
Abstractions,	Trends	
and	Performance	

Computer	Architecture	View	

Image	from:	h5p://home.deib.polimi.it/mo5ola/		

Designer/Architect	of	Computer	
Systems	
• The	task	is	a	complex	one:	
Determinate	what	a5ributes	are	
important	for	a	new	computer:	
• MAXIMIZE	PERFORMANCE	
• Energy	Eficiency	
• Low	Cost	and	Power	
• Availability	
		

And	the	Role	for	a	Systems	
Engineer?	
•  Take	decisions,	suggest	to	acquire	or	use	new	techology	in	
accordance	with	the	previous	a5ributes	and	requirements.	

Abstraction	
• Abstrac(on	is	a	process	by	which	concepts	
are	derived	from	the	usage	and	
classificaPon	of	literal	("real"	or	
"concrete")	concepts,	first	principles,	or	
other	methods.		

• AbstracPons	may	be	formed	by	reducing	
the	informaPon	content	of	a	concept	or	an	
observable	phenomenon,	typically	to	
retain	only	informaPon	which	is	relevant	
for	a	parPcular	purpose.		

Instruction	Set	Architecture	
(ISA)	

° Co-ordination of levels of abstraction

I/O system Instr. Set Proc.

Compiler
Operating

System

Application

Digital Design
Circuit Design

° Under a set of rapidly changing Forces

Instruction Set
 Architecture

ISA	Levels	

h5p://www.cise.ufl.edu/~mssz/CompOrg/CDAintro.html		

Review:	Levels	of	Representation	

lw 	$15, 	0($2)	
lw 	$16, 	4($2)	
sw	$16, 	0($2)	
sw	$15, 	4($2)	

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signal
Specification

Compiler

Assembler

Machine Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

80X86	Architecture	
•  X86	denotes	a	family	of	ISAs	
based	on	the	Intel®	8086CPU.	

MIPS	Architecture		
• Microprocessor	without	Interlocked	
Pipeline	Stages	is	a	RISC_ISA	computer	
developed	by	MIPS	Technologies,	formerly	
used	in	Embedded	Systems	or	video	game	
consoles	(Sony®	PlayStaPon®)	.	

Some	Aspects	of	ISA	
1.  Class	of	ISA	
2.  Memory	Addressing	
3.  Addresing	Modes	
4.  Types	of	Sizes	of	Operands	
5.  OperaPons	
6.  Control	Flow	InstrucPons	
7.  Encoding	and	ISA	

1.	Class	of	ISA	
• All	ISA	are	classified	as	general-purpose	register	
architecture	(Operands	are	either	registers	or	
memory	locaPons)	
•  80x86	has	a	16	general-purpose	registers	(16	
floaPng-point	data)	

• MIPS	has	32	general-purpose	registers	(32	
floaPng-point	reigisters)	

•  Two	Popular	versions:		
• Register	Memory	ISAs	(80x86)	
•  Load	Store	ISAs	(ARM,	MIPS)	

1.	Class	of	ISA:	An	Example	
MIPS	registers	and	usage	conven(ons	

2.	Memory	Addressing	
• All	desktop	and	servers	computers	use	
byte	addressing	to	access	memory	
operands.	
• Some	architectures	(ARMS,	MIPS)	
require	that	objects	must	be	aligned.	

• 80x86	does	not	require	alignement,	but	
accesses	are	generally	faster	if	operands	
are	aligned	

2.	Memory	Addressing	
Aligned	and	Missalinged	examples	

3.	Addressing	Modes	
•  Addressing	Modes	specify	the	address	of	a	memory	
object,	registers	and	constant	operands.	
•  MIPS:	Register,	Immediate	(Constants),	Displacement.	
•  80x86:	Support	the	previous	three	+	three	variaPons	
of	displacement:		
•  no	register	(absolute)	
•  two	registers	(based	indexed	with	displacement)	
•  two	registers	(based	with	scaled	index	and	displacement)	

•  ARM:	The	three	MIPS	registers	+	PC-RelaPve	
addressing,	the	sum	of	two	registers	and	the	sum	of	
two	registers	mulPplied	by	the	size	of	the	operand	in	
bytes.			

3.	Addressing	Modes	:	An	Example	

4.	Types	and	Sizes	of	Operands	
• 8-bit	(ASCII	character)	
• 16-bit	(Unicode	Character	or	half	word)	
• 32-bit	(Integer	or	word)	
• 64-bit	(Double	word	or	long	integer)	
• IEE	754	FloaPng	Point	in	32-bit	(Single	
Precision)	and	64-bit	(Double	precision)	

• 80-bit	FloaPng	Point	(Extended	Double	
Precision	Only	for	80x86)	

5.	Operations	
•  Data	Transfer	

•  Moves	data	between	registers	and	memory,	or	
between	the	integer	and	special	registers.	

•  ArithmePc	Logical	
•  OperaPons	on	Integer	or	Logical	data	in	GPRs	(General	
Purpose	Registers)		

•  Control	
•  CondiPonal	branches	and	jumps	

•  FloaPng	Point	
•  FloaPng	Point	OperaPons	on	Double	Precision	and	
Single	Precisions	Formats	

5.	Operations:		
Subset	of	the	Instructions	in	MIPS64	

6.	Control	Flow	Instructions	

• CondiPonal	Branches	
• UncondiPonal	Jumps	
• Procedure	Calls		
• Returns	

7.	Encoding	an	ISA	
•  Fixed	Length	

•  ARM	and	MIPS	(32-bits	long)	

• Variable	Length	
•  80x86	(Ranking	from	1	to	18	bytes)	

•  I.E.	MIPS	instrucPon	encoding	formats:	
–  R-type	(6-bit	opcode,	5-bit	rs,	5-bit	rt,	5-bit	rd,	5-bit	shamt,	6-bit	funcPon	code)	

–  I-type	(6-bit	opcode,	5-bit	rs,	5-bit	rt,	16-bit	immediate)	

–  J-type	(6-bit	opcode,	26-bit	pseudo-direct	address)	

Designing	and	Organization	
•  ImplementaPon	of	a	computer	has	two	
components:	organizaPon	and	hardware.	
• OrganizaPon:	High	level	aspects	(memory	
system,	memory	interconecPon,	design	of	the	
CPU)	
•  Microarchitecture	

•  Example:	two	processors	with	the	same	ISA	but	different	
organizaPon	are	AMD	Opteron	adn	Intel	Core	i7.	

