
DISTRIBUTED MEMORY
PROGRAMMING WITH MPI
Carlos Jaime Barrios Hernández, PhD.

Remember Special Features of
Architecture
• Remember “concurrency”: it exploits better the resources

(shared) within a computer.
• Exploit SIMD and MIMD Architectures

CU

P P P P

Input Data Input Data Input Data Input Data

Output
Data

Output
Data

Output
Data

Output
Data

SIMD

Instructions

MIMD

CU

P

Input Data

Output
Data

Instructions

CU

P

Input Data

Output
Data

Instructions

CU

P

Input Data

Output
Data

Instructions

Interconnect Network

Cluster Computing Architecture

3

Sequential Applications Parallel Programming Environment

 Middleware

(Single System Image and Availability Infrastructure)

 Interconnection Network/Switch

PC/Workstation/
Node

Network Interface Hardware

Communications

Software

PC/Workstation/
Node

Network Interface Hardware

Communications

Software

PC/Workstation/
Node

 Network Interface Hardware

Communications

Software

PC/Workstation/
Node

Network Interface Hardware

Communications

Software

Sequential Applications

Parallel Applications

Sequential Applications
Sequential Applications

Parallel Applications

Operating System Operating System Operating System Operating System

Distributed Computing Paradigms
• Communication Models:

•  Message Passing
•  Shared Memory

• Computation Models:
•  Functional Parallel
•  Data Parallel

Message Passing
• A process is a program counter and address space.

• Message passing is used for communication among
processes.

•  Inter-process communication:
•  Type:
 Synchronous / Asynchronous

• Movement of data from one process’s address space to
another’s

Synchronous Vs. Asynchronous
• A synchronous communication is not complete until the

message has been received.

• An asynchronous communication completes as soon as
the message is on the way.

Synchronous Vs. Asynchronous
(cont.)

What is message passing?
• Data transfer.

• Requires cooperation of sender and receiver

• Cooperation not always apparent in code

MPI – Message
Passing
Interface

•  MPI in a nutshell

–  It is a library specification
–  Works natively with C and Fortran
–  Not a specific implementation or product
– Scalable

–  Must handle multiple machines
– Portable

–  Sockets API change from one OS to
another
–  Handles Big-endian/little-endian
architectures

–  Efficient
–  Optimized communication algorithms
–  Allow communication and computation
overlap

MPI – Message
Passing
Interface •  MPI References

–  Books
–  Using MPI: Portable Parallel Programming with
the Message Passing Interface, by Gropp, Lusk, and
Skejellum, MIT Press, 1994.
–  MPI: The Complete Reference, by Snir, Otto,
Huss-Lederman, Walker, and Dongarra, MIT Press,
1996.
–  Parallel Programming with MPI, by Peter Pacheco,
Morgan Kaufmann, 1997.

–  The standard:
–  at http://www.mpi-forum.org

MPI History
•  1990 PVM: Parallel Virtual Machine (Oak Ridge Nat’l Lab)

•  Message-passing routines
•  Execution environment (spawn + control parallel processes)
•  No an industry standard

•  1992 meetings (Workshop, Supercomputing’92)
•  1993 MPI draft
•  1994 MPI Forum (debates)
•  1994 MPI-1.0 release (C & Fortran bindings) + standardization
•  1995 MPI-1.1 release
•  1997 MPI-1.2 release (errata) +

 MPI-2 release (new features, C++ & Fortran 90 bindings)
•  ???? MPI-3 release (new: FT, hybrid, p2p, RMA, …)
•  2000 MPI (ch), Madeline, V4….
•  2005 OpenMPI…

MPI
Programming •  MPI

–  Use of a single program, on multiple data
–  What does it do?

–  way of identifying process
–  Independent of low-level API
–  Optimized communication
–  Allow communication and computation overlap

–  What does it do not?
–  gain performance of application for free
–  application must be adapted

Features of MPI
• General

•  Communications combine context and group for message security.

•  Thread safety can’t be assumed for MPI programs.

Features that are NOT part of MPI
• Process Management

• Remote memory transfer

•  Threads

• Virtual shared memory

Why to use MPI?
• MPI provides a powerful, efficient, and portable way
to express parallel programs.

