Abstractions, Trends
and Performance

networked
low-level :

received v = . environments
ne#wgr ® industry run- f.me control c = d‘im;:fived g"met:han-scrlrlirsrent

ra m m l n TeengLe'ME -3 § c;ﬁiilplg;:;l: - -mplememahon
bu.ldmg as ‘- Peruaslve

tunnel hampered several *mw 2 © CO
SUSTEMST:D, Sensorouecs Lo
intens rojec 9
prbii & e rine requites ﬁ‘;lz‘:g:Qefwﬁl;e\;ejleésl\s’frlbufed s

reSearcn:::

iga
embedded w also',,_':!,.T;::eE

rensive PFOIMOS wsd PEFVasive

plications SENSOr

abstraehons mlndeedc

I'I
ro ra
g’ea g 9°

context o blle safety g Easy UV
E’EWSN o Ilgl",!%::nﬁ:::::a Programming PEld funded @43 compii 1) %
§5 " e o thand " e w|re|ess deplogmenfs system QU
Q B include n_g adophonsB @t abstraction middieware e S: E‘_ Log-cal
£ S Net k example é used ‘well r°“’“‘9 £ validation g § @ information publications
© WOrKS erqy mivens . EXPIESS § &i3 worked Network
difficult Trento T oL tutorial
RUNES >

Image from: http://home.deib.polimi.it/mottola/

<
s
@
=
5,
72
o
|
©
O
®

Designer/Architect of Computer
Systems

The task is a complex one:
Determinate what attributes are
important for a new computer:

MAXIMIZE PERFORMANCE
Energy Eficiency

<
o
@
=
3,
(72
o
|
@
J

Low Cost and Power
Availability

And the Role for a Systems
Engineer?

Take decisions, suggest to acquire or use new techology in
accordance with the previous attributes and requirements.

CONCEPT OF
REQUIREMENTS
SUPPORT
CONCEPY TICHROLOGY
‘ ‘ _l,‘ ‘ ‘ CONSTRAINTS
abiwnast T oo Ponait B Bnca s (sims emin a0usins

ST L I v, AL M

Abstraction

* Abstraction is a process by which concepts
are derived from the usage and
classification of literal ("real" or
"concrete") concepts, first principles, or
other methods.

* Abstractions may be formed by reducing
the information content of a concept or an

observable phenomenon, typicallyto “0w
. LI E
5

retain only information which is reIevant1?_‘?i;é_,,.:g

. WIKIPEDIA
for a particular purpose.

Instruction Set Architecture

(ISA)

° Co-ordination of

Application

Operating
Compiler| System

Instr. Set Proc. | 1/O system
Digital Design
Circuit Design

°Under a set of rapidly changing

Instruction Set
Architecture

ISA Levels

Application (Netscape)

I Operating

CDA 3101

Compiler System

|Assembler | (REHC WA S)
Instruction Set

Processor IMemory II/O system Architecture

ware

=

Hardware

Datapath & Control

Digital Design
[Circuit Desian

transistors

Review: Levels of Representation

temp = v[K];
High Level Language v[k] = v[k+1];
Program
vlk+1] = temp;
Compiler
lw $15, 0(S2)
Assembly Language lw S16, 4(S2)
Program sw S16, 0(S2)
sw S15, 4(S2)
Assembler
: 0000 1001 1100 0110 1010 1111 0101 1000
Machine Language 1010 1111 0101 1000 0000 1001 1100 0110
Program 1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111
Machine Interpretation

Control Signal
Specification

80X86 Architecture

* X86 denotes a family of ISAs
based on the Intel® 8086CPU.

MIPS Architecture

* Microprocessor without Interlocked
Pipeline Stages is a RISC_ISA computer
developed by MIPS Technologies, formerly
used in Embedded Systems or video game
consoles (Sony® PlayStation®) .

MIFPS

TECHNOLOGIES

Some Aspects of ISA

Class of ISA
Memory Addressing
Addresing Modes

Types of Sizes of Operands
Operations

Control Flow Instructions
Encoding and ISA

1. Class of ISA

* All ISA are classified as general-purpose register
architecture (Operands are either registers or
memory locations)

80x86 has a 16 general-purpose registers (16
floating-point data)

MIPS has 32 general-purpose registers (32
floating-point reigisters)

* Two Popular versions:
Register Memory ISAs (80x86)

Load Store ISAs (ARM, MIPS)

1. Class of ISA: An Example

MIPS registers and usage conventions

Name | Register Number | Usage Preserved on call
Szero 0 the constant value 0 n.a.
Sat I reserved for the assembler n.a.
$v0-$v1 2-3 value for results and expressions no
$a0-$a3 4-7 arguments (procedures/functions) Ves
St0-5t7 8-13 temporaries no
Ss()-3s7 16-23 saved Ves
H8-5t9 24-25 more temporaries no
$k0-Sk1 26-27 reserved for the operating system n.a.
Sgp 28 alobal pointer Ves
Ssp 29 stack pointer Ves
>p 30 frame pointer Ves
$ra 31 return address Ves

2. Memory Addressing

* All desktop and servers computers use
byte addressing to access memory
operands.

Some architectures (ARMS, MIPS)
require that objects must be aligned.

80x86 does not require alignement, but
accesses are generally faster if operands
are aligned

2. Memory Addressing
Aligned and Missalinged examples

Memory M CPU Memory CPU
Lﬁ/
%}
data
f data
4-byte memory access for aligned data 4-byte memory access for misaligned data

Rcquest

[1G 0 % TG bytes [Thbytes | 16bytes | 160ytes | 16byres |

Aligned Request Unaligned (misaligned) Request .

3. Addressing Modes

e Addressing Modes specify the address of a memory
object, registers and constant operands.

MIPS: Register, Immediate (Constants), Displacement.

80x86: Support the previous three + three variations
of displacement:

no register (absolute)

two registers (based indexed with displacement)

two registers (based with scaled index and displacement)

ARM: The three MIPS registers + PC-Relative
addressing, the sum of two registers and the sum of
two registers multiplied by the size of the operand in
bytes.

3. Addressing Modes : An Example

8086 ADDRESS MODES
TYPE INSTRUCTION SOURCE ADDRESS GENERATION DESTINATION
1)REGISTER MOV AYX, BX REGISTER REGISTER
BX AX
2) IMMEDIATE MOV CH,3AH DATA REGISTER.
3AH CH
3)DIRECT MOV [1234], AX REGISTER. (DS x 10H) + DISPLACEMENT MEMORY
AX 11234H
10000H + 1234
4)REGISTER MOV [BX], CL REGISTER (DS x10H) + BX MEMORY
INDIRECT CL 10300H
10000H + 0300H
5)BASEPLUS MOV [BX+SI,BP [REGISTER (DS x 10H) + BX + SI MEMORY
INDEX BP 10500H
10000H + 0300H + 0200H
6)REGISTER MOV CL, [BX 4] MEMORY (DS x 10H) + BX + 4 REGISTER
RELATIVE 10304H CL
10000H + 0300H + 4
7YBASE MOV ARRAY [BX + SI), DX | REGISTER (DS x 10H) + ARRAY +BX + SI MEMORY
RELATIVE DX 11500H
PLUS INDEX 10000H+1000E+0300H+0200H

ASSUME: BX=0300H, SI=0200H, ARRAY = 1000H, DS = 1000H.