• Hardware:	Specifics	of	a	Computer	(Detailed	
logic	design	and	the	packaging	technology	of	
the	computer)	

Summary	of	Some	Functional	
Requerimients	an	Architect	Faces	

From	Hennesy	and	Pa5erson	

Trends	in	Technology	
•  Integrated	Circuit	Logic	Technology	

•  Transistor	density	increases	by	about	35%/
year,	quadrupling	somewhat	over	four	years	
(Moore’s	Law)	

•  Semiconductor	DRAM		

Trends	in	Technology	
•  Semiconductor	Flash	

•  Electrically	erasable	programmable	read-only	
memory	(Flash	Memory)	

• MagnePc	Disk	Technology	
• Disks	are	15	to	25	Pmes	cheaper	per	bit	than	
flash.	

• Network	Technology	
• Network	performance	depends	both	on	the	
performance	of	switches	and	on	the	
performance	of	the	transmission	system.	

Performance	Trends:		
Bandwidth	over	Latency	

Performance	Trends	
Power	and	Energy	

Programming Environment

 Middleware

 Interconnection Network / Devices

PC/Workstation/Cluster/Devices/Sensors

Network Interface Hardware

Communications

Software

 Applications

5%	 25%	 N/A	50%	1%	

S. O.

 Applications
 Applications

Storage	

VizualisaPon	
Processing	

RAM	

EssenPal	Hardware	

FANS,	COOLERS	

Sound	Cards	

LighPng	

Webcams	

The	distribu(on	of	the	energy	consumed	in	the	processor	components.	

From	Nikolaos		Kroupis	,	Dimitrios		Soudris,	FILESPPA:	Fast	Instruc(on	Level	Embedded	System	Power	and	Performance	Analyzer	

Microprocessors	and	Microsystems	Volume	35,	Issue	3	2011	329	-	342	

Performance	Trends	
Power	and	Energy	

Performance	Trends	
Power	and	Energy:		
Techniques	to	improve	energy	efYiciency		
	
1.  Do	nothing	well:	Turn	off	the	clock	of	

inacPve	modules	to	save	energy	and	
dynamic	power.	

2.  Dynamic	Voltage-Frequency	Scaling	
(DVFS)	

3.  Design	for	Typical	Case	(Scheduling	of	
AcPvity)	

4.  Overclocking	(Turbo	Mode)		

Trends	in	Cost	
•  Impact	of	Time,	Volume	and	CommodiPzaPon	

•  Learning	Curve	
• Manufacturing	Costs	
•  Transport	
• Market	(Cost	vs	Price)	
• OperaPon	Costs	
• Dependability	

•  Service	Level	Agreements	(Infrastructure)	
•  Service	Level	Objects	(Networking,	Power)	

Performance	
• A	Computer	System	exists	to	IMPROVE	
PERFORMANCE	
• High	Speed	
• Data	Treatment	
• Availability	
• Capacity	
• Low	Latency	
• High	Bandwdith	

Measuring	Performance	

• In	order	to	compare	how	fast	
computers	can	process	data,	we	have	
to	measure	their	performance.	

• There	are	a	number	of	measurements	
of	performance.	

• Clock	speed,	MIPS,	FLOPS	&	
Benchmark	tests	are	all	used.		Some	
are	a	be5er	measure	than	others.	

Metrics	of	Computer	Performance	

Compiler

Programming
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units
Cycles per second (clock rate).

Megabytes per second.

Execution time: Target workload,
SPEC95, etc.

Each metric has a purpose, and each can be misused.

(millions) of Instructions per second – MIPS
(millions) of (F.P.) operations per second – MFLOP/s

Computer	Performance	
•  Response	Time	(elapsed	.me,	latency):	

•  how	long	does	it	take	for	my	job	to	run?	

•  how	long	does	it	take	to	execute	(start	to	
				finish)	my	job?	

•  how	long	must	I	wait	for	the	database	query?	

•  Throughput:	
•  how	many	jobs	can	the	machine	run	at	once?	

•  what	is	the	average	execuPon	rate?	
•  how	much	work	is	gevng	done?	

•  If we upgrade a machine with a new processor what do we increase?

•  If we add a new machine to the lab what do we increase?

Individual	user	
concerns…	

Systems	manager	
concerns…	

Execution	Time	
•  Elapsed	Time	

•  counts	everything	(disk	and	memory	accesses,	wai.ng	for	I/O,	
running	other	programs,	etc.)	from	start	to	finish	

•  a	useful	number,	but	oxen	not	good	for	comparison	purposes
 elapsed time = CPU time + wait time (I/O, other programs, etc.)

	 	 		
•  CPU	.me	

•  doesn't	count	waiPng	for	I/O	or	Pme	spent	running	other	programs	
•  can	be	divided	into	user	CPU	.me	and	system	CPU	.me	(OS	calls)	

 CPU time = user CPU time + system CPU time
 ⇒ elapsed time = user CPU time + system CPU time + wait time

•  Our	focus:	user	CPU	.me	(CPU	execu.on	.me	or,	simply,	
execu.on	.me)	
•  Pme	spent	execuPng	the	lines	of	code	that	are	in	our	program	

DeYinition	of	Performance	

• For	some	program	running	on	machine	X:		
	

	PerformanceX = 1 / Execution timeX

	
• X	is	n	.mes	faster	than	Y	means:	
	

	PerformanceX / PerformanceY = n
	
	

Clock	Cycles	
•  Instead	of	reporPng	execuPon	Pme	in	seconds,	we	oxen	use	cycles.	
In	modern	computers	hardware	events	progress	cycle	by	cycle:	in	
other	words,	each	event,	e.g.,	mulPplicaPon,	addiPon,	etc.,	is	a	
sequence	of	cycles	
	
	

•  Clock	.cks	indicate	start	and	end	of	cycles:	
	
	
	

•  cycle	.me	=	Pme	between	Pcks	=	seconds	per	cycle	
•  clock	rate	(frequency)	=	cycles	per	second		(1	Hz.	=	1	cycle/sec,	1	
MHz.	=	106	cycles/sec)	

•  Example:	A	200	Mhz.	clock	has	a																																																						cycle	
Pme		

time

seconds
program

=
cycles
program

×
seconds
cycle

1

200 ×106
×109 = 5 nanoseconds

cycle

tic
k

tic
k

Clock	Speed	
• The	clock	signal	is	carried	by	one	of	the	
lines	on	the	control	bus.	

• One	single	pulse	is	called	a	‘clock	
cycle’.	

• Measured	in	Megahertz	(MHz)	&	
Gigahertz	(GHz).		1	MHz	=	1	million	
pulses	per	second.		1	GHZ	=	1000	MHz.	

