);
lock(B->mutex);

lock(B->mutex); // wait until
B is unlocked

What to do?
Think before writing multithread code
Use high level programming model:Open MP,Intel TBB,MPI, etc.
Theoretical analysis
Software for thread safety analysis

•
•
•
•

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 29 / 36

lock(A->mutex); // wait until
A is unlocked

...

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Deadlock 3/3

...

Concurrent execution

Thread 1 calls transfer(A,B,10) Thread 2 calls transfer(B,A,20)

lock(A->mutex);
lock(B->mutex);

lock(B->mutex); // wait until
B is unlocked

What to do?
Think before writing multithread code
Use high level programming model:Open MP,Intel TBB,MPI, etc.
Theoretical analysis
Software for thread safety analysis

•
•
•
•

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 29 / 36

lock(A->mutex); // wait until
A is unlocked

...

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Deadlock 3/3

...

Concurrent execution

Thread 1 calls transfer(A,B,10) Thread 2 calls transfer(B,A,20)

lock(A->mutex);
lock(B->mutex);

lock(B->mutex); // wait until
B is unlocked

What to do?
Think before writing multithread code
Use high level programming model:Open MP,Intel TBB,MPI, etc.
Theoretical analysis
Software for thread safety analysis

•
•
•
•

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 29 / 36

lock(A->mutex); // wait until
A is unlocked

...

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Deadlock 3/3

...

Concurrent execution

Thread 1 calls transfer(A,B,10) Thread 2 calls transfer(B,A,20)

lock(A->mutex);
lock(B->mutex);

lock(B->mutex); // wait until
B is unlocked

What to do?
Think before writing multithread code
Use high level programming model:Open MP,Intel TBB,MPI, etc.
Theoretical analysis
Software for thread safety analysis

•
•
•
•

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 29 / 36

lock(A->mutex); // wait until
A is unlocked

...

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Deadlock 3/3

...

Concurrent execution

Thread 1 calls transfer(A,B,10) Thread 2 calls transfer(B,A,20)

lock(A->mutex);
lock(B->mutex);

lock(B->mutex); // wait until
B is unlocked

What to do?
Think before writing multithread code
Use high level programming model:Open MP,Intel TBB,MPI, etc.
Theoretical analysis
Software for thread safety analysis

•
•
•
•

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 29 / 36

lock(A->mutex); // wait until
A is unlocked

...

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Deadlock 3/3

...

Concurrent execution

Thread 1 calls transfer(A,B,10) Thread 2 calls transfer(B,A,20)

lock(A->mutex);
lock(B->mutex);

lock(B->mutex); // wait until
B is unlocked

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 29 / 36

lock(A->mutex); // wait until
A is unlocked

...

We have a deadlock!

What to do?
• Think before writing multithread code
• Use high level programming model:Open MP,Intel TBB,MPI, etc.
• Theoretical analysis
• Software for thread safety analysis

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 30 / 36

Performance bugs

Bad Performance can be seen as a bug
• Bad algorithm: too high computation complexity

Example: Insertion Sort is O(N2), Quick Sort is O(N.log(N))

• Memory copies can be a problem,
specially with Object Oriented languages

• Some memory allocator have issues:
memory alignment constraints, multithread context

What to do?
• Try use existing proven libraries when possible:

eg Eigen library for linear algebra, C++ STL, Boost, etc.
• Use a profiler to see where your program spend most of its time

Valgrindwith Callgrind,GNU gprof, many commercial tools ...
• ...

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Outline

4 Good practices to catch bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 31 / 36

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 32 / 36

Be a good programmer
Write good code
• Use explicit variable names, don’t re-use variable
• Avoid global variables (problematic in multi-threads)
• Comment and document your code
• Keep your code simple, don’t try to over-optimize

Use defensive programming
• Add assertions, cf assert()

• Always check return codes, cf manpages and documentation

Re-use existing libraries
• Use existing libraries when available/possible
• Probably better optimized and tested than your code

⇒ Code easier to understand and maintain
⇒ Catch bugs as soon as possible

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 33 / 36

Compilers and Tests
Use your compilers
• Enable (all) warnings of the compiler
• Vary the compilers and configurations

• Different compilers (GCC, CLang, Intel Compiler, MS Compiler)
• Various architectures (Windows/Linux, x86/x86_64/ARM)

Testing and Code Checking
• Write unit tests and regression tests
• Use coverage analysis tools
• Use static and dynamic code analysis tools
• Continuous integration:

• Frequent compilation, testing, execution
• Different configurations and platforms

⇒ Catch more warnings and errors
⇒ Better portability

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 34 / 36

Know your tools

Know the error messages
• Look in the documentation / online
• Compiler errors/warnings
• Runtime errors:

Segmentation fault, Floating point exception, Double free, etc.

• Valgrind errors:
Invalid read of size 4
Conditional jump or move depends on uninitialised value(s)
8 bytes in 1 blocks are definitely lost

...

Use the right tool
• Know your tools and when to use them

• GDB: locate a crash
• Valgrind: memory-related issue
• ...

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 35 / 36

Debug with methodology

Find a minimal case to reproduce the bug
• Some bugs are intermittent
• Easier to debug
• Help you to understand the cause
• Allow to check that the bug is really fixed
• Bonus: make a regression test

Use a Control Version System (GIT, SVN, ...)
• Keep history, serve as a backup, allow to go back in time
• GIT has a nice feature of code bisection in history to find when a

bug has been introduced

IntroductionTools for DebuggingCommon bugsGood practices to catch bugs

Thank you for your attention!

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 36 / 36

Course Practice

Follow the SC-CAMP Practice in:
https://gitlab.uni.lu/SC-Camp/2019/debug

https://gitlab.uni.lu/SC-Camp/2019/debug

