

6 STAGES OF
DEBUGGING

Sources of This Presentation:

Guest lecture DR. Robert Oates
Icos R esearch Group

University of Nottingham
(http: //wnv. cs .nott . ac. uk/~pszjgl/FSE12/FSE 9.pdf)

SC CAYP Debbuing and Prolifing Lectures DR. Xavier Besseron
University of Luxembourg
(https://wWinw.sc-camp.org)

http://www.cs.nott.ac.uk/~pszjg1/FSE12/FSE_9.pdf
https://wwww.sc-camp.org/

Why Debug Software?

It’s an important work skill
¥ou ‘re becoming professionals!
@t’s an important development skill

@t’s an important life skill

You’ re not perfect (and perfect is
not good)

General Purpose Debugging

6

Understanding

Reproduction and Data Gathering
Hypothesis

Experiment Design

Test

Implementation
Design
Implement
Test

General Purpose Debugging

Understanding the System

Look at the system specifications if available

B Inputs
B Outputs

AHow do the components of the system fit together?

BInformation Flow
B Output backwards
B Input forwards

General Purpose Debugging

Reproduction and Data Gathering

AA hugely important part of debugging
mSimple if bug is persistent
mHard if the bug is transient

® Opportunity to study the system when the bug is
occurring

General Purpose Debugging

Questions to ask
BWhat state was the system in?
£ Operating system
2 Program Settings

B When does the bug happen?
alWhen the system was first turned on
aAfter years of use
alWhen OK is clicked

AThe program settings in particular will
rule out huge swathes of code!

Remember: A Machine makes what do you want
and order (or the architect orders!)

General Purpose Debugging

Hypothesis

AA hypothesis is an explanation which
explains the observed behaviour of the bug
IN CONTEXT

mi.e. Knowing how the system works!

pSometimes a hypothesis will only explain some
of the behaviour

m There may be multiple bugs manifesting at the same
time!

General Purpose Debugging

Experiment Design

ADesign an experiment which will falsify your
hypothesis

AIf you can falsify it then it is an incorrect
hypothesis

BIf you can’t then it MIGHT be the source of the
problem

General Purpose Debugging

Test

AIf your test fails to falsify your hypothesis

®Move on to step 6, implementation

AIf your test falsifies your hypothesis
BMove to step 3 (hypothesis)
OR

BMove to step 1 (system understanding)

FRegardless, this test has given you more
information about the nature of the bug

Remember: It is important design your
workflow/roadmap of your system/implementation

General Purpose Debugging

Implementation

pSometimes this makes up part of the Hypothesis and
Test phases

B“If I ‘“fix’ it and the problem goes away, then the
hypothesis isn’t falsified”

BUndefined scenarios

mIf the bug happens because a customer is using the software
in a way you hadn’t predicted

#Requires a whole new design cycle

Software

Mraces

BScreen
Log

BABreakpoints
m Code execution
B Watches

@ Memory
inspection

Debugging

Software Debugging

Traces

ITraces are streams of data taken from the
system

B On-screen
mlLog File

BUses
® Embedded systems with no direct connection
BAny system producing large volumes of data

Now, Debugging in Practice

[FINALLY, HIS MEDITATION COMES TO AN END / THEN, WHILE
HE REMAINS COMPLETELY MOTIONLESS . A SHARP.
COMMANDING THOUGHT RINGS OUT, ECHOING
THNROUGH THE GREAT HALLS OF THE BUILDING ./

P arrention, ={~ou ARE ORDERED ,
X-MEN/THIS] TO APPEAR AT ONCE .
1S PROFESSOR Jd() CLASS IS NOW
XAVIER CALLING ' IN SESSIONS
REPEAT: THIS IS TARDINES S WILL
PROFESSOR A BE PUNISHED
X CALLING . U