Processor	Clock	Speed	

• CPU	clock	speeds	are	compared	at	
h5p://www.cpubenchmark.net/
common_cpus.html	

Performance	Equation	I	

•  So,	to	improve	performance	one	can	either:	
•  reduce	the	number	of	cycles	for	a	program,	or	
•  reduce	the	clock	cycle	Pme,	or,	equivalently,	
•  increase	the	clock	rate	

seconds
program

=
cycles
program

×
seconds
cycle

CPU execution time CPU clock cycles Clock cycle time
for a program for a program = ×	

equivalently	

How	many	cycles	are	required	for	
a	program?	

•  Could	assume	that	#	of	cycles	=	#	of	instrucPons	

time 1s
t i

ns
tru

ct
io

n

2n
d

in
st

ru
ct

io
n

3r
d

in
st

ru
ct

io
n

4t
h

5t
h

6t
h ...

n 	This	assump.on	is	incorrect!	Because:	
n 	Different	instrucPons	take	different	amounts	of	Pme	(cycles)	
n 	Why…?	

How	many	cycles	are	required	for	a	
program?	

	
•  MulPplicaPon	takes	more	Pme	than	addiPon	
•  FloaPng	point	operaPons	take	longer	than	integer	ones	
•  Accessing	memory	takes	more	Pme	than	accessing	registers	
•  Important	point:	changing	the	cycle	Pme	oxen	changes	the	number	
of	cycles	required	for	various	instrucPons	because	it	means	changing	
the	hardware	design.	More	later…	

time

Example	
•  Our	favorite	program	runs	in	10	seconds	on	computer	A,	
which	has	a	400Mhz.	clock.	

• We	are	trying	to	help	a	computer	designer	build	a	new	
machine	B,	that	will	run	this	program	in	6	seconds.		The	
designer	can	use	new	(or	perhaps	more	expensive)	
technology	to	substanPally	increase	the	clock	rate,	but	
has	informed	us	that	this	increase	will	affect	the	rest	of	
the	CPU	design,	causing	machine	B	to	require	1.2	Pmes	
as	many	clock	cycles	as	machine	A	for	the	same	program.

•  What clock rate should we tell the designer to target?

Terminology	
•  A	given	program	will	require:	

•  some	number	of	instrucPons	(machine	instrucPons)	

•  some	number	of	cycles	

•  some	number	of	seconds	

•  We	have	a	vocabulary	that	relates	these	quanPPes:	

•  cycle	.me	(seconds	per	cycle)	

•  clock	rate	(cycles	per	second)	

•  (average)	CPI	(cycles	per	instrucPon)														
•  a	floaPng	point	intensive	applicaPon	might	have	a	higher	average	CPI	

•  MIPS	(millions	of	instrucPons	per	second)	

•  this	would	be	higher	for	a	program	using	simple	instrucPons	

Performance	Measure	
•  Performance	is	determined	by	execu.on	.me	
	
•  Do	any	of	these	other	variables	equal	performance?	

•  #	of	cycles	to	execute	program?	
•  #	of	instrucPons	in	program?	
•  #	of	cycles	per	second?	
•  average	#	of	cycles	per	instrucPon?	
•  average	#	of	instrucPons	per	second?	
	

•  Common	piKall	:	thinking	one	of	the	variables	is	indicaPve	of	
performance	when	it	really	isn’t	

Performance	Equation	II	
CPU execution time Instruction count average CPI Clock cycle

time
for a program for a program

•  Derive the above equation from Performance Equation I

=
×	 ×	

Other	Ways	to	Understand	
Computer	Performance	

Computer	Performance	Evaluation:	
Cycles	Per	Instruction	(CPI)	

•  Most	computers	run	synchronously	uPlizing	a	CPU	clock	
running	at	a	constant	clock	rate:	

																	where:					Clock	rate		=		1	/	clock	cycle	
	

•  A	computer	machine	instrucPon	is	comprised	of	a	number	of	
elementary	or	micro	operaPons	which	vary	in	number	and	
complexity	depending	on	the	instrucPon	and	the	exact	CPU	
organizaPon	and	implementaPon.	
•  A	micro	operaPon	is	an	elementary	hardware	operaPon	that	can	be	
performed	during	one	clock	cycle.	

•  This	corresponds	to	one	micro-instrucPon	in	microprogrammed	CPUs.	
•  Examples:		register	operaPons:	shix,	load,	clear,	increment,	ALU	
operaPons:	add	,	subtract,	etc.	

	

•  Thus	a	single	machine	instrucPon	may	take	one	or	more	
cycles	to	complete	termed	as	the	Cycles	Per	InstrucPon	(CPI).	

Computer	Performance	Measures:						Program	
Execution	Time	

•  For	a	specific	program	compiled	to	run	on	a	specific	
machine	“A”,	the	following	parameters	are	provided:		

	

•  The	total	instrucPon	count	of	the	program.	
•  The	average	number	of	cycles	per	instrucPon	(average	CPI).	
•  Clock	cycle	of	machine	“A”	

•  How	can	one	measure	the	performance	of	this	machine	running	this	
program?	
•  IntuiPvely	the	machine	is	said	to	be	faster	or	has	be5er	
performance	running	this	program	if	the	total	execuPon	Pme	is	
shorter.		

•  Thus	the	inverse	of	the	total	measured	program	execuPon	Pme	is		
a	possible	performance	measure	or	metric:	

																	PerformanceA		=			1		/			ExecuPon	TimeA	
	

How	to	compare	performance	of	different	machines?	
What	factors	affect	performance?		How	to	improve	performance?	

Comparing	Computer	Performance	Using	Execution	Time	
•  To	compare	the	performance	of	two	machines	“A”,	“B”	running	a	
given	program:	
	 	 	PerformanceA		=			1		/			ExecuPon	TimeA	
	 	 	PerformanceB		=			1		/			ExecuPon	TimeB	

	

•  Machine	A	is		n	Pmes	faster	than	machine	B	means:	
				n	=	PerformanceA	/		PerformanceB			=		ExecuPon	TimeB		/		ExecuPon	
TimeA	

	

•  Example:			
						For	a	given	program:	

			ExecuPon	Pme	on	machine	A:				ExecuPonA	=		1		second	
			ExecuPon	Pme	on	machine	B:			ExecuPonB	=		10		seconds	
			PerformanceA	/		PerformanceB			=		ExecuPon	TimeB		/		ExecuPon	
TimeA	

																																																																																				=		10	/	1	=	10	
	

The	performance	of	machine	A		is	10	Pmes	the	performance	of				
machine	B	when	running	this	program,	or:		Machine	A	is	said	to	be	10		
Pmes	faster	than	machine	B	when	running	this	program.		

