

Algorithms
Sequential and Parallel

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

CHARLES RIVER MEDIA, INC. (“CRM”) AND/OR ANYONE WHO HAS BEEN IN-
VOLVED IN THE WRITING, CREATION OR PRODUCTION OF THE ACCOMPANY-
ING CODE IN THE TEXTUAL MATERIAL IN THE BOOK, CANNOT AND DO NOT
WARRANT THE PERFORMANCE OR RESULTS THAT MAY BE OBTAINED BY USING
THE CONTENTS OF THE BOOK. THE AUTHOR AND PUBLISHER HAVE USED
THEIR BEST EFFORTS TO ENSURE THE ACCURACY AND FUNCTIONALITY OF
THE TEXTUAL MATERIALAND PROGRAMS DESCRIBED HEREIN. WE HOWEVER,
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, REGARDING THE
PERFORMANCE OF THESE PROGRAMS OR CONTENTS. THE BOOK IS SOLD “AS
IS” WITHOUT WARRANTY (EXCEPT FOR DEFECTIVE MATERIALS USED IN MAN-
UFACTURING THE BOOK OR DUE TO FAULTY WORKMANSHIP).

THE AUTHOR, THE PUBLISHER, AND ANYONE INVOLVED IN THE PRODUCTION
AND MANUFACTURING OF THIS WORK SHALL NOT BE LIABLE FOR DAMAGES
OF ANY KIND ARISING OUT OF THE USE OF (OR THE INABILITY TO USE) THE
PROGRAMS, SOURCE CODE, OR TEXTUAL MATERIAL CONTAINED IN THIS PUB-
LICATION. THIS INCLUDES, BUT IS NOT LIMITED TO, LOSS OF REVENUE OR
PROFIT, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OF THE PRODUCT.

THE SOLE REMEDY IN THE EVENT OF A CLAIM OF ANY KIND IS EXPRESSLY LIM-
ITED TO REPLACEMENT OF THE BOOK, AND ONLYAT THE DISCRETION OF CRM.

THE USE OF “IMPLIED WARRANTY” AND CERTAIN “EXCLUSIONS” VARIES FROM
STATE TO STATE, AND MAY NOT APPLY TO THE PURCHASER OF THIS PRODUCT.

Algorithms
Sequential and Parallel

A Unified Approach

Second Edition

Russ Miller
Laurence Boxer

CHARLES RIVER MEDIA, INC.

Hingham, Massachusetts

Copyright 2005 by CHARLES RIVER MEDIA, INC.
All rights reserved.

The first edition of this book was previously published by: Pearson Education, Inc.

No part of this publication may be reproduced in any way, stored in a retrieval system of any type, or
transmitted by any means or media, electronic or mechanical, including, but not limited to, photocopy,
recording, or scanning, without prior permission in writing from the publisher.

Editor: David Pallai
Cover Design: Tyler Creative

CHARLES RIVER MEDIA, INC.
10 Downer Avenue
Hingham, Massachusetts 02043
781-740-0400
781-740-8816 (FAX)
info@charlesriver.com
www.charlesriver.com

This book is printed on acid-free paper.

Russ Miller and Laurence Boxer. Algorithms Sequential and Parallel: A Unified Approach, Second Edition.
ISBN: 1-58450-412-9

All brand names and product names mentioned in this book are trademarks or service marks of their re-
spective companies. Any omission or misuse (of any kind) of service marks or trademarks should not be
regarded as intent to infringe on the property of others. The publisher recognizes and respects all marks
used by companies, manufacturers, and developers as a means to distinguish their products.

Library of Congress Cataloging-in-Publication Data
Miller, Russ.
Algorithms sequential and parallel : a unified approach / Russ Miller and Laurence Boxer.-- 2nd ed.

p. cm.
Includes bibliographical references and index.
ISBN 1-58450-412-9 (hardcover : alk. paper)
1. Computer algorithms. 2. Computer programming. I. Boxer, Laurence. II. Title.
QA76.9.A43M55 2005
005.1--dc22

2005010052

05 7 6 5 4 3 2 1

CHARLES RIVER MEDIA titles are available for site license or bulk purchase by institutions, user
groups, corporations, etc. For additional information, please contact the Special Sales Department at
781-740-0400.

eISBN: 1-58450-652-0

www.charlesriver.com

To my wife, Celeste, and my children, Brian, Amanda,
and Melissa.

—Russ Miller

To my wife, Linda; my daughter and son-in-law, Robin
and Mark Waldman; and my son, Matthew.

—Laurence Boxer

This page intentionally left blank

vii

Contents

Preface xv

1 Asymptotic Analysis 2

Notation and Terminology 4

Asymptotic Notation 6

More Notation 9

Asymptotic Relationships 11

Asymptotic Analysis and Limits 12

Summations and Integrals 14

Rules for Analysis of Algorithms 21

Limitations of Asymptotic Analysis 27

Common Terminology 29

Summary 29

Chapter Notes 30

Exercises 30

2 Induction and Recursion 34

Mathematical Induction 36

Induction Examples 37

Recursion 40

Binary Search 43

Merging and Mergesort 47

Summary 54

Chapter Notes 54

Exercises 54

3 The Master Method 58

Master Theorem 61

Proof of the Master Theorem (optional) 61

The General Case 66

Summary 73

Chapter Notes 73

Exercises 73

4 Combinational Circuits 74

Combinational Circuits and Sorting Networks 76

Sorting Networks 76

Bitonic Merge 80

BitonicSort 84

Summary 87

Chapter Notes 88

Exercises 88

5 Models of Computation 90

RAM (Random Access Machine) 92

PRAM (Parallel Random Access Machine) 94

Examples: Simple Algorithms 98

Fundamental Terminology 106

Distributed Memory versus Shared Memory 107

Distributed Address Space versus Shared Address Space 108

Interconnection Networks 108

Processor Organizations 109

Linear Array 110

Ring 118

Mesh 119

Tree 123

Pyramid 125

Mesh-of-trees 127

Hypercube 131

viii Contents

Coarse-Grained Parallel Computers 136

Additional Terminology 139

Summary 142

Chapter Notes 142

Exercises 143

6 Matrix Operations 146

Matrix Multiplication 148

Gaussian Elimination 153

Roundoff Error 160

Summary 161

Chapter Notes 161

Exercises 161

7 Parallel Prefix 164

Parallel Prefix 166

Parallel Algorithms 167

Parallel Prefix on the PRAM 167

Mesh 171

Hypercube 174

Analysis 176

Coarse-Grained Multicomputer 176

Application: Maximum Sum Subsequence 176

RAM 176

PRAM 177

Mesh 179

Array Packing 179

RAM 180

PRAM 181

Network Models 181

Interval (Segment) Broadcasting 182

Solution Strategy 182

Analysis 183

Contents ix

(Simple) Point Domination Query 183

RAM 185

PRAM and Network Models 185

Computing Overlapping Line Segments 185

RAM 186

PRAM 187

Mesh 188

Maximal Overlapping Point 188

Analysis 188

Summary 189

Chapter Notes 189

Exercises 189

8 Pointer Jumping 192

List Ranking 194

Linked List Parallel Prefix 196

Summary 197

Chapter Notes 198

Exercises 198

9 Divide-and-Conquer 200

MergeSort (Revisited) 202

RAM 202

Linear Array 203

Selection 205

RAM 206

Analysis of Running Time 209

Parallel Machines 210

QuickSort (Partition Sort) 211

Array Implementation 216

Analysis of QuickSort 221

Expected-Case Analysis of QuickSort 223

Improving QuickSort 226

x Contents

Modifications of QuickSort for Parallel Models 228

HyperQuickSort 228

BitonicSort (Revisited) 229

BitonicSort on a Mesh 230

Sorting Data with Respect to Other Orderings 234

Concurrent Read/Write 235

Implementation of a Concurrent Read 236

Implementation of Concurrent Write (overview) 237

Concurrent Read/Write on a Mesh 238

Summary 238

Chapter Notes 238

Exercises 239

10 Computational Geometry 242

Convex Hull 244

Graham’s Scan 246

Jarvis’ March 250

Divide-and-Conquer Solution 251

Smallest Enclosing Box 260

RAM 261

PRAM 261

Mesh 261

All-Nearest Neighbor Problem 262

Running Time 264

Architecture-Independent Algorithm Development 264

Line Intersection Problems 265

Overlapping Line Segments 266

Summary 270

Chapter Notes 270

Exercises 272

11 Image Processing 276

Preliminaries 278

Contents xi

Component Labeling 280

RAM 280

Mesh 281

Convex Hull 285

Running Time 287

Distance Problems 288

All-Nearest Neighbor between Labeled Sets 288

Running Time 289

Minimum Internal Distance within Connected Components 290

Hausdorff Metric for Digital Images 293

Summary 296

Chapter Notes 296

Exercises 297

12 Graph Algorithms 300

Terminology 303

Representations 306

Adjacency Lists 307

Adjacency Matrix 308

Unordered Edges 309

Fundamental Algorithms 309

Breadth-First Search 309

Depth-First Search 313

Discussion of Depth-First and Breadth-First Search 315

Fundamental PRAM Graph Techniques 316

List Ranking via Pointer Jumping 316

Euler Tour Technique 318

Tree Contraction 318

Computing the Transitive Closure of an Adjacency Matrix 323

Connected Component Labeling 325

RAM 325

PRAM 325

Mesh 330

xii Contents

Minimum-Cost Spanning Trees 330

RAM 330

PRAM 334

Mesh 336

Shortest-Path Problems 339

RAM 339

PRAM and Mesh 342

Summary 343

Chapter Notes 344

Exercises 345

13 Numerical Problems 350

Primality 352

Greatest Common Divisor 354

Lamé’s Theorem 355

Integral Powers 355

Evaluating a Polynomial 357

Approximation by Taylor Series 359

Trapezoidal Integration 362

Summary 365

Chapter Notes 365

Exercises 366

Bibliography 368

Index 373

Contents xiii

This page intentionally left blank

xv

Preface

Amajor thrust of computer science is the design, analysis, implementation, and
scientific evaluation of algorithms to solve critical problems. In addition, new

challenges are being offered in the field of computational science and engineering,
an emerging discipline that unites computer science and mathematics with disci-
plinary expertise in biology, chemistry, physics, and other applied scientific and
engineering fields. Computational science and engineering is often referred to as
the “third science,” complementing both theoretical and laboratory science. These
multidisciplinary efforts typically require efficient algorithms that run on high-
performance (typically parallel) computers in order to generate the necessary com-
puter models and simulations.

With advances in computational science and engineering, parallel computing
continues to merge into the mainstream of computing. It is therefore critical that
students and scientists understand the application and analysis of algorithmic par-
adigms to both the (traditional) sequential model of computing and to a variety of
parallel models.

Many computer science departments offer courses in “Analysis of Algo-
rithms,” “Algorithms,” “An Introduction to Algorithms,” or “Data Structures and
Their Algorithms” at the junior or senior level. In addition, a course in “Analysis
of Algorithms” is required of most graduate students pursuing a degree in com-
puter science. Throughout the 1980s, the vast majority of these course offerings
focused on algorithms for sequential (von Neumann) computers. In fact, not until
the late-1980s did courses covering an introduction to parallel algorithms begin to
appear in research-oriented departments. Furthermore, these courses in parallel
algorithms were typically presented to advanced graduate students. However, by
the early 1990s, courses in parallel computing began to emerge at the undergradu-
ate level, especially at progressive four-year colleges.

It is interesting to note that throughout much of the 1990s, traditional algo-
rithms-based courses changed very little. Gradually, such courses began to incor-
porate a component of parallel algorithms, typically one to three weeks near the
end of the semester. During the later part of the 1990s, however, it was not uncom-
mon to find algorithms courses that contained as much as 1/3 of the material
devoted to parallel algorithms.

In this book, we take a very different approach to an algorithms-based course.
Parallel computing has moved into the mainstream, with clusters of commodity-
off-the-shelf (COTS) machines dominating the list of top supercomputers in the

world (www.top500.org), and smaller versions of such machines being exploited in
many research laboratories. Therefore, the time is right to teach a fundamental
course in algorithms that covers paradigms for both sequential and parallel models.

The approach we take in this book is to integrate the presentation of sequential
and parallel algorithms. Specifically, we employ a philosophy of presenting a par-
adigm, such as divide-and-conquer, and then discussing implementation issues for
both sequential and parallel models. Due to the fact that we present design and
analysis of paradigms for sequential and parallel models, the reader might notice
that the number of paradigms we can treat within a semester is limited when com-
pared to a traditional sequential algorithms text.

This book has been used successfully at a wide variety of colleges and
universities.

Prerequisites: We assume a basic knowledge of data structures and mathemati-
cal maturity. The reader should be comfortable with notions of a stack, queue, list,
and binary tree, at a level that is typically taught in a CS2 course. The reader should
also be familiar with fundamentals of discrete mathematics and Calculus. Specifi-
cally, the reader should be comfortable with limits, summations, and integrals.

Overview of Chapters

Background material for the course is presented in Chapters 1, 2, and 3. Chapter 1
introduces the concept of asymptotic analysis. While the reader might have seen
some of this material in a course on data structures, we present this material in a
fair amount of detail. The reader who is uncomfortable with some of the funda-
mental material from a Freshman-level Calculus sequence might want to brush up
on notions such as limits, summations and integrals, and derivatives, as they natu-
rally arise in the presentation and application of asymptotic analysis. Chapter 2
focuses on fundamentals of induction and recursion. While many students have
seen this material in previous courses in computer science and/or mathematics, we
have found it important to review this material briefly and to provide the students
with a reference for performing the necessary review. In Chapter 3, we present the
Master Method, a very useful cookbook-type of system for evaluating recurrence
equations that are common in an algorithms-based setting.

Chapter 4 presents an overview of combinational circuits and sorting net-
works. This work is used to motivate the natural use of parallel models and to
demonstrate the blending of architectural and algorithmic approaches. In Chapter
5, we introduce fundamental models of computation, including the RAM (a formal
sequential architecture) and a variety of parallel models of computation. The par-
allel models introduced include the PRAM, mesh, hypercube, and the Coarse-
Grained Multicomputer, to name a few. In addition, Chapter 5 introduces
terminology such as shared-memory and distributed-memory.

xvi Preface

www.top500.org

The focus of Chapter 6 is the important problem of matrix multiplication,
which is considered for a variety of models of computation. In Chapter 7, we
introduce the parallel prefix operation. This is a very powerful operation with a
wide variety of applications. We discuss implementations and analysis for a num-
ber of the models presented in Chapter 5 and give sample applications. In Chapter
8, we introduce pointer jumping techniques and show how some list-based algo-
rithms can be efficiently implemented in parallel.

In Chapter 9, we introduce the powerful divide-and-conquer paradigm. We
discuss applications of divide-and-conquer to problems involving data movement,
including sorting, concurrent reads/writes, and so forth. Algorithms and their
analysis are presented for a variety of models.

Chapters 10 and 11 focus on two important application areas, namely, Compu-
tational Geometry and Image Processing. In these chapters, we focus on interest-
ing problems chosen from these important domains as a way of solidifying the
approach of this book in terms of developing machine independent solution strate-
gies, which can then be tailored for specific models, as required.

Chapter 12 focuses on fundamental graph theoretic problems. Initially, we
present standard traversal techniques, including breadth-first search, depth-first
search, and pointer jumping. We then discuss fundamental problems, including
tree contraction and transitive closure. Finally, we couple these techniques with
greedy algorithms to solve problems, such as labeling the connected components
of a graph, determining a minimal spanning forest of a graph, and problems
involving shortest or minimal-weight paths in a graph.

Chapter 13 is an optional chapter concerned with some fundamental numeri-
cal problems. The focus of the chapter is on sequential algorithms for polynomial
evaluation and approximations of definite integrals.

Recommended Use

This book has been successfully deployed in both elective and required courses,
with students typically ranging from juniors (3rd-year undergraduates) to 2nd-year
graduates. A student in a course using this book need not be advanced in a mathe-
matical sense, but should have a basic, fundamental, background.

Correspondence

Please feel free to contact the authors directly with any comments or criticisms
(constructive or otherwise) of this book. Russ Miller may be reached at
miller@buffalo.edu and Laurence Boxer may be reached at boxer@niagara.edu.
In addition, a Web site for the book can be found from http://www.cse.buffalo.
edu/pub/WWW/faculty/miller/research.htm. This Web site contains information
related to the book, including pointers to education-based pages, relevant parallel
computing links, and errata.

Preface xvii

http://www.cse.buffalo.edu/pub/WWW/faculty/miller/research.htm
http://www.cse.buffalo.edu/pub/WWW/faculty/miller/research.htm

Acknowledgments

The authors would like to thank several anonymous reviewers for providing
insightful comments, which have been used to improve the presentation of this
book. We would like to thank the students at SUNY-Buffalo who used early drafts
of this book in their classes and provided valuable feedback. We would like to
thank Ken Smith, a member of the technical support staff at SUNY-Buffalo, for
providing assistance with Wintel support. We would also like to thank our families
for providing us the support necessary to complete this time-consuming project.

Russ Miller & Laurence Boxer, 2005

xviii Preface

This page intentionally left blank

2

1
Asymptotic Analysis

Notation and Terminology

Asymptotic Relationships

Rules for Analysis of Algorithms

Limitations of Asymptotic Analysis

Common Terminology

Summary

Chapter Notes

Exercises

3

We live in a digital-data-driven society that relies increasingly on simulation and
modeling for discovery. Data is increasing at an astonishing rate, typically two

to three times the rate of increase of processing power and network bandwidth. Thus,
to compete in a knowledge-based economy, students must learn to collect, organize,
maintain, analyze, and visualize data efficiently and effectively.

A comprehensive study of algorithms includes the design, analysis, implementa-
tion, and experimental evaluation of algorithms that solve important problems. These
include enabling problems, such as sorting, searching, and transferring data; as well as
applications-oriented problems, such as retrieving a reservation record, forecasting the
weather, or determining the positions of atoms in a molecule to improve rational drug
design.

In this chapter, we introduce some basic tools and techniques that are required to
evaluate effectively both a theoretical and an experimental analysis of algorithms. It is
important to realize that without analysis, it is often difficult to justify the choice of one
algorithm over another or to justify the need for developing a new algorithm. Therefore,
a critical aspect of most advanced data structures or algorithms courses is the develop-
ment of techniques for estimating the resources (running time, disk space, memory, and
so forth) required for a given algorithm. As an aside, we should point out that a course
covering proofs of correctness for algorithms is also critical, because having fast algo-
rithms that produce incorrect results is not desirable. However, for pragmatic reasons,
nontrivial proofs of correctness are not covered in this text.

Throughout this book, we will focus on resources associated with a given algo-
rithm. Specifically, we will be concerned with quantities that include the number of
processors, the size of the memory, and the running time required of an algorithm. A
comparison of such quantities will allow for a reasonable comparison between algo-
rithms, typically resulting in an informed choice of an algorithm for a target application.
For example, such analyses will allow us to make a more informed decision on which
sorting algorithm to use on a sequential machine, given data with certain properties that
are maintained in certain data structures. We should point out that when computing
solutions to numerical problems, one must often consider the quality of the solution.
Although this topic is critical, we believe it is covered in a more comprehensive fashion
in “Numerical Methods” or “Computational Science” courses than is possible in a
course on algorithms. In fact, most of the algorithms we consider in this book can be
viewed as “nonnumerical” in nature.

In practice, it often turns out that we are more concerned with time than with
memory. This statement may surprise students thinking of relatively small home-
work projects that, once freed of infinite loops, begin printing results almost
immediately. However, many important applications require massive processing
of large data sets, requiring hours or even days of CPU time. Examples of these
applications are found in areas such as molecular modeling, weather forecasting,
image analysis, neural network training, and simulation. Aside from the dollar cost
of computer time, human impatience or serious deadlines can limit the use of such
applications. For example, it helps to have a weather forecast only if it is made
available in advance of the forecast period. By contrast, it is not uncommon to be
able to devise algorithms and their associated data structures such that the memory
requirements are quite reasonable, often no more than a small multiple of the size
of the data set being processed.

In this chapter, we develop mathematical tools for the analysis of resources
required by a computer algorithm. Because time is more often the subject of our
analysis than memory, we will use time-related terminology; however, the same
tools can naturally be applied to the analysis of memory requirements or error
tolerance.

Notation and Terminology

In this section, we introduce some notation and terminology that will be used
throughout the text. We make every effort to adhere to traditional notation and
standard terminology. In general, we use the positive integer n to denote the size of
the data set processed by an algorithm. We can process an array of n entries, for
example, or a linked list, tree, or graph of n nodes. We will use to represent
the running time of an algorithm operating on a data set of size n.

An algorithm can be implemented on various hardware/software platforms.
We expect that the same algorithm operating on the same data values will execute
faster if implemented in the assembly language of a supercomputer rather than in
an interpreted language on a personal computer (PC) from, say, the 1980s. Thus, it
rarely makes sense to analyze an algorithm in terms of actual CPU time. Rather,
we want our analysis to reflect the intrinsic efficiency of the algorithm without
regard to such factors as the speed of the hardware/software environment in which
the algorithm is to be implemented; we seek to measure the efficiency of our pro-
gramming methods, not their actual implementations.

Thus, the analysis of algorithms generally adheres to the following principles:

Ignore machine-dependent constants: We will not be concerned with
how fast an individual processor executes a machine instruction.

Look at growth of as : Even an inefficient algorithm will
often finish its work in an acceptable time when operating on a small
data set. Thus, we are usually interested in T (n), the running time of an

nT n()

T n()

4 Chapter 1 Asymptotic Analysis

algorithm, for large n (recall that n is typically the size of the data input
to the algorithm).

Growth Rate: Because asymptotic analysis implies that we are
interested in the general behavior of the function as the input parameter
gets large (we are interested in the behavior of T (n) as), this
implies that low-order terms can (and should) be dropped from the
expression. In fact, because we are interested in the growth rate of
the function as n gets large, we should also ignore constant factors
when expressing asymptotic analysis. This is not to say that these terms
are irrelevant in practice, just that they are irrelevant in terms of
considering the growth rate of a function. So, for example, we say that
the function 3n3 + 10n2 + n + 17 grows as n3. Consider another example:
as n gets large, would you prefer to use an algorithm with running time
95n2 + 405n + 1997 or one with a running time of 2n3 + 12? We hope
you chose the former, which has a growth rate of n2, as opposed to the
latter, which has a growth rate of n3. Naturally, though, if n were small,
one would prefer 2n3 + 12 to 95n2 + 405n + 1997. In fact, you should be
able to determine the value of n that is the breakeven point. Figure 1.1
presents an illustration of this situation.

n

Notation and Terminology 5

better

n0 n

y=f(n)

y=g(n)

T(n)

FIGURE 1.1 An illustration of the growth rate
of two functions, f(n) and g(n). Notice that for
large values of n, an algorithm with an asymp-
totic running time of f(n) is typically more
desirable than an algorithm with an asymptotic
running time of g(n). In this illustration,
“large” is defined as n n0.

6 Chapter 1 Asymptotic Analysis

Asymptotic Notation

At this point, we introduce some standard notation that is useful in expressing the
asymptotic behavior of a function. Because we often have a function that we wish
to express (more simply) in terms of another function, it is easiest to introduce this
terminology in terms of two functions. Suppose f and g are positive functions of n.
Then

f (n) = (g(n)) (read “f of n is theta of g of n”) if and only if there exist posi-
tive constants c1, c2, and n0 such that whenever n n0.
See Figure 1.2.

c g n f n c g n
1 2

() () ()

y = g(n)

y = f(n)

n
0

FIGURE 1.2 An illustration of notation.
f(n) = (g(n)) because functions f(n) and
g(n) grow at the same rate for all n n0.

f (n) = O(g(n)) (read “f of n is oh of g of n”) if and only if there exist posi-
tive constants c and n0 such that f (n) cg(n) whenever n n0. See Figure
1.3.

f (n) = (g(n)) (read “f of n is omega of g of n”) if and only if there exist
positive constants c and n0 such that whenever n n0. See
Figure 1.4.

f (n) = o(g(n)) (read “f of n is little oh of g of n”) if and only if for every
positive constant C there is a positive integer n0 such that f (n) < Cg(n)
whenever n n0. See Figure 1.5.

cg n f n() ()

Notation and Terminology 7

f (n) = (g(n)) (read “f of n is little omega of g of n”) if and only if for every
positive constant C there is a positive integer n0 such that f (n) > Cg(n)
whenever n n0. See Figure 1.6.

y = g(n)

y = f(n)

n
0

FIGURE 1.3 An illustration of O notation.
f(n) = O(g(n)) because function f(n) is
bounded from above by g(n) for all n n0.

y = g(n)

y = f(n)

n
0

FIGURE 1.4 An illustration of notation.
f(n) = (g(n)) because function f(n) is
bounded from below by g(n) for all n n0.

n(C)

y=g(n)

y=Cg(n)

y=C'g(n)

y=f(n)

n(C')

FIGURE 1.5 An illustration of o notation: f(n) = o(g(n)).

Strictly speaking, , O, , o, and are set-valued functions. Therefore, it
would be appropriate to write (3n2 + 2) (n2). In fact, some authors have tried to
use this membership notation “correctly,” but it has not caught on. In the literature,
it is more common to see this idea expressed as 3n2 + 2 = (n2). This notation is
certainly not correct in the mathematical sense; however, it is the standard. The
expression 3n2 + 2 = (n2) is read as “3 n squared plus 2 is theta of n squared.”
Note that one does not write (n2) = 3n2 + 2.

The set-valued functions , O, , o, and are referred to as asymptotic nota-
tion. Recall that we use asymptotic notation to simplify analysis and capture
growth rate. Therefore, we want the simplest and best function as a representative
of each , O, , o, and expression. Some examples follow.

8 Chapter 1 Asymptotic Analysis

n(C)

y=C'g(n)

y=f(n)

y=Cg(n)

y=g(n)

n(C')

FIGURE 1.6 An illustration of notation: f(n) = (g(n)).

EXAMPLE

Given and , then because 4 5 + sint
6. (See Figure 1.7.) Note also that and , but the best
choice for notation is to write because conveys more informa-
tion than either O or .

f t() ()= 1
f t() ()= 1f t O() ()= 1

5 1+ =sin ()tg t() = 1f t t() sin= +5

More Notation

We will often find the floor and ceiling functions useful. Given a real number x,
there is a unique integer n such that

We say that n is the “floor of x,” denoted

In other words, is the largest integer that is less than or equal to x.
Similarly, given a real number x, there is a unique integer n such that

Then n + 1 is the “ceiling of x,” denoted

In other words, is the smallest integer that is greater than or equal to x.

For example, ; ;

Notice for all real numbers x we have

It follows that = (x) and = (x).
Also, in describing the assignment of a value to a variable, we will use either

the equal sign or the left arrow (both are widely used in computer science). That is,
either of the notations

xx

x x x x x< < +1 1.

18 18 18= =3 2 4. =3 2 3. =
x

x n= +1.

n x n< +1.

x

x n= .

n x n< +1.

Notation and Terminology 9

−π−2π 3π2ππ

1
2
3
4
5
6

t

FIGURE 1.7 Graph of f(t) = 5 + sin t.

or

will mean “assign the value of right as the new value of left.”

left right

left right=

10 Chapter 1 Asymptotic Analysis

EXAMPLE

Show that

for p > 1, a fixed constant. First, we consider an upper bound on the summation.
We know that

because the summation contains n terms, the largest of which is np. Therefore,
we know that

Next, we consider a lower bound on the sum. Notice that it is easy to derive a
trivial lower bound of (n), because there are n terms in the summation, the
least of which is equal to 1. However, we can derive a more useful, larger, lower
bound. Notice that

Notice that in

k p

k n

n

= +/2 1

k k k kp

k

n
p

k

n
p

k n

n
p

k n= = = + =

= +
1 1

2

2 1

/

/ //

.
2 1+

n

k O np

k

n
p

=

+= ()
1

1 .

k n np

k

n
p

=

×
1

k np

k

n
p

=

+= ()
1

1

Asymptotic Relationships 11

Asymptotic Relationships

Useful relationships exist among , O, , o, and , some of which are given in
the following proposition. The reader might want to try to prove some of these.
(An instructor might want to assign some of these as homework problems.)

Proposition: Let f and g be positive functions of n. Then

1.

2.

3.

4.

5.

6. f n g n
f n

g nn
() () lim

()

()
= () =

f n o g n
f n

g nn
() () lim

()

()
= () = 0

f n o g n g n f n() () () ()= () = ()
f n g n f n O g n f n g n() () [() () () ()= () = () = () and]]

f n g n g n f n() () () ()= () = ()
f n O g n g n f n() () () ()= () = ()

there are terms, where is the smallest term. Therefore,
we know that

Because 2 p+1 is a constant, we have

Therefore, we know that

k np

k

n
p

=

+= ()
1

1 .

k np

k

n
p

=

+= ()
1

1 .

k n n
np

k

n
p

p

p
=

+

+=
1

1

1
2 2

2
(/)(/) .

n
p

/ 2 1+()n n / 2

12 Chapter 1 Asymptotic Analysis

7. f (n) = o(g(n)) f (n) = O(g(n)), but the converse is false.
8. f (n) = (g(n)) f (n) = (g(n)), but the converse is false.
9. f (n) is bounded above and below by positive constants if and only if

f (n) = (1).

Asymptotic Analysis and Limits

To determine the relationship between functions f and g, it is often useful to examine

The possible outcomes of this relationship, and their implications, follow:

L = 0: This means that g(n) grows at a faster rate than f (n), and hence
that f = O(g) (indeed, f = o(g) and f (g)).
L = : This means that f (n) grows at a faster rate than g(n), and hence
that f = (g) (indeed, f = (g) and f (g)).
L 0 is finite: This means that f (n) and g(n) grow at the same rate, to
within a constant factor, and hence that f = (g), or equivalently, g = (f).
Notice that this also means that f = O(g), g = O(f), f = (g), and g = (f).

There is no limit: In the case where does not exist, this technique

cannot be used to determine the asymptotic relationship between f (n) and
g(n).

We now give some examples of how to determine asymptotic relationships
based on taking limits of a quotient.

lim
()

()n

f n

g n

lim
()

()
.

n

f n

g n
L=

EXAMPLE

Let

and g(n) = n2.

Then we can show that f (n) = (g(n)) because

(dividing both numerator and denominator by n2)

lim .
n

n
+

=
1

1

2

1

2

lim
()

()
lim

n n

f n

g n

n n

n
=

+
=

2

22

f n
n n

()
()

=
+1

2

At this point, it is reasonable to discuss logarithmic notation and to note that
logarithms play an important role in asymptotic analysis and will be used fre-
quently throughout this text. As appropriate, we will use fairly standard terminol-
ogy in referring to logarithms. We write as , as , and
as .

We now continue with an example that uses logarithms.
log x

log
10

xlg xlog
2

xln xlog
e
x

Asymptotic Relationships 13

EXAMPLE

If P(n) is a polynomial of degree d, then P(n) = (nd). The proof is left to the
reader as an exercise.

EXAMPLE

Compare . We remind the reader of a useful result.

We have

We can apply L’Hopital’s Rule to the numerator and denominator of this limit
100 times. After this, we have

Therefore, we know that n100 = O (2n) and 2n = (n100). In addition, using some
of the properties previously presented, we know that n100 = o(2n) and
2n = (n100). Further, we know that n100 (2n).

lim lim lim
lnln

n

n

n

n

nn

e

n
= =

()2 2
100

2

100

100
22

100

n

!
.=

lim lim lim
ln ln

n

n

n n

n

n

e

n

e

n

n

= =
2
100

2

100

2

1000
.

d

dx
e e f xf x f x() () '().=

n n100 2 and

14 Chapter 1 Asymptotic Analysis

We remind the reader that logb x = (logb a)(loga x), for positive a, b, and x
with . Therefore, because logb a is a constant, logb x = (loga x). That is,
the base of a logarithm is irrelevant inside asymptotic notation, except that we
assume (so that the logarithms are positive, because we generally have
x > 1 in such contexts).

Summations and Integrals

Because many algorithms involve looping and/or recursion, it is common for the
analysis of an algorithm to include a dependence on some function f (n) that is best
expressed as the sum of simpler functions. For example, it may be that the domi-
nant term in an analysis of an algorithm can be expressed as f (n) = h(1) + h(2) +
... + h(n). When we consider the worst-case number of comparisons in the
InsertionSort routine later in this chapter, we will find that the total number of
comparisons can be computed as f (n) = 1 + 2 + 3 + ... + n = n(n + 1)/2 = (n2).

We first consider the case where the function h(i) is nondecreasing. (Notice
that the worst-case number of comparisons used in InsertionSort, as mentioned
previously, uses the nondecreasing function h(i) = i.) Specifically, let

where h is nondecreasing. (An illustration of this situation is presented in Figure
1.8.)

f n h i
i

n

() (),=
=1

a b, >1

a b1

EXAMPLE

Let f (n) = ln n and g(n) = n. Then, by applying L’Hopital’s Rule, we have

which evaluates as

Therefore, ln n = O (n).

lim
/

lim .
n nn

n= =
1

1

lim
ln

lim
/

,
n n

n

n n
=

1

1

To evaluate f (n), we can consider summing n unit-width rectangles, where the
ith rectangle has height h(i). In Figure 1.8, we present these rectangles in two ways
to obtain tight bounds on the asymptotic behavior of the total area of the rectangles
(in other words, the value of f (n)). On the left, we draw the rectangles so that the
ith rectangle is anchored on the left. That is, the left edge of the rectangle with
height h(i) is at value i on the x-axis. In this way, you will notice that each rec-
tangle is below the curve of h(t), where t takes on values between 1 and n + 1
(assuming 1 is the value of the lower bound and n is the value of the upper bound
in the sum).

Conversely, on the right of Figure 1.8, we draw the rectangles so that the ith

rectangle is anchored on the right. That is, the right edge of the rectangle with
height h(i) is at value i on the x-axis. This allows us to use the rectangles to bound
the area of the curve, between 0 and n (assuming that 1 is the value of the lower
bound and n is the value of the upper bound) from above. Notice that in Figure 1.8,
we give the relationships of the area under the curve bounding the rectangles (left)

Asymptotic Relationships 15

h(n)
h(1)

0 11 2 n − 1 n

h(n)
h(1)

Rectangles aligned
to the right.

Rectangles aligned
to the left.

FIGURE 1.8 An illustration of bounding the summation by the integral of

the nondecreasing function h(t). On the left, we demonstrate how to use the inte-

gral to derive an upper bound on the summation by aligning the rec-

tangles to the right. Notice that . On the right, we show how

to use the integral to derive a lower bound on the summation by align-

ing the rectangles to the left. Notice that . Therefore, we have

.h(t)dt h(i) h(t)dt
n

i

n n

0
1

1

1

=

+

h(t)dt h(i)
n

i

n

0
1=

h(t)dt
n

0

h(i) h(t)dt
i

n n

=

+

1
1

1

h t dt
n

()
1

1+

h i
i

n

()
=1

and the rectangles bounding the area under the curve (right side). In addition, we
show how to combine these relationships to obtain a bound on the summation by
related integrals.

The method of determining asymptotic analysis of a summation by integration
is quite powerful. Next, we give several examples and, in doing so, illustrate a
variety of techniques and review some basic principles of integration.

16 Chapter 1 Asymptotic Analysis

EXAMPLE

Find the asymptotic complexity of

First, we consider the integral bounding principles that were given previously.
Because the function h(i) = i is nondecreasing, we can apply the conclusion di-
rectly and arrive at the bound

Evaluating both the left and right sides simultaneously yields

which can be evaluated in a fairly routine fashion, resulting in

Working with the right side of this inequality, we can obtain

Further simplification of the right side can be used to give

1

2

1

2
2 2 2n n n n+ +

()
.

n
n n

+
= +

1

2

1

2

1

2

2
2

n
i

n

i

n2

1

2

2

1

2

1

2

+()
=

.

t
i

t
n

i

n
n

2

0 1

2

1

1

2 2=

+

tdt i tdt
n

i

n n

0
1

1

1

=

+
.

f n i
i

n

() .=
=1

Asymptotic Relationships 17

for . Therefore,

Because the function

is bounded by a multiple of n2 on both the left and right sides, we can conclude
that

f n i n
i

n

() .= = ()
=1

2

f n i
i

n

() =
=1

1

2

3

2
2

1

2n i n
i

n

=

.

n 1

EXAMPLE

Find the asymptotic complexity of

First, it is important to realize that the function is a nonincreasing function.
This requires an update in the analysis presented for nondecreasing functions.
In Figure 1.9, we present a figure that illustrates the behavior of a nonincreas-
ing function over the interval . Notice that with the proper analysis, you
should be able to show that

Based on this analysis, we can now attempt to produce an asymptotically tight
bound on the function g(n). First, we consider a lower bound on g(n). Our
analysis shows that

1 1
1

1x
dx

k

n

k

n

=

.

f k f x dx f k
k a

b

a

b

k a

b

() () ().
= + =1

[,]a b

1

k

g n
kk

n

() .=
=

1

1

18 Chapter 1 Asymptotic Analysis

Because

we know that g(n) is bounded below by ln n.
Next, we consider an upper bound on g(n). Notice that if we apply the re-

sult of our analysis for a nonincreasing function blindly, we obtain

Unfortunately, this result does not yield a useful upper bound. However, notice
that the cause of this infinite upper bound is evaluation of the integral at the
specific point of 0. This problem can be alleviated by carefully rewriting the
equation to avoid the problematic point. Let’s consider the more restricted
inequality

Notice that the integral evaluates to ln n. Therefore, if we now add back in the
problematic term, we arrive at

Combining the results of both the upper and lower bounds on g(n), we arrive at

for n large enough (verify). Therefore,

1

1 k
n

k

n

=

= ()ln .

ln ln ln ,n
k

n n
k

n

+
=

1
1 2

1

1
1

1
1

1
1

1 2
1k k x

dx n
k

n

k

n n

= =

= + + = + ln .

1 1

2
1k x

dx
k

n n

=

.

1 1
0

1
0k x

dx x
n

k

n
n

= =
=

ln .

1
1

1 1x
dx x n n

n n
= = =ln ln ln ln ,

Asymptotic Relationships 19

Note: f (x) is nonincreasing

a a�1 b�1 b

FIGURE 1.9 An illustration of bounding

the summation for a nonincreas-

ing function f. For f nonincreasing,

we can derive the relationship

.f(t)dt f(i) f(t)dt
a

b+1

i=a

b

a-1

b

f(i)
i=1

n

EXAMPLE

As our final example of evaluating the asymptotic behavior of a summation by
integrals, we consider the function

for . (We showed earlier that

However, we now show how to obtain this result by another method.) Consider
the derivative of k p. For , we have

Therefore, the function k p is an increasing function. A quick sketch of an in-
creasing function (f is increasing if), in a setting more
general than illustrated earlier, appears in Figure 1.10.

u v f u f v< <() ()

d

dk
k pkp p= >1 0.

k > 0

f n k np

k

n
p() .= = ()

=

+

1

1

p > 0

f n k p

k

n

() ,=
=1

20 Chapter 1 Asymptotic Analysis

Using the analysis associated with Figure 1.10, we have both

and Thus,

or

Because for ,

or

which, based on asymptotic properties given earlier in this chapter, yields the
expected solution of

k np

k

n
p

=

+= ()
1

1 .

1

1

2

1
1

1

1
1

p
n k

p
np p

k

n p
p

+ +
+

=

+
+ ,

n

p
k

n

p

n

p

p
p

k

n
p p

p+

=

+ +
+

+
+()
+

()
+

=
1

1

1 1
1

1

1

1

2

1

2 nn

p

p+

+

1

1
,

n 1n n+1 2

n

p
k

n

p

n

p

p
p

k

n
p p

+

=

+ +

+
+()

+
<

+()
+

1

1

1 1

1

1 1

1

1

1
.

x

p
k

x

p

p
n

p

k

n p
n+

=

+ +

+ +

1

0 1

1

1

1

1 1
,

k x dxp

k

n
p

n

=

+

1
1

1
.x dx kp

n
p

k

n

0
1=

a b

FIGURE 1.10 An increasing function in the
range . We have

f k f x dx f k
k a

b

a

b

k a

b

() () ().
= = +

1

1

[,]a b

Rules for Analysis of Algorithms

The application of asymptotic analysis is critical to provide an effective means of
evaluating both the running time and space of an algorithm as a function of the
size of the input. In this section, we present fundamental information about the
analysis of algorithms and give several algorithms to illustrate the major points of
emphasis.