& WWW.SC-Camp.org

camp

http://www.sc-camp.org/

Introduction bugsGood pr

Know Your Bugs:
Weapons for Efficient Debugging

Xavier Besseron

SuperComputing Summer Camp

\\L

| Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 16/

Introduction bugsGood pr

Why debugging?
Bugs are in every programs

e Industry Average:
"about 15 - 50 errors per 1000 lines of delivered code"

Bugs in High Performance Computing

» Even more difficult due to concurrency
» Can crash super-computers
o Can waste large amount of CPU-time

Famous bugs and consequences

 Ariane 5 rocket destoryed in 1996: 1 billion US $
» Power blackout in US in 2003: 45 million people affected
» Medtronic heart device vulnerable to remote attack in 2008

1Code Complete by Steve McConnell LAl

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 17/

IntroductionTools for Debugging bugsGood pr
Outline
Tools for Debugging

» Compilers

» GNU Debugger
@ Valgrind

| Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

18/

IntroductionTools for Debugging bugsGood pr

Tools for debugging

Compilers

e |It's the first program to check your code
e GCC,Intel Compiler,CLang, MS Compiler, ...

Static code analyzers

e Check the program without executing it
e Splint, Cppcheck, Coccinelle, ...

Debuggers

e Inspect/modify a program during its execution
e GDB: the GNU Project Debuggerfor serial and multi-thread programs
e Parallel debuggers (commercial): RogueWave Totalview, Allinea DDT

Dynamics code analyzers and profilers

e Check the program while executing it
e Valgrind, Geov, Gprof, ...
e Commercial software: Purify, Intel Parallel Inspector, ..

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 19/

IntroductionTools for Debugging bugsGood pr

Compilers 1/2

What does a compiler do?

e Translate source code to machine code
» 3 phases:

- Lexical analysis: recognize "words" or tokens

- Syntax analysis: build syntax tree according to language grammar

- Semantic analysis: check rules of the language, variable declaration,
types, eftc.

o With this knowledge, a compiler can find many bugs
— Pay attention to compilerwarningsanderrorsof a program

A compiler can find out if your program makes sense according to the
language. However, it cannot guess what you are trying to do.

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 20/

IntroductionTools for Debugging bugsGood pr

Compilers 2/2

How to use the compiler

e Choose your compiler

GCC CLang Intel Compiler
C gcc clang icc
C++ g++ clang++ icpc
Fortran gfortran ifort

e Activate warning messages with the -wal1l parameters

e Warnings can be enabled/disabled individually, cf documentation
e Compile with debug symbols with -g parameters
Example

$ gcc -g -Wall program.c -o program

program.c: In function 'main’:

program.c:4:15:error: 'y’ undeclared (first use in this function)
int z = x + y;

A

program.c:4:15: note: each undeclared identifier is reported only once for

each program.c:4:7:warning: unused variable 'z’ [-Wunused-variable]
int z = x + y; '
) A

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

21/

IntroductionTools for Debugging bugsGood pr

GNU Debugger 1/2

GDB is the GNU Debugger

» Allow to execute a program step by step
Watch the value of variables

Stop the execution on given condition
Show the backtrace of an error

Modify value of variables at runtime

Starting GDB

o Compile your program with the —g option
o Start program execution with GDB
gdb --args myprogram argl arg2

» Or open a core file (generated after a crash)
gdb myprogram corefile

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 22/

IntroductionTools for Debugging bugsGood pr

GNU Debugger 2/2

Using GDB

e Command line tool
e Many graphical frontends available too:DDD,Qt Creator, ...

e Online documentation & tutorial:

http://sourceware.org/gdb/current/onlinedocs/gdb/

http://www.cs.swarthmore.edu/~newhall/unixhelp/howto gdb.html

Main commands

* help <command>: get help about a command

e run: start execution

e continue: resume execute

* next: execute the next line

* break: set a breakpoint at a given line or function
* bracktrace: show the backtrace

e print: print the value of a variable

e quit: quit GDB ([TAL

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 23/

http://sourceware.org/gdb/current/onlinedocs/gdb/
http://www.cs.swarthmore.edu/~newhall/unixhelp/howto_gdb.html