CPU	Execution	Time:	The	CPU	Equation	
•  A	program	is	comprised	of	a	number	of	instrucPons,		I	

•  Measured	in: 	instrucPons/program	
	

•  The	average	instrucPon	takes	a	number	of	cycles	per	
instrucPon	(CPI)	to	be	completed.				
•  Measured	in:				cycles/instrucPon,		CPI	

•  CPU	has	a	fixed	clock	cycle	Pme		C		=	1/clock	rate		
•  Measured	in: 		seconds/cycle		

•  CPU	execuPon	Pme	is	the	product	of	the	above	three	
parameters	as	follows:	

	

CPU time = Seconds = Instructions x Cycles x Seconds
 Program Program Instruction Cycle

T			=																					I			x						CPI				x					C	

CPU	Execution	Time	
For	a	given	program	and	machine:	
	

CPI	=		Total	program	execuPon	cycles	/	InstrucPons	count	
	

→												CPU	clock	cycles		=			InstrucPon	count		x		CPI	
	

CPU	execuPon	Pme		=	
	
																 			=		CPU	clock	cycles			x			Clock	cycle	
																								 			=	InstrucPon	count			x			CPI			x		Clock	cycle	
																								=														I																			x		CPI			x							C	

CPU	Execution	Time:	Example	
•  A	Program	is	running	on	a	specific	machine	with	the	following	
parameters:	
•  Total	instrucPon	count:					10,000,000		instrucPons	
•  Average	CPI	for	the	program:			2.5		cycles/instrucPon.	
•  CPU	clock	rate:		200	MHz.	

•  What	is	the	execuPon	Pme	for	this	program:	

	
	

CPU	Pme	=		InstrucPon	count		x		CPI		x		Clock	cycle	
																		=					10,000,000										x			2.5		x			1	/	clock	rate		
																		=					10,000,000										x			2.5		x				5x10-9	
																										=					.125		seconds		
	

CPU time = Seconds = Instructions x Cycles x Seconds
 Program Program Instruction Cycle

Aspects	of	CPU	Performance	

	 	instr.	count 	CPI 	clock	rate	

Program	

	

Compiler	

	

Instr.	Set	Arch.	

	

OrganizaPon	

	

Technology	

CPU time = Seconds = Instructions x Cycles x Seconds
 Program Program Instruction Cycle

Aspects	of	CPU	Performance	

	 	instr	count 	CPI 	clock	rate	

Program 											X 				(x)	

	

Compiler 											X 				(x)	

	

Instr.	Set. 											X 					X	

	

OrganizaPon 	 					X 	 			X	

	

Technology 	 	 	 				X	

CPU time = Seconds = Instructions x Cycles x Seconds
 Program Program Instruction Cycle

Aspects	of	CPU	Execution	Time	
CPU	Time	=	InstrucPon	count		x		CPI			x		Clock	cycle		

InstrucPon	Count				I	

Clock	
Cycle	
			C	

		CPI	
Depends	on:	
	

CPU	OrganizaPon	
Technology	

Depends	on:	
	

Program	Used	
	

Compiler	
ISA	
CPU	OrganizaPon	

Depends	on:	
	
	

Program	Used	
Compiler	
ISA	

CPU	Execution	Time:	Example	
•  A	Program	is	running	on	a	specific	machine	with	the	following	
parameters:	
•  Total	instrucPon	count:					10,000,000		instrucPons	
•  Average	CPI	for	the	program:			2.5		cycles/instrucPon.	
•  CPU	clock	rate:		200	MHz.	

•  What	is	the	execuPon	Pme	for	this	program:	

	
	

CPU	Pme	=		InstrucPon	count		x		CPI		x		Clock	cycle	
																		=					10,000,000										x			2.5		x			1	/	clock	rate		
																		=					10,000,000										x			2.5		x				5x10-9	
																										=					.125		seconds		
	

CPU time = Seconds = Instructions x Cycles x Seconds
 Program Program Instruction Cycle

Performance	Comparison:	Example	
•  From	the	previous	example:		A	Program	is	running	on	a	specific	machine	
with	the	following	parameters:	
•  Total	instrucPon	count:					10,000,000	instrucPons	
•  Average	CPI	for	the	program:			2.5		cycles/instrucPon.	
•  CPU	clock	rate:		200	MHz.	

•  Using	the	same	program	with	these	changes:		
•  A	new	compiler	used:		New	instrucPon	count	9,500,000	
																																											New	CPI:		3.0	
•  Faster	CPU	implementaPon:		New	clock	rate	=	300	MHZ	

•  What	is	the	speedup	with	the	changes?	
	

	
	

Speedup		=					(10,000,000		x			2.5		x		5x10-9)	/	(9,500,000		x	3		x		3.33x10-9)	
																										=					.125	/		.095	=	1.32	
															or	32	%	faster	axer	changes.	
	

Speedup = Old Execution Time = Iold x CPIold x Clock cycleold
 New Execution Time Inew x CPInew x Clock Cyclenew

Organizational	Trade-offs	

Compiler

Programming
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

Instruction Mix

Cycle Time

CPI

CPI	

Invest	Resources	where	Pme	is	Spent!	

CPU time = ClockCycleTime * Σ CPI * I
i = 1

n

i i

CPI = Σ CPI * F where F = I
i = 1

n

i i i i

Instruction Count

"instruction frequency"

CPI = (CPU Time * Clock Rate) / Instruction Count
= Clock Cycles / Instruction Count

“Average cycles per instruction”

CPI	Example	I	
•  Suppose	we	have	two	implementaPons	of	the	
same	instrucPon	set	architecture	(ISA).		For	
some	program:	
•  machine	A	has	a	clock	cycle	Pme	of	10	ns.	and	a	CPI	of	
2.0	

•  machine	B	has	a	clock	cycle	Pme	of	20	ns.	and	a	CPI	of	
1.2		

	
• Which machine is faster for this program, and by

how much?
•  If two machines have the same ISA, which of our

quantities (e.g., clock rate, CPI, execution time, #
of instructions, MIPS) will always be identical?

CPI	Example	II	
•  A	compiler	designer	is	trying	to	decide	between	two	
code	sequences	for	a	parPcular	machine.	