4. Types and Sizes of Operands

 8-bit (ASCII character)
* 16-bit (Unicode Character or half word)
 32-bit (Integer or word)

* 64-bit (Double word or long integer)

* |[EE 754 Floating Point in 32-bit (Single
Precision) and 64-bit (Double precision)

* 80-bit Floating Point (Extended Double
Precision Only for 80x86)

5. Operations

Data Transfer

Moves data between registers and memory, or
between the integer and special registers.

Arithmetic Logical

Operations on Integer or Logical data in GPRs (General
Purpose Registers)

Control
Conditional branches and jumps

Floating Point

Floating Point Operations on Double Precision and
Single Precisions Formats

5. Operations:
Subset of the Instructions in MIPS64

Instruction type/opcode Instruction meaning

Data transfers Move data benween registers and memory, or between the integer and FP or special
registers; only memory address mode is 16-bit displacement + contents of a GPR

LB,LBU,SB Load byte, load byte unsigned, store byte (tloffrom integer registers)

LH, LHU,SH Load hall word, load hall word unsigned, store hall word (to/from integer regisiers)

LW, LKU, SN Load word, load word unsigned, store word (to/from integer registers)

LD,SD Load double word. store double word (to/from integer registers)

L.5,L.0,5.5,5.0 Load SP float, load DP float, store SP float, store DP float

MFCO,MTCO Copy from/io GPR toffrom a special register

MOV.S,MOV.D Copy onc SP or DP FP register to another FP register

MFC1,MTC1 Copy 32 bits to/from FP registers from/to integer registers

ArithmeticAlogical Operations on integer or logical data in GPRy; signed arithmetic trap on overflow

DADD,DADDI,DADDU,DADDIU Add, add immediate (all immediates are 16 bis); signed and unsigned

DSUB, DSUBU Subtract; signed and unsigned

DMUL, DMULL,DDIY, Multiply and divide, signed and unsigned: multiply-add: all operations take and yicld 64-

DDIVU,MADD bit values

AND,ANDI And, and immediate

OR,ORI, X0R, XORI Or, or immediate, exclusive or, exclusive or immediate

Lul Load upper immediate; loads bits 32 1o 47 of register with immediate, then sign-extends

DSLL,DSRL,DSRA,DSLLY, Shifts: both immediate (DS__) and variable form (DS__V); shifts are shift lett logical,

DSRLY ,DSRAV right logical, right arithmetic

SLT,SLTI,SLTU,SLTIV Set less than, set Jess than immediate; signed and unsigned

Control Conditional branches and jinps: PC-relative or through register

BEQZ,BNEZ Branch GPRs equal/not equal to zero; 16-bit offset from PC + 4

BEQ.BNE Branch GPR equal/not equal: 16-bit offset from PC + 4

BC1T,BCIF Test companison bit in the FP status register and branch; 16-bit offset from PC + 4

MOVN,MOVZ Copy GPR 10 another GPR if third GPR is negative, zero

J,JR Jumps: 26-bit offset from PC + 4 (J) or target in register (JR)

JAL,JALR Jump and link: save PC + 4 in R31, target is PC-relative (JAL) or a register (JALR)

TRAP Transfer (o0 operating system at a vectored address

ERET Return o user code rom an exceplion; restore user maode

Floaring poimt FP operations on DP and SP formats

ADD.D,ADD.S,ADD.PS Add DP. SP numbers. and pairs of SP numbers

SUB.D,SUB.S,SUB.PS Subtract DP, SP numbers, and pairs of SP numbers

MUL.D,MUL.S,MUL.PS Multiply DP. SP floating point, and pairs of SP numbers

MADD.D,MADD. S,MADD. PS Multiply-add DP, SP numbers, and pairs of SP numbers

DIV.D,DIV.S,DIV.PS Divide DP, SP floating point, and pairs of SP numbers

CVT._._ Convert instructions: CYT.X. ¥ converts from type X to type ¥, where X and y are L

(64-bit integer), W (32-bit integer), D (DP), or S (SP). Both operands are FPRs.
G _Di€_.:S DP and SP compares: =__" = LT,6T,LE,GE,EQ,NE; sets bit in FP status register

6. Control Flow Instructions

Conditional Branches
Unconditional Jumps

Procedure Calls

MNata N
Datapath Memory

Returns

Fetch — Decode — Execute Cyele

7. Encoding an ISA

Fixed Length
ARM and MIPS (32-bits long)

Variable Length
80x86 (Ranking from 1 to 18 bytes)

e |.E. MIPS instruction encoding formats:

— R-type (6-bit opcode, 5-bit rs, 5-bit rt, 5-bit rd, 5-bit shamt, 6-bit function code)
| 31-26 [25-21 © 2016 [1511 [106 | 5-0

’ opcode ‘ rs ’ 7t ’ rd ‘ shamt ’ function

— |-type (6-bit opcode, 5-bit rs, 5-bit rt, 16-bit immediate)
| 31-26 | 25-21 | 20-16 | 15-0 ‘

[opcode [rs ’ ri [i

— J-type (6-bit opcode, 26-bit pseudo-direct address)

| 31-26 250

’ opcode ’ pseudodirect jump address

Designing and Organization

* Implementation of a computer has two
components: organization and hardware.

Organization: High level aspects (memory
system, memory interconection, design of the
CPU)

Microarchitecture

Example: two processors with the same ISA but different
organization are AMD Opteron adn Intel Core i7.