IntroductionTools for Debugging bugsGood pr

Valgrind 1/2 leg,l mCl

Valgrind is a dynamic analysis tool - oy
e Execute your program with dynamic checking tool:
Memcheck,Callgrind, Helgrind, etc. > --a

Memcheck: memory error detector

e Enable with -tool=memcheck (by default)

e Check for memory-related errors:
unitialized values, out of bound access, stack overflow, memory leak, etc.

e For memory leaks, add option -1eak-check=full

® http://valgrind.org/docs/manual/mc-manual.html

Callgrind: performance profiler

e Enable with -tool=callgrind
e Check the time you spend in each function of your code

e Visualize results withKCachegrind

® http://valgrind.org/docs/manual/cl-manual.html TR

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 9/36

http://valgrind.org/docs/manual/mc-manual.html
http://valgrind.org/docs/manual/cl-manual.html

IntroductionTools for Debugging bugsGood pr

Valgrind 2/2

Example

$ valgrind --tool=memcheck --leak-check=full --track-origins=yes

./program [...]
==12534==Conditional jump or move depends on uninitialised value(s)

==12534== at 0x40055E: main (program.c:11)

==12534==Uninitialised value was created by a stack allocation

==12534== at 0x400536: main (program.c:5)

==12534==

==12534==Invalid write of size 8

==12534== at 0x4005CE: main (program.c:19)

==12534==Address 0x5203f80 is 0 bytes after a block of size 8,000 alloc’d
==12534== at 0x4C2BBAO: malloc (in /usr/lib/valgrind/vgpreload memcheck-
amd64

==12534== by 0x400555: main (program.c:9)

==12534==

==12534==

==12534== HEAP SUMMARY:

==12534== in use at exit: 8,000 bytes in 1 blocks

==12534== total heap usage: 1 allocs, 0 frees, 8,000 bytes allocated
==12534==

==12534==8,000 bytes in 1 blocks are definitely lost in loss record 1 of 1
==12534== at 0x4C2BBAO: malloc (in /usr/lib/valgrind/vgpreload memcheck-
amd64 ——j———
==12534== by 0x400555: main (program.c:9) TR

[...]

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 25/36

Introduction Common bugsGood pr

Outline

Common bugs

@ Logic and syntax bugs
Arithmetic bugs

Memory related bugs
Multi-thread programming bugs
Performance bugs

Q
Q
Q
Q

| Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 26 /36

Introduction Common bugsGood pr

Logic and syntax bugs

Due to careless programming

* Infinite loop / recursion

» Confusing syntax error,
eg use of = (affectation) instead of == (equality)

» Hard to detect, because everything is right in your mind

What to do?

e Compile with warnings enabled
o Get some rest and/or an external advice

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 27 /36

Introduction Common bugsGood pr

Integer overflow 1/2

Integer variables have limited size

Size Minimum Maximum

signed short 16bits -21° 215 -1

unsigned short 16 bits 0 216 — 1

signed int 32bits -231 231 -1

unsigned int 32bits 0 232 - 1

signed long long int 64 bits —263 263 - 1
unsigned long long int 64bits 0 264 — 1

If the result of an operation cannot fit in the variable,
most-significant bits are discarded
= we have anlntegerOverflow

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

| I

28 /36

Introduction Common bugsGood pr

Integer overflow 2/2

Overflow example
unsignedcharA = 200; 1/110)0(1]0]0|0 200
unsignedcharB = 60; + 0|0|1({1]1{1]0(0 + 60
//Overflow! - -
unsignedcharS = A + B; = g0[0[0]0]0[1]0]0O = 4

— No error at runtime!

What to do?