•  Based	on	the	hardware	implementaPon,	there	are	three	
different	classes	of	instrucPons:		Class	A,	Class	B,	and	
Class	C,	and	they	require	1,	2	and	3	cycles	(respecPvely).			

•  The	first	code	sequence	has	5	instrucPons:			
					2	of	A,	1	of	B,	and	2	of	C	
The	second	sequence	has	6	instrucPons:			

					4	of	A,	1	of	B,	and	1	of	C.	
	
•  Which sequence will be faster? How much? What is the

CPI for each sequence?

MIPS	
• Stands	for	Millions	of	
InstrucPons	per	
second.	

• Is	a	measure	of	how	
many	machine	code	
instrucPons	a	
processor	execute	per	
second.	

	

Computer	Performance	Measures	:		
MIPS	(Million	Instructions	Per	Second)		
•  For	a	specific	program	running	on	a	specific	computer	MIPS	is															a	
measure	of	how	many	millions	of	instrucPons	are	executed	per	second:	

		MIPS		=		InstrucPon	count		/		(ExecuPon	Time	x	106)	
														=		InstrucPon	count		/		(CPU	clocks	x	Cycle	Pme	x	106)	
														=		(InstrucPon	count		x		Clock	rate)		/		(InstrucPon	count		x		CPI	x	106)		
														=			Clock	rate		/		(CPI	x	106)	
•  Faster	execuPon	Pme	usually	means	faster	MIPS	raPng.	
•  Problems	with	MIPS	raPng:	

•  No	account	for	the	instrucPon	set	used.	
•  Program-dependent:	A	single	machine	does	not	have	a	single	MIPS	raPng	
since	the	MIPS	raPng	may	depend	on	the	program	used.	

•  Easy	to	abuse:		Program	used	to	get	the	MIPS	raPng	is	oxen	omi5ed.	
•  Cannot	be	used	to	compare	computers	with	different	instrucPon	sets.	
•  A	higher	MIPS	raPng	in	some	cases	may	not	mean	higher	performance	or	
be5er	execuPon	Pme.		i.e.	due	to	compiler	design	variaPons.	

MIPS	Example	
•  Two	different	compilers	are	being	tested	for	a	500	MHz.	
machine	with	three	different	classes	of	instrucPons:		
Class	A,	Class	B,	and	Class	C,	which	require	1,	2	and	3	
cycles	(respecPvely).		Both	compilers	are	used	to	
produce	code	for	a	large	piece	of	soxware.	

•  Compiler	1	generates	code	with	5	billion	Class	A	
instrucPons,	1	billion	Class	B	instrucPons,	and	1	billion	
Class	C	instrucPons.	

•  Compiler	2	generates	code	with	10	billion	Class	A	
instrucPons,	1	billion	Class	B	instrucPons,	and	1	billion	
Class	C	instrucPons.	

	
•  Which sequence will be faster according to MIPS?
•  Which sequence will be faster according to execution

time?

FLOPS	
• Stands	for	‘FloaPng	
Point	OperaPons	Per	
Second.	

• Seen	as	a	reliable	
indicator	of	
performance.	

•  It’s	a	measure	of	the	
arithmePcal	calculaPng	
speed	of	a	computer.	

Computer	Performance	Measures	:		
MFOLPS	(Million	FLOating-Point	Operations	Per	Second)	

•  A	floaPng-point	operaPon	is	an	addiPon,	subtracPon,	mulPplicaPon,	or	
division	operaPon	applied	to	numbers	represented	by	a	single	or			a	
double	precision	floaPng-point	representaPon.	

•  MFLOPS,	for	a	specific	program	running	on	a	specific	computer,	is		a	
measure	of	millions	of	floaPng	point-operaPon	(megaflops)	per	second:	

	

		MFLOPS	=	Number	of	floaPng-point	operaPons		/		(ExecuPon	Pme		x	106)	
	

•  MFLOPS	is	a	be5er	comparison	measure	between	different	machines	
than	MIPS.	

•  Program-dependent:			Different	programs	have	different	percentages	of	
floaPng-point	operaPons	present.			i.e	compilers	have	no	floaPng-	point	
operaPons	and	yield	a	MFLOPS	raPng	of	zero.	

•  Dependent	on	the	type	of	floaPng-point	operaPons	present	in	the	
program.	

Performance	Enhancement	Calculations:	
	Amdahl's	Law	
•  The	performance	enhancement	possible	due	to	a	given	design	
improvement	is	limited	by	the	amount	that	the	improved	feature	is	used		

•  Amdahl’s	Law:	
Performance	improvement	or	speedup	due	to	enhancement	E:	

 Execution Time without E Performance with E
 Speedup(E) = -------------------------------------- = ---------------------------------
 Execution Time with E Performance without E

•  Suppose	that	enhancement	E	accelerates	a	fracPon	F	of	the	execuPon	
Pme		by	a	factor	S	and	the	remainder	of	the	Pme	is	unaffected	then:	

 Execution Time with E = ((1-F) + F/S) X Execution Time without E
Hence speedup is given by:

 Execution Time without E 1
Speedup(E) = --- = --------------------
 ((1 - F) + F/S) X Execution Time without E (1 - F) + F/S

Pictorial	Depiction	of	Amdahl’s	
Law		

Before:
Execution Time without enhancement E:

Unaffected,	fracPon:	(1-	F)	

After:
Execution Time with enhancement E:

Enhancement E accelerates fraction F of execution time by a factor of S

Affected	fracPon:	F	

Unaffected,	fracPon:	(1-	F)	 F/S	

Unchanged	

 Execution Time without enhancement E 1
Speedup(E) = -- = ------------------
 Execution Time with enhancement E (1 - F) + F/S

Performance	Enhancement	
Example	

•  For	the	RISC	machine	with	the	following	instrucPon	mix	given	earlier:
Op Freq Cycles CPI(i) % Time
ALU 50% 1 .5 23%
Load 20% 5 1.0 45%
Store 10% 3 .3 14%

 Branch 20% 2 .4 18%
•  If	a	CPU	design	enhancement	improves	the	CPI	of	load	instrucPons	from	5	
to	2,		what	is	the	resulPng	performance	improvement	from	this	
enhancement:	

	

FracPon	enhanced	=		F	=		45%		or		.45	
Unaffected	fracPon	=	100%	-	45%	=		55%			or		.55	
Factor	of	enhancement	=		5/2	=		2.5	
Using	Amdahl’s	Law:	
 1 1
Speedup(E) = ------------------ = --------------------- = 1.37
 (1 - F) + F/S .55 + .45/2.5	

CPI	=	2.2	

An	Alternative	Solution	Using	CPU	Equation	
Op Freq Cycles CPI(i) % Time
ALU 50% 1 .5 23%
Load 20% 5 1.0 45%
Store 10% 3 .3 14%

 Branch 20% 2 .4 18%
•  If	a	CPU	design	enhancement	improves	the	CPI	of	load	instrucPons	from	5	
to	2,		what	is	the	resulPng	performance	improvement	from	this	
enhancement:	

	

Old	CPI	=	2.2	
New	CPI	=		.5	x	1	+	.2	x	2	+		.1	x	3	+	.2	x	2		=		1.6	
	

 Original Execution Time Instruction count x old CPI x clock cycle
Speedup(E) = ----------------------------------- = --
 New Execution Time Instruction count x new CPI x clock cycle

	

 old CPI 2.2
 = ------------ = --------- = 1.37

 new CPI 1.6

Which is the same speedup obtained from Amdahl’s Law in the first solution.
	