Hardware: Specifics of a Computer (Detailed
logic design and the packaging technology of
the computer)

Summary of Some Functional
Requerimients an Architect Faces

Functional requirements

Typical features required or supported

Application area

Personal mobile device
General-purpose desktop
Servers

Clusters/warchouse-scale
computers

Embedded computing

Level of software compatibility
AL programming language

Object code or binary
compatible

Operating system requirements
Size of address space
Memory management

Protection

Target of computer

Real-time performance for a range of tasks, including interactive performance for
graphics, video, and audio: energy efficiency (Ch. 2, 3, 4, 5: App. A)

Balanced performance for a range of tasks, including interactive performance for
graphics, video, and audio (Ch. 2, 3, 4, 5: App. A)

Support for databases and transaction processing: enhancements for reliability and

Throughput performance for many independent tasks; error correction for
memory: energy proportionality (Ch 2, 6: App. F)

Often requires special support for graphics or video (or other application-specific
extension): power limitations and power control may be required: real-time
constraints (Ch. 2, 3, 5; App. A, E)

Determines amount of existing software for computer
Most flexible for designer; need new compiler (Ch. 3, 5; App. A)

Instruction set architecture is completely defined—Ilittle flexibility—Dbut no
investment needed in software or porting programs (App. A)

Necessary features to support chosen OS (Ch. 2; App. B)
Very important feature (Ch. 2); may limit applications
Required for modern OS; may be paged or segmented (Ch. 2)

Different OS and application needs: page vs. segment; virtual machines (Ch. 2)

Standards

Floating point

IO interfaces
Operating systems
Networks

Programming languages

Certain standards may be required by markeiplace

Format and arithmetic: IEEE 754 standard (App. J), special arithmetic for graphics
or signal processing

For I/O devices: Serial ATA, Serial Attached SCSI. PCI Express (App. D. F)
UNIX, Windows, Linux, CISCO IOS
Support required for different networks: Ethernet, Infiniband (App. F)

Languages (ANSI C, C++, Java, Fortran) affect instruction set (App. A)

From Hennesy and Patterson

Trends in Technology

* Integrated Circuit Logic Technology

Transistor density increases by about 35%/
year, quadrupling somewhat over four years

(Moore’s Law)

e Semiconductor DRAM

DRAM growth Characterization of impact
CA:AQA Edition Year rate on DRAM capacity
l 1990 60%/year Quadrupling every 3 years
2 1996 60%/year Quadrupling every 3 years
3 2003 40%—-60%/year Quadrupling every 3 to 4 years
4 2007 40%/year Doubling every 2 years
5 2011 25%-40%/year Doubling every 2 to 3 years

Trends in Technology

e Semiconductor Flash

Electrically erasable programmable read-only
memory (Flash Memory)

* Magnetic Disk Technology

Disks are 15 to 25 times cheaper per bit than
flash.

* Network Technology

Network performance depends both on the
performance of switches and on the
performance of the transmission system.

Performance Trends:
Bandwidth over Latency

Microprocessor 16-bit
addresy/
bus,

microcoded

32-bit
address/
bus,

microcoded

S-stage

pipeline

onchipl& D
caches, FPU

)

2-way
superscalar,
64-bit bus

Qut-of-order

3-way
superscalar

Out-of-order
superpipelined

Multicore

on-chip L2

000 4-way
on chip L3

cache cache, Turbo

Product Intel 80286 Intel 80386 Intel 80486 Intel Pentium Intel Pentium Pro Intel Pentium 4 Intel Core 17
Year 1982 1985 1989 1993 1997 2001 2010
Die size (mm*) 47 3 81 90 108 217 240
Transistors 134,000 275,000 1,200,000 3,100,000 5,500,000 42,000,000 1,170,000,000
Processors/chip I I | | I 4
Pins 68 132 168 273 387 123 1366
Latency (clocks) 6 5 S 5 10 22 14
Bus width (bits) 16 32 32 64 64 64 196
Clock rate (MHz) 12.5 16 25 66 200 1500 3333
Bandwidth (MIPS) 2 6 23 132 600 4500 50,000
Latency (ns) 320 313 200 76 50 15 4
Mcemory module DRAM Page mode Fast page Fast page Synchronous Double data DDR3

DRAM mode DRAM mode DRAM DRAM rate SDRAM SDRAM
Module width (bits) 16 16 32 64 64 64 64
Year 1980 1983 1986 1993 1997 2000 2010
Mbits/DRAM chip 0.06 0.25 | 16 64 256 2048
Die size (mm?) 35 5 70 130 170 204 S0
Pins/DRAM chip 16 16 18 20 54 66 134
Bandwidth (MBytes/s) 13 10 267 640 1600 16,000
Latency (ns) 225 170 75 62 52 37
Local arca network Ethemet Fast 10 Gigabit 100 Gigabit

Ethernet Ethernet Ethernet Ethernet
IEEE standard 802.3 803.3u 802.3ab 802 3ac 802.3bu
Year 1978 1995 1999 2003 2010
Bandwidth (Mbits/sec) 10 100 1000 10,000 100,000
Latency (psec) 3000 500 340 190 100
.H.ml disk 3600 RPM 5400 RPM 7200 RPM 10,000 RPM 15.000 RPM 15.000 RPM
Product CDC Wrenl Seagate Seagate Seagate Seagate

94145-36 ST41600 STIS150 ST39102 ST3600057

Year 1983 1990 1994 1998 2010
Capacity (GB) 0.03 1.4 4.3 9.1 3.4 600
Disk form factor S$.25 inch 5.25 inch 3.5inch 3.5 inch 3.5 inch 3.5 inch
Media diameter 5.25 inch 5.25 inch 3.5 inch 3.0 inch 2.5inch 2.5 inch
Interface ST-412 SCSI SCSI SCSI SCSI1 SAS
Bandwidth (MBytes/s) 0.6 i 9 24 86 204
Latency (ms) 18.3 17.1 12.7 88 5.7 3.6

1000

1000

100

Relative
Bandwidth
Improve-
ment

10

Microprocessor

N\

A

Networ k

~

(L atency improv.

="Bandwidth improve

10 100

Relative Latency Improvement

Performance Trends
Power and Energy

| Annlicatinng

Applications FANS, COOLE
Applications Programming Environment

Middleware

> e > Processing
\izualisation

Sound Cards

- 25%

Interconnection Network / Devices

|

Essential Hardware

N E s

Performance Trends
Power and Energy

Bus
39, £ Rename
‘ M Branch Predictor
] Window
ALU ‘_Clock 0 LSQ. .
46% 36% W Register File
OALU
M Bus
[J Clock
Rename
; NN ™
Register File " " h Branch
5% LSQ Window “—predictor
1% 3% 6%

The distribution of the energy consumed in the processor components.

From Nikolaos Kroupis , Dimitrios Soudris, FILESPPA: Fast Instruction Level Embedded System Power and Performance Analy

Microprocessors and Microsystems Volume 35, Issue 3 2011 329 -

Performance Trends
Power and Energy:

Techniques to improve energy efficiency

1. Do nothing well: Turn off the clock of
inactive modules to save energy and
dynamic power.

2. Dynamic Voltage-Frequency Scaling
(DVFS)

3. Design for Typical Case (Scheduling of
Activity)
4. Overclocking (Turbo Mode)

Trends in Cost

* Impact of Time, Volume and Commoditization
Learning Curve
Manufacturing Costs
Transport
Market (Cost vs Price)
Operation Costs
- Dependability
. Service Level Agreements (Infrastructure)
. Service Level Objects (Networking, Power)

Performance

A Computer System exists to IMPROVE
PERFORMANCE

High Speed
Data Treatment
Availability
Capacity

Low Latency
High Bandwdith

Measuring Performance

*In order to compare how fast
computers can process data, we have
to measure their performance.

* There are a number of measurements
of performance.