• MPI was explicitly designed to enable libraries which
may eliminate the need for many users to learn
(much of) MPI.

• Portable !!!!!!!!!!!!!!!!!!!!!!!!!!

• Good way to learn about subtle issues in parallel
computing

How big is the MPI library?

• Huge (125 Functions).

• Basic (6 Functions).

Group and Context

This image is captured from:
Writing Message Passing Parallel Programs with MPI
A Two Day Course on MPI Usage
Course Notes
Edinburgh Parallel Computing Centre
The University of Edinburgh

Group and Context (cont.)
• Are two important and indivisible concepts of MPI.
• Group: is the set of processes that communicate with
one another.

• Context: it is somehow similar to the frequency in
radio communications.

• Communicator: is the central object for
communication in MPI. Each communicator is
associated with a group and a context.

Communication Modes
• Based on the type of send:

• Synchronous: Completes once the
acknowledgement is received by the sender.

• Buffered send: completes immediately, unless
if an error occurs.

• Standard send: completes once the message
has been sent, which may or may not imply
that the message has arrived at its destination.

• Ready send: completes immediately, if the
receiver is ready for the message it will get it,
otherwise the message is dropped silently.

Blocking vs. Non-Blocking
• Blocking, means the program will not continue until the

communication is completed.

• Non-Blocking, means the program will continue, without
waiting for the communication to be completed.

MPI
Programming

•  Possible Programming Workflow

•  A Few Parallel Strategies

•  Master/Slave

•  Pipeline

•  Branch and Bound

Start from Working
Sequential Version

Choose a Parallel
Strategy

Implement It with
The Help of MPI

Split the Application
In Tasks

Parallel
Strategies

•  Master/Slave

•  Master is one process that centrilizes all tasks

• Slaves starve for work

Master Slave 1 Slave 2

Request Request
Task 1 Task 2

Result 2
Finish

Result 1
Finish

Parallel
Strategies

•  Master/Slave

•  Master is often the bottleneck

•  Scalability is limited due to centralization

•  Possible to use replication to improve performance

•  It is adatable to heterogenous platforms

Parallel
Strategies

•  Pipeline

•  Each process plays a specific role, pipeline stages

•  Data follows in a single direction

•  Parallelism is achieved when the pipeline is full

Tim
e

Task 1
Task 2
Task 3
Task 4

Parallel
Strategies

•  Pipeline

•  Scalabillity is limited by the number of stages

•  Synchronization may lead to bubbles

•  Slow sender

•  Fast receiver

•  Difficult to use on heterogenous platforms

Parallel
Strategies

•  Divide and Conquer

•  Recursevely partion task on roughly equal sized tasks

•  Or process the taks if it is small

Work(60)

Work(40)

Work(20) Work(20)

Work(20)

Result(20) Result(20)

Result(40)

Result(20)

Result(60)

Parallel
Strategies

•  Divide and Conquer

•  More scalable

•  Possible to use replicated branches

•  In practice is difficult to split tasks

•  Suitable for branch and bound algorithms

MPI
Programming

•  Installing
–  Some common MPI implementations, all free:

–  OpenMPI
http://www.open-mpi.org/

–  MPICH-2 http://www.mcs.anl.gov/research/projects/
mpich2/

–  LAM/MPI
http://www.lam-mpi.org/
	

MPI
Programming

•  Installing
–  I’m using MPICH-2
–  Installed in Ubuntu 10.04 Lucid Lynx with

$	 sudo	 apt-‐get	 install	 mpich2

–  Should work for most Debian based distributions
–  Must create a local configuration file

$	 echo	 “MPD_SECRET_WORD=ChangeMe”	 >	 ~/.mpd.conf	

	

MPI
Programming

#include	 <mpi.h>	
#include	 <stdio.h>	
	
int	 main(int	 argc,	 char	 **argv){	 	 	
	
/*	 Initialize	 MPI	 */	
MPI_Init(&argc,	 &argv);	
	
printf(“Test	 Program\n”);	
	