CPI	=	2.2	

Performance	Enhancement	
Example	

•  A	program	runs	in	100	seconds	on	a	machine	with	mulPply	operaPons	
responsible	for	80	seconds	of	this	Pme.				By	how	much	must	the	speed	
of	mulPplicaPon	be	improved	to	make	the	program	four	Pmes	faster?	

																																									 100
 Desired speedup = 4 = ---
 Execution Time with enhancement

→ Execution time with enhancement = 25 seconds

 25 seconds = (100 - 80 seconds) + 80 seconds / n
 25 seconds = 20 seconds + 80 seconds / n

→ 5 = 80 seconds / n

→ n = 80/5 = 16

			Hence	mulPplicaPon	should	be	16	Pmes	faster	to	get	a	speedup	of	4.	

Performance	Enhancement	
Example	

•  For	the	previous	example	with	a	program	running	in	100	seconds	on	
a	machine	with	mulPply	operaPons	responsible	for	80	seconds	of	this	
Pme.				By	how	much	must	the	speed	of	mulPplicaPon	be	improved	
to	make	the	program	five	Pmes	faster?	

																																									 100
Desired speedup = 5 = ---
 Execution Time with enhancement

→ Execution time with enhancement = 20 seconds

 20 seconds = (100 - 80 seconds) + 80 seconds / n
 20 seconds = 20 seconds + 80 seconds / n

→ 0 = 80 seconds / n

					No	amount	of	mulPplicaPon	speed	improvement	can	achieve	this.	

Extending	Amdahl's	Law	To	Multiple	Enhancements	

•  Suppose	that	enhancement		Ei		accelerates	a	fracPon		Fi		of	the	
execuPon	Pme		by	a	factor		Si		and	the	remainder	of	the	Pme	is	
unaffected	then:	

∑ ∑+−
=

i i
i

i
i X

S
FF

Speedup
Time Execution Original)1

Time Execution Original

)((

∑ ∑+−
=

i i
i

i
i S

FF
Speedup

)()1

1

(

Note: All fractions refer to original execution time.

Amdahl's	Law	With	Multiple	Enhancements:	
Example	

•  Three	CPU	performance	enhancements	are	proposed	with	the	following	
speedups	and	percentage	of	the	code	execuPon	Pme	affected:	

																Speedup1	=	S1	=		10	Percentage1	=	F1		=		20%	
																Speedup2	=	S2	=		15	Percentage1	=	F2		=		15%	
																Speedup3	=	S3	=		30	Percentage1	=	F3		=		10%		

													

•  While	all	three	enhancements	are	in	place	in	the	new	design,		each	
enhancement	affects	a	different	porPon	of	the	code	and	only	one	
enhancement	can	be	used	at	a	Pme.	

•  What	is	the	resulPng	overall	speedup?	

•  Speedup	=		1	/		[(1	-	.2	-	.15		-	.1)			+			.2/10			+		.15/15		+		.1/30)]	
	 					=			1	/		[.55																	+										.0333]			
	 							=	1	/		.5833		=				1.71	

∑ ∑+−
=

i i
i

i
i S

FF
Speedup

)()1

1

(

Pictorial	Depiction	of	Example		
Before:
Execution Time with no enhancements: 1

After:
Execution Time with enhancements: .55 + .02 + .01 + .00333 = .5833

Speedup = 1 / .5833 = 1.71

Note: All fractions refer to original execution time.

Unaffected,	fracPon:		.55	

Unchanged	

Unaffected,	fracPon:			.55	 F1	=	.2		 F2	=	.15		 F3	=	.1		

S1	=		10	 S2	=		15	 S3	=		30	

/	10	 /	30	/	15	

Benchmarks	
•  Performance	best	determined	by	running	a	real	applicaPon	

•  use	programs	typical	of	expected	workload	
•  or,	typical	of	expected	class	of	applicaPons	

	e.g.,	compilers/editors,	scienPfic	applicaPons,	graphics,	etc.	
	

•  Small	benchmarks	
•  nice	for	architects	and	designers	
•  easy	to	standardize	
•  can	be	abused!	
	

•  Benchmark	suites	
•  Perfect	Club:	set	of	applicaPon	codes	
•  Livermore	Loops:	24	loop	kernels	
•  Linpack:	linear	algebra	package	
•  SPEC:	mix	of	code	from	industry	organizaPon	

Benchmark	Tests	

• Benchmark	tests	simply	Pme	how	
long	a	computer	system	takes	to	
complete	a	standard	set	of	
applicaPon	based	tasks	i.e.	
reformavng	a	100	page	‘Word’	
document.	

• h5p://www.passmark.com/	is	one	
make	of	benchmark	test	soxware.	

Choosing	Programs	To	Evaluate	Performance	
Levels	of	programs	or	benchmarks	that	could	be	used	to	evaluate		
performance:	

•  Actual	Target	Workload:		Full	applicaPons	that	run	on	the	target	machine.		
	

•  Real	Full	Program-based	Benchmarks:		
•  Select	a	specific	mix	or	suite	of	programs	that	are	typical	of	targeted	
applicaPons	or	workload	(e.g	SPEC95,		SPEC	CPU2000).	

	
•  Small	“Kernel”	Benchmarks:			

•  Key	computaPonally-intensive	pieces	extracted	from	real	programs.	
•  Examples:	Matrix	factorizaPon,	FFT,	tree	search,	etc.	

•  Best	used	to	test	specific	aspects	of	the	machine.	
	