* Clock speed, MIPS, FLOPS &
Benchmark tests are all used. Some
are a better measure than others.

Metrics of Computer Performance

Application Execution time: Target workload,
SPEC95, etc.

Programming

Language

Compiler

(millions) of Instructions per second — MIPS
SA (millions) of (F.P.) operations per second — MFLOP/s
Datapath
Control Megabytes per second.

Function Units

Transistors Wires Pins Cycles per second (clock rate).

Computer Performance

Response Time (elapsed time, latency
how long does it take for job to run?

how long does it take to execute (start to

finish) my job? Individual user

how long must / wait for the database query? concerns...

Throughput
how many jobs can the machine run at once?

what is the average execution rate?
Systems manag

how much work is getting done?
concerns...

If we upgrade a machine with a new processor what do we increase?

If we add a new machine to the lab what do we increase?

Execution Time
* Elapsed Time

counts everything (disk and memory accesses, waiting for 1/0,
running other programs, etc.) from start to finish

a useful number, but often not good for comparison purposes
elapsed time = CPU time + wait time (I/O, other programs, etc.)

* CPU time
doesn't count waiting for I/O or time spent running other programs
can be divided into user CPU time and system CPU time (OS calls)
CPU time = user CPU time + system CPU time
=> elapsed time = user CPU time + system CPU time + wait time

* Our focus: user CPU time (CPU execution time or, simply,
execution time)

time spent executing the lines of code that are in our program

Definition of Performance

For some program running on machine X:

Performance. = 1 / Execution time

X is n times faster than Y means:

Performance.. / Performance.. = n

Clock Cycles

Instead of reporting execution time in seconds, we often use cycles.
In modern computers hardware events progress cycle by cycle: in
other words, each event, e.g., multiplication, addition, etc., is a

sequence of cyclggeonds __cycles y seconds

program program cycle

Clock ticks indicate start and end of cycles:

o el T

4 - time
cycle time = time between ticks = seconds per cycle

clock rate (frequency) = cycles per second (1 Hz. =1 cycle/sec, 1
MHz. = 10° cycles/sec)

Example: A 200 Mhz. clock has a cycle
time

X 109 = 5 nanoseconds

200 x 10°

Clock Speed

* The clock signal is carried by one of the
lines on the control bus.

* One single pulse is called a ‘clock
cycle’.
* Measured in Megahertz (MHz) &

Gigahertz (GHz). 1 MHz = 1 million
pulses per second. 1 GHZ = 1000 MHz.

Processor Clock Speed

* CPU clock speeds are compared at
http://www.cpubenchmark.net/
common_cpus.htm|

Performance Equation I

seconds cycles ><se:conds
program program cycle

equivalently
CPU execution time =~ CPU clock cycles x Clock cycle time
for a program ~ for a program

So, to improve performance one can either:
reduce the number of cycles for a program, or
reduce the clock cycle time, or, equivalently,
increase the clock rate

How many cycles are required for
a program?

Could assume that # of cycles = # of instructions

1st instruction
2nd instruction
3rd instruction

4th
Sth
6th

time

v

m This assumption is incorrect! Because:

Different instructions take different amounts of time (cycles)
Why...?

How many cycles are required for a
program?

time

Multiplication takes more time than addition
Floating point operations take longer than integer ones
Accessing memory takes more time than accessing registers

Important point: changing the cycle time often changes the number
of cycles required for various instructions because it means changing
the hardware design. More later...

Example

e Our favorite program runs in 10 seconds on computer A,
which has a 400Mhz. clock.

* We are trying to help a computer designer build a new
machine B, that will run this program in 6 seconds. The
designer can use new (or perhaps more expensive)
technology to substantially increase the clock rate, but
has informed us that this increase will affect the rest of
the CPU design, causing machine B to require 1.2 times
as many clock cycles as machine A for the same program.

* What clock rate should we tell the designer to target?

Terminology

A given program will require:
some number of instructions (machine instructions)
some number of cycles

some number of seconds

We have a vocabulary that relates these quantities:
cycle time (seconds per cycle)
clock rate (cycles per second)

(average) CPI (cycles per instruction)
a floating point intensive application might have a higher average CPI
MIPS (millions of instructions per second)

this would be higher for a program using simple instructions

Performance Measure

Performance is determined by execution time

Do any of these other variables equal performance?
of cycles to execute program?
of instructions in program?
of cycles per second?
average # of cycles per instruction?

average # of instructions per second?

Common pitfall : thinking one of the variables is indicative of
performance when it really isn’t

Performance Equation II

CPU execution time = Instruction count average CPI Clock cycle
time 2 X
for a program for a program

Derive the above equation from Performance Equation [

Other Ways to Understand
Computer Performance

What your research supposedly
looks like:

—> —
Data Data Acquisition '

“p——
-1 — <«
| Controller
P
rototype Computer

Figure 1. Experimental Diagram

What your research actually
looks like:

Figure 2. Experimental Mess

JORGE CHAM © 2008

T
o
X
0
v
b
o
N
(&
X
o.
3
3
3

Computer Performance Evaluation:
Cycles Per Instruction (CPI)

* Most computers run synchronously utilizing a CPU clock
running at a constant clock rate:

where: Clock rate = 1/ clock cycle

* A computer machine instruction is comprised of a number of
elementary or micro operations which vary in number and
complexity depending on the instruction and the exact CPU
organization and implementation.

A micro operation is an elementary hardware operation that can be
performed during one clock cycle.

This corresponds to one micro-instruction in microprogrammed CPUs.

Examples: register operations: shift, load, clear, increment, ALU
operations: add , subtract, etc.

* Thus a single machine instruction may take one or more
cycles to complete termed as the Cycles Per Instruction (CPI).

Computer Performance Measures: Program

Execution Time

* For a specific program compiled to run on a specific
machine “A”, the following parameters are provided:

The total instruction count of the program.
The average number of cycles per instruction (average CPI).

Clock cycle of machine “A”
* How can one measure the performance of this machine running this
program?
Intuitively the machine is said to be faster or has better
performance running this program if the total execution time is

shorter.
Thus the inverse of the total measured program execution time is
a possible performance measure or metric:

Performance, = 1 / Execution Time,

How to compare performance of different machines?
What factors affect performance? How to improve performance?

Comparing Computer Performance Using Execution Time

/A

* To compare the performance of two machines “A”, “B” running a
given program:

Performance, = 1 / Execution Time,
Performance; = 1 / Execution Time,

* Machine A'is n times faster than machine B means:
n = Performance, / Performance, = Execution Time, / Execution
Time,
* Example:
For a given program:
Execution time on machine A: Execution, = 1 second
Execution time on machine B: Execution, = 10 seconds
Performance, / Performance, = Execution Time, / Execution
Time,
=10/1=10
The performance of machine A is 10 times the performance of

machine B when running this program, or: Machine A is said to be 10
times faster than machine B when running this program.