/*	 Finalize	 MPI	 */	
return	 MPI_Finalize();	
}	

•  Test program

Skeleton MPI Program

#include <mpi.h>

main(int argc, char** argv)
{
 MPI_Init(&argc, &argv);

 /* main part of the program */

 /*
 Use MPI function call depend on your data
partitioning and the parallelization
architecture
 */

 MPI_Finalize();
}

A minimal MPI program(c)

#include “mpi.h”
#include <stdio.h>

int main(int argc, char *argv[])

{

 MPI_Init(&argc, &argv);
 printf(“Hello, world!\n”);
 MPI_Finalize();
 Return 0;

}

MPI
Programming

•  Compiling

–  Compiled with gcc, but a mpicc script is provided to invoke
gcc with specific MPI options enabled

$	 mpicc	 mpi_program.c	 –o	 my_mpi_executable	

–  Executed with a specital script

$	 mpirun	 –np	 1	 my_mpi_executable
$	 mpirun	 –np	 2	 my_mpi_executable
$	 mpirun	 –np	 3	 my_mpi_executable
	

MPI
Programming

•  Running
–  Compiled with gcc, but a mpicc script is provided to invoke
gcc with specific mpi functions

$	 mpicc	 mpi_program.c	 –o	 my_mpi_executable	

–  For a complete list of parameters try

$	 man	 mpicc	

–  Executed with a specital scrip
$	 mpirun	 –np	 2	 my_mpi_executable
	

A minimal MPI program(c)
(cont.)
•  #include “mpi.h” provides basic MPI definitions and types.

•  MPI_Init starts MPI

•  MPI_Finalize exits MPI

•  Note that all non-MPI routines are local; thus “printf” run on each
process

•  Note: MPI functions return error codes or MPI_SUCCESS

Error handling
• By default, an error causes all processes to abort.

• The user can have his/her own error handling
routines.

• Some custom error handlers are available for
downloading from the net.

Improved Hello (c)

#include <mpi.h>
#include <stdio.h>
int main(int argc, char *argv[])
{
int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("I am %d of %d\n", rank, size);
MPI_Finalize();
return 0;

}

MPI
Programming

•  How many processing units are available?

	 int	 MPI_Comm_size(MPI_Comm	 comm,	 int	 *psize)
–  comm	

–  Group of process to communicate
–  Default Communicator: For grouping all process use
MPI_COMM_WORLD

–  psize
–  Passed as reference will return the total amoung of
proccess in this communicator

	

Data Types

• The data message which is sent or received is
described by a triple (address, count, datatype).

• The following data types are supported by MPI:
• Predefined data types that are corresponding to data

types from the programming language.
• Arrays.
• Sub blocks of a matrix
• User defined data structure.
• A set of predefined data types

Basic MPI types
MPI datatype C datatype

MPI_CHAR signed char
MPI_SIGNED_CHAR signed char
MPI_UNSIGNED_CHAR unsigned char
MPI_SHORT signed short
MPI_UNSIGNED_SHORT unsigned short
MPI_INT signed int
MPI_UNSIGNED unsigned int
MPI_LONG signed long
MPI_UNSIGNED_LONG unsigned long
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double

MPI
Programming

•  Exercise 1 – Hello World

•  Create program that prints hello world and the total number
of available process on the screen

•  Use –np with a variable number to verify that your program
is working

MPI
Programming

•  Exercise 2 – Who am I

• If I am process 0

•  Prints: “hello world”

•  else

•  Prints: “I’m process <ID>”

•  Replacing <ID> by the process rank

Why defining the data types during the send
of a message?

 Because communications take place between
heterogeneous machines. Which may have different data
representation and length in the memory.

MPI blocking send

MPI_SEND(void *start, int
count,MPI_DATATYPE datatype, int dest,
int tag, MPI_COMM comm)

•  The message buffer is described by (start, count,
datatype).

•  dest is the rank of the target process in the defined
communicator.

•  tag is the message identification number.

MPI blocking receive
 MPI_RECV(void *start, int count,
MPI_DATATYPE datatype, int source, int tag,
MPI_COMM comm, MPI_STATUS *status)

•  Source is the rank of the sender in the communicator.