Fundamental operations execute in (1) time: Traditionally, it is
assumed that “fundamental” operations require a constant amount of
time (that is, a fixed number of computer “clock cycles”) to execute. We
assume that the running time of a fundamental operation is bounded by a
constant, irrespective of the data being processed. Such operations
include the following:

• Arithmetic operations () as applied to a constant number
(typically two) of fixed-size operands.

• Comparison operators () as applied to two fixed-
size operands.

• Logical operators (AND, OR, NOT, XOR) as applied to a constant
number of fixed-size operands.

• Bitwise operations, as applied to a constant number of fixed-size
operands.

• I/O operations that are used to read or write a constant number of
fixed-size data items. Note this does not include input from a
keyboard, mouse, or other human-operated device, because the user’s
response time is unpredictable.

• Conditional/branch operations.

• The evaluation of certain elementary functions. Notice that such
functions need to be considered carefully. For example, when the
function sin is to be evaluated for “moderate-sized” values of , it is
reasonable to assume that (1) time is required for each application of
the function. However, for very large values of , a loop dominating
the calculation of sin might require a significant number of
operations before stabilizing at an accurate approximation. In this case,
it might not be reasonable to assume (1) time for this operation.

We mention additional fundamental properties.

• Suppose the running times of operations A and B are, respectively,
O (f (n)) and O (g(n)). In this case, the performance of A followed by B
takes O (f (n) + g(n)) time. Note that this analysis holds for , , o,
and , as well.

< > =, , , , ,

+ ×, , , /

Rules for Analysis of Algorithms 21

• Next, suppose that each application of the body of a loop requires
O (f (n)) time, and the loop executes its body O (g(n)) times. The time
required to execute the loop (that is, all performances of its body) is
O (f (n)g(n)). A similar property holds for , , o, and .

22 Chapter 1 Asymptotic Analysis

EXAMPLE (INSERTIONSORT)

As an example, we consider the analysis of InsertionSort, a simple sorting
technique that is introduced in many first-semester computer science courses.
Suppose we are given a set of data arbitrarily distributed in an array and we
want to rearrange the data so that it appears in increasing order. We give
pseudocode for the algorithm and then present an analysis of both its time and
space requirements. Note that later in this book, we compare more advanced al-
gorithms to InsertionSort, and also show how InsertionSort can be effectively
exploited in restricted situations, for example, where the set of data presented to
InsertionSort is such that no item is very far from where it belongs.

Subprogram InsertionSort(X)
Input: an array X of n entries
Output: the array X with its entries in ascending order
Local Variables: indices current, insertPlace

Action:

For current = 2 to n do
{The first (current–1) entries of X are ordered.
This is why current is initially set to 2.}
Search X[1…current–1] to determine the index, denoted as insertPlace

{1,…,current –1}, where X[current] should be inserted.
Make a copy of X[current].
Shift the elements X[insertPlace,…, current–1] down by one position
into elements X[insertPlace+1,…,current].
Place the copy of X[current] into its proper position at
X[insertPlace].

End For

The previous description presents a top-level view of InsertionSort. An ex-
ample is given in Figure 1.11. We observe that the search called for in the first
step of the loop can be performed by a straightforward sequential search that re-
quires O(k) time, where k is the value of current. The reader should verify that

Rules for Analysis of Algorithms 23

this requires (k) time on average. Alternately, an O(logk) time binary search
can be performed, as will be discussed in the chapter on Induction and Recur-
sion. Thus, the total search time is

time if sequential searches are used, and

time if binary searches are used. Notice that O-notation is used, because both
results represent upper bounds on the search time.

Regardless of which search is used to locate the position that X [current]
should be moved to, notice that on average, it will require current/2 movements
of data items to make room for X [current]. In fact, in the worst case, the insert
step always requires X [current] to be moved to position number 1, requiring
current data items to be moved. Therefore, the running time of the algorithm is
dominated by the data movement, which is given by

where movementk is 0 in the best case, k in the worst case, and k/2 in the aver-
age case. Hence, the running time of InsertionSort is (n) in the best case
(when data is already sorted and a sequential search from (current – 1) down to
1 is used), (n2) in the average (or expected) case, and (n2) in the worst case.
The reader should verify these results by substituting the appropriate values
into the summation and simplifying the equation. Notice that the average- and
worst-case running times are dominated by the data movement operations.

Finally, notice that (n) space is required for the algorithm to store the n
data items. More important, the amount of extra space required for this algo-
rithm is constant, that is, (1). An insertion routine follows.

Subprogram Insert(X, current, insertPlace)
Insert X[current] into the ordered
subarrary X[1… current–1] at position
insertPlace.

T n movement
k

k

n

() =
=2

O k O n n
k

n

log log
=

= ()
2

O k O n
k

n

=

= ()
2

2

It is often possible to modify an algorithm designed for one data structure to
accommodate a different data structure. The reader should consider how Insertion-
Sort could be adapted to linked lists (see Exercises).

24 Chapter 1 Asymptotic Analysis

We assume
Local variables: index j, entry-type hold

Action:

If , then {there’s work to do}
hold =
For downto insertPlace, do

End For

End If

For completeness, we present an efficient implementation of InsertionSort
based on the analysis we have presented.

Subprogram InsertionSort(x, n)
{This is a simple version of InsertionSort with sequential search.}

For i = 2 to n, do
hold = x[i]
position = 1
While hold > x[position], do

position = position + 1
End While
If position < i, then

For j = i downto position, do
x[j] = x[j – 1]

End For
x[position] = hold

End If
End For

End InsertionSort

X insertPlace hold[] =

X j X j[] []+ =1
j current= 1

X current[]
current insertPlace

1 insertPlace current n

Rules for Analysis of Algorithms 25

4

3

5

1

2

3

4

5

1

2

3

4

5

1

2

1

3

4

5

2

1

2

3

4

5

FIGURE 1.11 An example of InsertionSort. It is initially assumed that
the first item (4) is in the correct position. Then the second item (3) is
placed into position with respect to all of the items in front of it, result-
ing in (3,4) being properly ordered. The algorithm continues until the
last item (2) is placed in its proper position with respect to the items
(1,3,4,5) that are in front of it.

EXAMPLE: BINSORT

Sorting is a fundamental problem in computer science because a major use of
computers is to maintain order in large collections of data. Perhaps for this rea-
son, researchers have developed many algorithms for sorting. Some of these are
considerably faster than others. Yet, sometimes the asymptotically slower algo-
rithms are useful because, for example, they may be very fast on relatively
small data sets or they may be very fast on sets of data that exhibit certain char-
acteristics. We will present several sorting algorithms in this book and examine
such issues.

In the previous section, we presented an analysis of InsertionSort. In one of
the exercises at the end of this chapter, we present SelectionSort, a fairly
straightforward, useful sorting routine that exhibits the same worst case

(n2) running time as InsertionSort. Later in the book, we present alternative
comparison-based sorting algorithms that exhibit optimal (nlog n) worst case
running times. In fact, many of you may already be familiar with the result that
states that comparison-based sorting requires (nlog n) time.

Although (nlog n) is a lower bound on general comparison-based sorting,
one might ask whether or not it is possible to sort a set of data in o(nlog n) time.
In fact, although this is not possible in general, it is possible given a set of data
that is not “arbitrary.” An important theme that runs through this book is that
one should attempt to design an o(nlog n) time-sorting algorithm if one knows
something about the data a priori.

26 Chapter 1 Asymptotic Analysis

For example, suppose you know that you are required to sort data that is
chosen from a restricted set. Maybe you know that the keys can take on only
O(n) distinct values. In this case, one can employ a BinSort algorithm. BinSort
is modeled on the process of placing each member of a collection of numbered
items (such as machine parts) into a correspondingly numbered bin. Alterna-
tively, one might think about sorting a deck of cards by going through the deck
once, tossing all the aces in one pile, all the 2s in another, and so on. Once you
have gone through all the cards and created your 13 bins, you simply need to
concatenate the bins to create the final sorted set. Notice that if you sort more
than one deck of cards, you still need only 13 bins. Given one complete deck of
cards, each bin will wind up with exactly four cards in it. An example of Bin-
Sort is presented in Figure 1.12.

Next, we give a description of BinSort under the assumption that the range
of data is the integer values from 1 to n. It is important to note (in terms of the
proof that (nlog n) comparisons are required to sort an arbitrary set of data by
a comparison-based sort) that BinSort is not a “comparison-based” sorting al-
gorithm. That is, BinSort does not rely on comparing data items to each other.
In fact, the algorithm never compares two data items.

Subprogram BinSort(X)
Sort the array X via the BinSort algorithm.
We assume entries of X have integer key values 1… n.
Local variables: indices j, s;

temp, an array of pointers, each representing a stack
Action:

For to n, do
{make temp[j] an empty stack}

temp[j] = null
For to n, do

push(X[j], temp[X[j].key])
s = 1
For to n, do

while emptyStack(temp[s])

end while
pop(temp[s], X[j])

End For

An analysis of the algorithm follows. It is easy to see that the first two For
loops each require (n) time, after which each element is in one of the n bins.

s s +1

j = 1

j = 1

j = 1

Limitations of Asymptotic Analysis 27

The initializations of s requires (1) time. The final For loop requires that every
item be examined once, hence, requires (n) time. Hence, the entire algorithm
requires (n) time. Further, notice that the algorithm requires (n) space to
store the items and only (n) additional space (for indices and stack pointers).
We observe that the linear amount of additional space requires only a small
constant of proportionality, because the items themselves are placed on the
stacks (no copies of the items are ever made). Therefore, the algorithm is opti-
mal in terms of running time—that is, executing faster (asymptotically) means
not examining all of the items, in which case you might miss an item that is out
of order—and is efficient in terms of space.

Limitations of Asymptotic Analysis

Suppose a given problem has two algorithmic solutions. Further, suppose these
algorithms have the same asymptotic running times and the same asymptotic space
requirements. This situation might make it difficult to choose between the two

5

2

3

4

1

3

2

3

5

3

(a)
Initial data

(b)
Create
empty
bins

temp temp

(c)
Final bins after complete
pass through data array

1

2

2

3

3

3

3

4

5

5

(d)
Sorted array

1

2

3

4

5

1 X:1

2

3

4

5

22

3

4

5

3 3 3

5

X:

FIGURE 1.12 BinSort applied to an array of 10 items chosen from [1…5]. In
(a), the initial array of data is given. In (b), the set of empty bins are created.
In (c), the bins are shown after a complete pass through the array. In (d), the
array is recreated by “concatenating” the bins.

algorithms, because the asymptotic analysis provides some guidelines for behavior,
but it also hides high-order constants and low-order terms. In fact, suppose that
algorithm A is five times faster than algorithm B for problems of a given size.
Because five is just a constant, this will be hidden in the O-notation. Similarly,
because low-order terms are masked with O-notation, it may be that one algorithm
is superior for small data sets (where the low-order terms are important) but not for
large data sets (where these low-order terms are, appropriately, masked).

Consider the problem of sorting a set of data, and assume that based on knowl-
edge of the input, you decide that a general, comparison-based sorting algorithm is
required. Among your choices are algorithms that copy data and algorithms that
do not copy data (for example, sorting can be done via pointer manipulation rather
than by copying data). Suppose, for example, we consider three algorithms whose
running times are dominated by the following steps:

• Algorithm A: (n2) comparisons, (n2) copying operations
• Algorithm B: (n2) comparisons, (n) copying operations
• Algorithm C: (n2) comparisons, (n) pointer manipulation operations

All three algorithms run in (n2) time, yet we should expect A to be slower
than B, and B to be slower than C. For example, suppose the data being sorted
consists of 100-byte data records. Then, at the machine level, every copying oper-
ation (an assignment statement of the form) can be thought of as a loop of
the following form:

For byteNumber = 1 to 100, do

Therefore, a data-copying operation takes time proportional to the size of the
data entity being copied. Thus, given data entries of significant size (where signif-
icant is machine-dependent—on some machines this may mean data items larger
than 100 bytes, whereas on other machines this may mean data items larger than
1,000 bytes), we expect Algorithm A to be slower than Algorithm B, even though
the two algorithms have the same asymptotic running time.

Pointers of 4 bytes (32 bits) can theoretically be used to address 232 bytes (4
Gigabytes) of memory. A sorting algorithm that uses (n) pointer manipulations
might involve three to four pointer assignments, hence perhaps 12 to 16 bytes of
assignments, per data movement. Therefore, such an algorithm would typically be
more efficient than an algorithm that copies data, so long as the data items are
sufficiently long. Of course, on real machines, some of these conjectures must be
tested experimentally, because instruction sets and compilers can play a major role
in the efficiency of an algorithm.

x byteNumber y byteNumber[] [].

x y

28 Chapter 1 Asymptotic Analysis

Common Terminology

We conclude this chapter by giving some common terminology that will be used
throughout the text. These terms are fairly standard, appearing in many texts and
the scientific literature.

An algorithm with running time is said to run in

(1) constant time

(log n) logarithmic time

O (logk n), k a positive integer polylogarithmic time

o(log n) sublogarithmic time

(n) linear time

o(n) sublinear time

(n2) quadratic time

O(f (n)), where f (n) is a polynomial polynomial time

An algorithm is said to run in optimal time if its running time T(n) = O(f (n))
is such that any algorithm that solves the same problem requires (f (n)) time. It is
important to note that in terms of notions such as optimality or efficiency, one
compares the running time of a given algorithm with the lower bound on the run-
ning time to solve the problem being considered. For example, any algorithm to
compute the minimum entry of an unsorted array of n entries must examine every
item in the array (because any item skipped could be the minimal item). Therefore,
any sequential algorithm to solve this problem requires (n) time. So, an algo-
rithm that runs in (n) time is optimal.

Notice that we use the term optimal to mean asymptotically optimal. An opti-
mal algorithm need not be the fastest possible algorithm to give a correct solution
to its problem, but it must be within a constant factor of being the fastest possible
algorithm to solve the problem. Proving optimality is often difficult and for many
problems optimal running times are not known. There are, however, problems for
which proof of optimality is fairly easy, some of which will appear in this book.

Summary

In this chapter, we have introduced fundamental notions and terminology of analy-
sis of algorithms. We have discussed and given examples of various techniques
from algebra and calculus, including limits, L’Hopital’s Rule, summations, and
integrals, by which algorithms are analyzed. We have also discussed the limita-
tions of asymptotic analysis.

Summary 29

Chapter Notes

The notion of applying asymptotic analysis to algorithms is often credited to Don-
ald E. Knuth (www-cs-faculty.Stanford.EDU/~knuth/). Although it served as the
foundation for part of his seminal series The Art of Computer Programming,
Knuth, in fact, traces O-notation back to a number theory textbook by Bachmann
in 1892. The O-notation was apparently first introduced by Landau in 1909, but
the modern use of this notation in algorithms is attributed to a paper by D.E. Knuth
that appeared in 1976 (“Big omicron and big omega and big theta,” ACM SIGACT
News, 8(2): 18–23.) Historical developments of the asymptotic notation in com-
puter science can be found in reviews by D.E. Knuth and in Algorithmics: Theory
and Practice by Brassard and Bratley (Prentice Hall, 1988). One of the early
books that earned “classic” status was The Design and Analysis of Computer Algo-
rithms, by A.V. Aho, J.E. Hopcroft, and J.D. Ullman, which was released by
Addison-Wesley in 1974. More recent books that focus on algorithms and their
analysis include Introduction to Algorithms, by T.H. Cormen, C.E. Leiserson, R.L.
Rivest, and C. Stein (2nd ed.: MIT Press, Cambridge, MA, 2001), and Computer
Algorithms/C++ by E. Horowitz, S. Sahni, and S. Rajasekaran (Computer Science
Press, New York, 1996).

Exercises

1. Rank the following by growth rate: n, , , , , ,
4, ,

2. Prove or disprove each of the following.

a)

b)

c)

d)

e)

3. Use O, o, , , and to describe the relationship between the following pairs
of functions:
a) logk n, n , where k and are positive constants
b) nk, cn, where k and c are constants, k > 0, c > 1
c) 2n, 2n/2

4. Prove that 17n1/6 = O(n1/5).

5. Prove that .k n
k

n
1 6

1

7 6/ /

=

= ()

f n o f n f n() () ()+ () = ()
f n O g n g n f n() () () ()= () = ()
f n O f n() [()]= ()2

f n g n f n g n() () (max{ (), ()})+ =

f n O g n g n O f n() () () ()= () = ()

n!(/)3 2 n
(/)1 3 nlog2 nlog(log)nlog nn1 2/

30 Chapter 1 Asymptotic Analysis

www-cs-faculty.Stanford.EDU/~knuth/

6. Given a set of n integer values in the range of , give an efficient
sequential algorithm to sort these items. Discuss the time, space, and optimal-
ity of your solution.

7. (Total function): Determine the asymptotic running time of the following
algorithm to sum a set of values. Show that it is optimal.

Function Total(list)
Input: an array, list, of numeric entries indexed from 1 to n.
Output: the total of the entries in the array
Local variables: integer index, numeric subtotal

Action:

subtotal = 0
For index = 1 to n, do

Return subtotal

8. (Selection sort): Determine the asymptotic running time of the following
algorithm, which is used to sort a set of data. See Figure 1.13. Determine the
total asymptotic space and the additional asymptotic space required.

subtotal subtotal list index= + []

[, ,]1 100…

Exercises 31

4

3

5

1

2

1

3

5

4

2

1

2

5

4

3

1

2

3

4

5

1

2

3

4

5

FIGURE 1.13 An example of SelectionSort. A complete pass is made
through the initial set of data to determine the item that belongs in the
front of the list (1). A swap is performed between this minimum element
and the element currently in the front of the list. Next, a pass is made
through the remaining four items to determine the minimum (2) of these
elements. This minimum element is swapped with the current second
item (3). The procedure continues until n – 1 items have been properly
ordered because this forces all n items to be properly ordered.

Subprogram SelectionSort(List)
Input: array , to be sorted in ascending order according to
the key field of the records
Output: the ordered List
Algorithm: SelectionSort, as follows

For each position in the List, we
a. Determine the index corresponding to the entry from the unsorted

portion of the List that is a minimum.
b. Swap the item at the position just determined with the current item.
Local variables: indices ListPosition, SwapPlace

Action:

{ListPosition is only considered for values up to n – 1, because once
the first n – 1 entries have been swapped into their correct positions,
the last item must also be correct.}

For ListPosition = 1 to n – 1:
{Determine the index of correct entry

for ListPosition and swap the entries.}
;

End For
End Sort

Subprogram Swap(A, B)
Input: Data entities A, B
Output: The input variables with their values interchanged, for example,
if on entry we have A = 3 and B = 5, then at exit we have A = 5 and
B = 3.
Local variable: temp, of the same type as A and B

Action:

temp = A; {Backup the entry value of A}
A = B; {A gets entry value of B}
B = temp {B gets entry value of A}

End Swap

Function MinimumIndex(List, startIndex)
Input: , an array of records to be ordered by a key field;
startIndex, the first index considered.

List n[]1…

Swap List SwapPlace List ListPosition([], [])
SwapPlace MinimumIndex List ListPosition= (,)

List n[]1…

32 Chapter 1 Asymptotic Analysis

Output: index of the smallest key entry among those indexed startIndex …
n (the range of indices of the portion of the List presumed unordered).
Local variables: indices bestIndexSoFar, at

Action:

bestIndexSoFar = startIndex;
{at is used to traverse the rest of the index subrange}

For to n, do
If
then bestIndexSoFar = at

End For
return bestIndexSoFar

End MinimumIndex

9. Earlier in this chapter, we gave an array-based implementation of Insertion-
Sort. In this problem, we consider a linked list-based version of the algorithm.

Subprogram InsertionSort(X)
For every current entry of the list after the first entry:

Search the sublist of all entries from the first entry to the current entry
for the proper placement (indexed insertPlace) of the current entry in the
sublist;
Insert the current entry into the same sublist at the position insertPlace.

End For

Suppose we implement the InsertionSort algorithm as just described for a
linked list data structure.
a) What is the worst-case running time for a generic iteration of the Search

step?
b) What is the worst-case running time for a generic instance of the Insert

step?
c) Show that the algorithm has a worst-case running time of (n2).
d) Although both the array-based and linked-list-based implementations of

InsertionSort have worst case running times of (n2), in practice, we
usually find that the linked-list-based implementation (assuming the
same data, in the same input order) is faster. Why should this be? (Think
in terms of entries consisting of large data records.)

10. Array implementations of both InsertionSort and SelectionSort have (n2)
worst case running times. Which is likely to be faster if we time both in the
same hardware/software environment for the same input data? Why?

List at key List bestIndexSoFar key[]. [].<
at startIndex= +1

Exercises 33

34

2
Induction and
Recursion

Mathematical Induction

Induction Examples

Recursion

Binary Search

Merging and MergeSort

Summary

Chapter Notes

Exercises

35

In this chapter, we present some fundamental mathematical techniques that are used
throughout the book. Many of these techniques, including recursion and mathemati-

cal induction, are taught in courses such as calculus and discrete mathematics. For
some readers, much of this chapter will serve as a review and will require very little
time, whereas for others, a more careful reading might be in order.

Mathematical induction and the related notion of recursion are useful tools in the
analysis of algorithms. Mathematical induction, which we will often refer to simply as
induction, is a technique for proving statements about consecutive integers, roughly,
by inducing our knowledge of the next case from that of its predecessor. Recursion is
a technique of designing algorithms in which we divide a large problem into smaller
subproblems, solve the subproblems recursively, and then combine (or stitch together)
the solutions to our subproblems to obtain a solution to the original problem. One of
the critical steps in this process is that of (recursively) dividing a problem into sub-
problems. For example, to solve a given problem P1 by recursion, we might first
divide P1 into two subproblems, P2 and P3, recursively solve these subproblems, and
then stitch together their results to obtain the required result for P1. To solve P2 and P3,
we might divide problem P2 into subproblems P4 and P5, and similarly divide problem
P3 into subproblems P6 and P7. Before stitching together P4 and P5, and similarly P6

and P7, these problems must first be solved. Therefore, we might recursively divide
problems P4, P5, P6, and P7 into subproblems, recursively solve them, and so on. This
recursive subdivision of problems typically continues until subproblems have
simple/trivial solutions. Thus, recursion resembles induction in that a recursive algo-
rithm solves a problem by making use of its capability to solve simpler problems,
inducing a solution from the solutions of these simpler problems.

Mathematical Induction

Suppose we have a statement about positive integers, and we want to show that the
statement is always true. Formally, let P(n) be a predicate, a statement that is true
or false, depending on its argument n, which we assume to be a positive integer.
Suppose we wish to show P(n) is always true.

Principle of Mathematical Induction: Let P(n) be a predicate, where
n is an arbitrary positive integer. Suppose we can accomplish the
following two steps:

a) Show that P(1) is true.
b) Show that whenever P(k) is true, we can derive that P(k + 1) is also true.

If we can achieve these two goals, it follows that P(n) is true for all
positive integers n.

Why does this work? Suppose we have accomplished the two steps given
above. Roughly speaking (we’ll give a mathematically stronger argument next), we
know from step 1 that P(1) is true, and thus by step 2 that P(1 + 1) = P(2) is true,
P(2 + 1) = P(3) is true, P(3 + 1) = P(4) is true, and so forth. That is, step 2 allows us
to induce the truth of P(n) for every positive integer n from the truth of P(1).

The assumption in step 2 that P(k) = true is called the inductive hypothesis,
because it is typically used to induce the conclusion that the successor statement
P(k + 1) is true.

The Principle of Mathematical Induction is stated above as an assertion. Fur-
ther, we have also given an informal argument as to its validity. For the sake of
mathematical completeness, we will prove the assertion next. The proof we give
of mathematical induction depends on the following axiom:

Greatest Lower Bound Axiom: Let X be a nonempty subset of the
integers such that the members of X have a lower bound (in other words,
there is a constant C such that for every ,). Then a greatest
lower bound for X exists, that is, a constant C0 such that C0 is a lower
bound for the members of X and such that C0 is greater than any other
lower bound for X.

Proof of the Principle of Mathematical Induction: We argue by
contradiction. Suppose the Principle of Mathematical Induction is false.
Then there is a predicate P(n) on positive integers that yields a counter-
example, that is, for which steps 1 and 2 are true and yet, for some
positive integer k, P(k) is false. Let

S = {n | n is a positive integer and P(n) = false}.

Then , so . It follows from the Greatest Lower Bound
Axiom that S has a greatest lower bound , a positive integer. Thatk S

0

Sk S

x Cx X

36 Chapter 2 Induction and Recursion

is, k0 is the first value of n such that P(n) is false. By step 1, P(1) = true,
so k0 > 1. Therefore, k0 – 1 is a positive integer. Notice that by choice of
k0, we must have P(k0 – 1) = true. It follows from step 2 of the Principle
of Mathematical Induction that P(k0) = P((k0 – 1) + 1) = true, contrary to
the fact that . Because the contradiction results from the assumption
that the principle is false, the proof is established.

Induction Examples

k S
0

Induction Examples 37

EXAMPLE

Prove that for all positive integers n, .

Before we give a proof, we show how you might guess the formula to be

proven if it weren’t already given to you. If we let , we have

(a)

and, writing the terms on the right side of the previous line in reverse order,

(b)

Again, note that the current exposition is not a proof, due to the imprecision
of the “ ” notation. We add the imprecise “equations” (a) and (b), noting that
when we add the ith term of the right side of (a) to the ith term of the right side
of (b), the sum is n + 1 for all i (the pairs are 1 and n; 2 and n – 1; and so on);
because there are n such pairs, this gives

2S = n(n + 1), or

Proof that : The equation claims that the sum of the first

n positive integers is the formula on the right side of the equal sign. For n = 1,
the left side of the asserted equation is

i
i=

=
1

1

1

i
n n

i

n

=

=
+

1

1

2

()

S
n n

=
+()

.
1

2

…

S n n= + + + +()1 2 1…

S n n= + + + +1 2 1… ()

S i
i

n

=
=1

i
n n

i

n

=

=
+

1

1

2

()

38 Chapter 2 Induction and Recursion

and the right side of the asserted equation is

Thus, for n = 1, the asserted equation is true, and we have achieved the first
step of an induction proof.

Suppose the asserted equation is valid for n = k, for some positive integer k
(notice such an assumption is justified by the previous step). Thus, our induc-
tive hypothesis is (substituting k for n in the equation to be proved) the equation

Now we want to prove the asserted equation is true for the next term, n =
k + 1. That is, we want to prove that substituting n = k + 1 into the equation to
be proved, which gives

yields a true statement.
Consider the left side of the previous equation. We can rewrite the left side as

Substituting from the inductive hypothesis, we conclude

as desired. Thus, our proof is complete.

i
k k

k
k k

i

k

=

+

=
+

+ + =
+ +

1

1 1

2
1

1 2

2

()
()

()()
,

i i k
i

k

i

k

=

+

=

= + +
1

1

1

1().

i
k k

i

k

=

+

=
+ +

1

1 1 2

2

()()
,

i
k k

i

k

=

=
+

1

1

2

()
.

1 1 1

2
1

()+
=

EXAMPLE

Prove that for all integers . Notice that you may view this as a
statement about all positive integers, not just those greater than or equal to 4, by
observing that the assertion is equivalent to the statement that for all positive in-
tegers j, . This observation generalizes easily so that mathemat-
ical induction can be viewed as a technique for proving the truth of predicates

()!j j+ > +3 2 3

n 4n n!> 2

Induction Examples 39

defined for all integers greater than or equal to some fixed integer m. In this
generalized view of induction, the first step of an inductive proof requires
showing that P(m) = true. The proof of our assertion follows.

We must show the assertion to be true for the first case considered, which is
the case n = 4. Because , the assertion is true for this case.

Suppose for some integer . Based on this, we want to show
that . Now, , which (by the inductive hy-
pothesis and the assumption that) is an expression at least as large as
5(2k) > 2(2k) = 2k+1, as desired. This completes the proof.

k 4
()! ()(!)k k k+ = +1 1()!k k+ > +1 2 1

k 4k k! > 2
4 24 16 24!= > =

EXAMPLE

(Calculus example) Prove that , for all integers n.

Proof: Even though this statement is about all integers, we can use math-
ematical induction to give the proof for n, an arbitrary positive integer, and then
use fundamental rules of calculus to handle other values of n.

First, assume that n is a positive integer. For n = 1, the assertion simplifies to

which is true. Next, consider the inductive step. Suppose the assertion is true
for some positive integer k. That is, the inductive hypothesis is the statement

Now, consider the case of n = k + 1. By exploiting the product rule of cal-
culus and the inductive hypothesis, we have

as desired. Thus, the proof is complete for positive integers n.
For n = 0, the assertion simplifies to

d

dx
x0 0= ,

d

dx
x

d

dx
xx x x

d

dx
x x xkx kk k k k k k+ = () = + = + = +1 11 1()xxk ,

d

dx
x kxk k= 1.

d

dx
x = 1,

d

dx
x nxn n= 1

40 Chapter 2 Induction and Recursion

Recursion

A subprogram that calls upon itself (either directly or indirectly) is called recur-
sive. To the beginner unfamiliar with this notion, it may sound like a recipe for an
infinite loop, as indeed it can be if not used with care. In fact, recursion is often
used as a form of looping. However, recursion should be used so that a recursive
subprogram’s self-reference is made only with “simpler” data. That is, each time a
program calls itself, it does so with a smaller/simpler instance of the problem. To
avoid infinite recursion, it is crucial that when the program is invoked with a small
enough (that is, simple enough) set of data, the subprogram will compute the
required answer and return without issuing another call to itself. This action of
returning without issuing another recursive call is critical in allowing the outstand-
ing calls to resolve their problems and return to the routine that called them. In
fact, it is critical to proving that recursive calls eventually resolve, which is often
shown by proving that successive calls are always to smaller instances of the prob-
lem and that one or more base cases exist for all suitably small instances of the
problem that may occur.

Notice, then, the similarity of mathematical induction and recursion. Just as
mathematical induction is a technique for inducing conclusions for “large n” from
our knowledge of “small n,” recursion allows us to process large or complex data
sets based on our ability to process smaller or less complex data sets.

A classical example of recursion is computing the factorial function, which
has a recursive definition. Although it can be proven that for n > 0, n! (“n factor-
ial ”) is the product of the integers from 1 to n (and thus a common way of comput-
ing n! is based on a For loop), the definition of n! is recursive and lends itself to a
recursive calculation.

which is true.
Finally, if , we can apply the quotient rule to the result of applying

our assertion to the positive integer – n. That is,

as desired. Therefore, we have shown that for all integers n,

d

dx
x nxn n= 1.

d

dx
x

d

dx x

x n x

x
nxn

n

n n

n

n= =
()

=
1 0 1 1

2

1()
,

n < 0

Recursion 41

For example, we use the definition to compute 3! as follows. From the recur-
sive definition, we know that . Thus, we need the value of 2!. Again
(and again, as necessary) we use the second line of the recursive definition. There-
fore, we know that . At this point, however, we
proceed differently, because the first line of the definition tells us that 0! = 1. This
is the simplest case of n considered by the definition of n!, a case that does not
require further use of recursion. Such a case is referred to as a base case (a recur-
sive definition or algorithm may have more than one base case). It is the existence
of one or more base cases, and logic that drives the computation toward base
cases, that prevents recursion from producing an infinite loop.

In our example, we substitute 1 for 0! to resolve our calculations. If we pro-
ceed in the typical fashion of a person calculating with pencil and paper, we would
make this substitution in the above and complete the multiplication:

Typical computer implementation of this example’s recursion follows. Substitute
0! = 1 to resolve the calculation of 1!, obtaining ; next, substi-
tute the result of 1! in the calculation of 2!, obtaining ;
finally, substitute the result for 2! into the calculation of 3!, which yields

.
Next, we give a recursive algorithm for computing the factorial function. It is

important to note that this algorithm is given for illustrative purposes only. If one
really wants to write an efficient program to compute factorial, a simple tight loop
would be much more efficient (depending on compilers).

Integer function factorial (integer n)
Input: n is assumed to be a nonnegative integer.
Algorithm: Produce the value of n! via recursion.

Action:

If , then return 1
Else return n factorial n× ()1

n = 0

3 3 2 3 2 6! != × = × =

2 2 1 2 1 2! != × = × =
1 1 0 1 1 1! != × = × =

3 3 2 1 0 3 2 1 1 6! ! .= × × × = × × × =

3 3 2 3 2 1 3 2 1 0! ! ! != × = × × = × × ×

3 3 2! != ×

Definition: Let n be a nonnegative integer. Then n! is defined by

n
n

n n n
!

;

[()!] .
=

=
>

1 0

1 0

if

if

How do we analyze the running time of such an algorithm? Notice that
although the size of the data set does not decrease with each invocation of the pro-
cedure, the value of n decreases monotonically with each successive call. There-
fore, let T(n) denote the running time of the procedure with input value n. We see
from the base case of the recursion that , because the time to compute
0! is constant. From the recurrence given previously, we can define the time to
compute n!, for , as . The conditions

(1)

form a recursive (recursion) relation. We wish to evaluate T(n) in such a way as to
express T(n) without recursion. A naïve approach uses repeated substitution of the
recursive relation. This results in

It is important to note the pattern that is emerging: .
Such a pattern will lead us to conclude that , which by the base
case of the recursive definition, yields .

Indeed, the conclusion that we have arrived at is correct. However, the
“proof ” given is not correct. Although naïve arguments are often useful for recog-
nizing patterns, they do not serve as proofs. In fact, whenever one detects a pattern
and uses such a conclusion in a proof, you can rest assured that there is a logical
hole in the proof. After all, this argument fails to rule out the possibility that the
pattern is incorrect for some case that wasn’t considered. Such an approach
reminds us of the well-known Sidney Harris cartoon in which a difficult step in
the derivation of a formula is explained with the phrase “THEN A MIRACLE
OCCURS” (see www.sciencecartoonsplus.com/gallery.htm). Thus, once we think
that we have recognized a solution to a recursion relation, it is still necessary to
give a solid mathematical proof.

In the case of the current example, the following proof can be given. We
observe that the -notation in condition (1) is a generalization of proportionality.
Suppose we consider the simplified recursion relation:

(2)

T

T n T n

() ,

() ()

0 1

1 1

=
= +

T n n n n() () () () () ()= + = + =1 1 1 1
T n T n() () ()= +0 1

T n T n k k() () ()= + 1

T n T n() () () () ().+ + = +3 1 2 1 3 3 1

T n T n() () () () ()+ + = + =2 1 1 2 2 1

T n T n() () ()= + =1 1

T

T n T n

() (),

() () ()

0 1

1 1

=
= +

T n T n() () ()= +1 1n > 0

T () ()0 1=

42 Chapter 2 Induction and Recursion

www.sciencecartoonsplus.com/gallery.htm

Our previous observations lead us to suspect that this turns out to be T(n) =
n + 1, which we can prove by mathematical induction, as follows.

For n = 0, the assertion is T(0) = 1, which is true.

Suppose the assertion T(n) = n + 1 is true for some nonnegative integer k (thus,
our inductive hypothesis is the equation T(k) = k + 1). We need to show T(k + 1) =
k + 2. Now, using the recursion relation (2) and the inductive hypothesis, we have
T(k + 1) = T(k) + 1 = (k + 1) + 1 = k + 2, as desired.

Thus, we have completed an inductive proof that our recursion relation (2)
simplifies as T(n) = n + 1. Because condition (1) is a generalization of (2), in
which the -interpretation is not affected by the differences between (1) and (2), it
follows that condition (1) satisfies . Thus, our recursive algorithm for
computing n! requires time.

Binary Search

Recursion is perhaps more commonly used when the recursive call involves a
large reduction in the size of the problem. An example of such a recursive algo-
rithm is binary search. Finding data is a fundamental computer operation, in
which efficiency is crucial. For example, although we might not mind spending 30
seconds searching a phone book or dictionary for an entry, we probably would
mind spending 30 minutes to perform such a task. Phone books and dictionaries
are examples of sorted databases, in which we can take advantage of the fact that
the data is ordered when we attempt to find an element. For example, when
searching a phone book for “Miller,” you would not start at the very beginning and
search entry by entry, page by page, in hopes of finding “Miller”. Instead, we
would open the phone book to the middle and decide whether “Miller” appears on
the pages before, after, or on the current page being examined.

We now consider the impact of performing a search on a sorted versus an
unsorted set of data. First, consider the problem of searching a set of data in which
there is no guarantee of order. In this case, we consider a traditional sequential
search in which each item is examined in sequence. Notice that in the worst case,
every item must be examined, because the item we are looking for might not exist
or might happen to be the last item listed. So, without loss of generality, let’s
assume that our sequential search starts at the beginning of the unordered database
and examines the items in sequence until either

• the item that is sought is found (the search succeeds), or
• every item has been examined without finding the item sought (the search

fails).

()n
T n n() ()=

Binary Search 43

The data is not known to be ordered, so the sequential examination of data
items is necessary, because were we to skip over any item, the skipped item could
be the one that we wanted (see Figure 2.1).

44 Chapter 2 Induction and Recursion

5 7 9 3 4 6 8

FIGURE 2.1 An example of sequential
search. Given the array of data, a search
for the value 4 requires five key compar-
isons. A search for the value 9 requires
three key comparisons. A search for the
value 1 requires seven key comparisons
to determine that the requested value is
not present.

Thus, we give the following algorithm for a sequential search.

Subprogram SequentialSearch(X, searchValue, success, foundAt)
Algorithm: Perform a sequential search on the array X[1…n] for searchValue.
If an element with a key value of searchValue is found, then return
success = true and foundAt, where searchValue=X[foundAt];
Otherwise, return success = false.
Local variable: index position

Action:

position = 1;
Do

If success, then foundAt = position
Else position = position + 1

While (Not success) and () {End Do}
Return success, foundAt

End Search

Analysis:
It is easily seen that the set of instructions inside the loop requires (1) time,

that is, constant time per instruction. In the worst case, where either the search is

position n

success searchValue X position key= =([].)

unsuccessful (requiring that we examine every item to verify this) or that the item
we are searching for is the last item in your search, the loop body will be executed
n times. Thus, one can say that the worst-case sequential search requires (n)
time. Assuming that the data is ordered in a truly random fashion, a successful
search will, on average, succeed after examining half (n/2) of the entries. That is, a
successful search of an unordered database in which the items are randomly dis-
tributed, requires (n) time on average. Of course, we might get lucky and find
the item we are searching for immediately, which tells us that the time required for
the “best-case search” is (1).

Now, consider the case of searching an ordered database, such as a phone
book. Think about designing an algorithm that mimics what you would do with a
real phone book, that is, grab a bunch of pages and flip back and forth, each time
grabbing fewer and fewer pages, until the desired item is located. Notice that this
method considers relatively few data values compared to the sequential search. A
question we need to consider is whether or not this algorithm is asymptotically
faster than the sequential algorithm, because it may be faster by just a high-order
constant or low-order term. Before we consider a proper analysis of this binary
search, we present a detailed description of the algorithm.

Subprogram BinarySearch(X, searchValue, success, foundAt, minIndex,
maxIndex)
Algorithm: Binary search algorithm to search subarray X[minIndex …
maxIndex] for a key field equal to searchValue.
The algorithm is recursive. To search the entire array, the initial call is
Search(X, searchValue, success, foundAt, 1, n).
If searchValue is found, return success = true and foundAt as the index at
which searchValue is found; otherwise, return success = false.
Local variable: index midIndex

Action:

If minIndex > maxIndex, then
{The subarray is empty}

success = false, foundAt = 0
Else {The subarray is nonempty}

If searchValue = X[midIndex].key, then
success = true, foundAt = midIndex

Else { }searchValue X midIndex .key[]

midIndex
Index Index

=
+min max

2

Binary Search 45

If searchValue < X[midIndex].key, then
BinarySearch(X, searchValue, success, foundAt,

minIndex, midIndex – 1)
Else {searchValue > X[midIndex].key}

BinarySearch(X, searchValue, success, foundAt,
midIndex + 1, maxIndex);

End { }
End {Subarray is nonempty}
Return success, foundAt

End Search

See Figure 2.2. Notice that the running time, T(n), of our binary search algo-
rithm satisfies the recursion relation:

T n T n() (/) ().+2 1

T () (),1 1=

searchValue X midIndex .key[]

46 Chapter 2 Induction and Recursion

3 4 5 6 7 8 9

FIGURE 2.2 An example of binary search.
Given the array of data, a search for the
value 4 requires two key comparisons
(6,4). A search for the value 9 requires
three key comparisons (6,8,9). A search
for the value 1 requires three key compar-
isons (6,4,3) to determine that the value is
not present.

