
Programming with C and C++
First Steps to Code
- Part 2 -
@carlosjaimebh

C or C++ ? (Or any language)

Depending of the oriented programming

Programming paradigm and oriented
development is a process (scientific, technical
and engineering).
• You need to see the requirements (or

expected outcomes)
• Programability (Remember, the idea is

that you’re a scientists, so your time is to
make science)

• Skills
• Platforms (not only computer machines),

runtime.
• Likes and comfort!

• Not always, the popular is good

Special Recommendations
about Copying

• Programming in real life, copying is
strongly encouraged. (The idea is not to
reinvent the wheel (and not waste time
getting it wrong)
• Copying saves time;
• Copying avoids typing mistakes;
• Copying allows you to focus on your

new programming challenges.

Introducing C++
• The C++ programming language (Stroustrup,

1988) evolved from C (Ritchie 1972) and is
emerging as the standard in software
development.

• C++ facilitates a structured and disciplined
approach to computer programming called
object-oriented programming.

• C++ is a general-purpose programming
language with a bias towards systems
programming that:

• supports data abstraction
• supports object-oriented programming
• supports generic programming.

• The C++ Foundation (https://isocpp.org/)
supports the C++ community development. Bjarne Stroustrup (https://www.stroustrup.com/)

https://isocpp.org/
https://www.stroustrup.com/

Object-oriented
Programming

• Object-oriented programming (OOP)
seeks to define a program in terms of the
things in the problem (files, molecules,
buildings, cars, people, etc.), what they
need, and what they can do.

• Data:
• molecular weight, structure, common

names, etc.
• Methods:

• IR(wavenumStart, wavenumEnd) :
return IR emission spectrum in range

class GasMolecule

GasMolecule ch4
GasMolecule co2

spectrum = ch4.IR(1000,3500)
Name = co2.common_name

Objects (instances of a class)

“pseudo-code”

Object-oriented Programming
• OOP defines classes to represent these

things.

• Classes can contain data and methods
(internal functions).

• Classes control access to internal data and
methods. A public interface is used by
external code when using the class.

• This is a highly effective way of modeling real
world problems inside of a computer
program.

public interface

private data and methods

“Class Car”

More information in: https://www.bu.edu

https://www.bu.edu/

Editing, Compiling and Executing a Simple Program
//Program to add two integers typed by user at keyboard

#include <iostream>

using namespace std;

int main()

{

int a, b, total;

cout << “Enter integers to be added: “ << endl;

cin >> a >> b;

total = a + b;

cout << “The sum is “ << total << endl;

return 0;

}

// Comment statements, which are ignored by
computer but inform reader
#include <header file name>
int main()
{
declaration of variables;
statements;

return 0;
}

To compile in GNU CPP:
g++ SimpleAdd.cpp –o SimpleAdd

./SimpleAdd

To execute:

(Also, you can use the extension .cc)

A Hello World Example
(To see Compiler Error Messages)
// Hello world example in C++

#include <iostream>

using namespace std;

int main()

{

for (int i=1; i<=10; i++) {

cout << i << " Hello World,
Folks" << endl ;

if (i == 7) {

cout << " that was lucky!\n" <<
endl ;

} else {

cout << endl ;

}

}

}

What happens if:
• Omitting a quote character (")
• Inserting an extra quota character
• Omitting semicolon (;) and the end of the line.
• Adding a left-brace ({) or right-brace (})

How many types of error can you get the compiler to produce?
Make a list.

• Replace (i==7) by (i=7)

The flag –Wall means “Warnings (all)”
Suggested lesson: always compile with Warnings switched on.

Compiling using the command:
g++ -Wall Hello_1.cc –o Hello_1

Another (simple) Helloworld
(To try make)

• Compiling using
make HelloWorld_2

What happens?

// Hello World Version 2
#include <iostream>
int main() {

std::cout << "Hello World" <<
std::endl;

return 0;
}

(Makefiles)
• The make allows to define personal rules

to compiling your C / C++ code using the
warning flags automatically. (Also, you
can add other languages primitives)
• Make is a build automation tool that

automatically builds executable
programs and libraries from source
code by
reading files called Makefiles which
specify how to derive the target
program.

More information in: https://www.gnu.org/software/make/

https://www.gnu.org/software/make/

Basic Syntax
• C++ syntax is very similar to C, Java, or C#. Here’s a few things up front and we’ll cover more as we go

along.
• Curly braces are used to denote a code block (like the main() function):

{ … some code … }

• Statements end with a semicolon:

• Comments are marked for a single line with a // or for multilines with a pair of /* and */ :

• Variables can be declared at any time in a code block. void my_function() {
int a ;
a=1 ;
int b;

}

int a ;
a = 1 + 3 ;

// this is a comment.
/* everything in here

is a comment */

Confusing syntax

int a, b;

int c = a * b;

int* d = &a;

int e = *d;

int& f = a;

* means
• multiplication, or
• pointer, or
• dereference pointer

& means
• get address of, or
• reference

Same symbol, different meanings!