	

•  Microbenchmarks:	
•  Small,	specially	wri5en	programs	to	isolate	a	specific	aspect		of	
performance	characterisPcs:		Processing:		integer,	floaPng	point,		local	
memory,	input/output,	etc.	

Actual Target Workload

Full Application Benchmarks

Small “Kernel”
Benchmarks

Microbenchmarks

Pros Cons

•  Representative
•  Very specific.
•  Non-portable.
•  Complex: Difficult
 to run, or measure.

•  Portable.
•  Widely used.
•  Measurements
 useful in reality.

•  Easy to run, early in
the design cycle.

•  Identify peak
performance and
potential bottlenecks.

•  Less representative
 than actual workload.

•  Easy to “fool” by
designing hardware
to run them well.

•  Peak performance
results may be a long
way from real application
performance

Types	of	Benchmarks	

SPEC	(System	Performance	
Evaluation	Corporation)	
•  Sponsored	by	industry	but	independent	and	self-
managed	–	trusted	by	code	developers	and	
machine	vendors	

• Clear	guides	for	tesPng,	see	www.spec.org		
• Regular	updates	(benchmarks	are	dropped	and	
new	ones	added	periodically	according	to	
relevance)	

•  Specialized	benchmarks	for	parPcular	classes	of	
applicaPons	

• Can	sPll	be	abused…,	by	selecPve	opPmizaPon!	
	
	

SPEC	History	
•  First	Round:	SPEC	CPU89	

•  10	programs	yielding	a	single	number	
•  Second	Round:	SPEC	CPU92	

•  SPEC	CINT92	(6	integer	programs)	and	SPEC	CFP92	(14	floaPng	point	
programs)	

•  compiler	flags	can	be	set	differently	for	different	programs	
•  Third	Round:	SPEC	CPU95	

•  new	set	of	programs:	SPEC	CINT95	(8	integer	programs)	and	SPEC	CFP95	
(10	floaPng	point)		

•  single	flag	sevng	for	all	programs	
•  Fourth	Round:	SPEC	CPU2000	

•  new	set	of	programs:		SPEC	CINT2000	(12	integer	programs)	and	SPEC	
CFP2000	(14	floaPng	point)		

•  single	flag	sevng	for	all	programs	
•  programs	in	C,	C++,	Fortran	77,	and	Fortran	90	

CINT2000	(Integer	component	of	
SPEC	CPU2000)	
Program											Language 	What	It	Is	
164.gzip	 															C 	 	Compression	
175.vpr 	 	C 	 	FPGA	Circuit	Placement	and	RouPng	
176.gcc 	 	C 	 	C	Programming	Language	Compiler	
181.mcf 	 	C 	 	Combinatorial	OpPmizaPon	
186.craxy	 	C 	 	Game	Playing:	Chess	
197.parser 	C 	 	Word	Processing	
252.eon 	 	C++ 	 	Computer	VisualizaPon	
253.perlbmk 	C 	 	PERL	Programming	Language	
254.gap 	 	C 		 	Group	Theory,	Interpreter	
255.vortex 	C 	 	Object-oriented	Database	
256.bzip2 															C 	 	Compression	
300.twolf															C 	 	Place	and	Route	Simulator	

SPEC95	Programs	
Benchmark Description
go Artificial intelligence; plays the game of Go
m88ksim Motorola 88k chip simulator; runs test program
gcc The Gnu C compiler generating SPARC code
compress Compresses and decompresses file in memory
li Lisp interpreter
ijpeg Graphic compression and decompression
perl Manipulates strings and prime numbers in the special-purpose programming language Perl
vortex A database program
tomcatv A mesh generation program
swim Shallow water model with 513 x 513 grid
su2cor quantum physics; Monte Carlo simulation
hydro2d Astrophysics; Hydrodynamic Naiver Stokes equations
mgrid Multigrid solver in 3-D potential field
applu Parabolic/elliptic partial differential equations
trub3d Simulates isotropic, homogeneous turbulence in a cube
apsi Solves problems regarding temperature, wind velocity, and distribution of pollutant
fpppp Quantum chemistry
wave5 Plasma physics; electromagnetic particle simulation

Integer	

FloaPng	
Point	

Sample	SPECint95	Results	

Source	URL:		h5p://www.macinfo.de/bench/specmark.html	

Sample	SPECfp95	Results	

Source	URL:		h5p://www.macinfo.de/bench/specmark.html	

SPEC	CPU2000	Programs	
Benchmark	 	Language		DescripPons		
164.gzip	 	 	C	 	 	Compression		
175.vpr	 	 	C	 	 	FPGA	Circuit	Placement	and	RouPng		
176.gcc	 	 	C	 	 	C	Programming	Language	Compiler		
181.mcf	 	 	C	 	 	Combinatorial	OpPmizaPon		
186.craxy	 	 	C	 	 	Game	Playing:	Chess		
197.parser	 	 	C	 	 	Word	Processing		
252.eon	 	 	C++	 	 	Computer	VisualizaPon		
253.perlbmk	 	 	C	 	 	PERL	Programming	Language		
254.gap	 	 	C	 	 	Group	Theory,	Interpreter		
255.vortex	 	 	C	 	 	Object-oriented	Database		
256.bzip2	 	 	C	 	 	Compression		
300.twolf	 	 	C	 	 	Place	and	Route	Simulator	
	
168.wupwise		 	Fortran	77	 	 	Physics	/	Quantum	Chromodynamics	
171.swim	 	 	Fortran	77	 	 	Shallow	Water	Modeling		
172.mgrid	 	 	Fortran	77	 	 	MulP-grid	Solver:	3D	PotenPal	Field		
173.applu	 	 	Fortran	77	 	 	Parabolic	/	EllipPc	ParPal	DifferenPal	EquaPons	
177.mesa	 	 	C	 	 	3-D	Graphics	Library		
178.galgel	 	 	Fortran	90	 	 	ComputaPonal	Fluid	Dynamics		
179.art	 	 	C	 	 	Image	RecogniPon	/	Neural	Networks		
183.equake	 	 	C	 	 	Seismic	Wave	PropagaPon	SimulaPon		
187.facerec	 	 	Fortran	90	 	 	Image	Processing:	Face	RecogniPon		
188.ammp	 	 	C	 	 	ComputaPonal	Chemistry		
189.lucas	 	 	Fortran	90	 	 	Number	Theory	/	Primality	TesPng	
191.fma3d	 	 	Fortran	90	 	 	Finite-element	Crash	SimulaPon		
200.sixtrack	 	 	Fortran	77	 	 	High	Energy	Nuclear	Physics	Accelerator	Design	
301.apsi	 	 	Fortran	77	 	 	Meteorology:	Pollutant	DistribuPon	
	