To analyze the worst-case running time implied by this recursion relation, we
can again use the naïve approach of repeated substitution into this recursive rela-
tion to try to find a pattern, interpret the pattern for a base case (which enables us
to express the pattern without recursion), and then try to prove the resulting asser-
tion by mathematical induction. This results in an expansion that looks like

T n T n(/) () () (/) ().8 1 2 1 8 3 1+ + × = + ×

T n T n(/) () () (/) ()4 1 1 4 2 1+ + = + × =

T n T n() (/) ()= + =2 1

Notice that the pattern beginning to emerge is that T(n) = T(n/2k) + k � (1),
where the argument of T reaches the base value 1 = n/2k when k = log2n. Such a
pattern would lead us to the conclusion that

Based on this “analysis,” we conjecture that a binary search exhibits a worst-
case running time of (log n); and, therefore, in general, binary search has a run-
ning time of O(log n).

Notice that in our earlier “analysis,” we made the simplifying assumption that
n is a (positive integer) power of 2. It turns out that this assumption only simplifies
the analysis of the running time without changing the result of the analysis (see the
Exercises).

As before, it is important to realize that once we have recognized what
appears to be the pattern of the expanded recursion relation, we must prove our
conjecture. To do this, we can use mathematical induction. We leave the proof of
the running time of binary search as an exercise for the reader.

The term binary, when applied to this search procedure, is used to suggest that
during each iteration of the algorithm, the search is being performed on roughly
half the number of items that were used during the preceding iteration. Although
such an assumption makes the analysis more straightforward, it is important for the
reader to note that the asymptotic running time holds so long as at the conclusion of
each recursion some fixed fraction of the data is removed from consideration.

Merging and MergeSort

Many efficient sorting algorithms are based on a recursive paradigm in which the
list of data to be sorted is split into sublists of approximately equal size. Each of
the resulting sublists is sorted (recursively), and finally the sorted sublists are
combined into a completely sorted list (see Figure 2.3).

The recursion relation that describes the running time of such an algorithm
takes the form:

where S(n) is the time required by the algorithm to split a list of n entries into two
sublists of (approximately) n/2 entries apiece, and C(n) is the time required by the
algorithm to combine two sorted lists of (approximately) n/2 entries apiece into a
single sorted list. An example of such an algorithm is MergeSort, discussed next.

T

T n S n T n C n

() ()

() () (/) ()

1 1

2 2

=
= + +

T n T n n() () log () (log).= + × =1 1
2

Merging and MergeSort 47

48 Chapter 2 Induction and Recursion

To merge a pair of ordered lists X and Y is to form one ordered list from the
members of . This operation is most natural to describe when the lists are
maintained as linked (that is, pointer-based) lists. In the following discussion, we
consider our data to be arranged as a singly linked list in which each data record
has

• a field called sortkey, used as the basis for sorting,
• a field or group of fields that we call otherinfo, used to store information per-

tinent to the record that is not used by the sort routine, and
• a field called next, which is a pointer to the next element of the list.

Remember that a programming language typically has a special pointer con-
stant (“NULL” in C and C++; “nil” in Pascal and LISP; “Nothing” in Visual
Basic) used as the value of a pointer that does not point to anything. Figure 2.4
presents a representation of such a data structure. Notice that in Figure 2.4, we
assume the sortkey data is of type integer.

X Y

10

4

3

2

9

7

1

5

8

6

1

2

3

4

5

6

7

8

9

10

10

3

9

1

8

4

2

7

5

6

1

3

8

9

10

2

4

5

6

7

FIGURE 2.3 Recursively sorting a set of data. Take the initial list and divide it
into two lists, each roughly half the size of the original. Recursively sort each of
the sublists, and then merge these sorted sublists to create the final sorted list.

In the diagram, “head” represents a pointer variable that is necessary to give
access to the data structure. An algorithm to merge two ordered linked lists con-
taining a total of n elements in O(n) time is given next (see Figure 2.5).

Merging and MergeSort 49

sortkey

next

otherinfo

3

--

head
sortkey

next . . .

otherinfo

8

--

sortkey

next

otherinfo

405

--

FIGURE 2.4 An illustration of a linked list in a language that supports dynamic
allocation. Notice that the head of the list is simply a pointer and not a complete
record, and that the last item in the list has its next pointer set to NULL.

Initial
Configuration:

Step 1:

head1 1 3 8 9 10

1 2 3 4 5 6

head2

headMerge

2 4 5 6 7

head1 3 8 9 10

head2

headMerge

2 4

1

5 6 7

Step 2: head1 3 8 9 10

head2

headMerge 1

4 5

2

6 7

Step 6: head1 8 9 10

head2

headMerge

7

1 2 3 4 5 6 7 8 9 10

Step 8: head1

head2

headMerge

FIGURE 2.5 An example of merging two ordered lists, head1 and head2, to
create an ordered list headMerge. Snapshots are presented at various stages
of the algorithm.

Subprogram Merge(head1, head2, headMerge)
Input: head1 and head2 point to two ordered lists that are to be merged. These
lists are ordered with respect to field sortkey.
Output: This routine produces a merged list addressed by headMerge.
Local variable: atMerge, a pointer to a link of the merged list

Action:

If head1 = null, then return headMerge = head2
Else {The first input list is nonempty}

If head2 = null, then return headMerge = head1
Else {Both input lists are nonempty}

If , then
{Start merged list with 1st element of 1st list}

headMerge = head1;
Else {Start merged list with 1st element of 2nd list}

headMerge = head2;
End {Decide first merge element}
atMerge = headMerge;
While and , do

If then
{Merge element of 1st list}

;
atMerge = head1;

Else {merge element of 2nd list}
;

atMerge = head2;

End If
End While

{Now, one of the lists is exhausted, but the other isn’t.
So concatenate the unmerged portion of the

unexhausted list to the merged list.}
If , then
Else

End Else {Both input lists are nonempty}
End Else {First input list is nonempty}
Return headMerge

End Merge

It is useful to examine the merge algorithm for both the best-case (minimal)
running time and the worst-case (maximal) running time. In the best case, one of

atMerge next head. = 1
atMerge next head. = 2head null1=

head head next2 2= .

atMerge next head. = 2

head head next1 1= .

atMerge next head. = 1

head sortkey head sortkey1 2. .
head null2head null1

head head next2 2= .

head head next1 1= .

head sortkey head sortkey1 2. .

50 Chapter 2 Induction and Recursion

the input lists is empty, and the algorithm finishes its work in (1) time. Now con-
sider the worst-case scenario, in which when one of the input lists is exhausted,
only one item remains in the other list. In this case, because each iteration of the
While loop requires a constant amount of work to merge one element into the
merged list that is being constructed, the running time for the entire procedure is

(n).
We note also that the algorithm processes every element of one of its input

lists. Therefore, the running time of this simple merge algorithm is (k), where k
is the length of the first input list to be exhausted. So if both input lists have length

(n) (if you are merging two lists of length n/2, for example), then the running
time of this merge algorithm is (n).

In addition to being able to merge two ordered lists, the MergeSort algorithm
requires a routine that will split a list into two sublists of roughly equal size. Sup-
pose you were given a deck of cards and didn’t know how many cards were in the
deck. A reasonable way to divide the deck into two piles so that each pile had
roughly the same number of cards in it would be to deal the cards alternately
between the two piles. An algorithm for splitting a list follows.

Subprogram Split(headIn, headOut)
Algorithm: Split an input list indexed by headIn (a pointer to the first ele-
ment) into two output lists by alternating the output list to which an input ele-
ment is assigned.
The output lists are indexed by headOut[0 … 1].
Local variables: current_list, an index alternating between output lists
temp, a temporary pointer to current link of input list

Action:

{Initialize output lists as empty}
headOut[0] = headOut[1] = null;
current_list = 0;

While headIn ≠ null, do
temp = headIn;

;
;

headOut[current_list] = temp;
current_list = 1 – current_list {Switch value between 0, 1}

End While
Return headOut

End Split

In the Split algorithm, each iteration of the loop takes one element from the
input list and places it at the head of one of the output lists. This requires (1)
time. Thus, if the list has n elements, the algorithm uses (n) time.

temp next headOut current list. [_]=
headIn headIn next= .

Merging and MergeSort 51

We have introduced and analyzed the tools necessary for MergeSort, so we
now present algorithm MergeSort.

Subprogram MergeSort(head)
Algorithm: Sort a linked list via the Mergesort algorithm
Input: a linked list indexed by head, a pointer to the first element
Output: an ordered list
Local variables: temp[0…1], an array of two pointers

Action:

If head ≠ null, then {Input list is nonempty}
If head.next ≠ null, then

{There’s work to do, as the list has at least 2 elements}
Split(head, temp);
MergeSort(temp[0]);
MergeSort(temp[1]);
Merge(temp[0], temp[1], head)

End If
End If
Return head

End Sort

Before we analyze the MergeSort algorithm, we make the following observa-
tions. The algorithm is recursive, so a question that should be raised is, “what con-
dition represents the base case?” Actually, two base cases are present, but they are
both so simple that they are easily missed.

Consider the statement “If head ≠ null, then” in Subprogram MergeSort. The
consequent action does not seem like the simple case we expect in a base case of
recursion. It does, however, suggest that we consider the opposite case, head =
null. The latter case is not mentioned at all in the algorithm, yet clearly it can hap-
pen. This, in fact, is a base case of recursion. Notice that if head = null, there is no
work to be done because the list is empty. It is tempting to say that when this hap-
pens, no time is used, but we should attribute to this case the (1) time necessary
to recognize that .

Consider the inner “If ” clause, “If head.next ≠ null.” Notice that this condition
is tested only when the outer If condition is true and, therefore, represents the con-
dition of having a list with at least one element beyond the head element; hence,
this condition represents the condition that the list has at least two elements. Thus,
negation of the inner If condition represents the condition of having a list with
exactly one node (because the outer If’s condition being true means there is at
least one node). As previously, the condition head.next = null results in no listed

head null=

52 Chapter 2 Induction and Recursion

action, corresponding to the fact that a list of one element must be ordered. As ear-
lier, we analyze the case head.next = null as using (1) time.

It is important to observe that a piece of code of the form

If A, then
actionsForA

End If A

is logically equivalent to

If not A, then {no action}
Else {A is true}

actionsForA
End Else A

Analysis: Let T(n) be the running time of the MergeSort algorithm, which
sorts a linked list of n items. Based on the previous analysis, we know that

, and that C(n) = O(n). Given the time for splitting and combining, we
can construct a recurrence equation for the running time of the entire algorithm, as
follows.

Before we proceed further, notice that the latter equation, in the worst case,
could be written as

However, we leave the demonstration that these equations are equivalent as an
exercise to the reader. To proceed with the analysis, we again consider using
repeated substitution as a means of obtaining a conjecture about the running time.
Therefore, we have

The emerging pattern appears to be , reaching
the base case for . This pattern would result in a conjecture
that

k n= log
2

1 2= n k/
T n T n k nk k() (/) ()= + ×2 2

4 2 8 4 2 8 8 3[(/) (/)] () (/) ().T n n n T n n+ + × = + ×

2 2 4 2 4 4 2[(/) (/)] () (/) ()T n n n T n n+ + = + × =

T n T n n() (/) ()= + =2 2

T n T n n() (/) ().= + ×2 2 2

T n S n T n C n T n n() () (/) () (/) ().= + + = +2 2 2 2

T () ();1 1=

S n n() ()=

Merging and MergeSort 53

54 Chapter 2 Induction and Recursion

Our conjecture can be proved using mathematical induction on k for
(see Exercises). Therefore, the running time of our MergeSort algorithm is

.

Summary

In this chapter, we have introduced the related notions of mathematical induction
and recursion. Mathematical induction is a technique for proving statements about
sets of successive integers (often, all integers greater than or equal to some first
integer) by proving a base case and then proving that the truth of a successor case
follows from the truth of its predecessor. Recursion is a technique of solving prob-
lems by dividing the original problem into multiple smaller problems, solving the
latter (by repeating the division step discussed earlier if a simple base case has not
yet been reached), and combining the solutions to the smaller problems to obtain
the desired solution to the original problem. Examples of both of these powerful
tools are presented, including applications to fundamental data processing opera-
tions such as searching and sorting.

Chapter Notes

A classic reference for the material presented in this chapter is Fundamental Algo-
rithms, volume 1 of The Art of Computer Programming, by Donald Knuth. The
book, published by Addison-Wesley, originally appeared in 1968 and, along with
the companion volumes, is a classic that should be on every computer scientist’s
desk. An excellent book on discrete mathematics is the book Discrete Algorithmic
Mathematics by S.B. Maurer and A. Ralston (Addison-Wesley Publishing Com-
pany, Reading, MA, 1991). An interesting book, combining discrete and continu-
ous mathematics, is Concrete Mathematics by R.L. Graham, D.E. Knuth, and O.
Patashnik (Addison-Wesley Publishing Company, Reading, MA, 1989). Finally,
we should mention an excellent book, Introduction to Algorithms, by T.H. Cor-
men, C.E. Leiserson, R.L. Rivest, and C. Stein (2nd ed.: MIT Press, Cambridge,
MA, 2001). This book covers fundamental mathematics for algorithmic analysis
in a thorough fashion.

Exercises

The first two exercises may be completed with non-recursive algorithms. These algo-
rithms may be used in subsequent exercises.

(log)n n

n k= 2

T n nT n n n n n n n() () log () log log .= + () = + () = ()1

1. Devise a (n) time algorithm that takes as input an array X and produces as
output a singly linked list Y such that the i th element of Y has the same data as
the i th entry of X. Prove that the algorithm runs in (n) time.

2. Devise a (n) time algorithm that takes as input a singly linked list X and pro-
duces as output an array Y such that the i th entry of Y has the same data as the
i th element of X. Prove that the algorithm runs in (n) time.

3. (Arithmetic progression) Show that a recursive algorithm with running time
satisfying

satisfies T(n) = (n2).
4. (Geometric progression) Show that a recursive algorithm with running time

satisfying

where r > 1 is a constant, satisfies T(n) = (n).
5. (Binary search) Show that the recursion relation used with the binary search

algorithm,

satisfies T(n) = O(log n) when for some nonnegative integer k. Hint:
Your proof should use mathematical induction on k to show that

satisfies .
6. Even if n is not an integer power of 2, the previous recursion relation satisfies

T(n) = O(log n). Prove this assertion, using the result for the case of n being a
power of 2. Hint: Start with the assumption that for some posi-
tive integer k. One approach is to show that only one more item need be exam-
ined, in the worst case, than in the worst case for . Another approach is
to prove that we could work instead with the recursion relation

n k= 2

2 2 1k kn< < +

T n n() log+1
2

T

T n T n

() ,

() (/) ,

1 1

2 1

=
+

n k= 2

T

T n T n

() (),

() (/) (),

1 1

2 1

=
+

T

T n T n r n

() (),

() (/) (),

1 1=
= +

T

T n T n n

() (),

() () ()

1 1

1

=
= +

Exercises 55

then show how this, in turn, yields the desired conclusion.
7. Prove that Subprogram MergeSort has a running time of by show-

ing that the recursion relation used in its earlier partial analysis,

satisfies . As earlier, this can be done by an argument based
on the assumption that , for some nonnegative integer k, using mathe-
matical induction on k.

8. Show that an array of n entries can be sorted in time by an algo-
rithm that makes use of the MergeSort algorithm given previously. Hint: See
Exercises 1 and 2.

9. The sequence of Fibonacci numbers , is defined recursively as
follows:

Develop a nonrecursive time algorithm to return the nth Fibonacci
number.

10. Show that the running time of the following recursive algorithm (based on the
previous definition) to produce the nth Fibonacci number is . (The moral
is that the naïve use of recursion isn’t always a good idea.)

integer function fibonacci(n)
Outputs the nth Fibonacci number
Input: n, a nonnegative integer

Action:

If , then return 1
Else return fibonacci n fibonacci n() ()+2 1

n 2

()n

()n

f f f
n n n+ += +

2 1

f f
1 2

1= =

f f f
1 2 3
, , ,…

(log)n n

n k= 2
T n n n() (log)=

T

T n S n T n C n T n

() (),

() () (/) () (/) (

1 1

2 2 2 2

=
= + + = + nn),

(log)n n

T

T n T
n

() ,

() ,

1 1

1

2
1

=

+

56 Chapter 2 Induction and Recursion

Hint: The analysis can be achieved by the following steps:

• Show that the running time T(n) can be analyzed via a recursion relation
.

• Show the recursion relation obtained previously implies T(n) > 2T(n – 2).

Use the previous steps to show that . Note it is not necessary to
find an explicit formula for either f n or T(n) to achieve this step.

T n n() ()=

T n T n T n() () () ()= + +1 2 1

Exercises 57

58

3
The Master Method

Master Theorem

Summary

Chapter Notes

Exercises

59

The Master Method is an extremely important tool that can be used to provide a
solution to a large class of recursion relations. This is important for developing a

cadre of techniques that can be used effectively and efficiently to evaluate the time,
space, and other resources required by an algorithm.

Consider a recurrence of the form

where a 1 and b > 1 are constants and f (n) is a positive function. If T(n) is the running
time of an algorithm for a problem of size n, we can interpret this recurrence as defining
T(n) to be the time to solve a subproblems of size n/b, plus f (n), which is the sum of

• the time to divide the original problem into the a subproblems, and
• the time to combine the subproblems’ solutions to obtain the solution to the origi-

nal problem.

Consider the problem of sorting a linked list of data using the MergeSort algorithm
developed in the previous chapter (see Figure 3.1). Assume that we split a list of length
n into two lists, each of length n/2, recursively sort these new lists, and then merge them
together. In terms of our general recurrence equation, this gives a = 2 subproblems to
solve, each of size n/2 (that is, b = 2).

Further, the interpretation is that f (n) is the time to split the list of length n into two
lists of length n/2 each, plus the time to merge two ordered lists of length n/2 each into
an ordered list of length n. See Figure 3.2.

T n aT
n

b
f n() (),= +

60 Chapter 3 The Master Method

n

n/bn/bn/b n/b

f (n)

. . .

. . .

n/b2 n/b2 n/b2 n/b2
f (n/b)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

f (n/b2)

. . .

a2

.

a

1

No. of Problems

n

n/b

n/b2

. . .

Each Problem Size

.

f (n/b2)

f (n/b)

f (n)

Time

FIGURE 3.1 A recursion tree representing the recurrence equation
T(n) = aT(n/b) + f(n). The number of problems to be solved at each (horizontal)
level of recursion is listed, along with the size of each problem at that level. “Time”
is used to represent the time per problem, not counting recursion, at each level.

n

n/2

n/4

1 1 1 1

n/4 n/4 n/4

n/2

n

n/4

1

n/2

Each Problem Size

.

.

.

4

2

1

No. of Problems
. . . .

log2 n

(n/2)

Time

. . .

(n/22)

(1)

(n)

FIGURE 3.2 A recursion tree for MergeSort, as represented by .
Notice that level i of the recursion tree requires a total of

time.2 2i in n× =(/) ()
i n{ }()1 2

2
, , ,log…

T n T n n() (/) ()= +2 2

Master Theorem

The Master Method is summarized in the following Master Theorem.

Master Theorem 61

Master Theorem: Let and b > 1 be constants. Let f (n), be a positive
function defined on the positive integers. Let T(n) be defined on the positive in-
tegers by

(3.1)

where we can interpret as meaning either or . Then the
following hold:

1. Suppose f (n) = O(nlogba–) for some constant . Then T(n) = (nlogba).
2. Suppose f (n) = (nlogba). Then T(n) = (nlogba log n).
3. Suppose f (n) = (nlogba+) for some constant , and there are constants

c and N, and , such that .
Then T(n) = (f (n)).

n b N af n b cf n/ (/) ()>N > 00 1< <c
> 0

> 0

n b/n b/n b/

T n aT
n

b
f n() (),= +

a 1

The reader should observe that the Master Theorem does not cover all
instances of the equation (3.1).

Below, we sketch a proof for the Master Theorem. The proof is provided as a
convenience to those who have the mathematical skills, interest, and background
to appreciate it, but should be skipped by other readers.

Proof of the Master Theorem (optional)

We start under the simplifying assumption that the values of n considered are non-
negative integral powers of b. The advantage of this assumption lies in the fact that at
every level of recursion, n/b is an integer. Later, we show how to handle the general case.

Lemma 1: Let and be constants, and let f (n) be a nonnegative func-
tion defined on integral powers of b. Let T(n) be defined on integral powers of b
by the recurrence

Then

T n n a f
n

b
b

b
a k

k
k

n

() .log
log

= () +
=0

1

T n

n

aT
n

b
f n n b

()

() ;

()
=

=

+ =

1 1if

 if ii i for some positive integer .

b >1a 1

62 Chapter 3 The Master Method

Remarks: The asserted pattern can be guessed by simplifying an iterated expan-
sion of the recurrence

Since and , the last term in the expanded recurrence is
(nlogba), and the other terms yield

as asserted earlier. Once we have guessed the pattern, we prove it by mathematical
induction.

Proof of Lemma 1: We establish our claim by showing that

where we consider n = bi for nonnegative integers i. Therefore, the base case is
i = 0 (that is, n = 1). In this case, the

term of the assertion is an empty sum, which by convention has value 0. There-
fore, the assertion is true since the right side of the asserted equation is

Thus, the base case of the induction is established.
Suppose the assertion is true for integer powers i of b, where . In

particular, the assertion is true for . Then, we have

Now consider . By the hypothesized recurrence, we have

T b aT b f bp p p+ +() = () + () =1 1

n bp= +1

T b b T a f
n

b
a Tp p a k

k
k

p
pb() = + =

=

log () (1 1
0

1

)) .+ ()
=

a f bk p k

k

p

0

1

n bp=
0 i p

1 1 1 0 1
0

1
log

log

() (/) () ()b

b
a k

k

n
kT a f n b T T+ = + =

=

..

a f n bk k

k

nb

/
log

()
=0

1

T n n T a f
n

b
b

b
a k

k
k

n

() ()log
log

= +
=

1
0

1

a f n bk k

k

nb

/
log

()
=0

1

T () ()1 1=a nb bn alog log=

f n af
n

b
a f

n

b
a f

n
b n() ... log+ + + +2

2

1

bb
a T

b

b

n

n

log

log ().+
1

1

T n f n aT
n

b
f n af

n

b
a T

n

b
() () ()= + = + + 2

2
= =...

(using the inductive hypothesis)

(because)

which, since , is the desired result. This completes the induction proof.
Next, we give asymptotic bounds for the summation term that appears in the

conclusion of the statement of Lemma 1.

Lemma 2: Let and be constants, and let f (n) be a nonnegative func-
tion defined on nonnegative integral powers of b. Let g(n) be a function defined on
integral powers of b by

(3.2)

1. If f (n) = O(nlogba–) for some constant then g(n) = O(nlogba).
2. If f (n) = (nlogba) then g(n) = (nlogba log n).
3. If there are positive constants c < 1 and N > 0 such that

af (n/b) cf (n), then g(n) = (f (n)).

Proof: For case 1, substituting the hypothesis of the case into the definition of
the function g(n) yields

(use the formula for the sum of a geometric series)

(because b and are constants) O(nlogba), as claimed.

O n
b

b
O nb

b

ba
n

log
log

log=
1

1
aa n

b
=1

1

O n bb

b
a k

k

n
log

log

=
() =

0

1

g n O a
n

b
k

k

a

k

n bb

()
loglog

=
=0

1

==
=

O n
ab

b
b

b

b
a

a

k

k

n
log

log

log

0

1

=

n b N/ >

> 0

g n a f
n

b
k

k
k

nb

()
log

=
=0

1

b >1a 1

p a
b

= log 1

b T a f b n Tp a k p k

k

p
ab b() log log() ()+ +

=

+ () =1 1

0

1 1 ++
=

a f
n

b
k

k
k

p

0

b ab alog =

a T a a f b f bp k p k

k

p
p+

=

++ () + () =1

0

1
11()

a a T a f b f bp k p k

k

p
p()1

0

1
1+ () + () =

=

+

Master Theorem 63

For case 2, it follows from the hypothesis of the case that f (n/bk) =

. When we substitute the latter into (3.2), we have

as claimed.
For case 3, observe that all terms of the sum in (3.2) are nonnegative, and the

term corresponding to k = 0 is f(n). Therefore, g(n) = (f (n)). The hypothesis of
the case, that there are constants 0 < c < 1 and N > 0 such that af (n/b)

cf (n), implies (by an easy induction argument that is left to the reader) that
. When we substitute the latter into (3.2), we get

The first summation in the latter expression has a fixed number of bounded

terms, so this summation satisfies . Therefore, our

asymptotic evaluation of g(n) depends on the second summation.

But

Because the latter summation is a geometric series with decreasing terms, it
follows that

a f
n

b
c f nk

k
k n

n b N

k

kb
k

()
>

0 1 0log ,
/

loog ,
/

log ,
/

() .
b

k
b

k
n

n b N

k

k n
n b N

f n c

> >

=
1 0 1

g n a f
n

b
k

k
k n

n b N
b

k

()
log ,

/

=

>
0 1

.

a f
n

b
k

k
k n

n b N
b

k

=
0 1

1
log ,

/

()

a f
n

b
a f

n

b
k

k
k n

n b N

k

k
b

k

+
0 1log ,

/ >
0 1k n
n b N

b
k

log ,
/

g n a f
n

b
k

k
k

nb

()
log

= =
=0

1

n b N a f n b c f nk k k k/ / ()> ()
n b N/ >

n n nb

b

ba

k

n
alog

log
log log1

0

1

=

= ()

g n a
n

b
k

k

a

k

n bb

()
loglog

= =
=0

1

nn
a

b
b

b

b
a

a

k

k

n
log

log

log

=
=0

1

n

bk

ablog

64 Chapter 3 The Master Method

We previously showed that g(n) = (f (n)), so it follows that g(n) = (f (n)),
as claimed.

Now we prove a version of the Master Method for the case in which n is a
nonnegative integral power of b.

Lemma 3: Let and be constants, and let f (n) be a nonnegative func-
tion defined on integral powers of b. Let T(n) be defined on integral powers of b
by the recurrence

Then we have

1. If f (n) = O (nlogba–) for some constant > 0 then T(n) = (nlogba).
2. If f (n) = (nlogba) then T(n) = (nlogbalog n).
3. If f (n) = (nlogba+) for some constant > 0, and if af (n/b)

cf (n) for some positive constants c < 1 and N, then T(n) = (f (n)).

Proof: First, we observe by Lemma 1 that T(n) = (nlogba) + g(n), where

In case 1, it follows from case 1 of Lemma 2 that

In case 2, it follows from case 2 of Lemma 2 that

In case 3, it follows from case 3 of Lemma 2 that g(n) = (f (n)), and (by
Lemma 1)

Because f (n) = (nlogba+), it follows that T(n) = (f (n)).

T n n g n n f nb ba a() () () .log log= () + = +()

T n f n g n n n n nb b ba a a() () () loglog log log= + = +() = llog .n()

T n n g n n n nb b b ba a a() ()log log log log= () + = +() = aa().

g n a f
n

b
k

k
k

nb

() .
log

=
=0

1

n b N/ >

T n

n

aT
n

b
f n n b

()

() ;

()
=

=

+ =

1 1if

 if ii i for some positive integer .

b >1a 1

g n O f n
c

O f n() () () .= = ()1

1

Master Theorem 65

The General Case

Lemma 3 states the Master Method for the case that n is a nonnegative integral
power of b. Recall that the importance of this case is to guarantee that at every
level of recursion the expression is an integer. For general n, however, the
expression need not be an integer. We can therefore substitute or

for in the recurrence (3.1) and attempt to obtain similar results.

Because

this will enable us to demonstrate that a small discrepancy in the value of the inde-
pendent variable often makes no difference in asymptotic evaluation. In the fol-
lowing discussion, we develop a version of the Master Method using the
expression for in the recurrence (3.1); a similar argument can be
given if, instead, we use for in (3.1).

Consider the sequences defined by the recursive formulas

and

Because b > 1, these are nonincreasing sequences of integers. We have

and more generally (the reader should be able to prove the following lower bound
for mi, and the following upper bound for ni, via simple induction arguments),

n

b b
m n

n

b b2 2 2 2

1
1

1
1< < + +

n

b
m n

n

b
< < +1 1

1 1
,

m n n
0 0
= = ,

n

n i

n

b
i i
=

= if

 if

0

1 i > 0.

m

n i

m

b
i i
=

= if

 if

0

1 ii > 0

n b/n b/
n b/n b/

n

b

n

b

n

b

n

b
< < +1 1,

n b/n b/
n b/n b/

n b/

66 Chapter 3 The Master Method

Thus,

Because ni is integer-valued, we have

Suppose, then, that we use the recurrence

(3.3)

and expand this recurrence iteratively to obtain

The reader should be able to prove by induction that for ,

In particular, for ,

Now,

Because , we have . Substituting these last two
results into the previous equation for T(n), we have

T n
b nlog

()() = 1n
b nlog

()= 1

a a aa a ab b b b bn n n nlog log log log log< = nn an b() = ()log .

T n a T n a f nb

b

b
n

n

k
k

k

() log

log

log

= () + ()
=0

nn 1

.

i n
b

= log 1

T n a f n a T nk
k

k

i
i

i
() ().= () +

=

+
+

0

1
1

0 1i n
b

log

T n f n aT n f n af n a T n() () () () () () .= + = + + =
0 1 0 1

2
2
…

T n aT
n

b
f n() ()= +

i n m n
b

bb i i
+ =log ().1

1
1

i n b n n
b

bb
i

i
< +log 1

1

n

b

b

bi
+

1
.

n

b b

n

b b
m n

n

b bi k
k

i k
k

i

i i i k
k

< < < +
= = =

1 1 1

0 0

1

00

1

0

1i

i k
k

n

b b=

< + =

n

b

b

bi
=

1

Master Theorem 67

This equation is much like that of the conclusion of Lemma 1.
Similarly, if we modify (3.3) to obtain the recurrence

(3.4)

then we similarly obtain

Let

We wish to evaluate g(n) and g'(n) asymptotically.
In case 1, we have the hypothesis that for some constant

. Without loss of generality, we have . There is a constant
such that for sufficiently large ,

where

is a constant.
For such k, akf (nk) dnlogbabk . It follows that

d c
b

b

b a

= +
+

1
1

log

=
dn b

a

b a k

k

log

,

= + ×c
n

a b

b

n

b

b

b a

k k

klog

1
1

+
log

logb
b

a
a

k

kc
n

a
b

b

b
1

1

logb a

f n cn c
n

b

b

b
c

n

bk k

a

k

a

b

b

() + =log

log

1 kk

k
a

b

n

b

b

b

+ ×1
1

log

n N
k
>c > 0

log
b

a 0> 0
f n O n b a() log= ()

g n a f mk
k

k

nb

'() .
log

= ()
=0

1

g n a f nk
k

k

nb

() ,
log

= ()
=0

1

T n n a f mb

b
a k

k
k

n

'() .log
log

= () + ()
=0

1

T n aT
n

b
f n'() ' (),= +

T n n a f nb

b
a k

k
k

n

() .log
log

= () + ()
=0

1

68 Chapter 3 The Master Method

The former summation, a geometric series, is O(alogbn) = O(nlogba). In the latter
summation, there are terms, because corresponds to small values of
k. It follows that

Hence, T(n) = (nlogba) + g(n) = (nlogba), as desired. A similar argument
shows T' (n) = (nlogba).

In case 2, the hypothesis that f (n) = (nlogba) implies there are positive con-
stants c and C such that for sufficiently large mk and nk, say, ,

where is a constant, and similarly, there is a constant

such that

Therefore, for such k, and . So,

In the first summation, the values of are bounded, because .
Thus, the summation is bounded asymptotically by the geometric series

a O a O nk

k

n
n a

b

b b

=

= () = ()
0

1log
log log .

n N
k

f n
k

()

g n a f n a fk
k

k n
n N

k

b

k

()
{ ,..., log },

= () +
0 1

nn
k

k n
n N

b

k

()
>
{ ,..., log },

.
0 1

a f m Dnk
k

ab() > loga f n dnk
k

ab() log

Dn

a

b a

k

log

 .f m
k

()

D > 0d c
b

b

b a

= +1
1

log

+ =c
n

a

b

b

dn

a

b b ba

k

a a

k

log log log

1
1

f n cn c
n

b

b

b
c

n
k k

a

k

a a

b

b b

() + =log

log log

1 aa

b

n

b

bk

k
ab

+ ×1
1

log

m n N
k k
, >

g n O n dn O nb b ba a a() () .log log log() + = ()1

n N
k
>()1

+()
{ ,..., log },

log1
0 1

a dnk

k n
n N

a

b

k

b b k

k n
n N

b

k>
{ ,..., log },

.
0 1

g n a f n a fk
k

k n
n N

k

b

k

()
{ ,..., log },

= () +
0 1

nn
k

k n
n N

b

k

()
>
{ ,..., log },0 1

Master Theorem 69

The second summation in the expansion of g(n) is simplified as

Substituting these into the previous equation for g(n), we obtain

Hence, . Similarly,

Notice that

Therefore,

It follows that g(n) = (nlogba log n) and g' (n) = (nlogba log n). Therefore,

and

In case 3, an analysis similar to that given for case 3 of Lemma 2 shows g(n) =
(f (n)), as follows. Recall the hypotheses of this case: f (n) = (nlogba+) for some

constant > 0, and there are constants and such that
af (n/b) cf (n). As earlier, it follows by a simple induction argument that for

n b N/ >N > 00 1< <c

T n n nb a'() log .log= ()T n n nb a() loglog= ()

= +
=

O a O a f nk

k

n
k

k
k

b

0

1

0

log

{ ,...,

()
llog },

() .
b

k

n
n N

O g n

>

= ()
1

g n a f mk
k

k n
n N

b

k

'()
{ ,..., log },

= () +
0 1

aa f mk
k

k n
n N

b

k

()
>
{ ,..., log },0 1

a f m O a f nk
k

k
k

k n
n N

b

k

() ()
{ ,..., log },

=

>
0 1

>
k n
m N

b

k

{ ,..., log },

.
0 1

() () logm n f n n
k k

ab= (){ } and

= + () = ()() log log .log log1 n n n nb ba a

g n a f mk
k

k n
n N

b

k

'()
{ ,..., log },

= () +
0 1

aa f mk
k

k n
n N

b

k

()
>
{ ,..., log },0 1

T n O n nb a() loglog= ()
g n O n O n n O n nb b ba a a() log log .log log log= () + () = ()

a f n dnk
k

k n
n N

a

b

k

b() =

>
{ ,..., log },

log

0 1

OO n nb

b
a

k

n
log

log

log .()
=0

1

70 Chapter 3 The Master Method

or, equivalently,

we have

Therefore,

Because f (n) = (nlogba+) and , we have g(n) = O(f (n)), and
therefore T(n) = (nlogba + g(n)) = O(f (n)).

Equation (3.3) implies T(n) = (f (n)), so it follows that T(n) = (f (n)), as
desired. A similar argument shows T '(n) = (f (n)).

Thus, in all cases, whether we use or as our interpretation
of in (3.1), we have obtained the results asserted in the statement of the Mas-
ter Theorem. Therefore, the proof of the Master Theorem is complete.

n b/
n b/n b/

a nb bn alog log=

f n
c

a O f n ab bn n() () .log log1

1
+ () = +()

f n c a Nk

k

n N
n

b

b

b() log
log /

log

=

()
+ ()

0

1 mmax
log /k n N k

b

f
n

b() +
<

1

g n a f
n

b
a f

n

b
k

k
k

n N

k

k

b

()
log /

= +
=

()

0 = () +k n N

n

b

b

log /

log

1

1

a f
n

b
c f nk

k

k ().

k
n

Nb
log ,

n

b
N

k
> ,

Master Theorem 71

EXAMPLE

Consider the recurrence

that occurs in the analysis of some image processing algorithms. We have

a = 4, b = 4, and

By case 1 of the Master Theorem, T n n() ().=

f n n n b a() ./ log /= =1 2 1 2log log ,
b

a = =
4
4 1

T n T
n

n() /= +4
4

1 2

72 Chapter 3 The Master Method

EXAMPLE

Consider the recurrence

that occurs in the analysis of Binary Search. Then so by case
2 of the Master Theorem, T(n) = (log n).

f n n() ,log= =1 21

T n T
n

() = +
2

1

EXAMPLE

Consider the recurrence

that occurs in the analysis of MergeSort. We have a = 2, b = 2, and
. So, by case 2 of the Master Theorem, T(n) = (nlog n).f n n n b a() log= =

T n T
n

n() = +2
2

EXAMPLE

Consider the recurrence

that occurs in the analysis of many mesh computer algorithms that will be pre-
sented later in the text. We have

a = 1, b = 4,

and

So, by case 3 of the Master Theorem, .T n n() /= 1 2

af n b n n f n(/) (/) / . ()./ /= = =4 2 0 51 2 1 2

f n n n b a() (),/ log .= = +1 2 0 5

T n T
n

n() /= +
4

1 2

Summary

In this chapter, we present and prove the Master Theorem, which provides simple
methods for solving many types of recursive relationships. We show how to use
this theorem with several examples.

Chapter Notes

In this chapter, we focus on the Master Method, a cookbook approach to solving
recurrences of the form . This approach has been well uti-
lized in texts by E. Horowitz and S. Sahni, including Computer Algorithms/C++,
by E. Horowitz, S. Sahni, and S. Rajasekaran (Computer Science Press, New
York, 1996). Our proof is based on the one given in Introduction to Algorithms by
T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein (2nd ed.: MIT Press, Cam-
bridge, MA, 2001). The paper, “A general method for solving divide-and-conquer
recurrences,” by J.L. Bentley, D. Haken, and J.B. Saxe, SIGACT News, 12(3):
36–44, 1980, appears to serve as one of the earliest references to this technique.

Exercises

For each of the following recurrences, either solve via the Master Theorem, or
show it is not applicable, as appropriate. If the Master Theorem is not applicable,
try to solve the recurrence by another means.

1.

2.

3.

4.

5.

6.

7.

8. T n T
n n() = +2
2

2

T n T
n n

n
()

log
= +16

4

3

2

T n T
n n

n
()

log
= +8

2

2

2

T n T
n

n() = +3
2

2

T n T
n

n() /= +4
2

3 2

T n T
n

n() = +4
2

2

T n T n() ()= +2 1

T n T
n

() = +2
2

1

T n aT n b f n() (/) ()= +

Exercises 73

74

4
Combinational Circuits

Combinational Circuits and Sorting Networks

Bitonic Merge

BitonicSort

Summary

Chapter Notes

Exercises

75

Asignificant portion of the computing cycles in the 1960s and ’70s was devoted to
sorting (i.e., organizing) data. As a result, a substantial effort was put into devel-

oping efficient sorting techniques. In this section, we consider an early hardware-
based implementation of sorting, proposed by Ken Batcher in 1968. In his seminal
1968 paper, Batcher proposed two algorithms, namely, BitonicSort and Odd-Even
Mergesort. Both of these algorithms are based on a MergeSort framework, both are
given for hardware, and in the case of the former, Batcher makes the insightful obser-
vation that such an algorithm would be very efficient on a parallel computer with cer-
tain interconnection properties. The focus of this chapter is on BitonicSort.