Pass by X

void f(int a, int* b, int& c)
{

// changes to a are NOT reflected outside the function
// changes to b and c ARE reflected outside the function

}

main()
{

int a, b, c;
f(a, &b, c);

}

pass
by

value

pass
by

pointer
pass
by

reference

DOES
make a copy

does NOT
make a copy

PBP and PBR are different syntax for the same functionality

Variables and Constants
• Programs need a way to store the data they

use. Variables and constants offer various
ways to represent and manipulate data.
Constants, as the name suggests, have fixed
values. Variables, on the other hand, hold
values that can be assigned and changed as
the program executes.

• Every variable and constant has an
associated type, which defines the set of
values that can be legally stored in it.
Variables can be conveniently divided into
integer, floating point, character and boolean
types for representing integer (whole)
numbers, floating point numbers (real
numbers with a decimal point), the ASCII
character set (for example ‘a’, ‘b’, ‘A’) and the
boolean set (true or false) respectively.

Example of variable declaration:

int count;
float length;
char firstInitial;
bool switched_on;

(To see in detail after)

• Functions are sections of code that are called from other code. Functions always have a
return argument type, a function name, and then a list of arguments separated by
commas:

• A void type means the function does not return a value.

• Variables are declared with a type and a name:

int add(int x, int y) {
int z = x + y ;
return z ;

}

// No arguments? Still need ():
void my_function() {

/* do something...
but a void value means the
return statement can be skipped.*/

}

// Specify the type
int x = 100;
float y;
vector<string> vec ;
// Sometimes types can be inferred
auto z = x;

Functions (First view)

Operators

• A sampling of arithmetic operators:
• Arithmetic: + - * / % ++ --
• Logical: && (AND) ||(OR) !(NOT)
• Comparison: == > < >= <= !=

• Sometimes these can have special meanings beyond arithmetic, for example the “+” is used to concatenate
strings.

• What happens when a syntax error is made?
• The compiler will complain and refuse to compile the file.
• The error message usually directs you to the error but sometimes the error occurs before the compiler

discovers syntax errors, so you hunt a little bit.

Precedence and nesting parentheses
• The use of parentheses (brackets) is advisable to ensure the correct evaluation of

complex expres- sions. Here are some examples:
4+2*3 equals10

(4+2) * 3 equals 18
-3 * 4 equals −12

4 * -3 equals −12 (but it’s safer to use parentheses: 4 * (-3))

0.5(a+b) illegal (missing multiplication operator)
(a+b) / 2 equals the average value of a and b if they are of type float

Built-in (aka primitive or intrinsic) Types
• “primitive” or “intrinsic” means these types are not objects

• Here are the most commonly used types.

• Note: The exact bit ranges here are platform and compiler dependent!
• Typical usage with PCs, Macs, Linux, etc. use these values
• Variations from this table are found in specialized applications like embedded system processors.

Name Name Value

char unsigned char 8-bit integer

short unsigned short 16-bit integer

int unsigned int 32-bit integer

long unsigned long 64-bit integer

bool true or false

Name Value

float 32-bit floating point

double 64-bit floating point

long long 128-bit integer

long double 128-bit floating point

http://www.cplusplus.com/doc/tutorial/variables/

http://www.cplusplus.com/doc/tutorial/variables/

Need to be sure of integer sizes?

• In the same spirit as using integer(kind=8) type notation in Fortran, there are type definitions that exactly
specify exactly the bits used. These were added in C++11.

• These can be useful if you are planning to port code across CPU architectures (ex. Intel 64-bit CPUs to a 32-
bit ARM on an embedded board) or when doing particular types of integer math.

• For a full list and description see: http://www.cplusplus.com/reference/cstdint/

Name Name Value

int8_t uint8_t 8-bit integer

int16_t uint16_t 16-bit integer

int32_t uint32_t 32-bit integer

int64_t uint64_t 64-bit integer

#include <cstdint>

http://www.cplusplus.com/reference/cstdint/

Reference and Pointer Variables

• Variable and object values are stored in particular locations in the computer’s memory.

• Reference and pointer variables store the memory location of other variables.

• Pointers are found in C. References are a C++ variation that makes pointers easier and safer to use.

• More on this topic later in the tutorial.

string hello = "Hello";

string *hello_ptr = &hello;

string &hello_ref = hello;

The object hello occupies
some computer memory.