•  The receiver can specify a wildcard value for souce (MPI_ANY_SOURCE) and/or
a wildcard value for tag (MPI_ANY_TAG), indicating that any source and/or tag are
acceptable

•  Status is used for exrtra information about the received message if a wildcard
receive mode is used.

•  If the count of the message received is less than or equal to that described by the
MPI receive command, then the message is successfully received. Else it is
considered as a buffer overflow error.

MPI_STATUS

• Status is a data structure
• In C:
int recvd_tag, recvd_from, recvd_count;

MPI_Status status;

MPI_Recv(…, MPI_ANY_SOURCE, MPI_ANY_TAG, …,
&status)

recvd_tag = status.MPI_TAG;

recvd_from = status.MPI_SOURCE;

MPI_Get_count(&status, datatype, &recvd_count);

More info
• A receive operation may accept messages from an

arbitrary sender, but a send operation must specify a
unique receiver.

• Source equals destination is allowed, that is, a process
can send a message to itself.

Why MPI is simple?
• Many parallel programs can be written using just these six

functions, only two of which are non-trivial;
•  MPI_INIT
•  MPI_FINALIZE
•  MPI_COMM_SIZE
•  MPI_COMM_RANK
•  MPI_SEND
•  MPI_RECV

Collective Communications
• Point-to-point communications involve pairs of processes.
• Many message passing systems provide operations which

allow larger numbers of processes to participate

Types of Collective Transfers
• Barrier

• Synchronizes processors
• No data is exchanged but the barrier blocks until all

processes have called the barrier routine
• Broadcast (sometimes multicast)

• A broadcast is a one-to-many communication
• One processor sends one message to several

destinations
• Reduction

• Often useful in a many-to-one communication

Barrier

Compute

Barrier

Compute
Compute

Compute

Compute Compute Compute Compute

Broadcast and Multicast

P0

P1

P2

P3

Broadcast

Message

P0

P1

P2

P3

Message

Multicast

All-to-All

P0

P1

P2

P3

Message

Message Message

Message

Reduction
sum ← 0
for i ← 1 to p do
 sum ← sum + A[i]

P0

P1

P2

P3

A[1]

A[2]

A[3]

P0

P1

P2

P3

A[1]

A[2] + A[3]

A[3]

A[0]
A[1]
A[2]
A[3]

A[0] + A[1]

A[2] + A[3]
A[0] + A[1] + A[2] + A[3]

Introduction to Collective Operations in MPI

• Collective ops are called by all processes in a
communicator.
•  No tags
•  Blocking

•  MPI_BCAST distributes data from one process (the root)
to all others in a communicator.

•  MPI_REDUCE/ALLREDUCE combines data from all
processes in communicator and returns it to one process.

•  In many numerical algorithms, SEND/RECEIVE can be
replaced by BCAST/REDUCE, improving both simplicity
and efficiency.

• Others:
•  MPI_[ALL]SCATTER[V]/[ALL]GATHER[V]

Collectives at Work
• BCAST:

• Scatter/Gather:

• Allgather/All-to-all

Collectives at Work (2)
•  Reduce: •  Predefined Ops (assocociative &

commutative) / user ops (assoc.)

Collectives at Work (3)
•  Allreduce:

Simple full example
#include <stdio.h>
#include <mpi.h>

int main(int argc, char *argv[])
{
 const int tag = 42; /* Message tag */
 int id, ntasks, source_id, dest_id, err, i;
 MPI_Status status;
 int msg[2]; /* Message array */

 err = MPI_Init(&argc, &argv); /* Initialize MPI */
 if (err != MPI_SUCCESS) {
 printf("MPI initialization failed!\n");
 exit(1);
 }
 err = MPI_Comm_size(MPI_COMM_WORLD, &ntasks); /* Get nr of tasks */
 err = MPI_Comm_rank(MPI_COMM_WORLD, &id); /* Get id of this process */
 if (ntasks < 2) {
 printf("You have to use at least 2 processors to run this program\n");
 MPI_Finalize(); /* Quit if there is only one processor */
 exit(0);
 }

Simple full example (Cont.)