Combinational Circuits and Sorting Networks

We begin this chapter with a presentation of combinational circuits, a simple hard-
ware model involving a unidirectional (one-way) flow of data from input to output
through a series of basic functional units. When we present diagrams of combina-
tional circuits, the flow of information is represented by lines and the functional
units are represented by boxes. It is understood that, in these diagrams, the infor-
mation flows from left to right. After this introduction, we discuss Batcher’s
Bitonic Merge Unit, as applied to combinational circuits. We then present an in-
depth analysis of the running time of the Bitonic Merge routine on this model.
Finally, we conclude with a combinational circuit implementation and analysis of
Bitonic MergeSort, which exploits this very interesting Bitonic Merge unit.

Combinational circuits were among the earliest models developed in terms of
providing a systematic study of parallel algorithms. They have the advantage of
being simple, and many algorithms that are developed for this model serve as the
basis for algorithms presented later in this book for other models of parallel com-
puting. A combinational circuit can be thought of as taking input from the left,
allowing data to flow through a series of functional units in a systematic fashion,
and producing output at the right. The functional units in the circuit are quite sim-
ple. Each such unit performs a single operation in (1) (constant) time. These
operations include logical operations such as AND, OR, and NOT, comparisons
such as <, >, and =, and fundamental arithmetic operations such as addition, sub-
traction, minimum, and maximum. These functional units are connected to each
other by unidirectional links, which serve to transport the data. These units are
assumed to have constant fan-in (the number of links entering a processor is
bounded by a constant) and constant fan-out (the number of links exiting a unit is
bounded by a constant).

In this chapter, we restrict our attention to comparison-based networks in
which each functional unit simply takes two values as input and presents these val-
ues ordered on its output lines. Finally, it should be noted that there is no feedback
(that is, no cycles) in these circuits.

Sorting Networks

We consider a comparison-based combinational circuit that can be used as a general-
purpose sorting network. Such sorting networks are said to be oblivious to their
inputs because this model fixes the sequence of comparisons in advance; that is,
the sequence of comparisons is not a function of the input values. Notice that some
traditional sorting routines, such as Quicksort or Heapsort, are not oblivious in that
they perform comparisons that are dependent on the input data.

BitonicSort was originally defined in terms of sorting networks. It was
intended to be used not only as a sorting network, but as a simple switching net-
work for routing multiple inputs to multiple outputs. The basic element of a sort-
ing network is the comparison element, which receives two inputs, say, A and B,

76 Chapter 4 Combinational Circuits

and produces both the minimum of A and B and the maximum of A and B as out-
put, as shown in Figure 4.1.

Combinational Circuits and Sorting Networks 77

A min(A,B)

B max(A,B)

FIGURE 4.1 An illustration of a comparison
element, the fundamental element of a sorting
network. The comparison element receives inputs
A and B and produces min(A,B) and max(A,B).

Definition: A sequence of p numbers is said to be bitonic
if and only if

1. , for some k, , or

2. , for some k, , or

3. a can be split into two parts that can be interchanged to give either of the
first two cases.

1< <k pa a a a
k p1 2

… …

1< <k pa a a a
k p1 2

… …

a a a a
p

=
1 2
, , ,…

The reader should notice that by including the third case in the definition, the
first two cases become equivalent. The third case can be interpreted as stating that
a circular rotation of the members of the sequence yields an example of one of the
first two cases. For example, the sequence is bitonic, because
there is a circular rotation of the sequence that yields , which
satisfies case 1.

A bitonic sequence can therefore be thought of as a circular list that obeys the
following condition. Start a traversal at the entry in the list of minimal value,
which we will refer to as x. Then, as you traverse the list in either direction, you
will encounter elements in nondecreasing order until you reach the maximum ele-
ment in the list, after which you will encounter elements in nonincreasing order
until you return to x. Notice that if we have duplicate elements in the sequence

6 8 24 15 10 3 2 1, , , , , , ,
3 2 1 6 8 24 15 10, , , , , , ,

78 Chapter 4 Combinational Circuits

(list), there will be plateaus in the list, where multiple items of the same value
appear contiguously, as we perform this traversal.

Before introducing a critical theorem about bitonic sequences, we make an
important observation about two monotonic sequences. Given one ascending
sequence and one descending sequence, they can be concatenated to form a
bitonic sequence. Therefore, a network that sorts a bitonic sequence into monoto-
nic order can be used as a merging network to merge (sort) a pair of monotonic
sequences (which are preprocessed by such a concatenation step).

Theorem: Given a bitonic sequence , the following hold:

a) is
bitonic.

b)
is bitonic.

c) .

Proof: Let and ei = max{ai, an+i}, 1 i n. We must prove
that i) d is bitonic, ii) e is bitonic, and iii) . Without loss of gen-
erality, we can assume that , for some j
such that .

Suppose . For , if then the choice of j implies
, but if , then . (See Figure 4.2.) Therefore, if
, we have, and . Further, because and

, we also have . This completes the proof
for the case where . a a

n n2

max() min()d emin() min(,)e a a
n n

= +1 2

max()d a
n

=e a
i n i
= +d a

i i
=a a

n n2

a a a a
i n n n i+2

n i j+a a
i n i+

n i j+ <1 i na a
n n2

n j n2
a a a a a a

j j j n1 2 1 1 2+… …
max() min()d e

d a a
i i n i
= { }+min ,

max() min()d e

e a a a a a a
i n i i

n

n n
= { } = { } {+ = + +max , max , ,max ,

1 1 1 2 2}} { }, ,max ,… a a
n n2

d a a a a a a
i n i i

n

n n
= { } = { } {+ = + +min , min , ,min ,

1 1 1 2 2}} { }, ,min ,… a a
n n2

a a a a
n

=
1 2 2
, , ,…

1 i n j n�i 2n

FIGURE 4.2 An illustration of a bitonic
sequence <a> in which and aj is a
maximal element of <a>, where .n j n2

a a
n n2

Now consider the case where . Because a is nondecreasing for
and nonincreasing for , and because , there is an index k, ,
for which and . This is illustrated in Figure 4.3.a a

k n k+ +>
1 1a a

k n k

j k n< 2a a
j n ji j

i ja a
n n
>

2

Combinational Circuits and Sorting Networks 79

1 k�n

<d>

<e>

<d>

k�n�1
n j k k�1 2n

FIGURE 4.3 An illustration of a bitonic sequence
<a> in which , aj is a maximal element of
<a>, where , and there exists a pivot
element k such that and .a a

k-n+1 k+1
>a a

k-n k

n j 2n
a > a

n 2n

First, consider the sequence d. For , we have either

• , which implies , or

• , in which case ,

the last inequality in the chain following from

Thus, for , we have . Further, this subsequence of d is non-
decreasing. Next, notice that for , because for such i,

(because)
(by choice of k)
(because).j k i n< + +1+a

i n

+a
k 1

k n i n j+1a a
i k n+1

k n i n<d a
i n i
= +

d a
i i
=1 i k n

i k n j i n k() < +()

a a a a
i k n k i n+

i n j+ >

a a
i i n+i n j+

1 i k n

Further, this subsequence of d is nonincreasing. Therefore, d comprises a non-
decreasing subsequence followed by a nonincreasing subsequence. By the first
part of the bitonic sequence definition, we know that d is bitonic.

Now consider the sequence e. Notice that for . Further,
this subsequence of e is nondecreasing. Next, notice that for
k – n. Further, this subsequence is easily seen to be nonincreasing. Finally, notice
that for . This final subsequence of e is nondecreasing. There-
fore, e is bitonic by case three from the definition because we also have that

. See Figure 4.3.
Now, consider the relationship between bitonic sequences d and e. Notice that

and . It follows easily that
, completing the proof for the case of .

Bitonic Merge

The previous theorem gives the iterative rule for constructing a bitonic merge unit,
that is, a unit that will take a bitonic sequence as input (recall that a bitonic
sequence is created easily from two monotonic sequences) and produce a monoto-
nic sequence as output. (See Figure 4.4.) It is important to note that this is only the
merge step, and that this merge step works on bitonic sequences. After we finish
our discussion and analysis of the merge unit, we will show how to utilize this
merge unit to sort data via BitonicSort.

We now present the bitonic merge algorithm. The input to the routine is the
bitonic sequence A and the direction that A is to be sorted into (ascending or descend-
ing). The routine will produce a monotonic sequence Z, ordered as requested.

a a
n n
>

2max() min()d e
min() min ,e a a

k k n
= { }+1max() max ,d a a

k n k
= { }+1

e a a e
n n n
= =+1 1

k n i n<e a
i i
=

j n ie a
i n i
= +

1 i j ne a
i n i
= +

80 Chapter 4 Combinational Circuits

Input:

a bitonic
sequence

Output:

Bitonic Merge Unit

a monotonic
(ordered)
sequence

FIGURE 4.4 Input and output for a bitonic merge unit.

Subprogram BitonicMerge(A, Z, direction)
Procedure: Merge bitonic list A, assumed at top level of recursion to be of
size 2n, to produce list Z, where Z is ordered according to the function direc-
tion, which can be viewed as a function with values < or >.
Local variables: i: list index

: lists, initially empty

Action:

If then return {This is a base case of recursion}
Else

For i=1 to n, do
If direction(Ai, An+i), then

append to and append to
Else append to and append to

End For
BitonicMerge(, direction)

BitonicMerge(, direction)

Concatenate(, ,)
End Else
End BitonicMerge

Notice the strong resemblance between BitonicMerge and both MergeSort and
Quicksort.

BitonicMerge is similar to MergeSort in that it requires a list of elements to be
split into two even sublists, recursively sorted, and then concatenated (the concate-
nation serves as a merge step, by part c of the theorem). Be aware, though, that
MergeSort takes as input an unordered list, which is sorted to produce an ordered
list, whereas BitonicMerge takes as input a bitonically ordered list in order to pro-
duce an ordered list.

BitonicMerge is similar to Quicksort in that it splits a list into sublists, recur-
sively solves the problem on the sublists, and then concatenates the sublists into
the final list. In fact, notice that in the case of BitonicMerge and Quicksort, the two
intermediate sublists that are produced both have the property that every element
in one of the lists is greater than or equal to every element in the other list.

As described, a bitonic merge unit for 2n numbers is constructed from n com-
paritors and two n-item bitonic merge units. Two items can be merged with a sin-
gle comparison unit. In fact, n pairs of items can be simultaneously merged using
one level of merge units. That is, if L(x) is the number of levels of comparitors
required to merge simultaneously x/2 pairs of items, we know that the base case is
L(2) = 1. In general, to merge two bitonic sequences, each of size n, requires

levels. L n L n n() () log2 1 2
2

= + =

| |A 2
ZZ

e
'Z

d
'

Z Z
e e
, '

Z Z
d d
, '

Z
e

A
iZ

d
A

n i+

Z
e

A
n i+Z

d
A

i

Z A=| |A < 2

Z Z Z Z
d d e e
, , ,' '

Bitonic Merge 81

82 Chapter 4 Combinational Circuits

In terms of our analysis of running time, we assume that it takes (1) time for
a comparison unit to perform its operation. So, each level of a sorting network
contributes (1) time to the running time of the algorithm. Therefore, a bitonic
merge unit for 2n numbers performs a bitonic merge in (log n) time.

Now consider implementing BitonicMerge on a sequential machine. The
algorithm requires (log n) iterations of a procedure that makes n comparisons.
Therefore, the total running time for this merge routine on a sequential machine is

(n log n). As a means of comparison, recall that the time for MergeSort to merge
two lists with a total of n items is (n), and the time for Quicksort to partition a set
of n items is, as we show later in the book, (n).

In Figure 4.5, we present a 2n-item bitonic merge unit. It is important to note
that the input sequence, a, is bitonic and that the output sequence, c, is sorted. The
boxes represent the comparitors that accept two inputs and produce two outputs:
L, which represents the low (minimum) of the two input values, and H, which rep-
resents the high (maximum) of the two input values.

c1

c2

c3

cn+1

cn+2

cn+3

cn–2

cn–1

cn

c2n–2

c2n–1

c2n

a1

a2

a3

an–2

an–1

an

an+1

an+2

an+3

a2n–2

a2n–1

a2n

n-item

Bitonic

Merge

n-item

Bitonic

Merge

L
H

L
H

L
H

L
H

L
H

L
H

.

.

.

FIGURE 4.5 The iterative rule for constructing a bitonic merge unit. The input
sequence <a> consists of 2n items and is bitonic. The 2n item output sequence
<c> is sorted.

Figures 4.6 and 4.7 present examples of a four-element bitonic merge unit and
an eight-element bitonic merge unit, respectively. The input sequence <a> in both
figures is assumed to be bitonic. Further, as in Figure 4.5, we let L denote the low
(minimum) result of the comparison, and H represents the high (maximum) result.

Bitonic Merge 83

c1

c2

c3

c4

a1

a2

a3

a4

L
H

L
H

L
H

L

Bitonic merge units of 2 items apiece
in a 4-item bitonic merge unit.

H

FIGURE 4.6 A 4-item bitonic merge unit. Note
that is the bitonic input sequence and

is the sorted output sequence. The
number of levels L(2n) can be determined as
L(2n) = L(2 2) = 1 + L(n) = 1 + L(2) = 2 = × llog (2n)

2

c ,c ,c ,c
1 2 3 4

a ,a ,a ,a
1 2 3 4

a1

a2

a3

a4

a5

a6

a7

a8

c1

c2

c3

c4

c5

c6

c7

c8

An 8-item bitonic merge unit partitions the data
into two 4-item bitonic merge units.

FIGURE 4.7 An 8-item bitonic merge unit. Note that the
input sequence is bitonic and the output
sequence is sorted. The number of levels
L(2n) can be determined as
L(2n) = L(2 4) = 1 + L(4) = 1 + 2 = 3 = log×

22 2
8 = log (2n)

c ,…,c
1 8

a ,…,a
1 8

84 Chapter 4 Combinational Circuits

BitonicSort

BitonicSort is a sorting routine based on MergeSort. Given a list of n elements,
MergeSort can be viewed in a bottom-up fashion as first merging n single ele-
ments into n/2 pairs of ordered elements. The next step consists of pair-wise merg-
ing these n/2 ordered pairs of elements into n/4 ordered quadruples. This process
continues until the last stage, which consists of merging two ordered groups of ele-
ments, each of size n/2, into a single ordered list of size n. BitonicSort works in
much the same way.

Given an initial input list of random elements, notice that every pair of ele-
ments is bitonic. Therefore, in the first stage of BitonicSort, bitonic sequences of
size 2 are merged to create ordered lists of size 2. Notice that if these lists alternate
between being ordered into increasing and decreasing order, then at the end of this
first stage of merging, we actually have n/4 bitonic sequences of size 4. In the next
stage, bitonic sequences of size 4 are merged into sorted sequences of size 4, alter-
nately into increasing and decreasing order, so as to form n/8 bitonic sequences of
size 8. Given an unordered sequence of size 2n, notice that exactly log2 2n stages
of merging are required to produce a completely ordered list. (We have assumed,
for the sake of simplicity, that 2n = 2k, for some positive integer k.) See Figure 4.8.

a1

a2

a3

a4

a5

a6

a7

c1

c3

c2

c4

c6

c5

c7

a8 c8

I I I I I I

D I I I I I

I D D I I I

D D D I I I

FIGURE 4.8 An example of BitonicSort on eight data items. Note that the input
sequence <a> is initially unordered, and the output sequence <c> is sorted into
nondecreasing order. The symbol “I” means that the comparison is done so that
the top output item is less than or equal to the bottom output item (increasing
order if the items are unique). The symbol “D” represents that the comparison
is done with respect to nonincreasing order (decreasing order if unique items).

Now consider the merging stages. Each of the log2 2n stages of BitonicSort
utilizes a different number of comparitors. In fact, notice that in stage 1, each
bitonic list of size 2 is merged with one comparitor. In stage 2, each bitonic
sequence of size 4 is merged with two levels of comparitors, as per our previous
example. In fact, at stage i, the BitonicMerge requires i levels of comparitors.

We now consider the total number of levels of comparitors required to sort an
arbitrary set of 2n input items with BitonicSort. Again, there are log2 2n stages of
merging, and each stage i requires i levels of comparisons. Therefore, the number
of levels of comparitors is given by

So, (log2 n) levels of comparitors are required to sort completely an initially
unordered list of size 2n. That is, an input list of 2n values can be sorted in this
(combinational circuit) model with (log2 n) delay.

Now consider how this algorithm compares to traditional sorting algorithms
operating on the sequential model. Notice that for 2n input values, each of the

(log2 n) levels of comparitors actually uses n comparitors. That is, a total of
(n log2 n) comparitors is required to sort 2n input items with BitonicSort. There-

fore, if properly implemented in software, this algorithm requires (n log2 n) time
on a sequential machine.

Subprogram BitonicSort(X)
Procedure: Sort the list , using the BitonicSort algorithm.
Local variables: integers segmentLength, i

Action:

;
Do

For to , do in parallel
BitonicMerge(

,
,
,

ascending = odd (i))
End For;

;
While {End Do}
End BitonicSort

segmentLength n< 2
segmentLength segmentLength= ×2

X i segmentLength i segmentLength[() , ,2 2 1 2× + ×…]]
X i segmentLength i segmentLength[() , ,2 1 1 2× + ×…]]
X i segmentLength i segmentLe[() , ,()2 2 1 2 1× + ×… nngth]

n segmentLength/i = 1

segmentLength = 1

X n[, ,]1 2…

i
n n n

i

n

=

=
() +()

= +
1

2
2 2

22 2 2 1

2

2

2

log log log log () loog()2

2

n

BitonicSort 85

There is an alternative view of sorting networks that some find easier to grasp.
We present such a view in Figure 4.9 for BitonicSort, as applied to an eight-
element unordered sequence. The input elements are given on the left of the dia-
gram. Each line is labeled with a unique three-bit binary number. Please do not
confuse these labels with the values that are contained on the lines (not shown in
this figure). Horizontal lines are used to represent the flow of data from left to
right. A vertical line is used to illustrate a comparitor between the elements on the
endpoints of its line. The letters next to the vertical lines indicate whether the com-
parison being performed is (represented as I, giving the intuition of increasing)
or (represented as D, giving the intuition of decreasing). Note that dashed verti-
cal lines are used to separate the 3 = log2 8 merge stages of the algorithm. The
reader might want to draw a diagram of an eight-element bitonic sorting network
using the lines and comparitors that have been used previously in this chapter and
verify that such a diagram is consistent with this one.

86 Chapter 4 Combinational Circuits

000

001

010

011

100

101

110

111

I I I

I

D

Merge into
pairs

Merge into
quadruples

Merge into
8s

I

D

D

D

I

I

I

I

I

I

I

I I

I

D

D

I

I

I

FIGURE 4.9 A different view of BitonicSort for eight
elements. The horizontal lines represent wires and
the vertical lines represent comparison-exchange
elements. That is, the vertical lines represent points
in time at which two items are compared and
ordered according to the label I (increasing order)
or D (decreasing order). Notice that the log2 8 = 3
bitonic merge stages are separated by dotted vertical
lines.

Finally, Batcher made an interesting observation in his seminal 1968 paper
that included BitonicSort and Odd-Even MergeSort. Consider the alternative view
of BitonicSort just presented. Batcher noticed that at each stage of the algorithm,

the only elements ever compared are those on lines that differ in exactly one bit of
their line labels. Suppose that we are given a parallel machine consisting of a set of
2n processors, and we have one item per processor that we want to sort. Batcher
noted that if every processor were connected to all other processors that differ in
exactly one bit position, the sorting would be performed in (log2 n) time. In fact,
such a model corresponds to the interconnection of a hypercube, which will be dis-
cussed later in this book. See Table 4.1.

Table 4.1 Processor Sorting Table

Processor Entry Neighbor processors

000 a0 001, 010, and 100
001 a1 000, 011, and 101
010 a2 011, 000, and 110
011 a3 010, 001, and 111
100 a4 101, 110, and 000
101 a5 100, 111, and 001
110 a6 111, 100, and 010
111 a7 110, 101, and 011

In conclusion, we note that BitonicSort will sort n items

• in (log2 n) time using a sorting network,
• in (log2 n) time on a machine in which processors that differ in a single bit

in their unique, consecutively labeled indices, are directly connected (a
hypercube),

• in (log2 n) time on a parallel machine that allows any two processors to com-
municate in constant time (such as a PRAM, which is also presented later in
this book), and

• in (n log2 n) time on a sequential machine (RAM).

Summary

In this chapter, we present Batcher’s combinational circuits and sorting networks.
These pioneering ideas in the history of parallel computing illustrate the time effi-
ciencies that are possible via appropriate combination of architectures and algo-
rithms. We illustrate Batcher’s BitonicMerge and BitonicSort algorithms on the
hardware configurations that he proposed, and we analyze their running times. We
also observe that Batcher’s algorithms are easily modified to other parallel archi-
tectures that will be discussed later in the book.

Summary 87

Chapter Notes

In 1968, Ken Batcher presented a short paper that introduced BitonicSort and
Odd-Even MergeSort, and made the insightful observation that both sorting net-
works would operate efficiently on a hypercube network of processors. The work
from this paper, “Sorting networks and their applications” (K.E. Batcher, Proceed-
ings of the AFIPS Spring Joint Computer Conference 32, 1968, 307–314) has been
covered in traditional courses on data structures and algorithms by many instruc-
tors in recent decades. The material has become more integral for such courses as
parallel computing has reached the mainstream. This material has recently been
incorporated into textbooks. A nice presentation of this material can be found in
Introduction to Algorithms, by T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C.
Stein (2nd ed.: MIT Press, Cambridge, MA, 2001).

Exercises

1. Define a transposition network to be a comparison network in which com-
parisons are made only between elements on adjacent lines. Prove that sorting
n input elements on a transposition network requires (n2) comparison units.

2. What is the smallest number of elements for which you can construct a
sequence that is not bitonic? Prove your result.

3. Consider a comparison network C that takes a sequence of elements
as input. Further, suppose that the output of C is the same

set of n elements but in some predetermined order. Let the output sequence be
denoted as .

a) Given a monotonically increasing function F, prove that if C is given the

sequence as input, it will produce

as output.
b) Suppose that input set X consists only of 0s and 1s. That is, the input is a set

of n bits. Further, suppose that the output produced by C consists of all the
0s followed by all the 1s. That is, C can be used to sort any permutation of
0s and 1s. Prove that such a circuit (one that can sort an arbitrary sequence
of n bits) can correctly sort any sequence of arbitrary numbers (not neces-
sarily 0s and 1s). This result is known as the 0-1 sorting principle.

4. Use the 0-1 sorting principle to prove that the following odd-even merging
network correctly merges sorted sequences and .

• The odd-indexed elements of the input sequences, that is and

, are merged to produce a sorted sequence .u u u
n1 2

, , ,…{ }y y y
n1 3 1

, , ,…{ }
x x x

n1 3 1
, , ,…{ }

y y y
n1 2

, , ,…{ }x x x
n1 2

, , ,…{ }

F y
n()},…F y F y

1 2() (){ , ,

F x F x F x
n1 2() () (){ }, , ,…

y y y
n1 2

, , ,…{ }

X x x x
n

= { }1 2
, , ,…

88 Chapter 4 Combinational Circuits

• Simultaneously, the even-indexed elements of the input sequences,
and , are merged to produce a sorted

sequence .
• Finally, the output sequence is obtained from ,

, , , for all .1 1i nz u v
i i i2 1 1+ += max(,)z u v

i i i2 1
= ()+min ,z v

n n2
=

z u
1 1
=z z z

n1 2 2
, , ,…{ }

v v v
n1 2

, , ,…{ }
y y y

n2 4
, , ,…{ }x x x

n2 4
, , ,…{ }

Exercises 89

90

5
Models of
Computation

RAM (Random Access Machine)

PRAM (Parallel Random Access Machine)

Fundamental Terminology

Interconnection Networks

Additional Terminology

Summary

Chapter Notes

Exercises

91

In this chapter, we introduce various models of computation that will be used through-
out the book. Initially, we introduce the random access machine (RAM), which is the

traditional sequential model of computation (also called the von Neumann model). The
RAM has been an extremely successful model in terms of the design and analysis of
algorithms targeted at traditional sequential computers. Next, we introduce the parallel
random access machine (PRAM), which is the most popular parallel model of compu-
tation. The PRAM is ideal for the design and analysis of parallel algorithms without
concern for communication (either between processors and memory or within sets of
processors). Following our introduction to the PRAM and various fundamental exam-
ples, we introduce parallel models of computation that rely on specific interconnection
networks, either between processors and memory or between processors that contain
on-board memory. Such models include the mesh, tree, pyramid, mesh-of-trees, and
hypercube. We also mention the coarse-grained multicomputer, which has received
much recent attention as a simple, practical model of parallel computing. Finally, we
conclude the chapter with a presentation of some standard terminology.

RAM (Random Access Machine)

The RAM is the traditional sequential model of computation, as shown in Figure
5.1. It has proved to be quite successful because algorithms designed for the RAM
tend to perform as predicted on the majority of sequential (uniprocessor) machines.

92 Chapter 5 Models of Computation

Processor

RAM

Memory Access
Unit

Memory

FIGURE 5.1 The RAM (random access machine)
is a traditional sequential model of computation.
It consists of a single processor and memory. The
processor is able to access any location of mem-
ory in (1) time through the memory access unit.

The RAM has the following characteristics:

Memory: Assume that the RAM has M memory locations, where M
is a (large) finite number. Each memory location has a unique location
(address) and is capable of storing a single piece of data. The memory
locations can be accessed in a random fashion. That is, there is a constant
C > 0 such that given any memory address A, the data stored at address A
can be accessed in at most C time. Thus, memory access on a RAM is
assumed to take (1) time, regardless of the number of memory locations
or the particular location of the memory access.

Processor: The RAM contains a single processor, which operates
under the control of a sequential algorithm. One instruction at a time is
issued. Each instruction is performed to completion before the processor
continues with the next instruction. We assume that the processor can

perform a variety of fundamental operations. These operations include
loading and storing data from and to memory as well as performing basic
arithmetic and logical operations.

Memory Access Unit: The memory access unit is used to create a path
(a direct connection) between the processor and a memory location.

Execution: Each step of an algorithm consists of three phases: a read
phase, a compute phase, and a write phase. In the read phase, the processor
can read data from memory into one of its registers. In the compute phase,
the processor can perform basic operations on the contents of its registers.
Finally, during the write phase, the processor can send the contents of
one of its registers to a specific memory location. This is a high-level
interpretation of a single step of an algorithm, corresponding typically to
several machine (or assembly language) instructions. There is no distortion
of analysis in such an interpretation, because several machine instructions
can be executed in (1) time.

Running Time: We need to consider the time that each of these three
phases requires. First, it is important to note that each register in the
processor must be of a size greater than or equal to log2 M bits in order to
accommodate M distinct memory locations (the reader should verify
this). Due to the fan-out of “wires” between the processor and memory,
any access to memory will require O(log M) time. Notice, however, that
it is often possible for k consecutive memory accesses to be pipelined to
run in O(k + log M) time on a slightly enhanced model of a RAM. Based
on this analysis, and the fact that many computations are amenable to
pipelining for memory access, we assume that both the read and the
write phase of an execution cycle require (1) time.

Now consider the compute phase of the execution cycle. Given a set of k-bit
registers, many of the fundamental operations can be performed in (log k) time.
The reader unfamiliar with these results might wish to consult a basic book on
computer architecture and read about carry-lookahead adders, which provide an
excellent example. Therefore, because each register has k = (log M) bits, the
compute phase of each execution cycle can be performed in O(log log M) time.

Typically, one assumes that every cycle of a RAM algorithm requires (1)
time. This is because neither the O(k + log M) time required for memory access
nor the O(log log M) time required to perform fundamental operations on registers
typically affects the comparison of running time between algorithms. Further,
these two terms are relatively small in practice, so much so that the running time
of an algorithm is almost always dominated by other considerations such as

• the amount of data being processed,
• the instructions executed, and
• (in an approximate algorithm) the error tolerance.

RAM (Random Access Machine) 93

94 Chapter 5 Models of Computation

On a parallel computer, the number of processors and their interconnection
scheme will also affect running time. It is important to note that this (1) time
model is the standard, and that most authors do not go into the analysis or justifi-
cation of it. However, this model is properly referred to as the uniform analysis
variant of the RAM. This is the model that we will assume throughout the book
when we refer to the RAM, and as mentioned, it is the model that is used in all
standard algorithms and data structure books.

PRAM (Parallel Random Access Machine)

The PRAM is the most widely utilized parallel model of computation. When it was
developed, the hope was that it would do for parallel computing what the RAM
model did for sequential computing. That is, the PRAM was developed to provide
a platform that could be used to design theoretical algorithms that would behave as
predicted by the asymptotic analysis on real parallel computers. The advantage of
the PRAM is that it ignores communication issues and allows the user to focus on
the potential parallelism available in the design of an efficient solution to the given
problem. The PRAM has the following characteristics. (See Figure 5.2.)

Control
Unit

Local
Memory
(Registers)

P2

Program

PRAM

Memory Access
Unit

.

. . . .

. . . .

.

Global Memory

Local
Memory
(Registers)

P1

Local
Memory
(Registers)

PnProcessors

FIGURE 5.2 Characteristics of a PRAM (parallel random access machine). The
PRAM consists of a set of processing elements connected to a global memory
through a memory access unit. All memory accesses are assumed to take (1) time.

Processors: The PRAM maintains n processors, P1, P2 ,…, Pn, each of
which is identical to a RAM processor. These processors are often
referred to as processing elements, PEs, or simply processors.

Memory: As with the RAM, there is a common (sometimes referred to
as a “global”) memory. It is typically assumed that there are m n
memory locations.

Memory Access Unit: The memory access unit of the PRAM is
similar to that of the RAM in that it assumes that every processor has

(1) time access to every memory location.

It is important to note that the processors are not directly connected to each
other. So, if two processors wish to communicate in their effort to solve a prob-
lem, they must do so through the common memory. That is, PRAM algorithms
often treat the common memory as a blackboard (to borrow a term from artificial
intelligence). For example, suppose processor P1 maintains a critical value in one
of its registers. Then, for another processor to view or use this value, P1 must write
the value to a location in the global memory. Once it is there, other processors can
then read this value.

Execution: As with the RAM, each step of an algorithm consists of
three phases: a read phase, a compute phase, and a write phase. During
the read phase, all n processors can read simultaneously a piece of data
from a memory location (not necessarily a unique one), where a copy
of the data would be placed simultaneously into a register of each and
every processor. In the compute phase, every processor can perform a
fundamental operation on the contents of its registers. This phase is
identical to that of the RAM, but remember that n independent operations
can be performed simultaneously (one in each processor). During the
write phase, every processor can (simultaneously) write an item from one
of its registers to the global memory. Again, the write stage is similar to
the write stage of the RAM, with the exception that simultaneous writes
can occur. It is important to note that conflicts can occur during both the
read and write phases. We will consider resolutions to such conflicts
shortly.

Running Time: The analysis of running time per cycle is virtually
identical to that of the RAM. Again, we need to consider the time that
each of these three phases takes. An analysis of the read and write phases
will again show that the time required for each processor to access any of
the m memory locations, due to constraints in fan-in, is O(log m). As
discussed previously, this can be improved by pipelining to allow k
consecutive requests from all n processors to be handled in O(k + log m)
time. Similarly, every processor can perform fundamental operations on
its own k-bit registers in O(log k) time. Finally, by assuming a uniform-

PRAM (Parallel Random Access Machine) 95

access model, we can assume that every cycle can be performed in (1)
time. Although this uniform-access model is not perfect, it suits most of
our needs.

Memory Access (resolving data access conflicts): Conflicts in memory
access can arise during both the read phase and the write phase of a
cycle. How should one handle this? For example, if two processors are
trying to read from the same memory location, should only one succeed?
If so, which one? If two processors are trying to write to the same
memory location (the classical “race condition”), which one, if either,
succeeds? Is a processor notified if it didn’t succeed? We discuss the
traditional variants of the PRAM model in terms of memory access.
Once the read and write access options have been defined, they can be
coupled in various ways to produce common PRAM models.

Read Conflicts: Handling read conflicts is fairly straightforward. The
following two basic models exist.

1. Exclusive Read (ER): Only one processor is allowed to read from a
given memory location during a cycle. That is, it is considered an
illegal instruction (a runtime programming error, if you will) if at any
point during the execution of a procedure, two or more processors
attempt to read from the same memory location.

2. Concurrent Read (CR): Multiple processors are allowed to read
from the same memory location during a clock cycle.

Write Conflicts: Handling write conflicts is much more complex, and
a variety of options exist.

1. Exclusive Write (EW): The exclusive write model allows only one
processor to write to a given memory location during a clock cycle.
That is, it is considered a runtime error if a piece of code requires two
or more processors to write to the same memory location during the
same clock cycle.

2. Concurrent Write (CW): The concurrent write model allows
multiple processors to attempt to write to the same memory location
simultaneously (that is, during the same clock cycle). This brings up
an interesting point: how should one should resolve write conflicts?
Various arbitration schemes have been used in the literature. We list
some of the popular ones.

a) Priority CW: The priority CW model assumes that if two or more
processors attempt to write to the same memory location during
the same clock cycle, the processor with the highest priority
succeeds. In this case, it is assumed that processors have been

96 Chapter 5 Models of Computation

assigned priorities in advance of such an operation, and that the
priorities are unique. Notice that there is no feedback to the
processors as to which one succeeds and which ones fail.

b) Common CW: The common CW model assumes that all processors
attempting a simultaneous write to a given memory location will
write the same value. A runtime error occurs otherwise.

c) Arbitrary CW: The arbitrary CW model is quite interesting.
This model assumes that if multiple processors try to write
simultaneously to a given memory location, then one of them,
arbitrarily, will succeed.

d) Combining CW: The combining CW model assumes that when
multiple processors attempt to write simultaneously to the same
memory location, the values written by these multiple processors
are (magically) combined, and this combined value will be written
to the memory location in question. Popular operations for the
combining CW model include arithmetic functions such as SUM
and PRODUCT; logical functions such as AND, OR, and XOR;
and higher-level fundamental operations such as MIN or MAX.

Popular PRAM Models: Now that we have defined some of the
common ways in which reads and writes are arbitrated with the PRAM,
we can discuss the three popular PRAM models:

CREW: The CREW PRAM is one of the most popular models because
it represents an intuitively appealing model. Namely, it assumes that
concurrent reads may occur, but it forbids concurrent writes.

EREW: The EREW PRAM is the most restrictive form of a PRAM in
that it forbids both concurrent reads and concurrent writes. Because only
exclusive reads and writes are permitted, it is much more of a challenge
to design efficient algorithms for this model. Further, due to the severe
restrictions placed on the EREW PRAM model, any algorithm designed
for the EREW PRAM will run on any of the other models. Note,
however, that an optimal EREW algorithm may not be optimal on other
PRAM models.

CRCW: The CRCW PRAM allows for both concurrent reads and
concurrent writes. When we use such a model, the details of the concurrent
write must be specified. Several choices of CW were discussed earlier.

One might also consider an ERCW PRAM to round out the obvious combina-
tions of reads and writes. However, this model has very little to offer and is rarely
considered. Notice that intuitively, if one can assume that hardware can perform
concurrent writes, it is not very satisfying to assume that concurrent reads could
not be managed.

PRAM (Parallel Random Access Machine) 97

98 Chapter 5 Models of Computation

The PRAM is one of the earliest and most widely studied parallel models of
computation. However, it is important to realize that the PRAM is not a
physically realizable machine. That is, although a machine with PRAM-type
characteristics can be built with relatively few processors, such a machine
could not be built with an extremely large number of processors. In part, this
is due to current technological limitations in connecting processors and
memory. Regardless of the practical implications, the PRAM is a powerful
model for studying the logical structure of parallel computation under condi-
tions that permit theoretically optimal communication. Therefore, the PRAM
offers a model for exploring the limits of parallel computation, in the sense
that the asymptotic running time of an optimal PRAM algorithm should be at
least as fast as that of an optimal algorithm on any other architecture with
the same number of processors. (There are some exceptions to this last state-
ment, but they are outside the scope of this book.)

The great speed we claim for the PRAM is due to its fast communications, an
issue that will be discussed in greater detail later. The idea is that data may be
communicated between a source and a destination processor in (1) time via

• the source processor writing the data value to memory, followed by
• the destination processor reading this data value from memory.

By contrast, parallel computers based on other architectures may require a non-
constant amount of time for communication between certain pairs of processors,
because the data must be passed step-by-step between neighboring processors
until it reaches the desired destination.

Examples: Simple Algorithms

Now that we have introduced many of the critical aspects of the PRAM, it is
appropriate for us to present several simple algorithms, along with some basic
analysis of time and space. The first operation we consider is that of broadcasting
a piece of information. For example, suppose a particular processor contains a
piece of information in one of its registers that is required by all other processors.
We can use a broadcast operation to distribute this information from the given
processor to all others. Broadcasting will serve as a nice, simple example to get us
started. The first broadcasting algorithm we present is targeted at the CR PRAM.
Notice that the algorithm we present exploits the fundamental CR capabilities.
Therefore, it will not work on the ER models.

CR PRAM Algorithm for Broadcasting a Unit of Data
Initial Condition: One processor, Pi, stores a value d in its register ri,j that is
to be broadcast to all processors.
Exit Condition: All processors store the value d.

Action:

1. Processor Pi writes the value d from register ri,j to shared memory
location X.

2. In parallel, all processors read d from shared memory location X.
End Broadcast

Step 1 requires only a (1) time exclusive write operation, assuming that all
processors know whether they are the one to be broadcasting the data (a reason-
able assumption). Step 2 requires (1) time by using a concurrent read operation.
Therefore, the running time of this algorithm is (1), regardless of the number of
processors.

Now, consider the broadcast problem for an ER PRAM. A simple modifica-
tion to the previous algorithm could be made to allow each processor, in sequence,
to read the data item from the shared memory location X. However, this would
result in an algorithm that runs in time linear in the number of processors, which is
less than desirable. That is, given an ER PRAM with n processors, such an algo-
rithm would run in (n) time. Alternatively, we could make multiple copies of the
data, one for each processor, and then allow each processor to read “its” copy
simultaneously. We will take this approach. The algorithm follows.

ER PRAM Algorithm for Broadcasting a Unit of Data
Assumption: The ER PRAM has n processors.
Initial Condition: One processor, Pi, has the data value d stored in its regis-
ter ri,j that is to be broadcast to all processors.
Exit Condition: All processors store the value d.

Action:

Processor Pi writes the value d from register ri,j to shared memory location d1

For i=1 to , do
In parallel, processors , , do

read d from
If then writes d to

End Parallel
End For
End Broadcast

This is an example of a recursive doubling procedure, in which during each
generic step of the algorithm, the number of copies of the initial data item has dou-
bled (exactly or approximately). As is the case with many parallel algorithms, it
also implies that the number of processors that maintain a copy of the data doubles
during each successive step. Notice that this has the flavor of a binary treelike
algorithm. Initially, there is one copy of the data (at the root). After the first step,

P
j i+2 1P

jj ni+ 2 1

d
j

j i{ ,..., }1 2 1P
j

log
2

n

PRAM (Parallel Random Access Machine) 99

there are now two copies of the data (two children of root node). After the second
step, there are four copies of the data (there are four grandchildren of the root), and
so on. Because each step of reading and writing requires only (1) time, regard-
less of the number of processors participating in the operation, we know that an
ER PRAM with n processors can perform a broadcast operation in logarithmic
time, that is, in (log n) time.

Next, we consider PRAM solutions to several fundamental operations involv-
ing arrays of data. Let’s assume that the input to these problems consists of an array

, where each entry xi might be a record containing multiple fields
and where the array X may itself be ordered, as appropriate. When there is no con-
fusion, we will make references to the key fields simply by referring to an entry xi.

A semigroup operation is a binary associative operation. The term binary
refers to the fact that the operator takes two operands, say x1 and x2, as input,
and is a well-defined operation (the result of which we denote generically as

) for any values of its operands. The term associative means that (x y) z
= x (y z). Popular semigroup operators include maximum, minimum, sum,
product, OR, and so forth. Sometimes we find it easier to present a concrete
example. Therefore, we will choose minimum as our operator for several of the
semigroup operations that follow. We first consider an efficient algorithm on a
RAM to compute the minimum of a set X.