The asterisk indicates that hello_ptr is a pointer
to a string. hello_ptr variable is assigned the
memory address of object hello which is accessed
with the “&” syntax.

The & here indicates that hello_ref is a reference to a string.
The hello_ref variable is assigned the memory address of
object hello automatically.

Type Casting (1/2)

• C++ is strongly typed. It will auto-convert a variable of one type to another in a limited fashion: if it will not
change the value.

• Conversions that don’t change value: increasing precision (float à double) or integer à floating point of at
least the same precision.

• C++ allows for C-style type casting with the syntax: (new type) expression

• But since we’re doing C++ we’ll look at the 4 ways of doing this in C++ next...

short x = 1 ;
int y = x ; // OK
short z = y ; // NO!

double x = 1.0 ;
int y = (int) x ;
float z = (float) (x / y) ;

Type Casting (2/3)

• static_cast<new type>(expression)
• This is exactly equivalent to the C style cast.
• This identifies a cast at compile time.
• This will allow casts that reduce precision (ex. double à float)
• ~99% of all your casts in C++ will be of this type.

• dynamic_cast<new type>(expression)
• Special version where type casting is performed at runtime, only works on

reference or pointer type variables.
• Usually handled automatically by the compiler where needed, rarely done

by the programmer.

double d = 1234.56 ;
float f = static_cast<float>(d) ;
// same as
float g = (float) d ;

Type Casting (3/3)

• const_cast<new type>(expression)
• Variables labeled as const can’t have their value changed.
• const_cast lets the programmer remove or add const to reference or

pointer type variables.
• If you need to do this, you probably want to re-think your code.

• reinterpret_cast<new type>(expression)
• Takes the bits in the expression and re-uses them unconverted as a

new type. Also only works on reference or pointer type variables.
• Sometimes useful when reading in binary files and extracting

parameters.

“unsafe”: the
compiler will not
protect you here!

The programmer
must make sure
everything is
correct!

Danger!

A class

class Date {
public:

enum Month {Jan, Feb, Mar, ...}
Date(int year, Month month, int day);
int GetDay() const;
void SetDay(int day);
Date& operator+=(int days);

private:
Month m_month;
int m_year, m_day;

};

member
functions
(methods)

member
variables

Classes are an expanded concept of data structures: like data structures, they can contain data members, but
they can also contain functions as members.

Classes are defined using either keyword class or keyword struct

Struct vs. class

• In C++, no difference b/w struct and class
(except default public vs. private)
• In C++, struct can have

• member variables
• methods
• public, private, and protected
• virtual functions
• etc.

• Rule of thumb:
• Use struct when member variables are public (just a container)
• Use class otherwise

Class Example
class class_name {

access_specifier_1:
member1;

access_specifier_2:
member2;

...
} object_names;

• Where class_name is a valid identifier for the class, object_names is an optional
list of names for objects of this class. The body of the declaration can
contain members, which can either be data or function declarations, and
optionally access specifiers.

• Classes have the same format as plain data structures, except that they can also
include functions and have these new things called access specifiers. An access
specifier is one of the following three keywords: private, public or protected.

• By default, all members of a class declared with the class keyword have private
access for all its members. Therefore, any member that is declared before any
other access specifier has private access automatically

• The example, Declares a class (i.e., a type) called Rectangle and an object (i.e., a
variable) of this class, called rect. This class contains four members: two data
members of type int (member width and member height) with private
access (because private is the default access level) and two member functions
with public access: the functions set_values and area, of which for now we have
only included their declaration, but not their definition.

class Rectangle {
int width, height;

public:
void set_values

(int,int);
int area (void);

} rect; More information in: https://www.cplusplus.com/doc/tutorial/classes/

https://www.cplusplus.com/doc/tutorial/classes/

Basic Input/Output
• C++ uses a convenient abstraction called streams to perform input and output operations in

sequential media such as the screen, the keyboard or a file.

• A stream is an entity where a program can either insert or extract characters to/from. There
is no need to know details about the media associated to the stream or any of its internal
specifications.

stream description
cin standard input stream
cout standard output stream
cerr standard error (output) stream
clog standard logging (output) stream

Standard input (cin)
• In most program environments, the standard input by default is the keyboard,

and the C++ stream object defined to access it is cin.
• For formatted input operations, cin is used together with the extraction

operator, which is written as >> (i.e., two "greater than" signs). This operator is
then followed by the variable where the extracted data is stored.

int age;
cin >> age;

Example:

The first statement declares a variable of type int called age, and the second extracts from cin a
value to be stored in it. This operation makes the program wait for input from cin; generally, this
means that the program will wait for the user to enter some sequence with the keyboard.