CPU Execution Time: The CPU Equation

* A program is comprised of a number of instructions, |
Measured in: instructions/program

* The average instruction takes a number of cycles per
instruction (CPI) to be completed.

Measured in: cycles/instruction, CPI

* CPU has a fixed clock cycle time C = 1/clock rate
Measured in: seconds/cycle

* CPU execution time is the product of the above three
parameters as follows:

CPUtime = Seconds = Instructions x Cycles X Seconds
Program Program Instruction Cycle

T = | x CPlI x C

CPU Execution Time

For a given program and machine:
CPl = Total program execution cycles / Instructions count

CPU clock cycles = Instruction count x CPI

CPU execution time =

= CPU clock cycles x_-£€tock cycle
= Instruction count x CPIl x Clock cycle
= | X CPl x C

CPU Execution Time: Example

* A Program is running on a specific machine with the following
parameters:

Total instruction count: 10,000,000 instructions

Average CPI for the program: 2.5 cycles/instruction.
CPU clock rate: 200 MHz.

* What is the execution time for this program:

CPU time = Seconds = Instructions x Cycles X Seconds

Program Program Instruction Cycle

CPU time = Instruction count x CPI x Clock cycle

= 10,000,000 X 2.5 x 1/clockrate
= 10,000,000 X 2.5 x 5x107

= .125 seconds

Aspects of CPU Performance

CPU time = Seconds = Instructions x Cycles X Seconds
Program Program Instruction Cycle

Program
Compiler

Instr. Set Arch.
Organization

Technology

Aspects of CPU Performance

CPU time = Seconds = Instructions x Cycles X Seconds
Program Program Instruction Cycle
instr count CPI clock rate
Program X (x)
Compiler X (x)
Instr. Set. X X
Organization X X

Technology X

Aspects of CPU Execution Time

CPU Time = Instruction count x CPl x Clock cycle

Depends on:

Program Used
Compiler
ISA

Instruction Count |

Depends on:

Program Used Depends on:
Compiler CPI Clock CPU Organization I
ISA Cycle Technology

CPU Organization C

CPU Execution Time: Example

* A Program is running on a specific machine with the following
parameters:

Total instruction count: 10,000,000 instructions

Average CPI for the program: 2.5 cycles/instruction.
CPU clock rate: 200 MHz.

* What is the execution time for this program:

CPU time = Seconds = Instructions x Cycles X Seconds

Program Program Instruction Cycle

CPU time = Instruction count x CPI x Clock cycle

= 10,000,000 X 2.5 x 1/clockrate
= 10,000,000 X 2.5 x 5x107

= .125 seconds

Performance Comparison: Example

* From the previous example: A Program is running on a specific machin

with the following parameters:
Total instruction count: 10,000,000 instructions

Average CPI for the program: 2.5 cycles/instruction.

CPU clock rate: 200 MHz.

e Using the same program with these changes:
A new compiler used: New instruction count 9,500,000

New CPI: 3.0
Faster CPU implementation: New clock rate = 300 MHZ

* What is the speedup with the changes?

CPl 4 X Clock cycle,

Speedup = Old Execution Time =1, X
New Execution Time 1., x CPIl., x Clock Cycle,,,
Speedup = (10,000,000 x 2.5 x 5x10°) /(9,500,000 x 3 x 3.33x107°)

= .125/ .095=1.32

or 32 % faster after changes.

Organizational Trade-ofts

Application

Programming
Language

Compilef

ISA

Datapath
Control

Function Units
TransistoM/iresPins

Instguction Mix

CPI

Cycle Time

CPI

“Average cycles per instruction”

CPIl = (CPU Time * Clock Rate) / Instruction Count
= Clock Cycles / Instruction Count

n

CPU time = ClockCycleTime * CPlI * |
; I

I =1 I

n "instruction frequency"
CPI = CPlj* F. where Fj = |

—
]
—

Instruction Count

Invest Resources where time is Spent!

CPI Example I

* Suppose we have two implementations of the
same instruction set architecture (ISA). For
some program:

machine A has a clock cycle time of 10 ns. and a CPI of
2.0

machine B has a clock cycle time of 20 ns. and a CPI of
1.2

* Which machine is faster for this program, and by
how much?

* [f two machines have the same ISA, which of our
quantities (e.g., clock rate, CPI, execution time, #
of instructions, MIPS) will always be identical?

CPI Example II

* A compiler designer is trying to decide between two
code sequences for a particular machine.

* Based on the hardware implementation, there are three
different classes of instructions: Class A, Class B, and
Class C, and they require 1, 2 and 3 cycles (respectively).

* The first code sequence has 5 instructions:

20of A, 10fB,and 2 of C
The second sequence has 6 instructions:

4 of A, 1 of B, and 1 of C.

* Which sequence will be faster? How much? What is the
CPI for each sequence?

MIPS

Stands for Millions of
Instructions per
second.

s @ measure of how
many machine code
Instructions a

processor execute per
second.

SiSoft CPU MIPS

3000

1350 1503
» 1200 1339
m 1200 100312

1120 140x3

Computer Performance Measures :
MIPS (Million Instructions Per Second)

* For a specific program running on a specific computer MIPS is 3
measure of how many millions of instructions are executed per second:
MIPS = Instruction count / (Execution Time x 10°)
= Instruction count / (CPU clocks x Cycle time x 10°)
= (Instruction count x Clock rate) / (Instruction count x CPI x 10°)
= Clock rate / (CPI x 10°)

* Faster execution time usually means faster MIPS rating.
* Problems with MIPS rating:

No account for the instruction set used.

Program-dependent: A single machine does not have a single MIPS rating
since the MIPS rating may depend on the program used.

Easy to abuse: Program used to get the MIPS rating is often omitted.
Cannot be used to compare computers with different instruction sets.

A higher MIPS rating in some cases may not mean higher performance or
better execution time. i.e. due to compiler design variations.

MIPS Example

* Two different compilers are being tested for a 500 MHz.
machine with three different classes of instructions:
Class A, Class B, and Class C, which require 1, 2 and 3
cycles (respectively). Both compilers are used to
produce code for a large piece of software.

* Compiler 1 generates code with 5 billion Class A
instructions, 1 billion Class B instructions, and 1 billion
Class C instructions.

 Compiler 2 generates code with 10 billion Class A
instructions, 1 billion Class B instructions, and 1 billion
Class C instructions.

* Which sequence will be faster according to MIPS?

* Which sequence will be faster according to execution
time?

FLOPS

Stands for ‘Floating
Point Operations Per SiSoft CPU MFLOPS
Second.

Seen as a reliable
indicator of

1350 150x%9
performance. 1200 1339
m 1200 100x12

It’s @ measure of the 1120 14058

arithmetical calculating
speed of a computer.

Computer Performance Measures:
MFOLPS (Million FLOating-Point Operations Per Second)

* A floating-point operation is an addition, subtraction, multiplication, or
division operation applied to numbers represented by a single or a
double precision floating-point representation.