if (id == 0) { /* Process 0 (the receiver) does this */
 for (i=1; i<ntasks; i++) {
 err = MPI_Recv(msg, 2, MPI_INT, MPI_ANY_SOURCE, tag, MPI_COMM_WORLD, \
 &status); /* Receive a message */
 source_id = status.MPI_SOURCE; /* Get id of sender */
 printf("Received message %d %d from process %d\n", msg[0], msg[1], \
 source_id);
 }
 }
 else { /* Processes 1 to N-1 (the senders) do this */
 msg[0] = id; /* Put own identifier in the message */
 msg[1] = ntasks; /* and total number of processes */
 dest_id = 0; /* Destination address */
 err = MPI_Send(msg, 2, MPI_INT, dest_id, tag, MPI_COMM_WORLD);
 }

 err = MPI_Finalize(); /* Terminate MPI */
 if (id==0) printf("Ready\n");
 exit(0);
 return 0;
}

MPI
One-to-one
Communication

•  Assynchronous/Non-Blocking
–  Process signs it is waiting for a message
–  Continue working meanwhile

Proc 1 Proc 2

iRecv

Tim
e

iSend(2)

MPI
Collective
Communication

•  Proccess master wants to send a message to everybody
–  First solution, process master send N-1 messages
–  Optimized collective communication send in parallel

Tim
e

Send(1)

Send(2)

Send(3)

Tim
e

Send(1)

Send(2) Send(3)
Constant
time to
send a
message

Broadcast
completed
in 3 slices
of time

Finishes in
2 slices of
time

Master Proc 1 Proc 2 Proc 3 Master Proc 1 Proc 2 Proc 3

Work@class
• Teniendo en cuenta la forma trapezoidal para
integrar la formula :

Example: Compute PI (1)
#include “mpi.h”
#include <math.h>

int main(int argc, char *argv[])
{
 int done = 0, n, myid, numprocs, I, rc;
 double PI25DT = 3.141592653589793238462643;
 double mypi, pi, h, sum, x, a;
 MPI_INIT(&argc, &argv);
 MPI_COMM_SIZE(MPI_COMM_WORLD, &numprocs);
 MPI_COMM_RANK(MPI_COMM_WORLD, &myid);
 while (!done)
 {
 if (myid == 0)
 {
 printf(“Enter the number of intervals: (0 quits) “);
 scanf(“%d”, &n);
 }
 MPI_BCAST(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
 if (n == 0)
 }

Example: Compute PI (2)
 h = 1.0 / (double)n;
 sum = 0.0;
 for (i = myid + 1; i <= n; i += numprocs)
 {
 x = h * ((double)i – 0.5);
 sum += 4.0 / (1.0 + x * x);
 }
 mypi = h * sum;
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

 if (myid == 0) printf(“pi is approximately %.16f, Error is
%.16f\n”, pi, fabs(pi – PI25DT));

 MPI_Finalize();
 return 0;

}

Profiling Support: PMPI
• Profiling layer of MPI
•  Implemented via additional API in MPI library

•  Different name: PMPI_Init()
•  Same functionality as MPI_Init()

• Allows user to:
•  define own MPI_Init()
•  Need to call PMPI_Init():

• User may choose subset of MPI routines to be profiled
• Useful for building performance analysis tools

•  Vampir: Timeline of MPI traffic (Etnus, Inc.)
•  Paradyn: Performance analysis (U. Wisconsin)
•  mpiP: J. Vetter (LLNL)
•  ScalaTrace: F. Mueller et al. (NCSU)

MPI_Init(…) {
 collect pre stats;
 PMPI_Init(…);
 collect post stats;
}

When to use MPI
• Portability and Performance
•  Irregular data structure
• Building tools for others
• Need to manage memory on a per processor basis

68

Summary
•  The parallel computing community has cooperated on the

development of a standard for message-passing libraries.
•  There are many implementations, on nearly all platforms.
• MPI subsets are easy to learn and use.
•  Lots of MPI material is available.

Para Observar y Ejecutar
•  http://people.sc.fsu.edu/~jburkardt/cpp_src/mpi/mpi.html
•  http://www.slac.stanford.edu/comp/unix/farm/mpi.html
•  http://www.mcs.anl.gov/research/projects/mpi/usingmpi/

examples/main.htm