» Use the right integer type for your data
» In C/C++/Fortran, overflow needs to be checked manually
» ClLang and GCC 5.X offer builtin functions to check for overflow

__builtin add overflow, bulltin sub overflow,
__builtin mul overflow, ...

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 29/36

Introduction Common bugsGood pr

Floating-Point Number bugs 1/2
Floating-Point Exceptions (FPE)

» Division by zero:

 Invalid operation:

\/T.O = NaN (Not A Number)

e Overflow / Underflow:

e1e30 —o e-1e30 = 0.0

Loss of precision

» The order of the operations matters:

(109 + 1.0) — 10°°=0.0

(1080 — 1089)+1.0 = 1.0 i ls

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 30 /36

Introduction Common bugsGood pr

Floating-Point Number bugs 2/2

Floating-Point Exceptions and Errors

» No error at runtime by default
» Errors can propagate through all the computation

What to do?

e Enable errors at runtime in C/C++

#define GNU SOURCE
#include<fenv.h>

intmain ()

{
feenableexcept (FE DIVBYZERO|FE INVALID| FE OVERFLOW) ;

» Read "What Every Computer Scientist Should Know About
Floating-Point Arithmetic" by David Goldberg

| I

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 31/36

Introduction Common bugsGood pr

Memory allocation/deallocation

Dynamic memory management in C

* void *p = malloc(size) allocates memory

» free(p) de-allocates the corresponding memory
» In C++, equivalents are new and delete Operations

Common mistakes

» Failed memory allocation
* Free non-allocated memory
» Free memory twice (double free error)

These mistakes might not trigger an error immediately
Later on, they can causecrashesandundefined behavior

What to do?

» Check return code (cf documentation)
o UseValgrindwith -1eak-check=full to catch it

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 32 /36

Introduction Common bugsGood pr

Memory leaks

Memory is allocated but never freed

» Allocated memory keeps growing until it fills the computer memory
» Can causes a crash of the program or of the full computer
» Very common is C program, almost impossible in Fortran, Java

What to do?

» Foreachmalloc (), there should be a corresponding free ()
o UseValgrindwith -1eak-check=full to catch it

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 33 /36

Introduction Common bugsGood pr

Using undefined values

Undefined values

» Uninitialized variable
» Not allocated or already freed memory

Can causeundefined/unpredictable behavior

 Difficult to track
e Error might not occur immmediately
» It can compute incorrect result

What to do?

o Compile with -Wuninitialized or -Wall

» UseValgrind, it should show error
Conditional Jjump or move depends on

uninitialised wvalue (s)

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 34 /36

Introduction Common bugsGood pr

Stack overflow

: -
Program stack e N-3 <4 7
e Each function call create a macre o ﬁ -
new frame |
» Function parameters and local mace N g) "
variables are allocated in the g Zi 17
[MITURMARR SO
frame 15
rrame N - 2
"
Stack overflow o oo
. o aem PONTER
» Too many function calls - .9
usually not-ending recursive AVAILABLE -
STACK 14
calls SPACE ;
» Oversized local data T

| Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 35/36

Introduction Common bugsGood pr

Buffer overflow

Buffer overflow
» Write data in a buffer with an insufficient size
» Overwrite other data (variable, function return address)

o Can be a major security issue
e Can make the stack trace unreadable

What to do?
e Use functions that check the buffer size:
strcpy () — strncpy (), sprintf () — snprintf (),
etc.

o GCC option —-fstack-protector checks buffer overflow

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 36 /36

Introduction Common bugsGood pr

Out of bound access

Read/write of the bound of an array

» Mismatch in the bound of an array: [0, N —1]in C, [1, N]in Fortran
» Out of bound reading can cause undefined behavior
» Out of bound writing can cause memory corruption

What to do?

o UseValgrind, it should show error
Invalid read/write of size X

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 37 /36

Introduction Common bugsGood pr

Input/Output errors

Errors when reading/writing in files

» Usually have an external cause:

- Disk full
- Quota exceeded
- Network interruption

o System call will return an error or hang

What to do?