* MFLOPS, for a specific program running on a specific computer, is a
measure of millions of floating point-operation (megaflops) per second:

MFLOPS = Number of floating-point operations / (Execution time x 10°)

 MFLOPS is a better comparison measure between different machines
than MIPS.

* Program-dependent: Different programs have different percentages of
floating-point operations present. i.e compilers have no floating- point
operations and yield a MFLOPS rating of zero.

* Dependent on the type of floating-point operations present in the
program.

Performance Enhancement Calculations:
Amdahl's Law

* The performance enhancement possible due to a given design
improvement is limited by the amount that the improved feature is used

e Amdahl’s Law:

Performance improvement or speedup due to enhancement E:

Execution Time without E Performance with E

Execution Time with E Performance without E

Suppose that enhancement E accelerates a fraction F of the execution
time by a factor S and the remainder of the time is unaffected then:

Execution Time with E = ((1-F) + F/S) X Execution Time without E
Hence speedup is given by:
Execution Time without E 1
Speedup(E) = ——-mmmmmmm oo e - = -
((1-F)+ F/S) X Execution Time without E (1-F) + F/S

Pictorial Depiction of Amdahl's

El'ﬂan%ent E accelerates fraction F of execution time by a factor of S

Before:
Execution Time without enhancement E:

Unaffected, fraction: (1- F) Affected fraction: F

Unchanged

4_______

Unaffected, fraction: (1- F)

After:
Execution Time with enhancement E:

Execution Time without enhancement E 1
Speedup(E) = ---—-—-mmmmmmm e = -
Execution Time with enhancement E (1-F) + F/S

Performance Enhancement

Example
For the RISC machine with the following instruction mix given earlier:
Op Freq Cycles CPI(i) % Time CPl=22
ALU 50% 1 5 23%
Load 20% 5 1.0 45%
Store 10% 3 3 14%
Branch 20% 2 4 18%

If a CPU design enhancement improves the CPI of load instructions from 5
to 2, what is the resulting performance improvement from this

enhancement:

Fraction enhanced = F = 45% or .45
Unaffected fraction = 100% - 45% = 55% or .55

Factor of enhancement= 5/2 = 2.5

Using Amdahl’s Law:

(1-F) + F/S 55 + 4525

An Alternative Solution Using CPU Equation

Op Freq Cycles CPI(i) % Time
ALU 50% 1 5 23%
Load 20%) 1.0 45% CPl1=2.2
Store 10% 3 3 14%
Branch 20% 2 4 18%

If a CPU design enhancement improves the CPI of load instructions from 5
to 2, what is the resulting performance improvement from this
enhancement:

Old CPI =2.2
New CPl= 5x1+.2x2+ .1x3+.2x2 =1.6
Original Execution Time Instruction ceunt” x old CPI x clock cycle
Speedup(E) = -=----mmmmmmmememee e e R
New Execut|on Time Instruction caunrt—X new CPI x clock cycle
old CPI 2.2
= - = - = 1.37
new CPI 1.6

Which is the same speedup obtained from Amdahl’s Law in the first solution.

Performance Enhancement
Example

A program runs in 100 seconds on a machine with multiply operations
responsible for 80 seconds of this time. By how much must the speed
of multiplication be improved to make the program four times faster?

100
Desired speedup = 4 = —ommmmmmmmm oo
Execution Time with enhancement

—> Execution time with enhancement = 25 seconds

25 seconds = (100 - 80 seconds) + 80 seconds/n

25 seconds = 20 seconds + 80 seconds /n
—> 5 = 80 seconds /n
— n = 80/5= 16

Hence multiplication should be 16 times faster to get a speedup of 4.

Performance Enhancement
Example

For the previous example with a program running in 100 seconds on
a machine with multiply operations responsible for 80 seconds of this
time. By how much must the speed of multiplication be improved
to make the program five times faster?

100
Desired speedup = 5 = =-mmmmmmmmmmmm oo
Execution Time with enhancement

—> Execution time with enhancement = 20 seconds

20 seconds = (100 - 80 seconds) + 80 seconds/n
20 seconds = 20 seconds + 80 seconds /n

—> 0O = 80 seconds /n

No amount of multiplication speed improvement can achieve this.

Extending Amdahl's Law To Multiple Enhancements

Suppose that enhancement E. accelerates a fraction F, of the
execution time by a factor S, and the remainder of the time is
unaffected then:

Ongmal-Execution Time

(-3, F)-

Speedup =

) Origmal Exccution Time

1

(& SF)+ Y

Speedup =

<)

Note: All fractions refer to original execution time.

Amdahl's Law With Multiple Enhancements:
Example

Three CPU performance enhancements are proposed with the following
speedups and percentage of the code execution time affected:

Speedup, =S, = 10Percentage, =F, = 20%
Speedup,=S,= 15 Percentage, =F, = 15%
Speedup, =S, = 30Percentage, =F, = 10%

While all three enhancements are in place in the new design, each
enhancement affects a different portion of the code and only one
enhancement can be used at a time.

What is the resulting overall speedup?
1

_ .~ F.
(-3, Fo+3,76)

Speedup =

Speedup=1/[(1-.2-.15 -.1) + .2/10 + .15/15 + .1/30)]
= 1/ .55 + .0333]
=1/ .5833 = 1.71

Pictorial Depiction of Example

Before:
Execution Time with no enhancements: 1

Unaffected, fraction: .55 F,=.2 F,=.15 F

/ 10 / 15 / 30

Unchanged

Unaffected, fraction: .55

After:
Execution Time with enhancements: .55 + .02 + .01 + .00333 = .5833

Speedup = 1/.5833 = 1.71

Note: All fractions refer to original execution time.

Benchmarks

Performance best determined by running a real application
use programs typical of expected workload

or, typical of expected class of applications
e.g., compilers/editors, scientific applications, graphics, etc.

Small benchmarks
nice for architects and designers
easy to standardize
can be abused!

Benchmark suites
Perfect Club: set of application codes
Livermore Loops: 24 loop kernels
Linpack: linear algebra package
SPEC: mix of code from industry organization

Benchmark Tests

* Benchmark tests simply time how
long a computer system takes to
complete a standard set of
application based tasks i.e.
reformatting a 100 page ‘Word’
document.

* http://www.passmark.com/ is one
make of benchmark test software.

Choosing Programs To Evaluate Performance

Levels of programs or benchmarks that could be used to evaluate
performance:
Actual Target Workload: Full applications that run on the target machine.

Real Full Program-based Benchmarks:

Select a specific mix or suite of programs that are typical of targeted
applications or workload (e.g SPEC95, SPEC CPU2000).

IH

Small “Kernel” Benchmarks:

Key computationally-intensive pieces extracted from real programs.
Examples: Matrix factorization, FFT, tree search, etc.

Best used to test specific aspects of the machine.