RAM Minimum Algorithm
Input: Array X.
Output: Minimum entry of X.
Local variables: i, min_so_ far

Action:

For i = 2 to n, do
If then

End For
return min_so_ far

End Minimum

The analysis of this algorithm’s running time is fairly straightforward. Given
an array of size n, each entry is examined exactly once, requiring (1) time per
entry. Therefore, the running time of the algorithm is (n). Further, given an
unordered set of data, this is optimal because we know that if we miss any of the n
elements, we may miss the minimal value and thus produce an incorrect result.
Next, we consider the space requirements of this algorithm. Notice that (n) space
is used to store the array of data, and that the algorithm uses (1) additional space.

Now consider a semigroup operation for the PRAM. The first algorithm we
present is fairly intuitive for the reader who has studied treelike data structures.

min_so_ far = x
i

x
i
< min_so_ far

min_so_ far = x
1

x x
1 2

X x x x
n

= [, ,...,]
1 2

100 Chapter 5 Models of Computation

The algorithm uses a bottom-up, treelike computation, as shown in Figure 5.3,
computing the minimum of disjoint pairs of items, then the minimum of disjoint
pairs of these results, and so on until the global minimum has been determined. In
Figure 5.4, we show how the processors cooperate to compute the minimum. The
reader should note that the processing presented in Figure 5.4 performs the com-
putations that are presented in Figure 5.3. To simplify our presentation, we assume
the size of the problem, n, is a power of 2.

PRAM (Parallel Random Access Machine) 101

4Step 3

Step 0

Step 1

Step 2 15

15

18 15 36 28

28

4

22

22 23 95 4

4

FIGURE 5.3 A bottom-up treelike computation to compute the minimum of eight
values. The global minimum can be computed in three parallel steps. Each step
reduces the total number of candidates by half.

Time step 1

T 18

Time step 2

Time step 3

15 36 28 22 23 9 4

T 15 28 22 4 22 23 9 4

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

P2 P3 P4P1

T 15 4 22 4 22 23 9 4

1 2 3 4 5 6 7 8

P2P1

T 15 4 22 4 22 23 9 4

1 2 3 4 5 6 7 8

P1

FIGURE 5.4 Another view of the minimum operation presented in Figure 5.3.
This shows the action of a set of four processors. The data is presented as resid-
ing in a horizontal array. The processors that operate on data are shown for
each of the three time steps.

102 Chapter 5 Models of Computation

PRAM Minimum Algorithm (initial attempt)
Assumption: The PRAM (CR or ER) has n/2 processors.
Input: An array , in which the entries are drawn from a lin-
early ordered set.
Output: A smallest entry of X.

Action:

1. Copy X to a temporary array .
2. For i = 1 to , do

In parallel, processors , , do
a) Read and ;
b) Write to ;

End Parallel
End For

3. If desired, broadcast
End Minimum

Step 1 of the algorithm requires constant time because all processors can,
in parallel, copy two elements (and) in (1) time. Notice that
if we do not care about preserving the input data, we could omit step 1. Step 2
requires (log n) time to perform the bottom-up treetype operation. The broadcast
operation can be performed in O(log n) time ((1) time on a CR PRAM and

(log n) time on an ER PRAM). Thus, the algorithm requires (log n) total time.
However, time is not the only measure of the quality of an algorithm. Sometimes
we care about the efficient utilization of additional resources. We define a measure
that considers both running time and productivity of the processors, as follows.

t x
j j2 2
=t x

j j2 1 2 1
=

P
j

t x x x
n1 1 2

= min{ , ,..., }

t
j

min{ , }t t
j j2 1 2

t
j2

t
j2 1

j n i{ ,..., }log1 2 2P
j

log
2

n
T t t t

n
=

1 2
, , ,…

X x x x
n

= [, ,...,]
1 2

Definition: Let be the time required for an algorithm on a parallel
machine with n processors. The cost of such an algorithm is defined as

, which represents the total number of cycles available during
the execution of the given algorithm.
cost = ×n T n

par
()

T n
par

()

Because we assume that n/2 processors are available in the preceding PRAM
algorithm to determine the minimum value of an array, the cost of the algorithm is

. That is, during the time that the algorithm is execut-
ing, the machine has the capability of performing (nlog n) operations, regardless
n n n n/ * (log) (log)2 =

of how many operations it actually performs. Because the machine has the oppor-
tunity to perform (nlog n) operations, and the problem can be solved with (n)
operations, we know that this PRAM algorithm is not cost optimal.

Let’s consider how we might improve this algorithm. To improve the cost of
the algorithm, we must reduce either the number of processors, the running time,
or both. We might argue that with the model we have defined, we cannot combine
more than a fixed number of data values in one clock cycle. Therefore, it must take
a logarithmic number of clock cycles to combine the input data. Such an argument
suggests that (log n) time is required, so we might consider reducing the number
of processors. So let’s consider the question: how many processors are required to
obtain a cost-optimal algorithm? That is, what is the value P, representing the
number of processors, that will yield , assuming that the

(log n) running time does not change? Clearly, the solution to this equation
shows that if we can keep the running time at (log n), we want the number of
processors to be P = (n/log n). The algorithm that follows shows how to exploit
P = (n/log n) processors to determine the global minimum of n values in (log n)
time on a PRAM. The reader is referred to Figures 5.5 and 5.6. To simplify our
presentation, we assume that n = 2k for some positive integer k ; when this assump-
tion is not true, minor modifications (that do not affect the asymptotic running
time) in the algorithm given next yield a correct solution.

PRAM Minimum Algorithm (optimal)
Assumption: The PRAM (ER or CR) has n/log2 n processors.
Input: An array , drawn from a linearly ordered set.
Output: A smallest entry of X.

Action:

Conceptually partition the data into n/log2 n disjoint sets of log2 n items
each. In parallel, every processor Pj computes using
an optimal RAM algorithm, given previously. Because the data set operated
on by Pj has size (log n), this takes (log n) time.

Use the previous PRAM algorithm to compute with
processors in time.

End Minimum

log(/ log) (log)n n n() =n n/ log
2

min , , ,
/log

t t t
n n1 2 2

…{ }

t x
j i i j n

j n= = +min{ }
()log

log

1 12

2

X x x x
n

= [, ,...,]
1 2

P n n× =(log) ()

PRAM (Parallel Random Access Machine) 103

104 Chapter 5 Models of Computation

The algorithm just described takes an interesting approach. We use asymptot-
ically fewer processors than there are data items of concern. We divide the data
items over the number of processors. For example, suppose there are P processors
and D data items. Then we assume every processor has approximately D/P items.
Each processor first works on its set of D/P items in a sequential manner. After the
sequential phase of the algorithm completes, each processor has reduced its infor-
mation to only one item of concern, which in this case is the minimum of the items
for which the processor is responsible. Finally, one item per processor is used as
input into the simple, nonoptimal parallel algorithm to complete the task. Notice
that this final parallel operation uses P items with P processors. Therefore, this
PRAM algorithm runs in (log n) time on n/log2 n processors. This results in a
cost of , which is optimal. Therefore, we have a cost-
optimal PRAM algorithm for computing the minimum entry of an array of size n
that also runs in time-optimal (log n) time.

n n n n/ log (log) ()
2

× =

Processors:

Memory:

. . .

.

P1

x1 x2 xnxlog n+1xlog n x2 log n xn-log n+1

P2 Pn/log n

FIGURE 5.5 Improving the performance of a PRAM algorithm by requir-
ing each of n/log n processors to be responsible for log n data items.

P1

x1 xlog n.

. . .P2

t1 t2

min{t1, t2, . . . , tn/log n}

tn/log n

Pn/log n

P1
. . .P2 Pn/log n

. . .

FIGURE 5.6 An algorithm for computing the minimum of n items with
n/log2 n processors on a PRAM. Initially, every processor sequentially
determines the minimum of the log2 n items that it is responsible for.
Once these n/log2 n results are known, the minimum of these values
can be determined in (log(n/log n)) = (log n – loglog n) = (log n)
time on a PRAM with n/log2 n processors.

Now let’s consider the problem of searching an ordered array on a PRAM.
That is, given an array , in which the elements are in some pre-
determined order, construct an efficient algorithm to determine if a given query
element q is present. Without loss of generality, let’s assume that our array X is
given in nondecreasing order. If q is present in X, we will return an index i such
that xi = q. Notice that i is not necessarily unique.

First, let’s consider a traditional binary search on a RAM. Given an ordered set
of data, we have previously discussed (see Chapter 2, “Induction and Recursion,”
or a generic introduction to computer science text) how to perform a binary search
in worst-case (log n) time. Given this result, we must target an algorithm with a
worst-case total cost of (log n). The first model we consider is the CRCW PRAM.

CRCW PRAM Algorithm to Search an Ordered Array (initial attempt)
Assumption: The combining CRCW PRAM has n processors and uses the
combining operator minimum.
Input: An ordered array, , and the search_value
Output: succeeds, a flag indicating whether or not the search succeeds and
location, an index at which the search succeeds (if it does)

Action:
Processor P1 initializes ;
In parallel, every processor Pi does the following:

Read search_value and xi {Note that CR is used to read search_value}
If then

;
;

End If
End Parallel

End Search

When this CRCW algorithm terminates, the value of the Boolean variable suc-
ceeds will be set to true if and only if search_value is found in the array. In the
event that the item is found, the variable location is set to a (not necessarily
unique) position in the array where search_value exists. Now, let’s consider the
running time of the algorithm. Notice that the initial concurrent read takes (1)
time. The time required for every processor (simultaneously) to compare its ele-
ment to the query element takes (1) time. Finally, the two concurrent write oper-
ations take (1) time. Notice that the second concurrent write exploits the
combining property of the CRCW PRAM (using the operation of minimum).
Therefore, the total running time of the algorithm is (1).

Now we should consider the cost of the algorithm on this architecture.
Because (1) time is required on a machine with n processors, the total cost is a
less-than-wonderful (n). (Recall that a binary search requires (log n) time on a

location i=
succeeds true=
x search value

i
= _

succeeds false=

X x x x
n

= [, ,...,]
1 2

X x x x
n

= [, ,...,]
1 2

PRAM (Parallel Random Access Machine) 105

RAM.) Next, we present an alternative algorithm that is somewhat slower but
more cost efficient than the previous algorithm.

CRCW PRAM Algorithm to Search an Ordered Array (cost efficient)
Assumption: The combining CRCW PRAM has f (n) = O(n) processors and
uses combining operator minimum. (For simplicity, assume that f (n) is a fac-
tor of n.)
Input: An ordered array , and search_value, the item to
search for

Action:

Processor P1 initializes ;
In parallel, every processor Pi conducts a binary search on the subarray

End Search

The preceding algorithm is interesting in that it presents the user with a contin-
uum of options in terms of the number of processors utilized and the effect that
this number will have on the running time and total cost. So, if a primary concern
is minimizing cost, notice that by using one processor, the worst-case running time
will be (log n) and the cost will be (log n), which is optimal. In fact, with the
number of processors set to 1, notice that this is the RAM binary search algorithm.

Now, suppose what we care about is minimizing the running time. In this case,
the more processors we use, the better off we are, at least up to n processors. Using
more than n processors has no positive effect on the running time. In the case of an
n processor system, we have already seen that the running time is (1). In general,

the worst-case running time of this algorithm is , and the cost is

. In particular, notice that if we use processors,

the worst-case running time will be (log n), as in the case of the RAM, but pre-
sumably with a smaller constant of proportionality. In other words, this PRAM
implementation should run significantly faster if other factors such as chip speed,
optimized code, and so on, are the same. The cost of (log2 n) will be very good,
though not quite optimal.

Fundamental Terminology

In this section, we introduce some common terminology used to describe intercon-
nection networks. The terminology we present is standard in the field and will be

f n n() log= ()f n
n

f n
() log

()

log
()

n

f n

x x x
i n
f n

i n
f n

in
f n

()
()

()
() ()

, ,...,
+ +1

1
1

2

succeeds false=

X x x x
n

= [, ,...,]
1 2

106 Chapter 5 Models of Computation

used throughout the book. It should be noted that, in general, we do our best to
avoid technical terminology. We try to use such terms only when they provide a
more precise presentation of material. In fact, we wait until the end of this chapter
to provide a more comprehensive set of terms.

Distributed Memory versus Shared Memory

Multiprocessor machines are constructed with some combination of shared and
distributed memory. When we discuss such memory, it is important to note that we
are discussing off-chip memory. A shared-memory machine provides physically
shared memory for the processors, as shown on the left side of Figure 5.7. For
small shared-memory machines, networks can be constructed so that every
processor can access every memory location in the same amount of time. Unfortu-
nately, such machines cannot currently scale to large numbers of processors while
preserving uniformly fast access time to memory. This topic has been discussed
previously in connection with the PRAM.

In a distributed-memory machine, each processor has access only to its own
private (local) memory, as shown on the right side of Figure 5.7. On such machines,
processors communicate by sending messages to each other through an intercon-
nection network. So, for example, if processor A needs information stored in the
memory of processor B, this information must be transported from processor B to
processor A. This is typically done by having processor A initiate a request for
information, which is sent to processor B, followed by processor B sending the
requested information back to processor A. However, it is often the case that the
overhead and delay can be reduced if the computation is synchronized so that B
simply sends the information to A without receiving such a request.

Fundamental Terminology 107

Memory Modules

Interconnection Network

M1 M2 Mk

P1

M1

P2

M2

Pk

Mk

P1 P2 Pk

Interconnection N
etw

ork

FIGURE 5.7 In a traditional shared-memory machine, presented on the left, all
processors operate through an interconnection network and have equal unit-time
access to all memory locations. In a traditional distributed-memory machine, pre-
sented on the right, every processing element (processor and memory pair) commu-
nicates with every other processing element through an interconnection network.

Distributed Address Space versus Shared Address Space

Recently, there has been an interest in creating a programming model that provides
a global (shared) address space. Such a model enables the user to program the
machine under the assumption that all processors have equal access to memory,
regardless of how the machine is physically constructed. Clearly, this arrangement
presents a lot of advantages to the programmer. However, it serves mainly to post-
pone the consideration of a variety of real issues, including differences between
NUMA (non-uniform memory access) machines and UMA (uniform memory
access) machines. That is, shared-memory systems containing a large number of
processors are typically constructed as processor/memory modules. So although
the memory may be logically shared, in terms of algorithmic performance, the
machine behaves as a distributed-memory machine. In such a case, memory that is
close to a processor can be accessed more quickly than memory that is far from a
processor.

In this book, we will focus on the design and analysis of algorithms for a vari-
ety of physical parallel models of computation. Therefore, we now consider
options for connecting processors to each other (that is, options for the distributed-
memory model).

Interconnection Networks

In this section, we consider distributed-memory machines, which are constructed
as processor-memory pairs connected to each other in a well-defined pattern.
These processor-memory pairs are often referred to as processing elements, or
PEs, or sometimes just as processors, when this term will not cause confusion.
The efficient use of an interconnection network to route data on a multiprocessor
machine is often critical in the development of an efficient parallel algorithm. The
quality of an interconnection network can be evaluated in various ways, including
the following.

Degree of the Network: The term degree comes from graph theory. The
degree of a processor is defined to be the number of (bidirectional)
communication links attached to the processor. That is, the degree of
processor A corresponds to the number of other processors to which
processor A is directly connected. So, if we think of the processors as
corresponding to vertices and the communication links as corresponding to
edges in an undirected graph, then the degree of a processor is the degree
of the corresponding vertex. Similarly, the degree of a network refers to the
maximum degree of any processor in the network. Naturally, networks of
high degree become difficult to manufacture. Therefore, it is desirable to
use networks of low degree whenever possible. In fact, if we are concerned
with scaling the network to extremely large numbers of processors, a small
fixed degree is highly desirable with current technology.

108 Chapter 5 Models of Computation

Communication Diameter: The communication diameter of a network
is defined to be the maximum of the minimum distance between any pair
of processors. That is, the communication diameter represents the longest
path between any two processors, assuming that a best (shortest) path
between processors is always chosen. Therefore, a machine (network)
with a low communication diameter is highly desirable, in that it allows
for efficient communication between arbitrary pairs of processors.

Bisection Width: The bisection width of a network is defined to be the
minimum number of wires that have to be removed (severed) to dis-
connect the network into two approximately equal-size subnetworks. In
general, machines with a high bisection width are difficult (more costly)
to build, but they provide users with the possibility of moving large
amounts of data efficiently.

I/O Bandwidth: The input/output bandwidth is not a primary concern
in this book, because it is often reasonable to assume that the data is
already in the machine before our algorithms are initiated. However,
when considering the construction of a real machine, I/O bandwidth is
certainly important.

Running Time: When comparing models of computation, it is often
enlightening to consider the time required to perform fundamental
operations. Such operations include semigroup computations (min, max,
global sum, and so forth), prefix computations (to be defined later), and
fundamental data movement operations such as sorting. In fact, as we
introduce some of the network models in following sections, we will
consider the efficiency of such routines.

To summarize, we want to design the interconnection network of a distrib-
uted-memory machine so that it will reduce the cost of building a processor and
minimize the degree of the network. Further, to minimize the time necessary for
individual messages to be sent long distances, we want to minimize the communi-
cation diameter. Finally, to reduce the probability of contention between multiple
messages in the system, we want to maximize the bisection width. Unfortunately,
it is often difficult to balance these design criteria. In fact, we also would prefer to
use a simple design, because simplicity reduces the hardware and software design
costs. Further, we would like the machine (that is, network) to be scalable, so that
machines of various sizes can be built (and sold).

Processor Organizations

In this section, we introduce various processor organizations (that is, sets of pro-
cessing elements and their interconnection networks). These network models are
characterized by the interconnection scheme between the processors and the fact
that the memory is distributed among the processors (there is no shared memory).

Interconnection Networks 109

In particular, it is the interconnection pattern that distinguishes these distributed-
memory architectures. As we introduce several such models, we will consider
some of the measures discussed previously. Notice, for example, that the commu-
nication diameter often serves as a limiting factor in the running time of an algo-
rithm. This measure serves as an upper bound on the time required for any
(arbitrary) pair of processors to exchange information and, therefore, as a lower
bound on the running time of any algorithm that requires global exchanges of
information.

Terminology: We say that two processors in a network are neighbors if
and only if they are directly connected by a communication link. We
assume these communication links are bidirectional. That is, if processor
A and processor B are connected by a communication link, we assume
that A can send data to B and that B can send data to A. Because sorting
is a critical operation in network-based parallel machines, we need to
define what it means to sort on such architectures. Suppose we have a
list, , with entries stored in the processors of a
distributed-memory machine. For the members of X to be considered
ordered, there must be a meaningful ordering not only of those entries
that are stored in the same processor but also of entries in different
processors. We assume that there is an ordering of the processors. The
notation R(i) is used to denote the ranking function for the processor
labeled i. We say the list X is in ascending order if the following
conditions are satisfied:

and
, is stored in , is stored in , and implies .

Similar statements can be made for data stored in descending order.

Linear Array

A linear array of size n consists of a string of n processors, , where
every generic processor is connected to its two neighbors (see Figure 5.8). Specif-
ically, processor Pi is connected to its two neighbors, and , for all

. However, the two end processors, P1 and Pn , are each connected to
only one neighbor. Given a linear array of size n, let’s consider some of the basic
measures. Because n – 2 processors have degree 2 and two processors have degree
1, the degree of the network is 2. Now consider the communication diameter, the
maximum over the minimum distances between any two processors. Consider the
minimum number of communication links that need to be traversed for processors
P1 and Pn to exchange information. The only way that a piece of data originating
in P1 can reach processor Pn is by traversing through the other n – 2 processors.
Therefore, the communication diameter is (n). This is important in that it tells us

2 1i n
P

i+1
P

i 1

P P P
n1 2

, , ,…

R r R s() ()<r sP
s

x
j

P
r

x
ii j<

i j x x
i j

<

X x x x
n

= [, ,...,]
1 2

110 Chapter 5 Models of Computation

Interconnection Networks 111

that time linear in the number of processors is required to compute any function
for which all processors may need to know the final answer. Now consider
the minimum time required for a computation to be performed on two arbitrary
pieces of data. Notice that information from processors P1 and Pn could meet in
processor . However, this still requires communication steps.

Therefore, time linear in the number of processors is required, even in the best
case, to solve a problem that requires arbitrary pairs of data to be combined.

n / 2 1P
n/2

P1 P2 P3 . . . Pn�1 Pn

FIGURE 5.8 A linear array of size n.

Next, we consider the bisection width of a linear array of size n. The bisection
width of a linear array of size n is 1 due to the fact that when the communication
link between processors Pn/2 and P(n/2)+1 is severed, the result is two linear arrays,
each of size n/2. Now let’s move on and consider some basic operations.

Assume that a set of data, , is distributed so that data ele-
ment xi is stored in processor Pi. First, we consider the problem of determining the
minimum element of array X. This can be done in several ways. Our first approach
is one in which all the data march left in lockstep fashion, and as each data item
reaches processor P1, this leftmost processor updates the running minimum, as
shown in Figure 5.9. That is, initially, processor P1 sets a register running_min to
x1. During the first step of the algorithm, in lockstep fashion, processors
each send their data elements to the left. Now processor P1 can let running_min =
min{running_min, x2}. The procedure continues so that after i steps, processor P1

has the value of min{x1,..., xi+1}. Therefore, after n – 1 steps, the minimum of X is
stored in processor P1.

Suppose every processor needs to know this minimum value, which is cur-
rently stored in processor P1. Initially, processor P1 (viewed as the leftmost
processor in the linear array), can send this value to the right (to processor P2). If
this value continues to move to the right during each step, after a total of n – 1 such
steps, all n processors will know the minimum of X. Therefore, the minimum (or
any other semigroup operation) can be determined and distributed to all processors
in (n) time on a linear array of size n. Notice that such a (n) time algorithm on
a set of n processors yields a cost of n � (n) = (n2). This is not very appealing,
considering that such problems can be solved easily in (n) time on a RAM.
Therefore, we should consider whether it is possible to do better on a linear array
of size n. Notice that the running time cannot be improved because the communi-
cation diameter is (n).

P P
n2

, ,…

X x x x
n

= [, ,...,]
1 2

Next, consider whether we can reduce the number of processors and arrive at
a cost-optimal algorithm. We have seen that if we use only one processor, comput-
ing the minimum of n items requires (n) time, which would yield an optimal cost
of (n). However, this is not desirable if we wish to use a parallel computer,
because the running time has not been reduced over that of the RAM. So, although
we have considered the two extremes in terms of numbers of processors (both 1
and n), let’s now consider some intermediate value. What value should we con-
sider? We would like to balance the amount of work performed by each processor
with the work performed by the network. That is, we would like to balance the
number of data elements per processor, because the local minimum algorithm runs
in time linear in the number of elements, with the number of processors, because
the communication diameter is linear in the number of processors. Therefore, con-
sider a linear array of size n1/2, where each processor is responsible for n1/2 items,
as shown in Figures 5.10 and 5.11. An algorithm to compute the minimum of n
data items, evenly distributed on a linear array of size n1/2, can be constructed with
two major steps. First, each processor runs the standard sequential algorithm

112 Chapter 5 Models of Computation

Initial
Configuration

3 4 2 6 1 5

P1 P2 P3 P4 P5 P6

Step 1 4 2 6 1 5

Step 2 2 6 1 5

Step 3 6 1 5

Step 4 1 5

Step 5 5

r
min

= 3

r
min

= 3

r
min

= 2

r
min

= 2

r
min

= 1

r
min

= 1

FIGURE 5.9 Computing the minimum of n items ini-
tially distributed one per processor on a linear array
of size n. Notice that the data is passed in lockstep
fashion to the left during every time step. The leftmost
processor (P1) keeps the running minimum.

(which runs in time linear in the number of data elements stored in the processor)
on its own set of data. Next, the previous linear array algorithm is run on these n1/2

partial results (one per processor) to obtain the final global result (that is, the min-
imum of these n1/2 partial minima). Therefore, the running time of the algorithm is
dominated by the (n1/2) time to perform the RAM algorithm simultaneously on
all processors, followed by the (n1/2) time to determine the minimum of these n1/2

local minima, distributed one per processor on a linear array of size n1/2. Hence, the
running time of the algorithm is (n1/2), which results in an optimal cost of (n).

Interconnection Networks 113

Processors:

Memory:

. . .

.

P1

x1 x2 xnxn1/2+1xn1/2 x2n1/2 xn–n1/2+1

P2 Pn1/2

FIGURE 5.10 Partitioning the data in preparation for computing the
minimum of n items initially distributed on a linear array of size n1/2

in such a fashion that each of the n1/2 processors stores n1/2 items.

P1 P2

x1 xn 1/2.

. . .

. . . t1“local” min: t2

t2 t3

rmin = t1

. . .

P1 P2
. . . Pn 1/2

Pn 1/2

tn 1/2

FIGURE 5.11 Computing the minimum of n items initially distributed
on a linear array of size n1/2 in such a fashion that each of the n1/2

processors stores n1/2 items. In the first step, every processor sequen-
tially computes the minimum of the n1/2 items for which it is responsi-
ble. In the second step, the minimum of these n1/2 minima is computed
on the linear array of size n1/2 by the typical lockstep algorithm.

Suppose we have a linear array of size n, but that the data does not initially
reside in the processors. That is, suppose we have to input the data as part of the
problem. For lack of a better term, we will call this model an input-based linear
array. Assume that the data is input to the leftmost processor (processor P1)

114 Chapter 5 Models of Computation

and only one piece of data can be input per unit time. Assume that the data is input
in reverse order and that at the end of the operation, every processor Pi must know
xi and the minimum of X. The following algorithm can accomplish this. In the first
step, processor P1 takes as input xn and initializes to xn.
In the next step, processor P1 sends xn to processor P2, inputs xn–1, and
assigns . In general, during each step
of the algorithm, the data continues to march in lockstep fashion to the right, and
the leftmost processor continues to store the running minimum, as shown in Fig-
ure 5.12. After n steps, all processors have their data element, and the leftmost
processor stores the minimum of all n elements of X. As before, processor P1 can
broadcast the minimum to all other processors in n – 1 additional steps. Therefore,
we have an optimal (n) time algorithm for the input-based linear array.

running running x
n-

_ min{ _ }min , = min
1

running _ min

Initial
Configuration

3,4,2,6,1,5

P1 P2 P3 P4 P5 P6

Step 1 3,4,2,6,1 5

Step 2 3,4,2,6 1 5

Step 3 3,4,2 6 1 5

Step 4 3,4 2 6 1 5

Step 5 3 4 2 6 1 5

3Step 6 4 2 6 1 5

r
min

= 5

r
min

= 1

r
min

= 1

r
min

= 1

r
min

= 1

r
min

= 1

r
min

= 1

FIGURE 5.12 Computing the minimum on an input-based linear array of size 6.
During step 1, processor P1 takes as input x6 = 5 and initializes running_min to 5.
During step 2, processor P1 sends x1 to processor P2, inputs xn–1 = 1, and assigns
running_min= min(running_min,xn–1), which is the minimum of 5 and 1, respec-
tively. The algorithm continues in this fashion as shown, sending data to the right
in lockstep fashion while the first processor keeps track of the minimum value of
the input data.

We introduced this input-based variant of the linear array so that we could
extrapolate an algorithmic strategy. Suppose we wanted to emulate this input-
based linear array algorithm on a traditional linear array of size n, in which the
data is initially stored in the array. This could be done with a tractor-tread algo-
rithm, where the data moves as one might observe on the tractor-tread of many
large construction vehicles. In the initial phase, view the data as marching to the
right, so that when a data element hits the right wall, it turns around and marches
to the left (see Figure 5.13). That is, every processor starts by sending its data in
lockstep fashion to the right (with the exception of the rightmost processor). When
the rightmost processor receives data it reverses its direction so that during a good
portion of this tractor-tread data movement, data is simultaneously and synchro-
nously moving to the left and right.

Interconnection Networks 115

Step 1

Initial
Data

Step 2

Step 3

3 4 2 6 1
5

5 1

5 1 6

Step 5 5

3

3 4 2 6

3 4 2

3 4

Step 4
5 1 6 2

6 2 4 3

1

1

6 2 4

3

5

4

Step 6

2

6

5 1

P
1

P
2

P
3

P
4

P
5

P
6

FIGURE 5.13 A tractor-tread algorithm. Data in the linear array
moves to the right until it hits the right wall, where it reverses
itself and starts to march to the left. Once the data hits the left
wall, it again reverses itself. A revolution of the tractor-tread
algorithm is complete once the initial data resides in its original
set of processors. Given a linear array of size n, this algorithm
allows every processor to view all n data items in (n) time.

In general, every processor will continue to pass all the data that it receives in
the direction it is going, with the exception of the first and last processors, which
emulate the walls and serve to reverse the direction of data. So, after the initial n –
1 steps, notice that processor P1 will store a copy of xn, processor P2 will store a
copy of xn–1, and so forth. That is, the data is now positioned so that processor P1

is prepared to accept as “input” xn, as in the input-based linear array algorithm. In
fact, the input-based linear array algorithm can now be emulated with a loss in
running time of these initial n – 1 steps. Therefore, the asymptotic running time of
the algorithm remains as (n).

Notice that this tractor-tread algorithm is quite powerful. It can be used, for
example, to rotate all of the data through all of the processors of the linear array.
This gives every processor the opportunity to view all of the data. Therefore, such
an approach can be used to allow every processor to compute the result of a semi-
group operation in parallel. Notice that we have traded off an initial setup phase
for the postprocessing broadcast phase. However, as we shall soon see, this
approach is even more powerful than it might initially appear.

Consider the problem of sorting. The communication diameter of a linear
array dictates that (n) time is required to sort n pieces of data initially distributed
in an arbitrary fashion, one item per processor on a linear array of size n. Similarly,
by considering the bisection width, we know that in the worst case, if the n/2 items
on the left side of the linear array belong on the right side of the array, and vice
versa, for n items to cross the single middle wire, time is required.

We now show how to construct such a time-optimal sorting algorithm for this
model. First, consider the input-based linear array model. Notice that the leftmost
processor P1 will view all n data items as they come in. If that processor retains the
smallest data item and never passes it to the right, at the end of the algorithm,
processor P1 will store the minimum data item. Now, if processor P2 performs the
same minimum-keeping algorithm as processor P1 does, at the end of the algo-
rithm, processor P2 will store the minimum data item of all n – 1 items that it
viewed (see Figure 5.14). That is, processor P2 would store the minimum of all
items with the exception of the smallest item, which processor P1 never passed
along. Therefore, at the end of the algorithm, processor P2 would store the second
smallest data item. (This algorithm can be illustrated quite nicely in the classroom.
Each row of students can simulate this algorithm running on such a machine,
where the input comes from the instructor standing in the aisle.)

We now have an optimal (n) time algorithm for this model. By using the
tractor-tread method, we can emulate this algorithm to produce a time-optimal

(n) time algorithm for a linear array of size n. As an aside, we should mention
that this sorting algorithm can be viewed as a parallel version of SelectionSort.
That is, the first processor views all of the data and selects the minimum. The next
processor views all of the remaining data and selects the minimum, and so forth.

(/) ()n n1 =

116 Chapter 5 Models of Computation

Interconnection Networks 117

The final algorithm we consider for the linear array is that of computing
the parallel prefix of . Assume when the algorithm starts, xi isX x x x

n
= [, ,...,]

1 2

3

5
3,4,2,6,1

3,4,2,6,1,5

3,4,2,6

3,4,2

3,4

3

4

6

P1 P2 P3 P4 P5 P6

1

4

5

2

1

5

6

6

1

1

2 6

5

1 2

5

4 6

3

51 2

4 6

1 2

3 5

51 2 3

64

61 2 3 4

5

1 2 3 4 5 6

5

Initial
Data

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

FIGURE 5.14 Sorting data on an input-based linear array. Every
processor simply retains the item that represents the minimum
value it has seen to date. All other data continues to pass in
lockstep fashion to the right. Notice that this is a minor general-
ization of the minimum algorithm illustrated in Figure 5.12.

stored in processor Pi. When the algorithm terminates, Pi must store the ith prefix,
, where is a binary associative operator. The algorithm follows.

First, we note that processor P1 initially stores x1, which is its final value. Dur-
ing the first step, processor P1 sends a copy of x1 to processor P2, which computes
and stores the second prefix, . During the second step, processor P2 sends a
copy of its prefix value to processor P3, which computes and stores the third pre-
fix value, . The algorithm continues in this fashion for n – 1 steps,
after which every processor Pi stores the ith prefix, as required. It is important to
note that during step i, the ith prefix is passed from processor Pi to processor Pi+1.
That is, processor Pi passes a single value, which is the result of , to
processor Pi+1. If processor Pi passed all of the components of this result, ,
to processor Pi+1, the running time for the ith step would be , and the total

running time for the algorithm would therefore be . By requiring

only one data item to be passed between neighboring processors during each iter-
ation of the algorithm, the running time of this algorithm is (n). Notice that this
is optimal for a linear array of size n because the data entries stored at maximum
distance must be combined (argument based on communication diameter). In this
case, no argument can be made with respect to the bisection width, because this
problem does not require large data movement.

Ring

A ring is a linear array of processors in which the two end processors are con-
nected to each other, as shown in Figure 5.15. That is, a ring of size n consists of
an augmented linear array of n processors, ; the augmentation (relative to
a standard linear array) is that the end processors are directly connected to each
other. Specifically, processor Pi is connected to its two neighbors, Pi–1 and Pi+1, for

, and processors P1 and Pn are connected to each other.
Let’s examine the ring to see what advantages it has over the linear array. The

degree of both networks is 2. The communication diameter of a ring of size n is
approximately n/2, which compares favorably with the n – 1 of the linear array.
However, notice that this factor of approximately one half is only a multiplicative
constant. Thus, both architectures have the same asymptotic communication diam-
eter of (n). Although the bisection width does not really make sense in this
model, if one assumes that the ring could be broken and then each subring sealed
back up, this would require severing/patching (1) communication links, which is
the same as the linear array. In fact, when we consider the ring compared to the lin-
ear array, the best we could hope for is a factor of 2 improvement in the running
time of algorithms. Because this book is concerned primarily with the design and
asymptotic analysis of algorithms, the ring presents an uninteresting variant of the
linear array and will not be discussed further.

2 1i n

P P
n1

,…

i n
i

n

=

= ()
1

1
2

()i
x x

i1
, ,…

x x
i1

…

x x x
1 2 3

x x
1 2

x x
i1

…

118 Chapter 5 Models of Computation

Interconnection Networks 119

Mesh

We will use the term mesh in this book to refer to a two-dimensional, checker-
board-type, mesh-based computer. A variety of two-dimensional meshes have
been proposed in the literature. In the most traditional of meshes, each generic
processor has four neighbors, and the mesh itself is constructed either as a rectan-
gular or square array of processors, as shown in Figure 5.16. A simple variant of
the four-connected mesh is an eight-connected mesh in which each generic
processor is connected to its traditional north, south, east, and west neighbors, as
well as to its northeast, northwest, southwest, and southeast neighbors. Meshes
have also been proposed in which each processor has six (hexagonal) neighbors.

In this text, we restrict our attention to a traditional two-dimensional square
mesh, which will be referred to as a mesh of size n, where n = 4k for k a positive
integer. Throughout the text, we will show how to exploit a divide-and-conquer
solution strategy on the mesh. This will be done by showing how to divide a prob-
lem into two (or four) independent subproblems, map each of these to a submesh,
recursively solve the smaller problems on each submesh, and then stitch together
the results.

Now, let’s consider several of the measures that we have discussed. Notice
that the interior processors of a mesh have degree 4, the four corner processors
have degree 2, and the remaining edge processors have degree 3. Therefore, the
degree of a mesh of size n is 4. That is, the mesh is a fixed-degree network. Now
consider the communication diameter, which represents the maximum distance
over every pair of shortest paths in the network. Notice that on a mesh of size n,
there are n1/2 rows and n1/2 columns. Therefore, transporting a piece of data from
the northwest processor to the southeast processor requires traversing n1/2 – 1 rows
and n1/2 – 1 columns. That is, a message originating in one corner of the mesh and

P1

P7 P3

P5

P4

P2P8

P6

FIGURE 5.15 A ring of size 8. All processors
in a ring are connected to two neighbors.

traveling to the opposite corner of the mesh requires traversing a minimum of
2n1/2 – 2 communication links. Thus, the communication diameter of a mesh of
size n is (n1/2). Notice that if we are interested in combining, as opposed to
exchanging, information from two processors at opposite corners, such informa-
tion could be sent to one of the middle processors in less than 2n1/2 – 2 steps.
Whereas the time to combine distant data may be an improvement over the time to
transmit such data, notice that the improvement is only by a constant factor.

Determining the bisection width of a mesh of size n is fairly straightforward.
If one cuts the links between the middle two columns, we are left with two (rectan-
gular) meshes of size n/2. If this process is not intellectually satisfying, we could
sever the links between the middle two rows and the middle two columns and be
left with four square meshes, each of size n/4. In any event, the bisection width of
a mesh of size n is (n1/2). Before considering some fundamental operations, we
should note that the bisection width can be used to provide a lower bound on the
worst-case time to sort a set of data distributed one piece per processor. For exam-
ple, suppose all the data elements initially stored in the first n/2 columns need to
move to the last n/2 columns and vice versa. Moving n pieces of data between the
middle two columns, which are joined by n1/2 communication links, requires

(n/n1/2) = (n1/2) time.

120 Chapter 5 Models of Computation

P
2,4

FIGURE 5.16 A mesh of size 16. Each generic processor in a tradi-
tional mesh is connected to its four nearest neighbors. Notice that
there are no wraparound connections and that the processors
located along the edges of the mesh have fewer than four neighbors.

We will now turn our attention to some fundamental mesh operations.
Because the mesh can be viewed as a collection of linear arrays stacked one on top
of the other and interconnected in a natural fashion, we start by recalling that the
mesh can implement linear array algorithms independently in every row and/or
column of the mesh. Of immediate interest is the fact that the mesh can perform a
row (column) rotation simultaneously in every row (column), so that each proces-
sor will have the opportunity to view all information stored in its row (column). As
discussed earlier, a row rotation consists of sending data from every processor
in lockstep fashion to the right. When data reaches the rightmost processor, it
reverses itself and marches to the left until it reaches the leftmost processor, at
which point it reverses itself again and continues moving to the right until it
reaches the processor where it originated. Notice that at any point during the algo-
rithm, a processor is responsible for at most two pieces of data that are involved in
the rotation, one that is moving from left to right (viewed as riding the top tread of
a tractor that is moving from left to right) and the other that is moving from right
to left (viewed as riding the bottom portion of such a tractor tread). A careful
analysis will show that exactly 2n1/2 – 2 steps are required to perform a complete
rotation. Recall that this operation is asymptotically optimal for the linear array.

Because a rotation allows every processor in a row (or column) to view all
other pieces of information in its row (or column), this operation can be used to
solve a variety of problems. For example, if it is required that all processors deter-
mine the result of applying some semigroup operation (min, max, sum) to a set of
values distributed over all the processors in its row/column, a rotation can be used
to provide a time-optimal solution.

In the following examples, it is useful to refer to a processor of a mesh by the
notation . The first subscript i typically indexes the ith row of processors,

, where the rows are numbered from top to bottom. Similarly, the sec-
ond subscript j indexes the j th column of processors, , where the
columns are numbered from left to right. See Figure 5.16.

We now provide an algorithm for performing a semigroup operation over a set
, initially distributed one item per processor on a mesh of size n.

This operation consists of performing a sequence of rotations. First, a row rotation
is performed in every row so that every processor knows the result of applying the
operation to the data elements in its row. Next, a column rotation is performed so
that every processor can determine the final result (which is a combination of
every row-restricted result).

Mesh Semigroup Algorithm
Input: An input set X, consisting of n elements, such that every processor Pi,j

initially stores data value xi,j.
Output: Every processor stores the result of applying the semigroup opera-
tion (generically denoted as) to all of the input values.

X x x
n

= [, ,]
1
…

1 1 2j n /
1 1 2i n /

P
i j,

Interconnection Networks 121

Action:

In parallel, every row i performs a row rotation so that every processor in
row i knows the product .

In parallel, every column j performs a column rotation so that every
processor in column j knows the product (which is equal to
the desired product).