» Always can check the return code
» Usually stop execution with an explicit message

| I

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 38 /36

Introduction Common bugsGood pr

Race condition 1/3

"Debugging programs containing race conditions is no fun at all."
Andrew S. Tanenbaum, Modern Operating Systems

Race condition

» A timing dependent error involving shared state

e |t runs fine most of the time, and from time to time,
something weird and unexplained appears

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 39 /36

Introduction Common bugsGood pr

Race condition 2/3

Code example

voiddeposit (Account * account,doubleamount)

{

account->balance += amount;

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 25 /36

Introduction Common bugsGood pr

Race condition 2/3

Code example

voiddeposit (Account * account,doubleamount)

{
READ balance
ADD amount
WRITE balance
}

| I

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 25 /36

Introduction Common bugsGood pr

Race condition 2/3

Code example

voiddeposit (Account * account,doubleamount)

{
READ balance
ADD amount
WRITE balance
}

Concurrent execution

Thread 1 calls deposit (a,10) Thread 2 calls deposit(a,1000)

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 25/36

Introduction Common bugsGood pr

Race condition 2/3

Code example

voiddeposit (Account * account,doubleamount)

{
READ balance
ADD amount
WRITE balance
}

Concurrent execution

Thread 1 calls deposit (a,10) Thread 2 calls deposit(a,1000)

READ balance (0)

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 25/36

Introduction Common bugsGood pr

Race condition 2/3

Code example

voiddeposit (Account * account,doubleamount)

{
READ balance

ADD amount
WRITE balance

Concurrent execution

Thread 1 calls deposit (a,10)

READ balance (0)

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

Thread 2 calls deposit(a,1000)

READ balance (0)

| I

25/36

Introduction Common bugsGood pr

Race condition 2/3

Code example

voiddeposit (Account * account,doubleamount)

{
READ balance

ADD amount
WRITE balance

Concurrent execution

Thread 1 calls deposit (a,10)

READ balance (0)

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

Thread 2 calls deposit(a,1000)

READ balance (0)
ADD 1000

| I

25/36

Introduction Common bugsGood pr

Race condition 2/3

Code example

voiddeposit (Account * account,doubleamount)

{
READ balance

ADD amount
WRITE balance

Concurrent execution

Thread 1 calls deposit (a,10)

READ balance (0)

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

Thread 2 calls deposit(a,1000)

READ balance (0)
ADD 1000
WRITE balance (1000)

25/36

Introduction Common bugsGood pr

Race condition 2/3

Code example

voiddeposit (Account * account,doubleamount)

{
READ balance

ADD amount
WRITE balance

Concurrent execution

Thread 1 calls deposit (a,10)

READ balance (0)

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

Thread 2 calls deposit(a,1000)

READ balance (0)
ADD 1000
WRITE balance (1000)

25/36

Introduction Common bugsGood pr

Race condition 2/3

Code example

voiddeposit (Account * account,doubleamount)

{
READ balance

ADD amount
WRITE balance

Concurrent execution

Thread 1 calls deposit (a,10)

READ balance (0)

ADD 10
WRITE balance (10)

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

Thread 2 calls deposit(a,1000)

READ balance (0)
ADD 1000
WRITE balance (1000)

25/36

Introduction Common bugsGood pr

Race condition 2/3

Code example

voiddeposit (Account * account,doubleamount)

{
READ balance

ADD amount
WRITE balance

Concurrent execution

Thread 1 calls deposit (a,10)

READ balance (0)

ADD 10
WRITE balance (10)

Result: balance is 10 instead of 1010
Without protection, any interleave combination is possible!