Microbenchmarks:

Small, specially written programs to isolate a specific aspect of
performance characteristics: Processing: integer, floating point, local
memory, input/output, etc.

Types of Benchmarks

Pros Cons
* Very specific.
» Representative Actual Target Workload * Non-portable.

« Complex: Difficult
to run, or measure.

* Portable.

» Widely used. Full Application Benchmarks | Less representative
* Measurements than actual workload.
useful in reality.

« Easy to run, early in Small “"Kernel’ p e “LOOIH "
the design cycle Benchmarks designing hardware
e to run them well.

» Peak performance
results may be a long
way from real application
performance

* [dentify peak _
performance and Microbenchmarks

potential bottlenecks.

SPEC (System Performance
Evaluation Corporation)

e Sponsored by industry but independent and self-
managed — trusted by code developers and
machine vendors

* Clear guides for testing, see www.spec.org

* Regular updates (benchmarks are dropped and
new ones added periodically according to
relevance)

 Specialized benchmarks for particular classes of
applications

* Can still be abused..., by selective optimization!

SPEC History

First Round: SPEC CPU89
10 programs yielding a single number

Second Round: SPEC CPU92
SPEC CINT92 (6 integer programs) and SPEC CFP92 (14 floating point
programs)
compiler flags can be set differently for different programs

Third Round: SPEC CPU95

new set of programs: SPEC CINT95 (8 integer programs) and SPEC CFP95
(10 floating point)

single flag setting for all programs

Fourth Round: SPEC CPU2000

new set of programs: SPEC CINT2000 (12 integer programs) and SPEC
CFP2000 (14 floating point)

single flag setting for all programs
programs in C, C++, Fortran 77, and Fortran 90

CINT2000 (Integer component of
SPEC CPU2000)

Program Language What It Is

164.gzip C Compression

175.vpr C FPGA Circuit Placement and Routing
176.gcc C C Programming Language Compiler
181.mcf C Combinatorial Optimization
186.crafty C Game Playing: Chess

197.parser C Word Processing

252.eon C++ Computer Visualization
253.perlbmk C PERL Programming Language
254.gap C Group Theory, Interpreter
255.vortex C Object-oriented Database
256.bzip2 C Compression

300.twolf C Place and Route Simulator

SPEC95 Programs

Benchmark Description
go Artificial intelligence; plays the game of Go

m88ksim Motorola 88k chip simulator: runs test program

gcc The Gnu C compiler generating SPARC code

compress Compresses and decompresses file in memory
li Lisp interpreter

ijpeg Graphic compression and decompression

perl Manipulates strings and prime numbers in the special-purpose programming language Perl
vortex A database program

tomcatv A mesh generation program

swim Shallow water model with 513 x 513 grid

su2cor quantum physics; Monte Carlo simulation

hydro2d Astrophysics; Hydrodynamic Naiver Stokes equations

marid Multigrid solver in 3-D potential field

applu Parabolic/elliptic partial differential equations

trub3d Simulates isotropic, homogeneous turbulence in a cube

apsi Solves problems regarding temperature, wind velocity, and distribution of pollutant
foppp Quantum chemistry

waveb Plasma physics: electromagnetic particle simulation

Sample SPECIint95 Results

gg ’ : : X KryoTech Cooling:
11 /2 . a3 Alpha 211647767
= -SPECItI>-(PEAK)-— A
: : : : : 7 §2r4 BASE Scores (not PEAK):
gg i e e . - , g A AMD K7
gg 1 . : B "/’/'f“- o ‘ ‘ Unreleased / Prototypes:
32 4 : ' i : » o ;// o R Alpha 21364/1000: ~70
o o K2 " e s TR e »
4 . i : : fi o —a&—DEC Alpha 21064
30 ; higher s better fa —¢—DEC Alpha 21164PC
28 4 : —@—DEC Alpha 21164
27 4 : —#—DEC Alpha 21264
26 4. —a&—Intel Pentium
25 4+ ——Intel Pentium MMX
24 1 —&—Inte| Pentium Pro
Fhcyak m ———Intel Pentium II
22 4 A R o —<——1Intel Pentium II Xeon
21 4 S - ---0-- Inte|l P. II Celeron
20 4+ —a&—Intel Pentium III/100
19 4L —a&—Inte| Pentium II1/133
18 1 ——Intel Pentium III Xeon
17 1 —&—AMD K7 Athlon
{164 O PowerPC 603e
15 4+ —a&—PowerPC 604
14 1 —4—PowerPC 604e
Thcrd —@—PowerPC 620
12 1 —a&—PowerPC 740
11 4 ——PowerPC 750/G3
10 1 —8—PowerPC 7400/G4
gl —@—5Sun SuperSparc I
a —&—Sun UltraSPARC-I
2] —4—Sun UItraSPARC-II_
Sl B —8—Sun UltraSPARC-IIi
51 : —L—a%nplﬂtg%sopoARC-Hl
; 1 www.macinfo.de | HP PA 8200
i HP PA 28500
s @ —#—SGI MIPS R10000
0 } : } } } } } } } : } : . . : ; - |
0 S0 100 1S5S0 200 250 300 350 400 450 S00 S50 600 650 700 750 800 850 <900
MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz

Source URL: http://www.macinfo.de/bench/specmark.html

Sample SPEC{p95 Results

W W W
- N W
PR

L]
o
L

SPECfp95 "

RN NN NN
W e O~ 0w
{ T T v U A T T
.__..v
\
5
Y
b
Lt

Outside of chart:
Alpha 21264/700: 68.1
HP PA-2500/440: 51.4

BASE Scores (not PEAK):
AMD K7

KryoTech Cooling:
Alpha 21164/767

Unreleased:
Alpha 21364/1000: ~120
Sun UltraSPARC IIIf600: ~60

L e S S S S O I N N]
WO =N WA O -] 0W0O =N
F i L e i e T O s i S U

o
»

i[5 ‘hnﬂm e e higher is better

i ——“ O N] : . |www.macinfo.de|

O = N W N O - 0
™
| LN
2 4
by
m]
B
o

0 S0 100 1350 200 250 300 350 400 450 500 350 600 &50 700 750 800 830 900 950 104

—a#—DEC Alpha 21064
—4—DEC Alpha 21164PC
—@—DEC Alpha 21164
——DEC Alpha 21264
—&—Intel Pentium
—&—Intel Pentium MMX
—@—Intel Pentium Pro
———Intel Pentium II
—<——Intel Pentium II Xeon
--0-- Intel P, II Celeron
—a&—Intel Pentium IIIf100
—a——Intel Pentium II1f133
—&—Intel Pentium III Xeon
—&—~AMD K7 Athlon
O PowerPC 603e