End Semigroup Algorithm

This algorithm requires (n1/2) time, which is optimal for a mesh of size n.
However, on a RAM, a simple scan through the data will solve the problem in (n)
time. Therefore, this mesh algorithm is not cost-optimal because it allows for

(n � n1/2) = (n3/2) operations to be performed. Now, let’s try to construct a cost-
optimal algorithm of minimal running time for a mesh. In order to balance the local
computation time with communication time based on the communication diameter,
consider an n1/3 � n1/3 mesh, in which each processor stores n1/3 of the data items.
Initially, every processor can perform a sequential semigroup operation on its set of
n1/3 data items. Next, the n2/3 partial results, one per processor on the n1/3 � n1/3

mesh, can be used as input to the fine-grained mesh algorithm just presented.
Notice that the sequential component of the algorithm, which operates on n1/3 data
items, can be performed in (n1/3) time. The parallel semigroup component also
requires (n1/3) time. Therefore, the algorithm is complete in (n1/3) time on a
mesh of size n2/3, which results in an optimal cost of (n2/3 � n1/3) = (n).

In addition to semigroup operations, row and column rotations are important
components of data gathering and broadcasting operations for the mesh. Suppose
a data item x is stored in an arbitrary processor Pi,j of a mesh of size n, and we need
to broadcast x to all of the other n – 1 processors. Then a single row rotation, fol-
lowed by n1/2 simultaneous column rotations, can be used to solve this problem, as
follows. (See Figure 5.17.)

Mesh Broadcast Algorithm
Procedure: Broadcast the data value x, initially stored in processor Pi,j, the
processor in row i and column j, to all processors of the mesh.

Action:

Use a row rotation in row i to broadcast x to all processors in row i.

In parallel, for all columns , use a column rotation to
broadcast x to every processor in column k.

End Broadcast

k n{ , , , }/1 2 1 2…

= =i
n

j
n

i j
x

1 1

1 2 1 2/ /

,

p r
i
n

i
= =1

1 2/

r x
i j

n
i j

= =1

1 2/

,

122 Chapter 5 Models of Computation

Interconnection Networks 123

An analysis of the running time of the broadcast operation is straightforward.
It consists of two (n1/2) time rotations. Based on the communication diameter of
a mesh of size n, we know that the running time for the algorithm is optimal for
this architecture. Now consider the cost of this operation. In (n1/2) time, n proces-
sors have the opportunity to perform (n3/2) operations. Therefore, this algorithm
is not cost optimal.

As we did previously, let’s consider reducing the number of processors to the
point where we balance the sequential processing time within each processor with
the communication time required by the network. Notice that if we construct an
n1/3 � n1/3 mesh, each of these n2/3 processors would store n1/3 of the data items.
So, using the rotations as described, a single piece of information could be broad-
cast from one processor to all n2/3 processors in (n1/3) time. Once this is com-
plete, each processor can make n1/3 copies of this data item. (This might come up,
for example, if it is desired to initialize every member of an array of size n with the
value that must be broadcast.) Therefore, the algorithm is complete in (n1/3) time
on a mesh of size n2/3, which results in an optimal cost of (n).

Tree

A tree of base size n is constructed as a full binary tree with n processors at the
base level. In graph terms, this is a tree with n leaves. Therefore, a tree of base size
n has 2n – 1 total processors (see Figure 5.18). The root processor is connected to
its two children. Each of the n leaf processors is connected only to its parent. All
other (interior) processors are connected to three other processors, namely, one
parent and two children. Therefore, the degree of a tree network is 3. Notice that a
tree with n leaves contains nodes at 1 + log2 n levels. Thus, any processor in the

x x x x

x x x x

x x x x

x x x x

x x x x x

FIGURE 5.17 Broadcasting a piece of data on a mesh. First, a row rotation is performed to
broadcast the critical data item to all processors in its row. Next, column rotations are per-
formed simultaneously in every column to broadcast the critical data item to all remaining
processors.

tree can send a piece of information to any other processor in the tree by traversing
O(log n) communication links. This is done by moving the piece of information
along the unique path between the two processors involving their least common
ancestor. That is, information flows from one processor up the tree to its least com-
mon ancestor and then down the tree to the other processor. Therefore, the com-
munication diameter of a tree of base size n is far superior to the other network
models that we have considered. Now, let’s consider the bisection width. The
bisection width of a tree of base size n is (1), because if the two links are cut
between the root and its children, a tree of base size n will be partitioned into two
trees, each of base size n/2.

124 Chapter 5 Models of Computation

FIGURE 5.18 A tree of base size 8. Notice that base processors have only
a single neighbor (parent processor), the root has only two neighbors
(children processors), and the remaining processors have three neighbors
(one parent and two children processors).

A tree presents a nice (low) communication diameter but a less than desirable
(low) bisection width. This leaves us with a “good news, bad news” scenario. The
good news is that fundamental semigroup operations can be performed in (log n)
time, as follows. Assume that n pieces of data are initially distributed one per base
processor. To compute a semigroup operation (min, max, sum, and so on) over this
set of data, the semigroup operator can be applied to disjoint pairs of partial results
in parallel as data moves up the tree level by level. Notice that after (log n) steps,
the final result will be known in the root processor. Naturally, if all processors
need to know the final result, the final result can be broadcast from the root to all

processors in a straightforward top-down fashion in (log n) time. So semigroup,
broadcast, and combine-type operations can be performed in (log n) time
and with (nlog n) cost on a tree of base size n. Notice that the running time of

(log n) is optimal for a tree of base size n, and that the cost of (nlog n), though
not optimal, is only a factor of (log n) from optimal because a RAM can perform
these operations in (n) time.

Now for the bad news. Consider the problem of sorting or any routing opera-
tion that requires moving data from the leftmost n/2 base processors to the right-
most n/2 processors and vice versa. Unfortunately, the root serves as a bottleneck,
because it can process only a constant amount of traffic during each clock cycle.
Therefore, to move n pieces of data from one side of the tree to the other requires

(n) time.
Hence, the tree provides a major benefit over the linear array and mesh in

terms of combining information, but it is not well equipped to deal with situations
that require extensive data movement. At this point, it makes sense to consider an
architecture that combines the best features of the tree (fast broadcast, report, and
semigroup operations) with the best features of the mesh (increased numbers of
communication links that provide the capability to move large amounts of data in
an efficient fashion). The pyramid computer is such a machine.

Pyramid

A pyramid of base size n combines the advantages of both the tree and the mesh
architectures (see Figure 5.19). It can be viewed as a set of processors connected
as a 4-ary tree (a tree in which every generic node has four children), where at
each level the processors are connected as a two-dimensional mesh. Alternatively,
the pyramid can be thought of as a tapering array of meshes, in which each mesh
level is connected to the preceding and succeeding levels with 4-ary tree-type con-
nections. Thus, the base level of the pyramid of base size n is a mesh of size n, the
next level up is a mesh of size n/4, and so on until we reach the single processor at
the root. A careful count of the number of processors reveals that a pyramid of
base size n contains (4n – 1)/3 processors. The root of a pyramid has links only to
its four children. Each base processor has links to its four base-level mesh neigh-
bors and an additional link to a parent. In general, a generic processor somewhere
in the middle of a pyramid is connected to one parent and four children and has
four mesh-connected neighbors. Therefore, the degree of the pyramid network is
9. The communication diameter of a pyramid of base size n is (log n), because a
message can be sent from the northwest base processor to the southeast base
processor by traversing 2 log4 n links, which represents a worst-case scenario.
(This can be done by sending a piece of data upward from the base to the root and
then downward from the root to the base.)

Interconnection Networks 125

126 Chapter 5 Models of Computation

Consider the bisection width of a pyramid of base size n. The reader might
picture a plane (a flat geometric object) passing through the pyramid, positioned
so that it passes just next to the root and winds up severing connections between
the middle two columns of the base. We now need to count the number of links
that have been broken. There are n1/2/2 at the base, n1/2/4 at the next level, and so
on up the pyramid, for a total of (n1/2) such links. Consider passing two planes
through the root: one that passes between the middle two rows of the base and the
other that passes through the middle two columns of the base. This action will
result in four pyramids, each of base size n/4, with roots that were originally the
children of the root processor. Therefore, as with the mesh of size n, the bisection
width of a pyramid of base size n is (n1/2).

Now consider fundamental semigroup and combination-type operations. Such
operations can be performed on a pyramid of base size n in (log n) time by
using tree-type algorithms, as previously described. However, for algorithms that
require extensive data movement (such as moving (n) data between halves of the
pyramid), the mesh lower bound of (n1/2) applies. So, the pyramid combines the

Apex Level 2

Level 1

Level 0
Base

FIGURE 5.19 A pyramid of base size n can be viewed as a set of processors con-
nected as a 4-ary tree, where at each level in the pyramid, the processors at that
level are connected as a two-dimensional mesh. Alternatively, it can be thought of
as a tapering array of meshes. The root of a pyramid has links only to its four
children. Each base processor has links to its four base-level mesh neighbors and
an additional link to a parent. In general, a generic processor somewhere in the
middle of a pyramid is connected to one parent and four children and has four
mesh-connected neighbors.

advantages of both the tree and mesh architectures without a net asymptotic
increase in the number of processors. However, one of the reasons that the pyra-
mid has not been more popular in the commercial marketplace is that laying out a
scalable pyramid in hardware is a difficult process.

Mesh-of-Trees

We now consider another interconnection network that combines the advantages
of the tree connections with the mesh connections. However, this architecture con-
nects the processors in a very different way than the pyramid does. Essentially, the
mesh-of-trees is a standard mesh computer with a tree above every row and a tree
above every column, as shown in Figure 5.20. So, a mesh-of-trees of base size n
consists of a mesh of size n at the base with a tree above each of the n1/2 columns
and a tree above each of the n1/2 rows. Notice that these 2n1/2 trees are completely
disjoint except at the base. That is, row tree i and column tree j only have base
processor Pi,j in common. So, the mesh-of-trees of base size n has n processors in
the base mesh, 2n1/2 – 1 processors in each of the n1/2 row trees, and 2n1/2 – 1
processors in each of the n1/2 column trees. Because the n base processors appear
both in the row trees and the column trees, the mesh-of-trees has a total of
2n1/2 (2n1/2 – 1) – n = 3n – 2n1/2 processors. Therefore, as with the pyramid, the
number of processors in the entire machine is linear in the number of base processors.

Interconnection Networks 127

FIGURE 5.20 A mesh-of-trees of base size n consists of a mesh of size n at the base,
with a tree above each of the n1/2 columns and a tree above each of the n1/2 rows.
Notice that the trees are completely disjoint except at the base. The mesh-of-trees
of base size n has n processors in the base mesh, 2n1/2 – 1 processors in each of the
n1/2 row trees, and 2n1/2 – 1 processors in each of the n1/2 column trees.

Processing Element in the base

Processing Element in a tree over the base

Communication Link

First, as has been our tradition, let’s consider the degree of the network. A
generic base processor is connected to four mesh neighbors, one parent in a row
tree, and one parent in a column tree. Notice that processors along the edge of the
mesh have fewer mesh connections, as previously discussed. The root processor of
every tree is connected to two children, and interior tree nodes are connected to
one parent and two children. Note that leaf processors are mesh processors, so we
need not consider them again. Therefore, the degree of the mesh-of-trees of base
size n is 6.

Next, consider the communication diameter of a mesh-of-trees of base size n.
Without loss of generality, assume that base processor Pa,b needs to send a piece of
information, call it x, to base processor Pc,d. Notice that processor Pa,b can use the
tree over row a to send x to base processor Pa,d in O(log n1/2) = O(log n) time. Now,
processor Pa,d can use the tree over column d to send x to base processor Pc,d in
O(log n1/2) = O(log n) time. Therefore, any two base processors can communicate
by exploiting one row tree and one column tree in O(log n) time.

The bisection width of a mesh-of-trees can be determined by passing a plane
through the middle two rows or columns (or both) of the base mesh. The analysis
is similar to the pyramid, where the total number of links severed is (n1/2).

Therefore, some of the objective measures of the pyramid and mesh-of-trees
are similar. The difference between the two is that in a pyramid, the apex (root of
the pyramid) serves as a bottleneck, whereas for the mesh-of-trees, there is no
such bottleneck. In fact, the mesh-of-trees offers more paths between processors.
One might hope that more efficient algorithms can be designed for the mesh-of-
trees than for the pyramid. However, due to the bisection width, we know that this
is not possible for problems that require significant data movement. For example,
for problems such as sorting, in which all data on the left half of the base mesh
might need to move to the right half and vice versa, a lower bound of (n/n1/2) =

(n1/2) still holds. One can only hope that problems that require a moderate
amount of data movement can be solved faster than on the pyramid.

Let’s first consider the problem of computing a semigroup operation on a
set , initially distributed one item per base processor. Within
each row (simultaneously), use the row tree to compute the operation over the set
of data that resides in the row. Once the result is known in the root of a tree, it can
be passed down to all of its leaves (the base processors in the row). In (log n)
time, every base processor will know the result of applying the semigroup opera-
tion to the elements of X that are stored in its row. Next, perform a semigroup
operation (simultaneously) on this data within each column by using the tree
above each column. Notice that when the root processors of the column trees have
the result, they all have the identical final result, which they can again pass back
down to the leaf (base) processors. Therefore, after two (log n) time tree-based
semigroup operations, all processors know the final answer. As with the tree and
pyramid, this is a time-optimal algorithm. However, the cost of the algorithm is
again (nlog n), which is (log n) from optimal.

X x x x
n

= [, , ,]
1 2
…

128 Chapter 5 Models of Computation

Next, we consider an interesting problem of sorting a reduced amount of data.
This problem surfaces quite often in the middle of a wide variety of algorithms.
Formally, we are given a unique set of data, , distributed one
per processor along the first row of the base mesh in a mesh-of-trees such that
processor P1,i stores di. We wish to sort the data so that the ith largest element in D
will be stored in processor P1,i. The method we use will be that of counting sort.
That is, for each element , we will count the number of elements smaller
than d to determine the final position of d. To use this counting sort, we first create
a cross product of the data so that each pair (di, dj) is stored in some processor, as
shown in Figure 5.21. Notice that because the number of elements in D is n1/2, we
have room in the base mesh to store all such pairs. This cross prod-
uct is created as follows (see Figure 5.22). First, use the column trees to broadcast
dj in column j. At the conclusion of this (log n) time step, every base processor Pi,j

will store a copy of dj. Now, using the row trees, in every row i, broadcast item di

from processor Pi,i to all processors in row i. This operation also requires (log n)
time. Therefore, after a row and column broadcast, every processor Pi,j will store a
copy of dj (obtained from the column broadcast) and a copy of di (obtained from the
row broadcast). At this point, the creation of the cross product is complete.

n n n1 2 1 2/ /× =

d D

D d d d
n

= [, , ,]/1 2 1 2…

Interconnection Networks 129

(d1,d1) (d1,d2) (d1,d3) (d1,d4)

(d2,d1) (d2,d2) (d2,d3) (d2,d4)

(d3,d1) (d3,d2) (d3,d3) (d3,d4)

(d4,d1) (d4,d2) (d4,d3) (d4,d4)

FIGURE 5.21 Creating a cross product of items
<d1,d2,d3,d4>. Notice that processor Pi,j will store
a copy of di and dj. That is, every processor in
row i will store a copy of di and every processor
in column j will store a copy of dj.

Let row i be responsible for determining the rank of element di. Simultane-
ously, for every processor Pi,j, set register count to 1 if , and to 0 otherwise.
Now use the row trees to sum the count registers in every row. Notice that in every
row i, the sum r(i) corresponds to the rank of di, the number of elements of D that
precede di. Finally, a column broadcast is used in every column to broadcast di

from processor Pi,r(i)+1 to processor P1,r(i)+1, completing the procedure.

d d
j i
<

130 Chapter 5 Models of Computation

5 9

(a) Initial distribution
 of data

(b) After broadcasting
 data through columns

4 2 5 9 4 2

5 9 4 2

5 9 4 2

5 9 4 2

5,5 5,9

9,5 9,9

4,5 4,9

2,5

(c) After creating a
 cross-product of data

(d) After ranking the data

2,9

5,4

9,4

4,4

2,4

5,2

9,2

4,2

2,2

2 4

(e) After redistributing data
 by rank

5 9

5,5 5,9

9,5 9,9

4,5 4,9

2,5 2,9

5,4

9,4

4,4

2,4

5,2

9,2

4,2

2,2

r(5)=2

r(9)=3

r(4)=1

r(2)=0

FIGURE 5.22 Sorting a reduced set of data on a mesh-of-trees (only the base
mesh is shown). a) The initial distribution of data consists of a single row of ele-
ments. b) The data after using the column trees to broadcast the data element in
every column. c) The result after using the row trees to broadcast the diagonal
elements along every row. At this point, a cross product of the initial data exists
in the base mesh of the mesh-of-trees. d) The result of performing row rankings of
the diagonal element in each row. This step is accomplished by performing a
comparison in the base mesh followed by a semigroup operation of every row
tree. e) The result after performing the final routing step of the diagonal elements
to their proper positions according to the rankings.

The time to create the cross product is (log n), as is the time to determine the
rank of every entry and the time to broadcast each entry to its final position. There-
fore, the running time of the algorithm is (log n), which is worst-case optimal for
the mesh-of-trees, due to the (log n) communication diameter and the fact that d1

and might need to change places (processors P1,1 and might need to
exchange information). The cost of the algorithm is (nlog n). Notice that the cost
is not optimal because (n1/2) items can be sorted in time on a RAM.

Hypercube

The final network model we consider is the hypercube, as shown in Figure 5.23.
The hypercube presents a topology that provides a low communication diameter
and a high bisection width. The communication diameter is logarithmic in the
number of processors, which allows for fast semigroup and combination-based
algorithms. This is the same as for the tree, pyramid, and mesh-of-trees. However,
the bisection width of the hypercube is linear in the number of processors, which
is a significant improvement over the bisection width for the mesh, pyramid, and
mesh-of-trees. Therefore, there is the possibility of moving large amounts of data
quite efficiently.

(log)/n n1 2

P
n1 1 2, /d

n1 2/

Interconnection Networks 131

1000

0110

0010
0000

0100

0101

0001

0011 1001 1011

1111

1101

1010

1100

1110

0111

FIGURE 5.23 A hypercube of size 16 with the processors indexed by
the integers {0,1,...,15}. Pairs of processors are connected if and only
if their unique log2 16 = 4 bit strings differ in exactly one position.

Formally, a hypercube of size n consists of n processors indexed by the inte-
gers , where n > 0 is an integral power of 2. Processors A and B are
connected if and only if their unique log2 n-bit strings differ in exactly one posi-
tion. So, suppose that n = 8. Then the processor with binary index 011 is connected
to three other processors, namely those with indices 111, 001, and 010.

It is often useful to think of constructing a hypercube in a recursive fashion, as
shown in Figure 5.24. A hypercube of size n can be constructed from two hyper-
cubes of size n/2, which we refer to as H0 and H1, as follows. Place H0 and H1 side

{ , , , }0 1 1… n

by side, with every processor labeled according to its log2(n/2)-bit string. Notice
that there are now two copies of every index: one associated with H0 and one asso-
ciated with H1. We need to resolve these conflicts and also to connect H0 and H1 to
form a hypercube of size n. To distinguish the labels of H0 from those of H1, we
will add a leading 0 to every index of H0 and add a leading 1 to every index of H1.
Finally, we need to connect the corresponding nodes of H0 and H1. That is, we
need to connect those nodes that differ only in their (new) leading bit. This com-
pletes our construction of a hypercube of size n.

132 Chapter 5 Models of Computation

1-cube

1-cube

1-cube

0 1

000

2-cube

2-cube

3-cube

2-cube

001

010 011

100 101

110 111

00 01

10 11

FIGURE 5.24 Constructing a hypercube of size n from two
subcubes each of size n/2. First, attach elements of subcube A
to elements of subcube B with the same index. Then prepend
a 0 to indices of subcube A, and prepend a 1 to all indices of
subcube B. Subcube A is shaded in each diagram for ease
of presentation.

Based on this construction scheme, the reader should note that the number of
communication links affiliated with every processor must increase as the size of
the network increases. That is, unlike the mesh, tree, pyramid, and mesh-of-trees,
the hypercube is not a fixed-degree network. Specifically, notice that a processor
in a hypercube of size n is labeled with a unique index of log2 n bits and is, there-
fore, connected to exactly log2 n other processors. So, the degree of a hypercube of
size n is log2 n. Further, in contrast to the mesh, pyramid, tree, and mesh-of-trees,
all nodes of a hypercube are identical with respect to the number of attached
neighboring nodes.

Next, we consider the communication diameter of a hypercube of size n.
Notice that if processor 011 needs to send a piece of information to processor 100,

one option is for the piece of information to traverse systematically the path
from . This traversal scheme works from the leftmost bit
to the rightmost bit, correcting each bit that differs between the current processor
and the destination. Of course, one could “correct” the logarithmic number of bits
in any order. The important point is that one can send a message from any proces-
sor to any other by visiting a sequence of nodes that must be connected (by defin-
ition of a hypercube) because they differ in exactly one bit position. Therefore, the
communication diameter of a hypercube of size n is log2 n. However, unlike the
tree and pyramid, multiple minimal-length paths traverse O(log n) communication
links between many pairs of processors. This is an appealing property in that the
hypercube shows promise of avoiding some of the bottlenecks that occurred in the
previously defined network architectures.

Now we consider the bisection width. From the construction procedure
described near the beginning of this section, it is clear that any two disjoint sub-
cubes of size n/2 are connected by exactly n/2 communication links. That is, the
bisection width of a hypercube of size n is (n). Therefore, we now have the pos-
sibility of being able to sort n pieces of data in (log n) time, which would be cost
optimal. In fact, in Chapter 4, “Combinational Circuits,” a bitonic sort algorithm
was presented that demonstrated that n pieces of data, initially distributed one
piece per processor on a hypercube of size n, can be sorted in (log2 n) time. This
result represents a significant improvement over the mesh, tree, pyramid, and
mesh-of-trees. Of course, the drawback is that the hypercube is not a fixed inter-
connection network, which makes it very hard to design and produce a generic
hypercube processor and to lay out the machine so that it is expandable (scalable).

We should note that the hypercube is both node- and edge-symmetric in that
nodes can be relabeled so that we can map one index scheme to a new index
scheme and preserve connectivity. This is a nice property and also means that
unlike some of the other architectures, there are no special nodes. That is, there are
no special root nodes, edge nodes, or leaf nodes, and so forth. And yet, we can
often use algorithms designed for other architectures such as meshes or trees,
because if we merely ignore the existence of some of a hypercube’s interprocessor
connections, we may find the remaining connections form a mesh, tree, or other
parallel architecture (or in some cases, an “approximation” of another interesting
architecture).

In terms of fundamental algorithms on the hypercube, let’s consider a semi-
group operation. A description of an algorithm to perform such an operation will
illustrate a variety of algorithmic techniques for the hypercube. In this description,
we will use the term k-dimensional edge to refer to a set of communication links in
the hypercube that connect processors that differ in the kth bit position of their
indices. Without loss of generality, suppose we want to compute the minimum
of , where xi is initially stored in processor Pi (the processor
with its binary label equivalent to i base 10). The algorithm we describe makes use

X x x x
n

= [, , ,]
0 1 1
…

011 111 101 100

Interconnection Networks 133

of the observation that by ignoring some interprocessor connections, the remain-
der of the hypercube is a tree.

Consider the simple case of a hypercube of size 16, as shown in Figure 5.25.
In the first step, we send entries from all processors with a 1 in the most significant
bit to their neighbors that have a 0 in the most significant bit. That is, we use the
one-dimensional edges to pass information. The processors that receive informa-
tion compute the minimum of the received value and their element and store this
result as a running minimum. In the next step, we send running minima from all
processors with a 1 in their next-most-significant bit and that received data during
the previous step, to their neighbors with a 0 in that bit position, using the two-
dimensional edges. The receiving processors again compute the minimum of the
value received and the value stored. The third step consists of sending data along
the three-dimensional edges and determining the minima (for processors 0001 and
0000). The final step consists of sending the running minimum along the four-
dimensional edge from processor 0001 to processor 0000, which computes the
final result. Therefore, after log2 n = log2 16 = 4 steps, the final result is known in
processor P0 (see Figure 5.26).

134 Chapter 5 Models of Computation

1000

Initial Configuration

0110

0010
0000

0100

0101

0001

0011 1001 1011

1111

1101

1010

1100

1110

0111

4

10

3

11

16

14

6 8 9

75

2 13

12 1

15

1000

Step 1

0110

0010
0000

0100

0101

0001

0011 1001 1011

1111

1101

1010

1100

1110

0111

4

2

3

11

1

7

6

5

Figure 5.25b: Step 1:
Transmit-and-compare
along one-dimensional
edges (for example, the
processors that differ in
the most significant bit).

Figure 5.25a: Initial distri-
bution of data. Data values
are presented inside the
circles that represent the
processors. Processor
labels are presented as
binary numbers and are
positioned beside the
processors in the figure.

FIGURE 5.25 An example of computing a semigroup operation on a hypercube of size n.
For this example, we use minimum as the semigroup operation. In the first step, we send
entries from all processors with a 1 in the most significant bit to their neighbors that have
a 0 in the most significant bit. That is, elements from the right subcube of size 8 are sent to
their neighboring nodes in the left subcube of size 8. The receiving processors compare the
two values and keep the minimum. The algorithm continues within the left subcube of size 8.
After log2 16 = 4 transmission-and-compare operations, the minimum value (1) is known in
processor 0000.

Interconnection Networks 135

1000

Step 2

0110

0010
0000

0100

0101

0001

0011 1001 1011

1111

1101

1010

1100

1110

0111

4

2 1

6

1000

Step 3

0110

0010
0000

0100

0101

0001

0011 1001 1011

1111

1101

1010

1100

1110

0111

4

1

Figure 5.25d: Step 3:
Transmit-and-compare
along three-dimensional
edges.

Figure 5.25c: Step 2:
Transmit-and-compare
along two-dimensional
edges.

1000

Step 4

0110

0010
0000

0100

0101

0001

0011 1001 1011

1111

1101

1010

1100

1110

0111

1

Figure 5.25e: Step 4:
Transmit-and-compare
along four-dimensional
edges. The result is the
global minimum being
stored in processor 0000.

136 Chapter 5 Models of Computation

If we now wish to distribute the final result to all processors, we can simply
reverse the process, and in the ith step, send the final result along (log2 n – i + 1)
dimensional edges from processors with a 0 in the ith bit to those with a 1 in the ith

bit. Again, this takes log2 n = log2 16 = 4 steps. Clearly, a generalization of this
algorithm simply requires combining data by cycling through the bits of the
indices and sending data appropriately to determine the final result. If desired, this
result can be distributed to all processors by reversing the communication mecha-
nism just described. Therefore, semigroup, reporting, broadcasting, and general
combination-based algorithms can be performed on a hypercube of size n in

(log n) time.

Coarse-Grained Parallel Computers

In much of the previous discussion, we have made the theoretically pleasant, but
often unrealistic, assumption that we can use as many processors as we like; for
example, in many problems, we assumed n data items were processed by n proces-
sors. Because fine-grained processors are expensive, very few companies manu-
facture such machines and relatively few organizations have such machines at
their disposal.

Coarse-grained parallel computing, in which the number of processors q is
much smaller than the number of data items n, is often a more realistic assumption
than fine-grained parallelism. However, efficient coarse-grained algorithms often
combine efficient sequential preprocessing steps with an overall fine-grained algo-
rithmic approach.

2

3

1

1

1

1

1

1
1

1

3

4

2

2

2

00110001

0000 0010

0100 0110

01110101

10111001

1000 1010

1100 1110

11111101

FIGURE 5.26 Data movement in a semigroup operation on a
hypercube. The links of the hypercube of size 16 are labeled
based on the step in which they are used to move data in the
semigroup operation shown in Figure 5.25.

Indeed, a common strategy for the development of efficient coarse-grained
algorithms is one we have illustrated earlier in situations for which the number of
data items significantly exceeds the number of processors. This is especially true
for problems (for example, semigroup computations) that produce a single (1)
space result. For such situations, consider the following scenario.

• Each processor runs an efficient sequential algorithm on its share of the data to
obtain a partial solution.

• The processors combine their partial solutions to obtain the problem’s solution.
• If desired, broadcast the problem’s solution to all processors.

For problems in which the first step’s partial solutions consist of (1) data per
processor, the second step can use a fine-grained algorithm to combine the partial
solutions.

The coarse-grained multicomputer CGM(n,q) is a model for coarse-grained
parallel computing that has appeared in many recent papers. This is a model of
parallel computing for processing n data items on q processors. Thus, each proces-
sor must have (n/q) memory locations, sufficient to store the data of the problem.
It is customary to take (equivalently,). This assumption facili-
tates many operations. For example, a gather operation, in which one data item
from each processor is gathered into a designated processor Pi, requires that the
number of items gathered, q, not exceed the storage capacity (n/q) of Pi.

The processors of a CGM make up a connected graph. That is, any processor
can communicate with any other processor, although exchanging data between
processors may take more than one communication step. This graph could be in
the form of a linear array, mesh, hypercube, pyramid, and so forth; the CGM
model can also be realized in a shared memory (PRAM) machine, in which case
we assume that each processor is directly connected (via the shared memory) to
every other processor.

Suppose for a given problem, the best sequential solution runs in Tseq (n) time.
In light of our discussion of speedup (see the following section), the reader should
conclude that an optimal solution to this problem on a CGM(n,q) runs in time

For many fundamental problems, CGM solutions make use of gather and
scatter operations. As discussed previously, a gather operation collects one data item
from every processor into one processor. That is, if the processors are ,
and the data item xi is initially stored in Pi, we gather into the processor Pj

by bringing copies of each xi to Pj. A scatter operation reverses a gather by return-
ing each xi from Pj to the Pi that originally contained xi. This is useful, for exam-
ple, when xi is a record with components that have been written into by Pj.

{ }x
i i

q
=1

P P
q1

, ,…

T n
T n

qpar

seq()
()

.=

q n2q n q/

Interconnection Networks 137

It is perhaps not surprising that gather and scatter operations can be performed
on a CGM (n,q) in O(q) time. In the following discussion, we make use of this
fact, the proof of which is beyond the scope of this book. Consider the following
algorithm for a minimum (or, more generally, semigroup) computation on a
CGM (n,q).

CGM (n,q) Minimum Algorithm

Input: Array X, stored with the subarray in Pj,

Output: Minimum entry of X, known to each processor.

Action:

1. In parallel, each processor Pj computes , using the

sequential algorithm discussed earlier. This takes (n/q) time.

2. Gather into P1. This takes O(q) time.

3. P1 computes the desired minimum value, , using the

sequential algorithm discussed earlier. This takes time.

4. Broadcast M to all processors. This can be done by a “standard” broad-
cast operation in O(q) time (see Exercises) or by attaching the value of
M to each mj record in time and scattering the mj records to the
processors from which they came, in O(q) time.

End Minimum

Because , the algorithm requires (n/q) time. This is optimal due to
the fact that an optimal sequential solution requires (n) time.

Notice that if we assume a particular architecture—such as a PRAM, mesh,
hypercube, or other traditional models —for our CGM (n,q), the last three steps of
the previous algorithm can be replaced by faster fine-grained analogs (not using
gather/scatter operations). For example, on a mesh, the last three steps of the algo-
rithm can be by fine-grained mesh semigroup and broadcast operations that run in

(q1/2) time. Doing so, however, is likely to yield little improvement in the perfor-
mance of the algorithm, which would still run in (n/q) time. An advantage of our
previous presentation is that it covers all parallel architectures that might be used
for a CGM.

q n q/

()q

()q

M m
j j

q
= { }

=
min

1

m
j j

q{ }
=1

m x
j i

i j
n
q

jn
q=
= +

min{ }
()1 1

j q{ , }1…{ }
()

x
i

i j
n
q

jn
q

= +1 1

138 Chapter 5 Models of Computation

Additional Terminology

In this chapter, we have presented an introduction to the models of computation
that will be used throughout the book. We have also presented fundamental algo-
rithms for these models so that the reader can appreciate some of the fundamental
similarities and differences among these models. We have intentionally avoided
using too much terminology. At this point, however, we feel it is reasonable to
introduce some terminology that will be found in the scientific literature and used
as appropriate throughout the rest of this book.

Flynn’s Taxonomy: In 1966, M.J. Flynn defined a taxonomy of
computer architectures based on the concepts of both instruction stream
and data stream. Briefly, an instruction stream is defined to be a sequence
of instructions performed by the computer, whereas a data stream is
defined to be the sequence of data items that are operated on by the
instruction stream. Flynn defines both the instruction stream and the data
stream as being either single or multiple, which leads to four basic
categories.

1. A single-instruction, single-data stream (SISD) machine consists of a
single processor and a single set of data that is operated on by the
processor as it carries out the sequential set of instructions. The RAM
is an SISD model, and most serial computers fall into this category,
including PCs and workstations. This is the von Neumann model of
computing.

2. A single-instruction, multiple-data stream (SIMD) machine consists
of a set of processors (with local memory), a control unit, and an
interconnection network. The control unit stores the program and
broadcasts the instructions, one per clock cycle, to all processors
simultaneously. All processors execute the same instruction at the
same time, but on the contents of their own local memory. However,
through the use of a mask, processors can be in either an active or
inactive state at any time during the execution of a program. Further,
these masks can be determined dynamically. Networks of processors,
such as the mesh, pyramid, and hypercube, can be built as SIMD
machines. In fact, the algorithms that we have described so far for
these network models have been described in an SIMD fashion.

3. A multiple-instruction, single-data stream (MISD) machine is a model
that doesn’t make much sense. One might argue that systolic arrays
fall into that category, but such a discussion is not productive within
the context of this book.

Additional Terminology 139

4. A multiple-instruction, multiple-data stream (MIMD) machine
typically consists of a set of processors (with local memory) and an
interconnection network. In contrast to the SIMD model, the MIMD
model allows each processor to store and execute its own program.
However, in reality, for multiple processors to cooperate to solve a
given problem, these programs must at least occasionally synchronize
and cooperate. In fact, it is quite common for an algorithm to be
implemented in such a fashion that all processors execute the same
program. This is referred to as the single-program multiple-data
(SPMD) programming style. Notice that this style is popular because
it is typically infeasible to write a large number of different programs
that will be executed simultaneously on different processors. Most
commercially available multiprocessor machines fall into the MIMD
category, including departmental computers that contain multiple
processors and either a physically or virtually “shared memory.”
Further, most large codes fall into the SPMD category.

Granularity: Machines can also be classified according to their
granularity. That is, machines can be classified according to the number
and/or complexity of their processors. For example, a commercial
machine with a dozen or so very fast (and complex) processors would be
classified as a coarse-grained machine, whereas a machine with tens of
thousands of very simple processors would be classified as a fine-grained
machine. Most commercially available multiprocessor machines fall into
the coarse-grained MIMD category. Of course, such terminology is quite
subjective and may change with time.

We now define some general performance measures. These are
common terms that the user is likely to come across while reading the
scientific literature.

Throughput: The term throughput refers to the number of results
produced per unit time. This is a critical measure of the effectiveness of
our problem-solving environment, which includes not only our algorithm
and computer but also the quality of any queueing system and other
operating system features.

Cost/Work: Let Tpar(n) represent the length of time that an algorithm
with n processors takes to complete a problem. Then the cost of such
a parallel algorithm, as previously discussed, can be defined as

. That is, the cost of an algorithm is defined as the
number of potential instructions that could be executed during the
running time of the algorithm, which is clearly the product of the running
time and the number of processors. A related term is work, which is
typically defined to be the actual number of instructions performed.

C n n T n
par

() ()= ×

140 Chapter 5 Models of Computation

Speedup: We define speedup as the ratio between the time taken for
the most efficient sequential algorithm to perform a task and the time
taken for the most efficient parallel algorithm to perform the same task on
a machine with n processors, which we denote as . The term

linear speedup refers to a speedup of Sn = n. In general, linear speedup
cannot be achieved because the coordination and cooperation of
processors to solve a given problem must take some time. A debate
continues concerning the concept of superlinear speedup, or the situation
where Sn > n.

The question of how superlinear speedup can occur is an interesting
one. For example, if we consider asymptotic analysis, it would seem that
a sequential algorithm could always be written to emulate the parallel
algorithm with O(n) slowdown, which implies that superlinear speedup is
not possible. However, assume that the algorithms are chosen in advance.
Then several situations could occur. First, in a nondeterministic search-
type algorithm, a multiprocessor search might simply get lucky and
discover the solution before such an emulation of the algorithm might.
That is, the parallel algorithm has an increased probability of getting
lucky in certain situations. Second, effects of memory hierarchy might
come into play. For example, a set of very lucky or unlucky cache hits
could have a drastic effect on running time.

Efficiency: The efficiency of an algorithm is a measure of how well the
processors are utilized. That is, efficiency is the ratio of sequential
running time and the cost on an n-processor machine, which is equivalent
to the ratio between the n-processor speedup and n. So efficiency is given

as .

Amdahl’s Law: While discussing speedup, one should consider
Amdahl’s Law. Basically, Amdahl’s Law states that the maximum
speedup achievable by an n-processor machine is given by

, where f is the fraction of operations in the
computation that must be performed sequentially. So, for example, if 5
percent of the operations in a given computation must be performed
sequentially, the speedup can never be greater than 20, regardless of how
many processors are used. That is, a small number of sequential
operations can significantly limit the speedup of an algorithm on a
parallel machine. Fortunately, what Amdahl’s Law overlooks is the fact
that for many algorithms, the percentage of required sequential opera-
tions decreases as the size of the problem increases. Further, it is often
the case that as one scales up a parallel machine, scientists often want to
solve larger and larger problems, not just the same problems more

S f f n
n

+1 1/ () /

E
T n

C n

S

nn

seq n= =
()

()

T n

T n
seq

par

()

()
S

n
=

Additional Terminology 141

efficiently. That is, it is common enough to find that for a given machine,
a scientist will want to solve the largest problem that fits on that machine
(and complain that the machine isn’t just a bit bigger so that they could
solve the problem they really want to consider).

Scalability: We say that an algorithm is scalable if the level of parallelism
increases at least linearly with the problem size. We say that an architecture
is scalable if the machine continues to yield the same performance per
processor as the number of processors increases. In general, scalability is
important in that it allows users to solve larger problems in the same
amount of time by purchasing a machine with more processors.

Summary

In this chapter, we discuss a variety of models of computation. These include the
classical RAM model for single-processor computers, as well as several models of
parallel computation, including the PRAM, linear array, mesh, tree, pyramid,
hypercube, and others. For each model of computation, we discuss solutions to
fundamental problems and give analysis of our solutions’ running times. We also
discuss, for parallel models, factors that can limit the efficiency of the model, such
as the communication diameter and the bisection width.

Chapter Notes

The emphasis of this chapter is on introducing the reader to a variety of parallel
models of computation. A nice, relatively concise presentation is given in “Algo-
rithmic Techniques for Networks of Processors,” by R. Miller and Q.F. Stout in the
Handbook of Algorithms and Theory of Computation, M. Atallah, ed., CRC Press,
Boca Raton, FL, 1995–1998. A general text targeted at undergraduates that covers
algorithms, models, real machines, and some applications, is Parallel Computing
Theory and Practice by M.J. Quinn (McGraw-Hill, Inc., New York, 1994). For a
book that covers PRAM algorithms at a graduate level, the reader is referred to An
Introduction to Parallel Algorithms by J. Já Já (Addison-Wesley, Reading, MA.,
1992), whereas advanced undergraduate students or graduate students interested
primarily in mesh and pyramid algorithms might refer to Parallel Algorithms for
Regular Architectures: Meshes and Pyramids by R. Miller and Q.F. Stout (The
MIT Press, Cambridge, MA, 1996). For the reader interested in a text devoted to
hypercube algorithms, see Hypercube Algorithms for Image Processing and Pat-
tern Recognition by S. Ranka and S. Sahni (Springer-Verlag, 1990). A comprehen-
sive parallel algorithms book that focuses on models related to those presented in
this chapter is Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes by F.T. Leighton (Morgan Kaufmann Publishers, San Mateo,
CA, 1992).