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

Thread 2 calls deposit(a,1000)

READ balance (0)
ADD 1000
WRITE balance (1000)

25/36

Introduction Common bugsGood pr

Race condition 3/3

Different kind of race conditions
e Data race: Concurrent accesses to a shared variable

o Atomicity bugs: Code does not enforce the atomicity for a group of
memory accesses, eg Time of check to time of use

o Order bugs: Operations are not executed in order
Compilers and processors can actually re-order instructions

What to do?

e Protect critical sections:Mutexes,Semaphores, etc.
» Use atomic instructions and memory barriers (low level)
« Use compiler builtin for atomic operations? (higher level)

2https://gcc.gnu.org/onlinedocs/gcc-5.1.0/gcc/ 005f ani In
005fatomic-Builtins.html '
Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 26/36 |

https://gcc.gnu.org/onlinedocs/gcc-5.1.0/gcc/_005f_005fatomic-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc-5.1.0/gcc/_005f_005fatomic-Builtins.html

Introduction Common bugsGood pr

Deadlock 1/3

Deadlock, photograph by David Maitland

"I would love to have seen them go their separate ways, but |
was exhausted. The frog was all the time trying to pull the
Snake off, but the snake just wouldn’t let go."

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 27 /36

Introduction Common bugsGood pr

Deadlock 2/3

Code example

voiddeposit (Account * account, voidtransfer (Account * accAi,

doubleamount) Account* accB,

{ amount)

lock (account->mutex) ; {
account->balance += amount; lock (accA->mutex) ;
unlock (account->mutex) ; lock (accB->mutex) ;

} accA->balance += amount;
accB->balance -= amount;
unlock (accA->mutex) ;
unlock (accB->mutex) ;

}

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 28 /36

Introduction Common bugsGood pr

Deadlock 3/3

Concurrent execution

Thread 1 calls transfer (A,B,10)

What to do?

Thread 2 calls transfer (B,A,20)

» Think before writing multithread code
« Use high level programming model:Open MP,Intel TBB,MPI, etc.

» Theoretical analysis

» Software for thread safety analysis

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

| I

29/36

Introduction Common bugsGood pr

Deadlock 3/3

Concurrent execution

Thread 1 calls transfer (A,B,10)

lock (A->mutex) ;

What to do?

Thread 2 calls transfer (B,A,20)

» Think before writing multithread code
« Use high level programming model:Open MP,Intel TBB,MPI, etc.

» Theoretical analysis

» Software for thread safety analysis

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

29/36

Introduction Common bugsGood pr

Deadlock 3/3

Concurrent execution

Thread 1 calls transfer (A,B,10)

lock (A->mutex) ;

What to do?

Thread 2 calls transfer (B,A,20)

lock (B->mutex) ;

» Think before writing multithread code
« Use high level programming model:Open MP,Intel TBB,MPI, etc.

» Theoretical analysis

» Software for thread safety analysis

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

29/36

Introduction Common bugsGood pr

Deadlock 3/3

Concurrent execution

Thread 1 calls transfer (a,B,10) Thread 2 calls transfer (8,2, 20)

lock (A->mutex) ;

lock (B->mutex) ;
lock (B->mutex); // wait until

B is unlocked

What to do?

» Think before writing multithread code
« Use high level programming model:Open MP,Intel TBB,MPI, etc.

» Theoretical analysis

» Software for thread safety analysis aui In

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 29/36

Introduction Common bugsGood pr

Deadlock 3/3

Concurrent execution

Thread 1 calls transfer (a,B,10) Thread 2 calls transfer (8,2, 20)

lock (A->mutex) ;
lock (B->mutex) ;
lock (B->mutex); // wait until

B is unlocked
lock (A->mutex); // wait until

A is unlocked

What to do?

» Think before writing multithread code
« Use high level programming model:Open MP,Intel TBB,MPI, etc.

» Theoretical analysis

» Software for thread safety analysis aui In

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 29/36 |

Introduction Common bugsGood pr

Deadlock 3/3

Concurrent execution

Thread 1 calls transfer (a,B,10) Thread 2 calls transfer (8,2, 20)

lock (A->mutex) ;
lock (B->mutex) ;
lock (B->mutex); // wait until

B is unlocked
lock (A->mutex); // wait until

A is unlocked

What to do?