—&—PowerPC 604
—4—PowerPC 604e
—@—PowerPC 620
—a&—PowerPC 740
——PowerPC 750/G3
—m—PowerPC 7400/G4
—@—5Sun SuperSPARC I
—#&—Sun UltraSPARC-I
—&—Sun UltraSPARC-II
—#—Sun UltraSPARC-IIi
———Sun UltraSPARC-III

HP PA 8000

HP PA 8200

HP P& 8500
——SGI MIPS R10000

MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MH:z u]

MHz

Source URL: http://www.macinfo.de/bench/specmark.html

SPEC CPU2000 Programs

Benchmark

CINT2000
(Integer)

CFP2000
(Floating
Point)

Source:

164.gzip
175.vpr
176.gcc
181.mcf
186.crafty
197.parser
252.eon
253.perlbmk
254.gap
255.vortex
256.bzip2
300.twolf

168.wupwise
171.swim
172.mgrid
173 appiu
177.mesa
178.galgel
179.art
183.equake
187.facerec
188.ammp
189.lucas
191.fma3d
200.sixtrack
301.apsi

Language Descriptions

OOOO0O0OO0O0O OO0

Fortran 77
Fortran 77
Fortran 77
Fortram 77
C

Fortran 90
C

C

Fortran 90
C

Fortran 90
Fortran 90
Fortran 77
Fortran 77

http://www.spec.org/osg/cpu2000/

Compression

FPGA Circuit Placement and Routing
C Programming Language Compiler
Combinatorial Optimization

Game Playing: Chess

Word Processing

Computer Visualization

PERL Programming Language
Group Theory, Interpreter
Object-oriented Database
Compression

Place and Route Simulator

Physics / Quantum Chromodynamics

Shallow Water Modeling

Multi-grid Solver: 3D Potential Field

Parabotic/ EttipticPartiat Differentiat Equations
3-D Graphics Library

Computational Fluid Dynamics

Image Recognition / Neural Networks

Seismic Wave Propagation Simulation

Image Processing: Face Recognition
Computational Chemistry

Number Theory / Primality Testing
Finite-element Crash Simulation

High Energy Nuclear Physics Accelerator Design
Meteorology: Pollutant Distribution

Top 20 SPEC CPU2000 Results (As of March 2002)
Top 20 SPECint2000

Top 20 SPECfp2000

Source: http://www.aceshardware.com/SPECmine/top.jsp

MHz Processor int peak int base MHz Processor fp peak fpb
1 1300 | POWER4 814 790 1300 POWER4 1169 1098
2| 2200 | Pentium 4 811 790 1000 Alpha 21264C 960 776
3| 2200 | Pentium 4 Xeon 810 788 1050 UltraSPARC-III Cu 827 701

4| 1667 | Athlon XP 724 697 2200 Pentium 4 Xeon 802 779

5] 1000 | Alpha 21264C 679 621 2200 Pentium 4 801 779

6| 1400 | Pentium Il 664 648 833 Alpha 21264B 784 643

7| 1050 | UltraSPARC-III Cu 610 537 800 [tanium 701 701

8| 1533 | Athlon MP 609 587 833 Alpha 21264A 644 571

9 750 PA-RISC 8700 604 568 1667 |Athlon XP 642 596
1D 833 Alpha 21264B 571 497 750 PA-RISC 8700 58[L 526

1L 1400 | Athlon 554 495 1533 Athlon MP 547 504

1P 833 Alpha 21264A 533 511 600 MIPS R14000 529 499
1B 600 MIPS R14000 500 483 675 SPARC64 GP 509 371
14 675 SPARC64 GP 478 449 900 yltraSPARC-I|I 482 427

15 900 UltraSPARC-III 467 438 1400 Athlon 458 426
1p 552 PA-RISC 8600 441 417 1400 Pentium Il 456 437
17 750 POWER RS64-1V 439 409 500 PA-RISC 8600 440 397
18 700 Pentium Ill Xeon 438 431 450 POWERS3-II 433 426
1p 800 ltanium 365 358 500 Alpha 21264 422 383
2D 400 MIPS R12000 353 328 400 MIPS R12000 407 382

CFP2000 (Floating point
component of SPEC CPU2000)

Program

168.wupwise

171.swim
172.mgrid
173.applu
177.mesa
178.galgel
179.art
183.equake
187.facerec
188.ammp
189.lucas
191.fma3d
200.sixtrack
301.apsi

Language What It Is
Fortran 77 Physics / Quantum Chromodynamics
Fortran 77 Shallow Water Modeling
Fortran 77
Fortran 77 Parabolic / Elliptic Differential Equations
C 3-D Graphics Library
Fortran 90 Computational Fluid Dynamics
C Image Recognition / Neural Networks
C Seismic Wave Propagation Simulation
Fortran 90 Image Processing: Face Recognition
C Computational Chemistry
Fortran 90 Number Theory / Primality Testing
Fortran 90 Finite-element Crash Simulation
Fortran 77 High Energy Physics Accelerator Design
Fortran 77 Meteorology: Pollutant Distribution

Multi-grid Solver: 3D Potential Field

SPEC CPU2000 reporting

* Refer SPEC website www.spec.org for
documentation

* Single number result — geometric
mean of normalized ratios for each
code in the suite

* Report precise description of machine

* Report compiler flag setting

Factors Affecting Performance - Data
Bus

* Data bus width determines how much
data can be transferred from memory
to processor in one clock cycle.

* Increasing the data bus width
will increase the quantity of
data which the bus can carry
at any one time.

Factors Affecting Performance - Cache
Memory

* Faster for processor to access data in
cache than main memory;

* Cache is made up from ‘static RAM’

* The internal system bus linking cache

memory and the processor can be up
to 256 bits wide.

Factors Affecting Performance -
Peripheral transfer speed

* All peripherals operate at slower
speed than the processor.

* This can have a major affect on
performance.

* Selecting drives and peripherals with
the fastest transfer rate can improve
system performance.

Factors Affecting Performance - Peripheral

transfer speed

CD Transfer rate

Transfer rate in

Time taken to read

Kilobytes per a 10 Megabyte file
second
52 X 7800 1.31 seconds
32 X 4800 2.13 seconds

The difference between these times may not look much to our
eyes but they are significant in terms of computer performanc

Other Factors

*Increasing clock speed.
*Adding more Main Memory
°Increasing VRAM

*Adding more processors

Computer Performance

Tactic Effect on Performance
Increase clock speed Increase

Increase data bus width | Increase

Increase Cache memory | Increase

Increase Address Bus None

Number of processors |Increase

Increase RAM Slight Increase
Increase VRAM Increase graphics performance

Increase data transfer rate | Increase

More Detalils...

Patterson and Hennesy, TR

CO M p uter O rga N izati on an d A Quantitative Approach
Design (The Hardware, A
Software Interface)

REVISET"PRINTING

COMPUTER
ORGANIZATION
AND DESIGN

THE HARDWARE / SOFTWARE INTERFACE

Patterson and Hennesy,
Computer Architecture; A
Quantitative Approach

More Questions?