CINT2000	
(Integer)	

CFP2000	
(FloaPng	
			Point)	

Source:				h5p://www.spec.org/osg/cpu2000/	

Top	20	SPEC	CPU2000	Results		(As	of	March	2002)	
#		 	MHz	 	Processor 		 	int	peak	 	int	base 	MHz							Processor	 									fp	peak 									fp	base		
1	 	1300	 	POWER4	 			 	814	 	790	 	1300							POWER4 											1169	 								1098		
2	 	2200	 	PenPum	4			 	 	811	 	790	 	1000							Alpha	21264C													960			 									776		
3 	2200	 	PenPum	4	Xeon				 	810			 	788 	1050							UltraSPARC-III	Cu				827													701	
4	 	1667	 	Athlon	XP	 	 	724	 	697	 	2200							PenPum	4	Xeon 											802												779	
5	 	1000	 	Alpha	21264C	 	679 		621	 	2200							PenPum	4	 											801												779	
6	 	1400	 	PenPum	III	 	 	664	 	648	 	833								Alpha	21264B													784													643	
7	 	1050	 	UltraSPARC-III	Cu	 	610	 	537	 	800								Itanium	 											701												701	
8	 	1533	 	Athlon	MP	 	 	609	 	587	 	833									Alpha	21264A	 										644													571	
9	 	750	 	PA-RISC	8700	 	604	 	568	 	1667							Athlon	XP	 										642													596	
10		833	 	Alpha	21264B	 	571	 	497	 	750									PA-RISC	8700												581												526	
11		1400	 	Athlon	 	 	554	 	495	 	1533							Athlon	MP																		547													504	
12		833	 	Alpha	21264A	 	533	 	511	 	600									MIPS	R14000	 										529													499	
13		600	 	MIPS	R14000	 	500	 	483	 	675									SPARC64	GP	 										509													371	
14		675	 	SPARC64	GP		478	 	449	 	900									UltraSPARC-III										482												427	
15		900	 	UltraSPARC-III	 	467	 	438	 	1400							Athlon 											458												426	
16		552	 	PA-RISC	8600	 	441	 	417	 	1400							PenPum	III	 											456												437	
17		750 	POWER	RS64-IV						 	439	 	409	 	500									PA-RISC	8600 										440												397	
18		700	 	PenPum	III	Xeon 		438	 	431	 	450									POWER3-II	 										433													426	
19		800	 	Itanium	 	 	365	 	358	 	500									Alpha	21264	 										422												383	
20		400	 	MIPS	R12000	 	353	 	328	 	400									MIPS	R12000	 										407													382	
	

Source:		h5p://www.aceshardware.com/SPECmine/top.jsp	

Top	20	SPECfp2000	Top	20	SPECint2000	

CFP2000	(Floating	point	
component	of	SPEC	CPU2000)	
Program											Language 	What	It	Is	
168.wupwise 	Fortran	77	Physics	/	Quantum	Chromodynamics	
171.swim	 	Fortran	77	Shallow	Water	Modeling	
172.mgrid 															Fortran	77 															MulP-grid	Solver:	3D	PotenPal	Field	
173.applu														Fortran	77 															Parabolic	/	EllipPc	DifferenPal	EquaPons	
177.mesa															C 															3-D	Graphics	Library	
178.galgel 	Fortran	90	ComputaPonal	Fluid	Dynamics	
179.art	 	 	C 	 	Image	RecogniPon	/	Neural	Networks	
183.equake 	C 	 	Seismic	Wave	PropagaPon	SimulaPon	
187.facerec 	Fortran	90	Image	Processing:	Face	RecogniPon	
188.ammp 	C 	 	ComputaPonal	Chemistry	
189.lucas															Fortran	90 															Number	Theory	/	Primality	TesPng	
191.fma3d 	Fortran	90	Finite-element	Crash	SimulaPon	
200.sixtrack 	Fortran	77	High	Energy	Physics	Accelerator	Design	
301.apsi 															Fortran	77	 	Meteorology:	Pollutant	DistribuPon	

SPEC	CPU2000	reporting	

• Refer	SPEC	website	www.spec.org	for	
documentaPon	

• Single	number	result	–	geometric	
mean	of	normalized	raPos	for	each	
code	in	the	suite	

• Report	precise	descripPon	of	machine	
• Report	compiler	flag	sevng	

Factors	Affecting	Performance	–	Data	
Bus	

• Data	bus	width	determines	how	much	
data	can	be	transferred	from	memory	
to	processor	in	one	clock	cycle.	

• Increasing	the	data	bus	width	
	will	increase	the	quanPty	of	
	data	which	the	bus	can	carry	
	at	any	one	Pme.	

Factors	Affecting	Performance	–	Cache	
Memory	
	
• Faster	for	processor	to	access	data	in	
cache	than	main	memory;	

• Cache	is	made	up	from	‘staPc	RAM’	
• The	internal	system	bus	linking	cache	
memory	and	the	processor	can	be	up	
to	256	bits	wide.	

Factors	Affecting	Performance	–	
Peripheral	transfer	speed	

• All	peripherals	operate	at	slower	
speed	than	the	processor.	

• This	can	have	a	major	affect	on	
performance.	

• SelecPng	drives	and	peripherals	with	
the	fastest	transfer	rate	can	improve	
system	performance.	

Factors	Affecting	Performance	–	Peripheral	
transfer	speed	

CD Transfer rate Transfer rate in
Kilobytes per
second

Time taken to read
a 10 Megabyte file

52 X

7800

1.31 seconds

32 X

4800

2.13 seconds

The	difference	between	these	Pmes	may	not	look	much	to	our	
eyes	but	they	are	significant	in	terms	of	computer	performance.	

Other	Factors	

• Increasing	clock	speed.	
• Adding	more	Main	Memory	
• Increasing	VRAM	
• Adding	more	processors	

Computer	Performance	

Tactic Effect on Performance
Increase clock speed Increase
Increase data bus width Increase
Increase Cache memory Increase
Increase Address Bus None
Number of processors Increase
Increase RAM Slight Increase
Increase VRAM Increase graphics performance

Increase data transfer rate Increase

More	Details…	
Pa5erson	and	Hennesy,	
Computer	OrganizaPon	and	
Design	(The	Hardware,	
Soxware	Interface)	

Pa5erson	and	Hennesy,	
Computer	Architecture;	A	
QuanPtaPve	Approach	

More	Questions?	