142 Chapter 5 Models of Computation

Although Amdahl’s Law is discussed or mentioned in most texts on parallel
algorithms, we feel it is worth mentioning the original paper, “Validity of the
Single Processor Approach to Achieving Large Scale Computing Capabilities,” by
G. Amdahl, AFIPS Conference Proceedings, vol. 30, Thompson Books, pp.
483–485, 1967. Similarly, Flynn’s taxonomy is a standard in texts devoted to par-
allel computing. The original articles by Flynn are “Very High-Speed Computing
Systems,” by M.J. Flynn, Proceedings of the IEEE, 54 (12), pp. 1901–09, 1966,
and “Some Computer Organizations and Their Effectiveness,” by M.J. Flynn,
IEEE Transactions on Computers, C-21, pp. 948–60, 1972.

The coarse-grained multicomputer, CGM (n,q), was introduced in F. Dehne,
A. Fabri, and A. Rau-Chaplin, “Scalable Parallel Geometric Algorithms for Multi-
computers,” Proceedings 9th ACM Symposium on Computational Geometry
(1993), pp. 298–307, and has been used in many subsequent papers (see, for
example, F. Dehne, ed., special edition of Algorithmica 24, no. 3–4, 1999, devoted
to coarse-grained parallel algorithms). The proof that gather and scatter algorithms
can be performed on a CGM (n,q) in O(q) time appears in L. Boxer and R. Miller,
“Coarse Grained Gather and Scatter Operations with Applications,” Journal of
Parallel and Distributed Computing 64 (2004), 1297–1320.

Exercises

1. Consider the “star-shaped” architecture shown in Figure 5.27, which consists
of n processors, labeled from 0 to n – 1, where processor P0 is directly con-
nected to all other processors, but for , processors Pi and Pj are
not directly connected. Explain why this architecture has a “serial bottleneck”
at processor P0. To do this, consider the time required by a fundamental oper-

ation such as computing a semigroup operation , where xi is stored in

processor Pi. Does the star-shaped configuration seem to be a useful arrange-
ment of processors for parallel computation?

i

n

i
x

=0

1

i j i j, ,> 0

Exercises 143

0

1

3

2 5

4

FIGURE 5.27 A star-shaped computer of size 6.

144 Chapter 5 Models of Computation

2. Consider an architecture of n processors partitioned into two disjoint subsets,
A and B, each with n/2 processors. Further, assume that each processor in A is
joined to each processor in B, but no pair of processors having both members
in A or in B are joined. See Figure 5.28 for an example.

A B

FIGURE 5.28 An architecture in which n proces-
sors are partitioned into two disjoint subsets of
n/2 processors each.

a) Can fundamental operations be executed on this architecture faster that on
the star-shaped architecture described previously? For example, devise an

efficient parallel algorithm for computing a semigroup operation ,

where xi is stored in processor Pi, on this architecture, and analyze its run-
ning time.

b) What is the bisection width of this architecture? What does this imply
about the practicality of this architecture?

3. Define an X-tree to be a tree machine in which neighboring nodes on a level
are connected. That is, each interior node has two additional links, one to each
of its left and right neighbors. Nodes on the outer edge of the tree (with the
exception of the root) have one additional link, to its neighboring node in its
level.
a) What is the communication diameter of an X-tree? Explain.
b) What is the bisection width of an X-tree? Explain.
c) Give a lower bound on sorting for the X-tree. Explain.

4. Suppose that we have constructed a CRCW PRAM algorithm to solve prob-
lem A in O(t(n)) time. Now when we begin to consider solutions to problem A
on a CREW PRAM, what do we already know about an upper bound on the
running time to solve this problem on a CREW PRAM? Why?

i

n

i
x

=0

1

5. Suppose that we have a CREW PRAM algorithm to solve problem A in
(t(n)) time. If we now consider a solution to this problem on an EREW

PRAM, how does the CREW PRAM algorithm help us in determining a lower
bound on the running time to solve this problem on an EREW PRAM?

6. Give an asymptotically optimal algorithm to sum n values on a three-dimen-
sional mesh. Discuss the running time and cost of your algorithm. Give a pre-
cise definition of your model.

7. Give an efficient algorithm to sum n values on a hypercube.
8. Define a linear array of size n with a bus to be a one-dimensional mesh of size

n augmented with a single global bus. Every processor is connected to the
bus, and in each unit of time, one processor can write to the bus and all
processors can read from the bus (that is, the bus is a CREW bus).
a) Give an efficient algorithm to sum n values, initially distributed one per

processor. Discuss the time and cost of your algorithm.
b) Give an efficient algorithm to compute the parallel prefix of n values, ini-

tially distributed one per processor. Discuss the time and cost of your algo-
rithm.

9. Show that a pyramid computer with base size n contains (4n – 1)/3 processors.
Hint: Let n = 4k for integer , and use mathematical induction on k.

10. Why is it unrealistic to expect to solve an NP-complete problem on the
PRAM in polylogarithmic time using a polynomial number of processors?

11. a) Show that a gather operation on a linear array of q processors requires
(q) time in the worst case.

b) Devise an algorithm to gather one data item from each processor of a linear
array of q processors into any one of the processors. Analyze the running
time of your algorithm (if it’s efficient, it will take (q) time). Note this
shows that (q) is optimal for such an operation, and the O(q) time we have
claimed for a gather operation on a CGM (n,q) is optimal in the worst
case—that is, with respect to the worst-case architecture.

12. Assume you have algorithms for gather and scatter operations that run in O(q)
on a CGM (n,q). State and analyze the running time of an efficient algorithm
to broadcast a value from one processor of a CGM (n,q) to all processors.

k 0

Exercises 145

146

6
Matrix Operations

Matrix Multiplication

Gaussian Elimination

Roundoff Error

Summary

Chapter Notes

Exercises

147

Computational science and engineering (CS&E) is an emerging discipline that
focuses on simulation and modeling and sits at the intersection of computer sci-

ence, mathematics, and various disciplinary areas. CS&E is already being called the
third science, complementing theoretical science and laboratory science. Programs in
computational science, as the discipline is also referred to, are widespread at universi-
ties and colleges and are being introduced into the K–12 curriculum. Simulation and
modeling has led to breakthroughs in numerous scientific and engineering disciplines.
In fact, numerical simulation has been used to study complex systems that would be
too expensive, time consuming, or dangerous to study by direct (physical) experimen-
tation. The importance of simulation can be found in “grand challenge” problems in
areas such as structural biology, materials science, high-energy physics, economics,
fluid dynamics, and global climate change, to name a few. In fact, designers of auto-
mobiles and airplanes exploit simulation in an effort to reduce the costs of prototypes,
to test models, and to provide alternatives to expensive wind tunnels. Computational
science and engineering is an interdisciplinary subject, uniting computing (hardware,
software, algorithms, and so on) with disciplinary research in biology, chemistry,
physics, and other applied and engineering fields. Because operations on matrices are
central to computational science, we consider the problems of matrix multiplication
and Gaussian elimination on various models of computation.

Matrix Multiplication

Suppose a matrix A has p rows and q columns, which we denote as Ap,q or Ap�q.
Given matrices Ap,q and Bq,r, the matrix product of A and B is written informally as
C = A � B and more formally as Cp,r = Ap,q � Bp,r. The element ci,j, that is, the ele-
ment of C in the ith row and jth column, for 1 i p and 1 j r, is defined as the
dot product of the ith row of A and the jth column of B, as

Notice that the number of columns of A must be the same as the number of
rows of B, because each entry of the product corresponds to the dot product of one
row of A and one column of B. In fact, to determine the product of A and B, the dot
product of every row of A with every column of B is typically computed. See Fig-
ure 6.1.

c a b
i j i k k j

k

q

, , ,
=

=1

148 Chapter 6 Matrix Operations

A3 � 4

=

B4 � 5

1 2 3 4

5 6 7 8

9 10 11 12

1 0 2 0

0 1 0 2

1 0 2 0

4

0

4

0 1 0 2 0

C3 � 5

4 6 8 12

12 14 24 28

20 22 40 44

16

48

80

FIGURE 6.1 An example of matrix multiplication. For example, c2,3 is
the product of the second row of A (5, 6, 7, 8) and the third column of
B (2, 0, 2, 0), which yields 5 � 2 + 6 � 0 + 7 � 2 + 8 � 0 = 24.

A traditional, sequential dot product of two vectors, each of length q, requires
q multiplications and q – 1 additions. Therefore, such a sequential operation can
be performed in (q) time. Hence, the p�r dot products, each of length q, used to
perform a traditional matrix multiplication can be computed in a straightforward
fashion in (prq) time on a RAM. So, the total number of operations performed in
a brute-force matrix multiplication on a RAM, as described, is (prq). Such an
algorithm follows.

Input: A p�q matrix A and a q�r matrix B.
Output: The matrix product Cp,r = Ap,q � Bq,r

For i = 1 to p, do {Loop through rows of A}
For j = 1 to r, do {Loop through columns of B}

{Perform the dot product of a row of A and a column of B}
C[i,j] = 0
For k = 1 to q, do

End For k
End For j

End For i

We now consider matrix multiplication on a variety of models of computation.
For simplicity, we will assume that all matrices are of size n�n.

RAM: A traditional sequential algorithm, as given earlier, will multiply
An�n� Bn�n to produce Cn�n in (n3) time. There are better algorithms,
however. In fact, due to the importance of matrix multiplication and its
relatively large running time, this problem has been the focus of research
for many years. In 1968, Strassen presented a divide-and-conquer
algorithm to perform matrix multiplication in O(n2.81) time. This result
was quite surprising, because it had been previously conjectured that

(n3) operations were required to perform matrix multiplication. Due to
the importance of this problem, research in this area remains quite active.
In fact, recently algorithms have been presented that run in o(n2.81) time.
Unfortunately, the details of such algorithms are beyond the scope of this
book.

PRAM: Consider the design of an efficient matrix multiplication
algorithm for a CR PRAM. Suppose you are given a PRAM with n3

processors, where each processor has a unique label, (i, j, k), where
are integers. (Notice that processors can be

relabeled as in (1) time.) One can consider this
representation as associating processor with , the kth product
between the ith row of A and the jth column of B. Notice that this product
is one of the terms that contribute to ci,j. So, suppose that initially every
processor computes the result of . After this single step,
notice that all (n3) multiplications have been performed. All that
remains is to compute the summation of each dot product’s (n) terms.
This can be done in (log n) time by performing (n2) independent
semigroup operations, where the operator is addition. So, in (log n)
time, processors , , can perform a semigroup operation
to determine the value of ci,j, which can then be written into the
appropriate cell in memory in constant time. Therefore, the running time
of the algorithm is (log n), and the total cost is (n3 log n).

Unfortunately, while efficient, this algorithm is not cost-optimal. Therefore,
we can consider trying to reduce the running time by a factor of (log n) or the
number of processors by a factor of (log n). Because reducing the running time

k n{ , , , }1 2…P
i j k, ,

a b
i k k j, ,P

i j k, ,

a b
i k k j, ,

P
i j k, ,

P P
n n n1 1 1, , , ,

, ,…
P P

n1 3, ,…1 i j k n, ,

C i j C i j A i k B k j[,] [,] [,] [,]= + ×

Matrix Multiplication 149

150 Chapter 6 Matrix Operations

is a difficult challenge, let’s consider a CR PRAM with processors.
First, let each processor be responsible for a unique set of (log n) multiplications.
For example, processor P1 can perform the multiplication operations that proces-
sors performed in the previous algorithm, processor P2 can perform
the multiplication operations that processors performed in the
previous algorithm, and so on. Next, each processor can sum the products it com-
puted earlier in (log n) time. Finally, in (log n) time, each of the n2 values ci,j

could be computed by parallel semigroup operations (addition), with each semi-
group operation performed by a group of (n/log n) of the (n3/log n) processors
associated with ci,j. The algorithm follows.

PRAM Matrix Product Algorithm using (n3/log n) processors
Input: A p�q matrix A and a q�r matrix B.
Output: The matrix product
To simplify our analysis, we assume .

In parallel, each processor computes its (log n) products .
This takes (log n) time.

Compute each of the n2 values by parallel semigroup

(addition) operations (as described earlier). This takes (log n) time.

Therefore, the running time of the algorithm is (log n) and the cost of the
algorithm is (n3), which is optimal when compared to the traditional matrix mul-
tiplication algorithm.

Finally, we consider a CR PRAM with n2 processors. The algorithm is straight-
forward. Every processor simultaneously computes the result of a distinct entry in
matrix C. Notice that every processor implements a traditional sequential algo-
rithm for multiplying a row of A by a column of B (i.e., a dot product). This is done
in (n) time, simultaneously for every row and column. Therefore, the n2 entries
of C are determined in (n) time with n2 processors, which results in a cost-
optimal (n3) operations algorithm (with respect to the traditional matrix multipli-
cation algorithm).

Mesh: Consider the problem of determining C = A � B, where A, B,
and C are n�n matrices, on a mesh computer. Let’s consider the case in
which no processor stores more than one initial entry of A. Similarly, we
assume that no processor stores more than one initial entry of B. Further,
we assume that at the conclusion of the algorithm, no processor stores
more than one entry of the product matrix C.

Initially, we will consider a 2n�2n mesh, where matrix A is stored in the
lower-left quadrant of the mesh, matrix B is stored in the upper-right quadrant, and

c p
i j i k j

k

n

, , ,
=

=1

p a b
i j k i j j k, , , ,

= ×

p q r n= = =
C A B

p r p q q r, , ,
= ×

P P
n n1 22 2+log log
, ,…

P P
n1 2

, ,
log

…

n n3
2

/ log

matrix C will be produced in the mesh’s lower-right quadrant, as shown in Figure
6.2. Let’s consider the operations necessary to compute the entries of C in place.
That is, let’s design an algorithm so that the entries of A and B flow through the
lower-right quadrant of the 2n�2n mesh and arrive in processors where they can
be of use at an appropriate time.

Consider the first step of the algorithm. Notice that if all processors containing
an element of the first row of A send their entries to the right and all processors con-
taining an entry of the first column of B simultaneously send their entries down, the
processor responsible for c1,1 will have entries a1,n and bn,1 (see Figures 6.3a and
6.3b). Because is one of the terms necessary to compute c1,1, this partial
result can be used to initialize the running sum for c1,1 in the northwest processor of
the lower-right quadrant. Notice that initially, a1,n and bn,1 represent the only pair of
elements that could meet during the first step and produce a useful result.

a b
n n1 1, ,
×

Matrix Multiplication 151

b1,1 b1,2b1,3 b1,n. . .

b2,1.
.
.

b2,2b2,3

B
b2,n. . .

bn,1bn,2bn,3 bn,n. . .

a1,1 a1,2 a1,3 a1,n. . .

a2,1.
.
.

a2,2 a2,3

A
a2,n. . .

an,1 an,2an,3 an,n. . .

c1,1 c1,2 c1,3 c1,n. . .

c2,1.
.
.

c2,2 c2,3

C
c2,n. . .

cn,1 cn,2 cn,3 cn,n. . .

FIGURE 6.2 Matrix multiplication on a 2n�2n mesh. Matrix An�n

initially resides in the lower-left quadrant and matrix Bn�n initially
resides in the upper-right quadrant of the mesh. The matrix product
Cn�n = An�n � Bn�n is stored in the lower-right quadrant of the mesh.

Now consider the second step of such an algorithm. Notice that if the elements
in row 1 of A move to the right again, and that if the elements of column 1 of B
move down again, then a1,n–1 and bn–1,1 will meet in the processor responsible for
c1,1, which can add their product to its running sum. In addition, notice that if the
second row of A and the second column of B begin to move to the right and down,
respectively, during this second time step, then the processors responsible for
entries c2,1 and c1,2 could begin to initialize their running sums with a partial result
(see Figure 6.3c). Continuing with this line of thinking, notice that in general this
algorithm operates so that at time i, the ith row of A and the ith column of B initiate
their journeys to the right and down, respectively. Further, at time i, rows 1…i–1
and columns 1…i–1 will continue on their journeys. Eventually, all of the ele-
ments of C will be computed.

Now let’s consider the running time of the algorithm. Notice that at time n, the
last row of A and the last column of B begin their journeys. During every subse-
quent time step, the last row of A will continue to move one position to the right,
and the last column of B will continue to move one position down. At time 3n – 2,
elements an,1 and b1,n will finally meet in the processor responsible for computing
cn,n, the last element to be computed. Therefore, the running time for this algo-
rithm is (n). Is this good? Consider the fact that in the sequential matrix multipli-
cation algorithm on which our current algorithm is modeled, every pair of
elements (ai,k, bk,j) must be combined. Therefore, it is easy to see that this algo-
rithm is asymptotically optimal in terms of running time on a mesh of size 4n2.
This is due to the (n) communication diameter of a mesh of size 4n2. Now con-
sider the total cost of the algorithm. Because this algorithm runs in (n) time on a
machine with (n2) processors, the total cost of the algorithm is (n3). Therefore,
this algorithm is cost optimal with respect to the traditional sequential algorithm.

152 Chapter 6 Matrix Operations

b1,2b1,1

b2,2b2,1

a1,2a1,1

a2,2a2,1

b1,2

b2,2b1,1

a1,1 a1,2
b2,1

a2,2a2,1

a2,1
b1,2

b1,2

a1,2
b2,2

a1,1
b1,1

a2,1
b1,1

a2,2
b2,2

a1,1
b1,2

a2,1 a2,2
b2,1

(a) Initial distribution of data (b) Step 1. First column of B
 moves down and first row
 of A moves right

(c) Step 2. First and second
 column of B move down and
 first and second row of A
 move to the right

(d) Step 3. Both columns of B
 continue to move down while
 both rows of A continue to
 move right

(e) Step 4. Both columns of B
 continue to move down while
 both rows of A continue to
 move right

FIGURE 6.3 Data flow for matrix multiplication on a 2n�2n mesh. The initial distribution
of data is shown in (a). (b) shows step 1, in which the first column of B starts to move down
and the first row of A starts to move right. (c), (d), and (e) show steps 2, 3, and 4, respec-
tively, in which both columns of B move down and both rows of A move right.

Gaussian Elimination 153

Whereas the previous algorithm is time and cost optimal on a 2n�2n mesh
computer, let’s consider a matrix multiplication algorithm targeted at an n�n
mesh. Assume that processor Pi,j initially stores element ai,j of matrix A and ele-
ment bi,j of matrix B. When the algorithm terminates, processor Pi,j will store ele-
ment ci,j of the product matrix C. Because we already have an optimal algorithm
for a slightly expanded mesh, we consider adapting the algorithm just presented to
an n�n mesh. To do this, we simply use row and column rotations, as we did
when we adapted the selection sort algorithm from the input-based linear array to
run on the traditional linear array. Specifically, to prepare to simulate the previous
algorithm, start by performing a row rotation so that processor Pi,j contains ele-
ment ai,n–j+1 of matrix A, followed by a column rotation so that processor Pi,j con-
tains element bn–i+1,j of matrix B (see Figure 6.4).

a
2,2

b
2,2

a
2,1

b
2,1

a
1,2

b
1,2

a
1,1

b
1,1

a
2,1

b
2,2

a
2,2

b
2,1

a
1,1

b
1,2

a
1,2

b
1,1

a
2,1

b
1,2

a
2,2

b
1,1

a
1,1

b
2,2

a
1,2

b
2,1

FIGURE 6.4 Row and column rotations—preprocessing steps for matrix multipli-
cation on an n�n matrix. (a) shows the initial distribution of data. (b) shows the
result of a row rotation of A. (c) shows the result of a column rotation of B.

At this point, the strategy described in the previous algorithm can be followed
while we make the natural adjustments to accommodate the necessary rotations to
continue moving the data properly. In addition, the data is starting in the first row
and the first column. The details are left to the reader. Notice that the additional
rotations, which can be thought of as serving as a “preprocessing” step, require

(n) time. Therefore, the asymptotic analysis of this algorithm results in the same
time- and cost-optimal results as previously discussed.

Gaussian Elimination

The technique of Gaussian elimination is used widely for such applications as
finding the inverse of an n�n matrix and solving a system of n linear equations in
n unknowns. In our presentation, we focus on the problem of finding an inverse
matrix.

The n�n matrix In, called the identity matrix, is the matrix in which the entry
in row i and column j is

a) b) c)

It is well known that for n�n matrix A, we have and .
We say an n�n matrix A is invertible (or nonsingular) if there is an n�n matrix B
such that . If such a matrix B exists, it is called the inverse of A,
and we write .

We say each of the following is an elementary row operation on an n�n
matrix A:

• Interchange distinct rows of A (see Figure 6.5).
• Multiply (or divide) a row of A by a nonzero constant. That is, for some ,

replace each element ai,j of row i by cai,j (see Figure 6.6).
• Add (or subtract) a constant multiple of row i to (a different) row j. That is, for

some constant c, replace each element of row j by (see Figure
6.7).

a ca
j k i k, ,
+a

j k,

c 0

B A= 1
A B B A I

n
× = × =

I A A
n
× =A I A

n
× =

1

0

 if

 if

i j

i j

= ;

.

154 Chapter 6 Matrix Operations

FIGURE 6.5 Interchange of row1 and
row3.

FIGURE 6.6 Replace row1 by 0.2 �
row1.

FIGURE 6.7 Replace row2 by row2 +
5 � row1.

It is well known that if a sequence of elementary row operations applied to
an n�n matrix A transforms A into In, then the same sequence of elementary
row operations applied to In transforms In into A–1. Thus, we can implement an
algorithm to find A–1 by finding a sequence of elementary row operations that
transforms the “augmented matrix” [A | In] to [In | A–1].

Consider an example. Let

We can find A–1 as follows. Start with the matrix

The first phase of our procedure is the “Gaussian elimination” phase. One col-
umn at a time from left to right, we perform elementary row operations to create
entries of 1 on the diagonal of A and 0s below the diagonal. In this example, we
use row operations to transform column 1 so that and ; then
we use row operations that do not change column 1 but result in and

; then we use a row operation that does not change columns 1 or 2 but
results in . More generally, after Gaussian elimination on , all ,

, and all , . That is, there are 1s along the diagonal and
0s below the diagonal, as shown in the next example.

1. Divide row 1 by 5 to obtain

2. Add 3 times row 1 to row 2, and 3 times row 1 to row 3, to obtain

Notice column 1 now has the desired form. We proceed with Gaussian elimina-
tion steps on column 2.

1 0 6 0 4

0 0 2 0 2

0 0 2 0 8

0 2 0 0

0 6 1 0

0 6 0 1

. .

. .

. .

.

.

.

1 0 6 0 4

3 2 1

3 2 2

0 2 0 0

0 1 0

0 0 1

. . .

1 <j i na
i j,
= 01 i n

a
i i,
= 1A

n n×
a

3 3
1

,
=

a
2 3

0
,
=

a
2 2

1
,
=

a a
2 1 3 1

0
, ,
= =a

1 1
1

,
=

A I|
3

5 3 2

3 2 1

3 2 2

1 0 0

0 1 0

0 0 1

=

A =
5 3 2

3 2 1

3 2 2

–

– –

– –

.

Gaussian Elimination 155

3. Divide row 2 by 0.2 to obtain

4. Subtract 0.2 times row 2 from row 3 to obtain

Note column 2 now has the desired form.
5. Divide row 3 by –1 to obtain

This completes the Gaussian elimination phase of the procedure.
Now we proceed with the “back substitution” phase, in which, for one column

at a time from right to left, we use elementary row operations to eliminate nonzero
entries above the diagonal. In a sense, this is more Gaussian elimination, as we use
similar techniques, now creating 0s above the diagonal. We proceed as follows:

1. Subtract 0.4 times row 3 from row 1, and 1 times row 3 from row 2, to obtain

2. Add 0.6 times row 2 to row 1, to obtain

Because the left side of the augmented matrix is now I3, the right side is the
desired inverse:

1 0 0

0 1 0

0 0 1

2 2 1

3 4 1

0 1 1

1 0 6 0

0 1 0

0 0 1

0 2 0 4 0 4

3 4 1

0 1 1

. . . .

1 0 6 0 4

0 1 1

0 0 1

0 2 0 0

3 5 0

0 1 1

. . .

1 0 6 0 4

0 1 1

0 0 1

0 2 0 0

3 5 0

0 1 1

. . .

1 0 6 0 4

0 1 1

0 0 2 0 8

0 2 0 0

3 5 0

0 6 0 1

. .

. .

.

.

156 Chapter 6 Matrix Operations

This can be verified easily by showing that the products A � A–1 and A–1 � A
both coincide with I3.

The previous example illustrates our general algorithm for finding the inverse
of an n�n matrix A. In the algorithm presented next, we assume that array

is used to represent the matrix we wish to invert, and the matrix
is initialized to represent the n�n identity matrix. Next, we pre-

sent a procedure for either finding the inverse of A or determining that such an
inverse does not exist.

1. {Gaussian elimination phase: create in A an upper triangular matrix, a matrix
with 1 on every diagonal entry and 0 on every entry below the diagonal.}
For i = 1 to n, do
• If and for all m > i, conclude that A–1 does not exist

and halt the algorithm.
• If and for some smallest m > i, interchange rows i

and m in the array A and in the array I.
• Now we assume . Divide row i of A and row i of I by A[i,i]. That

is, let and then for j = 1 to n, replace A[i,j] by .
(Actually, it suffices to make these replacements for j = i to n, because the
Gaussian elimination has caused A[i,j] = 0 for j < i.) Similarly, for j = 1 to n,
replace I [i,j] by I [i,j]/scale. Note we now have A[k,k] = 1 for , and

if (0 below the diagonal in columns indexed less
than i).

• Now we have A[i,i] = 1. If i < n, then for r > i, subtract A[r,i] times row i
from row r in both the arrays A and I (this zeroes out the entries in A of col-
umn i below the diagonal without destroying the 0s below the diagonal in
columns further to the left). That is,

If i < n, then
For to n

For to n

End For col
End For row

End If

I row col I row col factor I i col[,] [,] [,]×
A row col A row col factor A i col[,] [,] [,]×

col = 1
factor A row i[,]

row i= +1

j i j m< <,A m j[,] = 0
k i

A i j scale[,] /scale A i i= [,]
A i i[,] 0

A m i[,] 0A i i[,] = 0

A m i[,] = 0A i i[,] = 0

I n n[,]1 1… …
A n n[,]1 1… …

A–

–

.1

2 2 1

3 4 1

0 1 1

=

Gaussian Elimination 157

{Note we now have for , and if
(0 below the diagonal in columns indexed i).}

End For i

2. (Back substitution phase: eliminate the nonzero entries above the diagonal of
A. We use zeroingCol as both a row and column index; it represents both the
column we are “zeroing” off the diagonal, and the row combined with the cur-
rent row to create the desired matrix form.)

For downto 2
For downto 1

For to n

End For col
End For row

End For zeroingCol

We now discuss the analysis of Gaussian elimination on sequential and paral-
lel models of computation.

RAM: A straightforward implementation of the algorithm given earlier
on a RAM requires (n3) time in the worst case, when the matrix inverse
exists and is determined. The best-case running time is (n), when it is
determined by examining the first column that an inverse does not exist.

Parallel Models: We must be careful. For example, it is easy to see
how some of our inner loops may be parallelized, but some of our outer
loops seem inherently sequential. Thus, on a PRAM it is easy to see how
to obtain significant speedup over the RAM but perhaps not how to
obtain optimal performance. Further, on distributed memory models such
as the mesh, some of the advantages of parallelism may seem negated by
delays needed to broadcast key data values throughout rows or columns
of the mesh. Next, we discuss how the basic algorithm we have presented
can be implemented efficiently on various parallel models.

PRAM of n2 Processors: Let’s assume we are using a PRAM with the
EW property. Each decision on whether to halt, as described in the
algorithm, can be performed by a semigroup operation in (log n) time.
Now consider the situation when the decision is to continue, leading to
the results that ai,i = 1 and ai,j = 0 for j < i. A row interchange can be done
in (1) time. Scalar multiplication or division of a row can be done on a
CR PRAM in (1) time; an ER PRAM requires (log n) time, because a
broadcast of the scalar to all processors associated with a row is required.

I row col I row col factor I zeroingCol c[,] [,] [,× ool]
A row col A row col factor A zeroingCol c[,] [,] [,× ool]

col = 1
factor A row zeroingCol[,]

row zeroingCol= 1
zeroingCol n=

j i j m<,A m j[,] = 0k iA k k[,] = 1

158 Chapter 6 Matrix Operations

Notice that the row subtraction of the last step of the Gaussian
elimination phase may be done in parallel; that is, the outer For row loop
can be parallelized as there is no sequential dependence between the
rows in its operations; and the inner For col loop parallelizes. As in the
scalar multiplication step, the outer For row loop executes its operations
in (1) time on a CR PRAM and in (log n) time on an ER PRAM.
Thus, a straightforward implementation of the Gaussian elimination
phase requires (nlog n) time on a PRAM (CR or ER).

For the back substitution phase, we can similarly parallelize the inner
and the intermediate-nested loop to conclude this phase, which requires

(n) time on a CR PRAM and (nlog n) time on an ER PRAM. Thus, a
straightforward implementation of this algorithm requires (nlog n) time
on an EW PRAM. The total cost is (n3log n). Note that relative to the
cost of our RAM implementation, the PRAM implementation of Gaussian
elimination to invert a matrix is not optimal. We leave as an exercise the
question of obtaining an optimal implementation of the algorithm on a
PRAM.

Mesh of n2 Processors: As usual, we assume entries of the arrays A
and I are distributed among the processors of the mesh so that the
processor Pi,j in row i and column j of the mesh contains both A[i,j] and
I [i,j].

Several of the steps of our general algorithm require communication
of data across a row or column of the mesh. For example, scalar
multiplication of a row requires communication of the scalar across the
row. If every processor in the row waits for this communication to
finish, the scalar multiplication step would take (n) time. It’s easy to
see how this would yield a running time of (n2), which is not optimal,
because the total cost is then (n2 � n2) = (n4).

We obtain better mesh performance by pipelining and pivoting.
Notice the following is true of each of the steps of the inner loops of our
algorithm. Once a processor has the data it needs to operate on, its
participation in the current step requires (1) additional time, after which
the processor can proceed to its participation in the next step of the
algorithm, regardless of whether other processors have finished their
work for the current step. (Thus, the instructions are pipelined.) There-
fore, if we could be sure that every processor experiences a total of (n)
time waiting for data to reach it, it would follow that the algorithm
requires (n) time ((n) time for waits and (n) time for the “active”
execution of instructions in each processor).

However, there is one place where the algorithm as described earlier
could have processors that experience (1) delays of (n) time apiece to
receive data: the step that calls conditionally for exchanging a row of A

Gaussian Elimination 159

having a 0 diagonal entry with a row below it having a nonzero entry in
the same column. To ensure this situation does not cost us too much time
via frequent occurrence, we modify our algorithm using the technique
of pivoting, which we will describe now. If processor Pi,i detects that
A[i,i] = 0, then Pi,i sends a message down column i to search for the first
nonzero A[j,i] with j > i. If such a j is found, row j is called the pivot row,
and it plays the role similar to that otherwise played by row i: row j is
used for Gaussian elimination in the rows below it (creating 0 entries in
the ith column of each such row); rows between row i and row j (if any)
have entries of 0 in column i, hence, they require no row combination at
this stage; and row j “bubbles up” to row i in a wavelike fashion (using
both vertical and horizontal pipelining), whereas row i “bubbles down”
to row j, executing the row interchange.

On the other hand, if no such j is found, processor Pi,n broadcasts a
message to halt throughout the mesh.

In this fashion, we pipeline the row interchange step with the
following steps of the algorithm to ensure that each processor spends

(n) time awaiting data. It follows, as described previously, that we can
compute the inverse of an n�n matrix or decide, when appropriate, that
it is not invertible, through Gaussian elimination on an n�n mesh in

(n) time, which is optimal relative to our RAM implementation.

Roundoff Error

It should be noted that the Gaussian elimination algorithm is sensitive to roundoff
error. Roundoff error occurs whenever an exact calculation requires more decimal
places (or binary bits) than are actually used for storage of the result. Occasionally,
roundoff error can cause an incorrect conclusion with respect to whether the input
matrix has an inverse, or with respect to which row should be the pivot row. Such
a situation could be caused by an entry that should be 0, computed as having a
small nonzero absolute value. Also, a roundoff error in a small nonzero entry
could have a powerfully distorting effect if the entry becomes a pivot element,
because the pivot row is divided by the pivot element and combined with other
rows.

It is tempting to think such problems could be corrected by selecting a small
positive number and establishing a rule that whenever a step of the algorithm
computes an entry with absolute value less than , the value of the entry is set to 0.
However, such an approach can create other problems because a nonzero entry in
the matrix with an absolute value less than may be correct.

Measures used to prevent major errors due to roundoff errors in Gaussian
elimination are beyond the scope of this book. However, a crude test of the accu-
racy of the matrix B computed as the inverse of A is to determine the matrix prod-
ucts A � B and B � A. If all entries of both products are sufficiently close to the

160 Chapter 6 Matrix Operations

respective entries of the identity matrix In to which they correspond, then B is
likely a good approximation of A–1.

Summary

In this chapter, we study the implementation of the fundamental matrix operations,
matrix multiplication, and Gaussian elimination, the latter a popular technique for
solving an n�n system of linear equations. We give algorithms to solve these
problems and discuss their implementations on several models of computation.

Chapter Notes

A traditional sequential algorithm to multiply runs in (n3) time. This
algorithm is suggested by the definition of matrix multiplication. However, in
1968, the paper “Gaussian Elimination Is Not Optimal,” by V. Strassen,
Numerische Mathematik 14(3), 1969, pp. 354–356, showed that a divide-and-con-
quer algorithm could be exploited to perform matrix multiplication in O(n2.81)
time. The mesh matrix algorithm presented in this chapter is derived from the one
presented in Parallel Algorithms for Regular Architectures by R. Miller and Q.F.
Stout (The MIT Press, Cambridge, Mass., 1996).

The algorithm we present for Gaussian elimination is a traditional algorithm
found in many introductory textbooks for the mathematical discipline of linear
algebra. Its presentation is similar to that found in Parallel Algorithms for Regular
Architectures.

Two additional books that concentrate on algorithms for problems in compu-
tational science are G.S. Almasi and A. Gottlieb’s Highly Parallel Computing
(The Benjamin/Cummings Publishing Company, New York, 1994) and G.W.
Stout’s High Performance Computing (Addison Wesley Publishing Company,
New York, 1995).

Exercises

1. The PRAM algorithms presented in this chapter for matrix multiplication are
simpler under the assumption of the CR property. Why? In other words, in
what step or steps of our algorithms is there a computational advantage in
assuming the CR property as opposed to the ER property?

2. Give an algorithm for a CR PRAM with n processors that solves the matrix
multiplication problem in (n2) time.

3. In this chapter, we present a mesh algorithm for computing the product of two
n�n matrices on an n�n mesh. A somewhat different algorithm for an n�n

A B
n n n n× ××

Exercises 161

mesh can be given, in which we more closely simulate the algorithm given
earlier for a 2n�2n mesh. If we compress matrices A and B into sub-
meshes, it becomes easy to simulate the 2n�2n mesh algorithm given in this
chapter.
a) Give an algorithm that runs in (n) time to compress the matrix A, where

A is initially stored so that ai,j is in processor Pi,j, , . At
the end of the compression, A should be stored so that processor Pi,j,

, , stores ak,m, for , .
Show that your algorithm is correct.

b) Give an algorithm that runs in (n) time to inflate the matrix C, where the

initial storage of the matrix is such that processor Pi,j, ,

, contains ck,m, for , .

At the end of the inflation, processor Pi,j should store ci,j for 1 i n, 1 j
n. Show that your algorithm is correct.

4. Show how our algorithm for Gaussian elimination to invert an n�n matrix
can be implemented on a PRAM of n2/log n processors in (nlog n) time.

5. Show how the array changes (as determined by pipelining, pivoting, and
replacement computations) via our matrix inversion algorithm as imple-
mented on a 3�3 mesh for the matrix

That is, you should show the appearance of A at each time step, in which a
processor performs any of the following operations:

• Send a unit of data to an adjacent processor (if necessary, after a (1) time
decision).

• Receive a unit of data from an adjacent processor (if necessary, after a (1)
time decision).

• Calculate in (1) time and store a new value of its entry of A (if necessary,
after a (1) time decision).

6. Devise an efficient algorithm for computing the matrix multiplication
on a linear array of n processors, and analyze its running

time. You should make the following assumptions.
The processors of the linear array are numbered from left to right.
For each j, 1 j n, the j th column of A and the j th column of B are initially
stored in Pj.

P P
n1

, ,…

C A B
n n n n n n× × ×= ×

A =
0 2 5

4 1 1

8 2 1

m j n j n{ , }2 1 2k i n i n{ , }2 1 2n
j n

2
<

n
i n

2
<

m j j{ , }2 1 2k i i{ , }2 1 21 2j n /1 2i n /

1 j n1 i n

n n

2 2
×

162 Chapter 6 Matrix Operations

At the end of the algorithm, for each j, 1 j n, the j th column of C is stored
in Pj.
Your algorithm may take advantage of the fact that addition is commutative.
For example, if n = 4, your algorithm may compute

rather than using the “usual” order

c a b a b a b a b
1 2 1 1 1 2 1 2 2 2 1 3 3 2 1 4 4 2, , , , , , , , ,

= + + +

c a b a b a b a b
1 2 1 2 2 2 1 1 1 2 1 4 4 2 1 3 3 2, , , , , , , , ,

= + + +

Exercises 163

164

7
Parallel Prefix

Parallel Prefix

Application: Maximum Sum Subsequence

Array Packing

Interval (Segment) Broadcasting

(Simple) Point Domination Query

Computing Overlapping Line Segments

Summary

Chapter Notes

Exercises

165

The focus of this chapter is on developing efficient algorithms to perform the paral-
lel prefix computation. Parallel prefix is a powerful operation that can be used to

sum elements, find the minimum or maximum of a set of data, broadcast values, com-
press (or compact) data, and much more. We will find many uses for the parallel prefix
operation as we go through the more advanced chapters of this book. In fact, parallel
prefix is such an important operation that it has been implemented at the lowest levels
on many machines and is typically available to the user as a library call.

Parallel Prefix

First, we provide a definition of parallel prefix. Let be a set of
elements contained in a set Y. Let be a binary, associative operator that is
closed with respect to Y. Recall that the term binary means that the operator
takes two operands, say and , as input. The term closed means that the result
of is a member of Y. Recall that associative means that the operator
obeys the relation

(The reader should note that we do not require to be commutative. That is,
we do not require to be equal to .)

The result of is referred to as the kth prefix. The computation
of all n prefixes, , , , …, , is referred to as
the parallel prefix computation. Another common term for this operation is scan.
Because parallel prefix can be performed quite simply on a sequential machine by
making a single pass through the data, it is also sometimes referred to as a sweep
operation (an operation that can be performed by sweeping through the data).

The operator is typically a unit-time operator, that is, an operator that
requires time to perform. Sample operators include addition (+), multiplica-
tion (), MIN, MAX, AND, OR, and XOR.

Lower Bound: The number of operations required to perform a
complete parallel prefix is , because the nth prefix involves
operating on all n values.

RAM Algorithm: Let’s consider a straightforward sequential algorithm
for computing the n prefixes p1, p2, . . . , pn, where and

for . The algorithm follows.

{A constant time assignment}
For to , do {A linear time scan through the elements}

{A constant time operation}
End For

Because the running time of the sequential parallel prefix algorithm is domi-
nated by the work done within the loop, it is easy to see that this algorithm runs in

time. Further, this algorithm is optimal, to within a constant factor, because
time is required to solve this problem (see Figures 7.1 and 7.2).()n

()n

p p x
i i i+ +=

1 1

n 1i = 1
p x

1 1
=

i n{ , , , }1 2 1…p p x
i i i+ +=

1 1

p x
1 1
=

()n

×
()1

x x x
n1 2

…x x x
1 2 3

x x
1 2

x
1

x x x
k1 2

…
x x

j ix x
i j

x x x x x x
1 2 3 1 2 3() = ()

x x
1 2

x
2x

1

X x x x
n

={ , , , }
1 2
…

166 Chapter 7 Parallel Prefix

Parallel Algorithms

When we consider parallel models of computation, we will assume that the data is
stored initially in a contiguous fashion. That is, we assume that data is stored in
contiguous memory locations in the shared memory of a PRAM or in contiguous
processors on a distributed memory machine. Note that this situation is analogous
to the one just discussed for the RAM in that we assume the input is an array of
data.