Standard output (cout)
• On most program environments, the standard output by default is the

screen, and the C++ stream object defined to access it is cout.

For formatted output operations, cout is used together with the insertion
operator, which is written as << (i.e., two "less than" signs).

cout << "Output sentence"; // prints Output sentence on screen
cout << 120; // prints number 120 on screen
cout << x; // prints the value of x on screen

Loops
Loop Type & Description

while loop
Repeats a statement or group of
statements while a given condition is true.
It tests the condition before executing the
loop body.

for loop
Execute a sequence of statements multiple
times and abbreviates the code that
manages the loop variable.

do...while loop
Like a ‘while’ statement, except that it tests
the condition at the end of the loop body.

nested loops
You can use one or more loop inside any
another ‘while’, ‘for’ or ‘do..while’ loop.

Control Statement & Description

break statement
Terminates the loop or switch statement and
transfers execution to the statement
immediately following the loop or switch.

continue statement
Causes the loop to skip the remainder of its
body and immediately retest its condition prior
to reiterating.

goto statementT
ransfers control to the labeled statement.
Though it is not advised to use goto statement
in your program.

https://www.tutorialspoint.com/cplusplus/cpp_while_loop.htm
https://www.tutorialspoint.com/cplusplus/cpp_for_loop.htm
https://www.tutorialspoint.com/cplusplus/cpp_do_while_loop.htm
https://www.tutorialspoint.com/cplusplus/cpp_nested_loops.htm
https://www.tutorialspoint.com/cplusplus/cpp_break_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_continue_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_goto_statement.htm

While
while(condition)
{
statement(s);
}

#include <iostream>
using namespace std;

int main ()
{
// Local variable declaration:
int a = 10;
// while loop execution

while(a < 20) {
cout << "value of a: " << a << endl; a++;
}

return 0;
}

Example:

For
for (init; condition; increment)
{ statement(s);
}

#include <iostream>
using namespace std;
int main () { // for loop execution
for(int a = 10; a < 20; a = a + 1) {

cout << "value of a: " << a << endl;
}

return 0;
}

Example:

More about in: https://www.tutorialspoint.com/cplusplus/cpp_loop_types.htm

https://www.tutorialspoint.com/cplusplus/cpp_loop_types.htm

Decision Making
Statement & Description

if statement
An ‘if’ statement consists of a boolean
expression followed by one or more
statements.

if...else statement
An ‘if’ statement can be followed by an
optional ‘else’ statement, which executes
when the boolean expression is false.

switch statement
A ‘switch’ statement allows a variable to
be tested for equality against a list of
values.

nested if statements
You can use one ‘if’ or ‘else if’ statement
inside another ‘if’ or ‘else if’ statement(s).

nested switch statements
You can use one ‘switch’ statement
inside another ‘switch’ statement(s).

https://www.tutorialspoint.com/cplusplus/cpp_if_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_if_else_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_switch_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_nested_if.htm
https://www.tutorialspoint.com/cplusplus/cpp_nested_switch.htm

If
if(boolean_expression) {
// statement(s) will execute if the boolean expression is true
}

#include <iostream>
using namespace std;
int main () { // local variable declaration:
int a = 10; // check the boolean condition

if(a < 20) { // if condition is true then print the following
cout << "a is less than 20;" << endl;
}
cout << "value of a is : " << a << endl;

return 0;
}

Example:

More information in: https://www.tutorialspoint.com/cplusplus/cpp_decision_making.htm

https://www.tutorialspoint.com/cplusplus/cpp_decision_making.htm

Now, Practice Time

1. Write a simple c code to show your name and your age.
2. Write a simple c code to show the sum of al digits of your student

code.
3. Follow the https://www.learn-cpp.org/ tutorial

https://www.learn-c.org/

Important References
• C++ Programming Tutorial and Instructions for Practical Sessions by Christopher Lester

Deptartment of Physics (based on earlier versions by David MacKay, Roberto Cipolla and Tim
Love) https://www.hep.phy.cam.ac.uk or a google search.

• Bjarne Stroustrup’s site https://www.stroustrup.com/

• The C++ Foundation’s site https://isocpp.org/

• Code Block’s site: http://www.codeblocks.org/

• The cplusplus.comsite: https://www.cplusplus.com/

• The C++ Point Tutorial’s Site https://www.tutorialspoint.com/cplusplus/index.htm

• Learn C++ https://www.learn-cpp.org/

https://www.hep.phy.cam.ac.uk/
https://www.stroustrup.com/
https://isocpp.org/
http://www.codeblocks.org/
https://www.cplusplus.com/
https://www.tutorialspoint.com/cplusplus/index.htm
https://www.learn-cpp.org/

Questions?
@carlosjaimebh