» Think before writing multithread code
« Use high level programming model:Open MP,Intel TBB,MPI, etc.

» Theoretical analysis

» Software for thread safety analysis aui In

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 29/36 |

Introduction Common bugsGood pr

Deadlock 3/3

Concurrent execution

Thread 1 calls transfer (A,B,10) Thread 2 calls transfer (B,A,20)

lock (A->mutex) ;

lock (B->mutex) ;
lock (B->mutex); // wait until

B is unlocked

lock (A->mutex); // wait until
A is unlocked

We have a deadlock!

What to do?

» Think before writing multithread code

o Use high level programming model:Open MP,Intel TBB,MPI, etc.
» Theoretical analysis

» Software for thread safety analysis TR

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 29/36

Introduction Common bugsGood pr

Performance bugs

Bad Performance can be seen as a bug
» Bad algorithm: too high computation complexity
Example: Insertion Sort is O(N?), Quick Sort is O(N.log(N))

» Memory copies can be a problem,
specially with Object Oriented languages

» Some memory allocator have issues:
memory alignment constraints, multithread context

What to do?

» Try use existing proven libraries when possible:
eg Eigen library for linear algebra, C++ STL, Boost, etc.

» Use a profiler to see where your program spend most of its time
Valgrindwith Callgrind, GNU gprof, many commercial tools ...

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 30/36

Introduction T ools for DebuggingCommon bugsGood practices to catch bugs

Outline

° Good practices to catch bugs

B A LU
cetieel el

| Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 31/36

Introduction bugsGood practices to catch bugs

Be a good programmer
Write good code

e Use explicit variable names, don’t re-use variable
* Avoid global variables (problematic in multi-threads)
e Comment and document your code

e Keep your code simple, don’t try to over-optimize

Use defensive programming

e Add assertions, cf assert ()

e Always check return codes, cf manpages and documentation

Re-use existing libraries

e Use existing libraries when available/possible
e Probably better optimized and tested than your code

= Code easier to understand and maintain
= Catch bugs as soon as possible il

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

32 /36

Introduction bugsGood practices to catch bugs

Compilers and Tests
Use your compilers
» Enable (all) warnings of the compiler

» Vary the compilers and configurations

- Different compilers (GCC, CLang, Intel Compiler, MS Compiler)
- Various architectures (Windows/Linux, x86/x86 64/ARM)

Testing and Code Checking

» Write unit tests and regression tests
Use coverage analysis tools

Use static and dynamic code analysis tools

Continuous integration:

- Frequent compilation, testing, execution
- Different configurations and platforms

= Catch more warnings and errors

= Better portability nni.le

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 33/36

Introduction bugsGood practices to catch bugs

Know your tools

Know the error messages

e Look in the documentation / online
o Compiler errors/warnings
e Runtime errors:

Segmentation fault, Floating point exception, Double free, etc.

» Valgrind errors:
Invalid read of size 4
Conditional jump or move depends on uninitialised value(s)
8 bytes 1in 1 blocks are definitely lost

Use the right tool

* Know your tools and when to use them

- GDB: locate a crash
- Valgrind: memory-related issue

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 34 /36

Introduction bugsGood practices to catch bugs

Debug with methodology

Find a minimal case to reproduce the bug

» Some bugs are intermittent

Easier to debug

Help you to understand the cause
Allow to check that the bug is really fixed

Bonus: make a regression test

Use a Control Version System (GIT, SVN, ...)

» Keep history, serve as a backup, allow to go back in time

» GIT has a nice feature of code bisection in history to find when a
bug has been introduced

| I

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 35 /36

Introduction bugsGood practices to catch bugs

Thank you for your attention!

| I

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 36 /36

PONL AN

https://gitlab.uni.lu/SC-Camp/2019/debug