Parallel Prefix on the PRAM

The first parallel model of computation we consider is the PRAM. In this section,
we will use the term segment to refer to a nonempty subset of consecutively
indexed entries of an array. We denote a segment covering entries i through j,

, as . Using this terminology, we can say that the parallel prefix problem
requires the computation of prefix values for all n segments, S1,1, S1,2, . . . , S1, n.

S
i j,

i j

Parallel Prefix 167

X

P

4 3 6 2 1 5

4 7 13 15 16 21

[1] [2] [3] [4] [5] [6]+

FIGURE 7.1 An example of parallel prefix on a
set X of 6 items. The operation is addition.
The resulting prefix sums are given in array P.

X

P

4 3 6 2 1 5

4 3 3 2 1 1

[1] [2] [3] [4] [5] [6]min

FIGURE 7.2 An example of parallel prefix on a
set X of 6 items. The operation is minimum.
The resulting prefixes are given in array P.

168 Chapter 7 Parallel Prefix

The first algorithm we present is fairly naïve. Given an input set of data,
and a set of n processors, P1, . . . , Pn, let processor Pi be asso-

ciated with data item xi. The algorithm operates by recursive doubling, that is, by
combining pairs of elements, then pairs of pairs, and so forth. So, for example,
is computed, in sequence, as , then , then , then

, and finally as
. Specifically, the algorithm initially combines the elements x8 and x9.

In the next step, it combines pairs of two items, namely, the result of with
the result of . In the third step, it combines pairs of four items, namely,

and , and so on.
We now consider another example. Notationally, let be denoted

as [xi – xj]. Now consider the order of computation for . The computation
sequence consists of x19, then [x18 – x19], then [x16 – x19], then [x12 – x19], then
[x4 – x19], and finally [x1 – x19]. The algorithm follows. (See the example shown in
Figure 7.3.)

For to n, do in parallel
;

;
End For
For to n, do in parallel

{Compute the ith prefix by repeated doubling of the
length of the segment over which it is computed}

While , do
;

;
;

End While
End For

Due to the recursive doubling nature of the algorithm, the running time is
(log n). The reader is advised to go through the algorithm carefully with an

example. Notice that in every iteration of the algorithm, the number of terms in
every incomplete prefix will double. In fact, with a little work, one can determine
that the ith prefix will be complete after iterations.

We now consider a version of parallel prefix with the same time and processor
bounds but with different algorithmic characteristics. The principle of this algo-
rithm is similar to that of the combine operation in MergeSort. Initially, we “com-
pute” single prefix values . In the next step, we combine the single
prefix values to determine prefix values of pairs, resulting in the determination of

. Next, we combine pairs of prefix values to
determine prefix values of pairs of pairs, which results in the determination of
< >[],[], ,[]x x x x x x

n n1 2 3 4 1
…

< >x x x
n1 2

, , ,…

log
2
i

p first in segment p first in segment
i j
. _ _ . _ _=

p prefix p prefix p prefix
i j i
. . .=

j p first in segment
i

= . _ _ 1
p first in segment

i
. _ _ >1

i = 2

p first in segment i
i
. _ _ =

p prefix x
i i
. =
i = 1

S
1 19,

x x
i j
…

x x x x
6 7 8 9

x x x x
2 3 4 5

x x
6 7

x x
8 9

x x x
7 8 9

x x x x x x
1 2 3 4 5 6

x x x x x x x x
2 3 4 5 6 7 8 9

x x x x
6 7 8 9

x x
8 9x

9

S
1 9,

X x x x
n

={ , , , }
1 2
…

Parallel Prefix 169

, and so forth. The algorithm continues for
iterations, at which point all prefix values have been determined for seg-

ments that have lengths that are powers of 2 or that end at . See Figure 7.4 for an
example.

x
n

log
2

n
< >[],[], ,[]x x x x x x

n n1 4 5 8 3
…

n = 11; log2 11 = 4; is addition

Initial Values 1 2 3 4 5 6 7 8 9 10 11

Step 1 1 3 5 7 9 11 13 15 17 19 21

Step 2 1 3 6 10 14 18 22 26 30 34 38

Step 3 1 3 6 10 15 21 28 36 44 52 60

Step 4 1 3 6 10 15 21 28 36 45 55 66

FIGURE 7.3 A recursive doubling algorithm to compute the parallel prefix of 11
values on a PRAM in which each processor is responsible for one data item. The
algorithm requires parallel steps. log

2
11 4=

Initial data

1

2

3

4

5

6

7

8

9

10

11

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

Step 1

1

3

3

7

5

11

7

15

9

19

11

Step 2

1

3

6

10

5

11

18

26

9

19

30

Step 3

1

3

6

10

15

21

28

36

9

19

30

Step 4

1

3

6

10

15

21

28

36

45

55

66

FIGURE 7.4 An example of computing parallel prefix by continually combining
results of disjoint pairs of items. The operation used in this example is addi-
tion. Notice that the algorithm requires steps. At the conclusion of

step 1, we have computed .

At the end of step 2, we have computed . At the end

of step 3, we have computed . At the end of step 4, we have

computed .x x
1 11

x x x x
1 8 9 11

,

x x x x x x
1 4 5 8 9 11

, ,

x x x x x x x x x
1 2 3 4 5 6 7 8 9

, , , , xx x
10 11

,
log

2
11 4=

In an additional (log n) time, in parallel each processor Pi can build up the
prefix by a process that mimics the construction of the value i as a string
of binary bits, from the prefix values computed in previous steps.

Notice that the cost of either algorithm, which is a product of the running time
and number of available processors, is (nlog n). Unfortunately, this is not opti-
mal because we know from the running time of the RAM algorithm that this prob-
lem can be solved with (n) operations.

Now let’s consider options for developing a time- and cost-optimal PRAM
algorithm for performing a parallel prefix. With respect to the algorithm just intro-
duced, we can either try to reduce the running time from (log n) to (1), which
is unlikely, or reduce the number of processors from n to (n/log n) while retain-
ing the (log n) running time. The latter approach is the one we will take. This
approach is similar to that taken earlier in the book when we introduced a time-
and cost-optimal PRAM algorithm for computing a semigroup operation. That is,
we let each processor assume responsibility for a logarithmic number of data
items. Initially, each processor sequentially computes the parallel prefix over its
set of (log n) items. A global prefix is then computed over these (n/log n) final,
local prefix results. Finally, each processor uses the global prefix associated with
the previous processor to update each of its (log n) prefix values. The algorithm
follows. (See the example shown in Figure 7.5.)

x x
i1

170 Chapter 7 Parallel Prefix

x
i
Values

p
i
 (step 1)

r
i
 (step 2)

p
i
 (step 3)

1

1

1

2

3

3

3

6

6

4

10

10

5

5

15

6

11

21

7

18

28

8

26

36

36

9

9

45

10

19

55

11

30

66

12

42

78

78

13

13

 91

14

27

105

15

42

120

16

58

136

13610

P
1

P
2

P
3

P
4

FIGURE 7.5 An example of computing the parallel prefix on a PRAM
with (n/log n) processors. In this example, we are given n = 16 data
items, the operation is addition, there are log2 n = 4 processors, and
each processor is responsible for n/log2n = 16/4 = 4 data items.

Step 1:

For i = 1 to , do in parallel

;

For j = 2 to , do

End For i;

p p x
i n j i n j i() log ()log (+ +

=
1 1 1 12 2))log2 n j+

log
2

n

p x
i n i n() log ()log+ +

=
1 1 1 12 2

n

nlog
2

Comment: After step 1, processor P1 has the correct final prefix values
stored for the first log2 n prefix terms. Similarly, processor P2 now knows the
(local) prefix values of the log2 n entries stored in processor P2, and so forth.
In fact, every processor Pi stores , the prefix computed over the

segment of the array X indexed by , for
all .

Step 2: Compute the global prefixes over the n/log2 n final prefix values,
currently stored one per processor. Let

Comment: Note that ri is a prefix over the segment of the array X indexed
by . This prefix computation over n/log2 n terms is computed

in time by the previous algorithm because the
step uses one piece of data stored in each of the n/log2 n processors.

Step 3: The final stage of the algorithm consists of distributing, within each
processor, the final prefix value determined by the previous processor.

For i = 2 to , processors Pi do in parallel

For j = (i – 1) log2 n + 1 to i log2 n, do

End For i
End Parallel

Comment: Note that pj has the desired final value, as it is now calculated
over the segment of X indexed 1, . . . , j.

Mesh

In this section, we consider the problem of computing the parallel prefix on a mesh
computer. As discussed earlier, when considering an operation that involves
an ordering imposed on the data, we must first consider an ordering of the proces-
sors. In this section, we will consider a simple row-major ordering of the proces-
sors, as shown in Figure 7.6. Formally, the row-major index of processor Pi,j,

, is . () /i n j+1 1 2i j n, { , , , }/1 2 1 2…

p r p
j i j
=

1

n

nlog
2

log / log (log)n n n()() =
1

2
…i nlog

r p

r r p i
n

n

n

i i i n

1

1
2

2

2
2 3

=

=

log

log

,

, , , ,
log

… .

j n{ , , ,log }1 2
2

…
() log , ,() logi n i n j+ +1 1 1

2 2
…

p
i n j() log +1 2

Parallel Prefix 171

172 Chapter 7 Parallel Prefix

The input to our parallel prefix problem consists of a data set ,
distributed one item per processor on an n1/2 � n1/2 mesh. That is, processor Pi

(denoted by its row-major index) initially contains xi, . When the algo-
rithm terminates, processor Pi will contain the ith prefix . We describe
the algorithm in terms of mesh operations that we developed earlier in the book.

First, perform a row rotation within every row. At the conclusion of this rota-
tion, the rightmost processor in every row knows the final prefix value of the con-
tiguous subset of elements of X in its row. Notice that this step is similar to step 1
of the PRAM algorithm just described, in which every processor computes the
prefix of entries initially stored in its processor. Next, using only the processors in
the rightmost column, perform a column rotation to determine the parallel prefix
of these partial results. Again, note that this step is similar to step 2 of the PRAM
algorithm, which computes the global parallel prefix of the partial results deter-
mined in step 1.

At this point, notice that the rightmost processors in every row contain their cor-
rect final answers. Furthermore, the value stored in the rightmost processor of row i
(let’s call this value ri) needs to be applied to all of the partial prefix values deter-
mined by the processors (during step 1) in the row with index i + 1. This can be done
by first moving the appropriate prefix values ri determined at the end of step 2 down
one processor (from the rightmost processor in row i to the rightmost processor in
row i + 1). Once this is done, every row (with the exception of the first row) can per-
form a broadcast from the rightmost processor in the row to all other processors in
the row, so that all processors in the row i + 1 can apply ri appropriately.

Therefore, the algorithm consists of a row rotation, a column rotation, a com-
munication step between neighboring processors, and a final row broadcast. Each

x x
i1

…
1 i n

X x x x
n

={ , , , }
1 2
…

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

FIGURE 7.6 The row-major index
scheme imposed on a mesh of size 16.

of these steps can be performed in O(n1/2) time on a mesh of size n. In fact, because
the rotations take (n1/2) time, the running time of the algorithm is (n1/2). Of
course, we are now presented with what is becoming a routine question, namely,
“How good is this algorithm?” Because the mesh of size n has a (n1/2) communi-
cation diameter, and because every pair of data elements is required for the deter-
mination of the nth prefix, we can conclude that the running time is optimal for this
architecture. Now consider the cost. The algorithm requires (n1/2) time, using a
set of (n) processors, which results in a cost of (n3/2). We know that only (n)
operations are required, so we can conclude that this is not cost optimal.

This brings us to one of our favorite questions: can we design an algorithm that
is more cost effective than our current algorithm? The major limitation for the
mesh, in this case, is the communication diameter. That is, there is no inherent
problem with the bisection width. To reduce the communication diameter, we must
reduce the size of the mesh. This will have the effect of increasing the number of
data elements for which each processor is responsible, including the number of
input elements, the number of final results, and the number of intermediate results.

Notice that at the extreme, we could consider a mesh of size 1, or a RAM. The
algorithm would run in a very slow (n) time, but it would also have an optimal
cost of (n). However, this is not quite what we envisioned when we thought about
reducing the size of a mesh. In fact, consider keeping the cost of the mesh optimal
but improving the running time from that of a fine-grained mesh. In such a case, we
want to balance the communication diameter with the amount of work each proces-
sor must perform. Given an n1/3 � n1/3 mesh, notice that each of these n2/3 proces-
sors would store n1/3 elements of X and would be responsible for storing n1/3 final
prefix results. This is similar to the PRAM algorithm in which we required every
processor to be responsible for (log n) input elements and final results.

So, let’s consider a mesh of size n2/3 (i.e., a mesh of size n1/3 � n1/3), where
each processor initially stores n1/3 entries of X. The algorithm follows the time-
and cost-optimal PRAM algorithm presented in the previous section, combined
with the global operations and techniques presented in the non-optimal n1/2 � n1/2

mesh algorithm just presented. First, every processor computes the prefix of its
n1/3 entries in (n1/3) time by the standard sequential (RAM) algorithm. Now, con-
sider the final restricted prefix value in each of the n2/3 processors. The previous
(non-optimal) mesh algorithm can be applied to these n2/3 entries, stored one per
processor on the n1/3 � n1/3 mesh. Because this mesh algorithm runs in time pro-
portional to the communication diameter of the mesh, this step will take (n1/3)
time. At the conclusion of this step, every processor will now have to obtain the
previous prefix value and go through and determine each of its final n1/3 results, as
we did in the PRAM algorithm. Clearly, this can be done in (n1/3) time. There-
fore, the running time of the algorithm is (n1/3). This is because we balanced the
time required for data movement with the time required for sequential computing.

Parallel Prefix 173

174 Chapter 7 Parallel Prefix

The algorithm runs in (n1/3) time on a machine with (n2/3) processors. There-
fore, the cost of the algorithm is (n1/3 � n2/3) = (n), which is optimal.

Hypercube

In this section, we consider the problem of computing the parallel prefix on a
hypercube. As with the mesh, when considering an operation that involves an
ordering imposed on the data, we must first consider an ordering of the processors.
In this section, we assume that the data set is distributed so
that processor Pi initially contains data item xi. Notice that we have changed the
indexing of the set X from , which was used for the RAM, mesh, and
PRAM, to . The reason we did this was to accommodate the natural
indexing of a hypercube of size n, in which the log2 n-bit indices are in the range
of . (Recall that two processors are connected if and only if their
binary addresses differ in exactly one bit.) So, we assume that every processor Pi

initially contains data item xi, and at the conclusion of the algorithm, every proces-
sor Pi will store the ith prefix, .

The procedure we present is similar to the recursive doubling algorithm we
presented earlier in connection with an efficient hypercube broadcasting algo-
rithm. The algorithm operates by cycling through the log2 n bits of the processor
indices. At iteration i, every processor determines the prefix for the subhypercube
that it is in with respect to the i least significant bits of its index. In addition, every
processor uses this partial information, as appropriate, to compute its required pre-
fix value. The algorithm follows (see Figure 7.7).

Input: Processor Pi contains data element , .
Output: Processor Pi contains the ith prefix
In Parallel, every processor Pi does the following:

{prefix for current subcube}
{prefix of desired result}

{lsb=least significant bit and msb=most significant bit}
For to msb, do

{In this loop, we consider the binary processor indices
from the rightmost bit to the leftmost bit.}

send subcube_prefix to b-neighbor
receive temp_prefix from b-neighbor
If the bth bit of processor Pi is a 1, then

processor_prefix = temp_prefix processor_prefix
subcube_prefix = temp_prefix subcube_prefix

Else
{We compute

subcube_prefix differently than in the previous case,
because need not be commutative.}

End If

subcube prefix subcube prefix temp prefix_ _ _=

b lsb=

processor prefix x
i

_ =
subcube prefix x

i
_ =

x x
i0

…
0 1i nx

i

x x
i0

…

[, , ,]0 1 1… n

[, , ,]0 1 1… n
[, ,]1… n

X x x x
n

= { }0 1 1
, , ,…

End For
End Parallel

Parallel Prefix 175

010 011

000 001

110 111

100 101

(a) Indexing of a hypercube
 of size 8

(b) Initial set of data

(c) First step: Communicating
 along 3-dimensional edges

(e) Third step: Communicating
 along 1-dimensional edges

(d) Second step: Communication
 along 2-dimensional edges

2 3

0 1

6 7

4 5

25 55

01 11

613
1313

49 99

36 66

06
16

1522 2222

422
922

328 628

028
128

2128 2828

1028
1528

FIGURE 7.7 An example of computing the parallel prefix on a hypercube of size
8 with the operation of addition. The indexing of the hypercube is given in binary
representation in (a). In (b), the initial set of data items is presented. In (c), (d),
and (e), we show the results after the first, second, and third steps of the algo-
rithm, respectively. Processor prefix values are shown large in (c), (d), and (e);
subcube prefix values are small.

Analysis

The analysis of this algorithm is fairly straightforward. Notice that the n proces-
sors are uniquely indexed with log2 n bits. The algorithm iterates over these bits,
each time performing (1) operations (sending/receiving data over a link and per-
forming a fixed number of unit-time operations on the contents of local memory).
Therefore, given n elements initially distributed one per processor on a hypercube
of size n, the running time of the algorithm is (log n). Because the communica-
tion diameter of a hypercube of size n is (log n), the algorithm is optimal for this
architecture. However, the cost of the algorithm is (nlog n), which is not optimal.
To reduce the cost to (n), we might consider reducing the number of processors
from n to n/log2 n while still maintaining a running time of (log n). We leave this
problem as an exercise.

Coarse-Grained Multicomputer

By making use of efficient gather and scatter operations, one may modify the algo-
rithm presented previously for the mesh to obtain an algorithm for the parallel
prefix computation on a CGM (n, q) that runs in optimal (n/q) time. See the
Exercises, where a more precise statement of the problem is given.

Application: Maximum Sum Subsequence

In this section, we consider an application of the parallel prefix computation. The
problem we consider is that of determining a subsequence of a data set that sums
to the maximum value with respect to any subsequence of the data set. Formally,
we are given a sequence , and we are required to find (not nec-
essarily distinct) indices u and v, , such that the subsequence
has the largest possible sum, , among all possible segments of X.

We should first make an observation. Notice that if all the elements of X are
nonnegative, then the problem is trivial, because the entire sequence represents the
solution. Similarly, if all elements of X are nonpositive, an empty subsequence is
the solution, because, by convention, the sum of the elements of an empty set of
numbers is 0. So, this problem is interesting only when positive and negative values
are allowed. This is the case we now consider for several models of computation.

RAM

The lower bound to solve this problem on a RAM is (n), because if any one ele-
ment is not examined, it is possible that an incorrect solution may be obtained. We
will now attempt to develop an optimal (n) time solution to this problem. Con-
sider the situation of scanning the list from the first element to the last while main-
taining some basic information about the maximum subsequence observed and the
contribution that the current element can make to the current subsequence under
investigation. A first draft of the algorithm follows.

x x x
u u v
+ + ++1

…
x x x

u u v
, , ,+1
…u v

X x x x
n

=
0 1 1
, , ,…

176 Chapter 7 Parallel Prefix

1. Solve the problem for . One can think of this as either a recur-
sive or iterative step.

2. Extend the solution to include the next element, xi. Notice that the maximum
sum in is the maximum of
a) the sum of a maximum sum subsequence in , referred to as

Global_Max, and
b) the sum of a subsequence ending with xi, referred to as Current_Max.

The details of the algorithm are straightforward. (Also see the example pre-
sented in Figure 7.8.)

{Start index of global max subsequence}
{End index of global max subsequence}

{Initialize index of current subsequence}
For to , do {Traverse list}

If Then

Else

{Reset index of current subsequence}
End Else
If Then

End If
End For

The five initialization steps each take (1) time. Each pass through the For
loop also takes (1) time. Because the loop is performed (n) times, it follows
that the running time of the algorithm is (n), which is optimal, as all n entries of
the input array X must be examined.

PRAM

Consider an efficient solution to the maximum sum subsequence problem for the
PRAM. Let’s attempt to design a PRAM algorithm that is efficient in its running
time and optimal in its use of resources (cost optimal). Based on our previous
experience with designing cost-effective PRAM algorithms, it makes sense to tar-
get a (log n) time algorithm on a machine with (n/log n) processors. Such an
algorithm would be time and cost optimal.

v i
u q
Global Max Current Max_ _
Current Max Global Max_ _>

q i
Current Max x

i
_

Current Max Current Max x
i

_ _ +
Current Max_ 0

n 1i = 1
q 0
Current Max x_

0

v 0
u 0
Global Max x_

0

x x x
i0 1 1

, , ,…
x x x

i0 1
, , ,…

x x x
i0 1 1

, , ,…

Application: Maximum Sum Subsequence 177

178 Chapter 7 Parallel Prefix

Suppose we first compute the parallel prefix sums of
, where . This can be done in (log n) time by

the cost-optimal parallel prefix algorithm presented in the previous section. Next,
compute the parallel postfix maximum of S so that for each index i, the maximum

, , is determined, along with the value j. (The parallel postfix computation
is similar to the parallel prefix computation: given data values , the
parallel postfix computation using the operator computes the values

, , , , , .)
So, in this case, we compute the parallel postfix maximum of S, which, because
the maximum operator is commutative, is equivalent to computing the parallel
prefix maximum of the set S listed in reverse order, . Let mi

denote the value of the postfix-max at position i, and let ai be the associated index
(). This parallel postfix is computed in (log n) time by
the algorithm presented in the previous section.

Next, for each i, compute , the maximum prefix value of any-
thing to the right (in other words, with a higher index) minus the prefix sum plus
the current value. (Note that xi must be added back in because it appears in term mi

as well as in term si.) This operation can be performed in (log n) time by having
each processor (sequentially) compute the value of b for each of its (log n)
entries. Finally, the solution corresponds to the maximum of the bis, where u is the
index of the position where the maximum of the bis is found and v = au. This final
step can be computed by a semigroup operation in (log n) time.

Therefore, the algorithm runs in optimal (log n) time on a PRAM with
n/log2 n processors, which yields an optimal cost of (n).

We now give an example for this problem. Consider the input sequence
. The parallel prefix sum of X is S =

.3 2 4 3 1 7 17 15, , , , , , ,
X = 3 5 2 1 4 8 10 2, , , , , , ,

b m s x
i i i i
= +

s s s s
a i i ni
= { }+max , , ,

1 1
…

s s s
n n{ }1 2 0

, , ,…

y
n 1y y

n n2 1…y y
n2 1

…y y y
n1 2 1

…y y y
n0 1 1

…

y y
n0 1

, ,…{ }
j is

j

s x x
i i
=

0
…X x x x

n
= { }0 1 1

, , ,…
S s s s

n
= { }0 1 1

, , ,…

i x Global_Max u v Current_Max q

0 5 5 0 0 5 0

1 3 8 0 1 8 0

2 –2 8 0 1 6 0

3 4 10 0 3 10 0

4 –6 10 0 3 4 0

5 –5 10 0 3 –1 0

6 1 10 0 3 1 6

7 10 11 6 7 11 6

8 –2 11 6 7 9 6

FIGURE 7.8 An example of the maximum sum
subsequence problem.

As the example shows, we have a maximum subsequence sum of b1 = 20. This
corresponds to u = 1 and v = a1 = 6, or the subsequence . It is
also interesting to observe (for any doubters) that the maximum sum subsequence
for this example is a subsequence that contains positive and negative terms.

Mesh

We now consider a mesh. Notice that an optimal PRAM algorithm for solving the
maximum sum subsequence problem relies on a parallel prefix, a parallel postfix,
a semigroup operation, and some local unit-time computations. Also notice that a
semigroup computation can be implemented via a parallel prefix computation.
Therefore, the maximum sum subsequence problem can be solved via three paral-
lel prefix operations (one, the parallel “postfix” computation, that runs in reverse
order) and some local computations. Therefore, in designing an algorithm for the
mesh, we can simply follow the general guidelines of the PRAM algorithm while
implementing the appropriate mesh algorithms (in this case, predominantly paral-
lel prefix) in an efficient manner. So, we know that we can solve the maximum
sum subsequence problem in (n1/3) time on a mesh of size n2/3 (an n1/3 � n1/3

mesh). Because this algorithm requires (n1/3) time on a machine with n2/3 proces-
sors, we know that the cost is (n1/3 � n2/3) = (n), which is optimal. Further, as
discussed previously, this is the minimal running time on a mesh for a cost-optimal
solution.

Array Packing

In this section, we consider an interesting problem that results in a global
rearrangement of data. The problem consists of taking an input data set, in which a
subset of the items is marked, and rearranging the data set so that all of the marked
items precede all of the unmarked items. Formally, we are given an array X of

5 2 1 4 8 10, , , , ,

b
7

15 15 2 2= + =()a
7

7=m
7

15=

b
6

17 17 10 10= + =a
6

6=m
6

17=

b
5

17 7 8 18= + =a
5

6=m
5

17=

b
4

17 1 4 14= + =() ()a
4

6=m
4

17=

b
3

17 3 1 13= + =()a
3

6=m
3

17=

b
2

17 4 2 15= + =a
2

6=m
2

17=

b
1

17 2 5 20= + =a
1

6=m
1

17=

b
0

17 3 3 17= + =() ()a
0

6=m
0

17=

Array Packing 179

items. Each item has an associated label field that is initially set to one of two val-
ues: marked or unmarked. The task is to pack the items so that all of the marked
items appear before all of the unmarked items in the array. Notice that this prob-
lem is equivalent to sorting a set of 0s and 1s. In fact, if we consider 0 to represent
marked and 1 to represent unmarked, this problem is equivalent to sorting a set of
0s and 1s into nondecreasing order (all 0s preceding all 1s).

RAM

The first model of computation that we consider is the RAM. Because this prob-
lem is equivalent to sorting a set of 0s and 1s, we could solve this problem quite
simply in O(n log n) time by any one of a number of (n log n)-time worst-case
sorting routines. However, we know something about the data (the restricted
nature of the input), so we should consider an alternative to a general sorting rou-
tine. In this case, we know that the keys of the items to be sorted can take on only
one of two values. Using this information, we can consider scan-based sorts such
as counting sort or radix sort.

Consider counting sort. If we are sorting an array of n entries, we could simply
make one pass through the array and count the number of 0s and the number of 1s.
We could then make another pass through and write out the appropriate number of
0s, followed by the appropriate number of 1s. The situation is slightly more com-
plicated if the keys are in larger records. In such a case, we could create two linked
lists (dynamic allocation) and then traverse the array element by element. As we
encounter each element in the array, we create and initialize a record with the per-
tinent information and add it onto the head of either the 0s list or the 1s list. This
traversal is complete in (n) time. We can then scan through the 0s list, element by
element, and write the pertinent information into the next available place in the
array. We then do the same with the 1s list. Again, this step takes (n) time, and
hence the algorithm is complete in asymptotically optimal (n) time. The reader
should observe that this algorithm is closely related to the BinSort algorithm dis-
cussed in Chapter 1, “Asymptotic Analysis.”

Suppose we are given an array of n complex entries (that is, records), and we
are required to perform array packing in place. That is, suppose that the space
requirements in the machine are such that we cannot duplicate more than some
fixed number of items. In this case, we can use the array-based Partition routine
from QuickSort (see Chapter 9, “Divide and Conquer”) to rearrange the items.
This partition routine is implemented by considering one index L that moves from
the beginning to the end of the array and another index R that moves from the end
to the beginning of the array. Index L stops when it encounters an unmarked item,
whereas index R stops when it encounters a marked item. When both L and R have
found an out-of-place item, and L precedes R in the array, the items are swapped
and the search continues. When L does not precede R, the algorithm terminates.
The running time of the algorithm is linear in the number of items in the array.
That is, the running time is (n).

180 Chapter 7 Parallel Prefix

PRAM

Now consider the PRAM. As with the maximum sum subsequence problem, we
realize that to obtain an efficient and cost-effective algorithm, we should try to
develop an algorithm that runs in (log n) time using only (n/log n) processors.
This problem is solved easily using a parallel prefix sum to determine the rank of
each 0 with respect to all 0s and the rank of each 1 with respect to all 1s. That is,
suppose we first determine for each 0, the number of 0s that precede it. Similarly,
suppose we determine for each 1, the number of 1s that precede it. Further, assume
that the total number of 0s is computed as part of the process of ranking the 0s.
Then during a write stage, every 0 can be written to its proper location, the index
of which is one more than the number of 0s that precede it. Also, during this write
state, every 1 can be written to its proper location, the index of which is one plus
the number of 1s that precede it plus the number of 0s (that also precede it).

Let’s consider the running time of such an algorithm. Given a PRAM with
(n/log n) processors, the parallel prefix computation can be performed in (log n)

time, as previously described. Along with this computation, the total number of 0s
is easily determined in an additional (log n) time. Therefore, the write stage of
the algorithm can be performed in (log n) time (each processor is responsible
for writing out (log n) items). Hence, the total running time of the algorithm is

(log n), and the cost of the algorithm on a machine with (n/log n) processors is
(log n � n/log n) = (n), which is optimal. It is important to note that this algo-

rithm can be adapted easily to sort a set of values chosen from a constant size set.
In fact, the algorithm can be adapted easily to sort records, where each key is cho-
sen from a set of constant size.

Network Models

Now, let’s consider the problem of array packing for the general network model.
Suppose one simply cares about sorting the data set, which consists of 0s and 1s.
Then the algorithm is straightforward. Using either a semigroup operation or a
parallel prefix computation, determine the total number of 0s and 1s. These values
are then broadcast to all processors. Assume there are k 0s in the set. Then all
processors Pi, i k, record their final result as 0, whereas all other processors
record their final result as 1. This results in all 0s appearing before all 1s in the
final (sorted) list. Notice that this is a simple implementation of the counting sort
algorithm we have used previously.

Suppose that instead of simply sorting keys, one needs the actual data to be
rearranged. That is, assume that we are performing array packing on labeled
records where all records that are marked are to appear before all records that are
not marked. This is a fundamentally different problem from sorting a set of 0s and
1s. Notice that for this variant of the problem, it may be that all of the records are
on the “wrong” half of the machine under consideration. Therefore, the lower
bound for solving the problem is a function of the bisection width. For example,
on a mesh of size n, if all n records need to move across the links that connect the

Array Packing 181

middle two columns, a lower bound on the running time is . On

a hypercube of size n, the bisection width gives us a lower bound of .

However, the communication diameter yields a better lower bound of (log n).
The reader should consider bounds on other machines, such as the pyramid and
mesh-of-trees.

Because the record-based variant of the array packing problem reduces to
sorting, the solution can be obtained by performing an efficient general-purpose
sorting algorithm on the architecture of interest. Such algorithms will be discussed
later in this book.

Interval (Segment) Broadcasting

It is shown easily that parallel prefix can be used to broadcast a piece of information
(see Exercises). This is particularly useful in the ER PRAM model or on network-
based models. In this section, we consider a variant of the parallel prefix problem.
Assume that we are given a sequence of data items. Further, we assume that some
subset of these items is “marked.” We can view these marked data items as separating
the complete sequence of data items into logical subsequences, where the first item of
every subsequence is a marked data item. The problem we consider is that of broad-
casting a marked data item to all of the records in its subsequence. It is important to
note that in each subsequence there is one and only one marked data item, and in fact,
it is the first item of the subsequence. For this reason, the marked data items are often
referred to as “leaders.” We now give a more concise description of the problem.

Suppose we are given an array X of n data items with a subset of the elements
marked as “leaders.” We then broadcast the value associated with each leader to
all elements that follow it in X up to but not including the next leader. An example
follows.

The top table in Figure 7.9 gives the information before the segmented broad-
cast. The leaders are those entries for which the “Leader” component is equal to 1.

In the table at the bottom of Figure 7.9, we show the information after this seg-
mented broadcast. At this point, every entry knows its leader and the information
broadcast from its leader.

Solution Strategy

The interval broadcasting problem can be solved in a fairly straightforward fashion
by exploiting a parallel prefix computation, as follows. For each leader (or marked
entry) xi in X, create the record (i, xi). For each data item xi that does not correspond
to a leader in X, create the record (–1,–1). Now define our prefix operator as

(,) (,)
(,) ;

(,)
i a j b

i a i j

j b
=

> if

 otherwise.

n

n /
()

2
1=

n

n
n

1 2

1 2

/

/= ()

182 Chapter 7 Parallel Prefix

(Simple) Point Domination Query 183

The reader should verify that our operator is legal, as defined for parallel
prefix. That is, the reader should verify that this operator is binary, closed, and
associative. Recall that need not be commutative. Notice that a straightforward
application of a parallel prefix will now serve to broadcast the data associated with
each leader to the members of its interval.

Analysis

Consider the RAM. A parallel prefix is implemented as a linear time scan opera-
tion, making a single pass through the data. So given an array X of n elements, the
running time of the algorithm on a RAM is (n), which is asymptotically optimal.
Notice that the solution to the interval broadcasting problem consists simply of a
careful definition of the prefix operator , coupled with a straightforward imple-
mentation of parallel prefix. Therefore, the analysis of running time, space, and
cost on the PRAM, network models, and coarse-grained multicomputer, is identi-
cal to that which has been presented earlier in this chapter.

(Simple) Point Domination Query

In this section, we consider an interesting problem from computational geometry,
a branch of computer science concerned with designing efficient algorithms to
solve geometric problems. Such problems typically involve points, lines, poly-
gons, and other geometric figures. Consider a set of n data items, where each item
consists of m fields. Further, suppose that each field is drawn from some linearly
ordered set. That is, within each field, one can compare two entries and determine
whether or not the first entry is less than the second entry. To cast the problem in

Processor Index: 0 1 2 3 4 5 6 7 8 9

Leader 1 0 0 1 0 1 1 0 0 0

Data 18 22 4 36 -3 72 28 100 54 0

Processor Index: 0 1 2 3 4 5 6 7 8 9

Leader 1 0 0 1 0 1 1 0 0 0

Data 18 22 4 36 -3 72 28 100 54 0

LeaderIndex 0 0 0 3 3 5 6 6 6 6

LeaderData 18 18 18 36 36 72 28 28 28 28

FIGURE 7.9 An example of segmented broadcast. The top table shows the initial
state (that is, the information before the segmented broadcast). Thus, by examin-
ing the Leader field in each processor, we know the interval leaders are proces-
sors 0, 3, 5, and 6. In the bottom table, we show the information after the
segmented broadcast. Information from each leader has been propagated (broad-
cast) to all processors to the right (higher index values) up to, but not including,
the next leader.

two dimensions (that is, m = 2), we say that a point q1 = (x1, y1) dominates a point
q2 = (x2, y2) if and only if x1 > x2 and y1 > y2. This is an important problem in the
field of databases. For example, it is often important to determine for a given set of
points Q = {q1, q2, . . . , qn}, all points that are not dominated by any point in Q.

Suppose we are interested in performing a study to identify the set of students
for which no other student has both a higher grade-point average (GPA) and owns
more DVDs. An example is given in Figure 7.10, where the x-axis represents the
number of DVDs and the y-axis represents GPA. Exactly three points from this set
of nine students satisfy our query.

184 Chapter 7 Parallel Prefix

y

x

FIGURE 7.10 An example of the point
domination problem. In this example,
exactly three points have no other point
both above and to the right. The remain-
der of the points are dominated by at
least one of these three points.

Suppose that the input to our problem consists of a set of n points, Q =
{q1, q2, . . . , qn}, where each point qi = (xi, yi) , such that no two members of Q
have the same x-coordinates or the same y-coordinates, and where Q is initially
ordered with respect to the x-coordinate of the records. Given such input, an algo-
rithm follows to solve the point domination query (that is, to determine all points
in Q not dominated by some other member of Q).

Solution Strategy
Because the records are ordered initially with respect to the x-coordinate, the
points can be thought of as lying ordered along the x-axis. The first step of
the algorithm is to perform a parallel postfix operation, where the operator is
maximum-y-value. The maximum operation is commutative, so this is equivalent
to performing a parallel prefix operation on the sequence of data .q q q

n n
, , ,

1 1
…

Let pi denote the parallel prefix value associated with record qi. Notice that at the
conclusion of the parallel prefix algorithm, the desired set of points consists of all
qi for which and . Also, qn is one of the desired points. We now con-
sider the time and space complexity of the algorithm on the RAM, PRAM, and
network models.

RAM

Given an (ordered) array of data, a prefix operation can be performed on the n
entries in (n) time using a constant amount of additional space. A final pass
through the data can be used to identify the desired set of records. (We should note
that this second pass could be avoided by incorporating the logic to recognize
undominated points into the parallel prefix operation.) As usual, it is easy to argue
that the running time is optimal. The only way to complete the algorithm faster
would be not to examine all of the entries, which could result in an incorrect result.

PRAM and Network Models

Notice that the solution to the two-dimensional point domination query, where the
input is given ordered by x-axis, is dominated by a parallel prefix operation.
Therefore, the running time, space, and cost analysis is consistent with the analy-
sis of parallel prefix given earlier in this chapter.

Computing Overlapping Line Segments

In this section, we consider other (simple) problems from computational geome-
try. These problems involve a set of line segments that lie along the same line. We
can think of this as a set of line segments that lie along the x-axis, as shown in Fig-
ure 7.11, where the segments are shown raised above the x-axis for clarity. The
line segments are allowed to overlap (or not) in any possible combination.

p p
i i
> +1

i n<

Computing Overlapping Line Segments 185

B

s6

A

s5s3

s4

s2

s1

FIGURE 7.11 An example of problems involving overlapping line
segments. The line segments are all assumed to lie on the x-axis,
though they are drawn superimposed for viewing purposes.

Formally, we assume that the input consists of a set of n
uniquely labeled line segments, all of which lie along the same horizontal line.
Each member of S is represented by two records, one corresponding to each end-
point. Each such record consists of the x-coordinate of the endpoint, the label of
the line segment, and a flag indicating whether the point is the left or right end-
point of the line segment. Further, we assume that these 2n records are ordered
with respect to the x-coordinate of the records, and if there is a tie (two records
with the same x-coordinate), the tie is broken by having a record with a Left end-
point precede a record with a Right endpoint.

Coverage Query: The first problem we consider is that of determining
whether or not the x-axis is completely covered by the set S of n line
segments between two given x-coordinates, A and B, where .

Solution: We give a machine-independent solution strategy and then
discuss the analysis for a variety of models.

1. Determine whether or not and . If this is the

case, then we can proceed. If not, we can halt with the answer that the coverage
query is false.

2. For each of the 2n records, create a fourth field that is set to 1 if the record rep-
resents a left endpoint, and is set to –1 if the record represents a right endpoint.
We will refer to this field as the operand field.

3. Considering all 2n records, perform a parallel prefix sum operation on the val-
ues in this operand field. The result of the ith prefix will be stored in a fifth
field of the ith record, for each of the 2n records.

4. Notice that any parallel prefix sum of 0 must correspond to a right endpoint.
Suppose that such a right endpoint is at x-coordinate c. Then all line segments
with a left endpoint in must also have their right endpoint in .
Notice also that due to the ordering of the records, in case of a tie in the x-
coordinate, the left endpoint precedes the right endpoint. This means that the
record that follows must be either a right endpoint with x-coordinate equal to
c, or a left endpoint with x-coordinate strictly greater than c. Either way, the
ordered sequence cannot have a right endpoint with an x-coordinate strictly
greater than c until after another left endpoint with x-coordinate strictly
greater than c occurs in the sequence. Thus, there is a break in the coverage of
the x-axis at point c. So we determine the first record with parallel prefix sum
equal to 0. If the x-coordinate of the endpoint is greater than or equal to B, then
the answer to the coverage query is true; otherwise it is false (see Figure 7.12).

RAM

Consider an implementation of this algorithm on a RAM. The input consists of an
array S with 2n entries and the values of A and B. Step 1 requires the comparison

(,]c(,]c

B right s
i i

n(){ }
=

max
1

left s A
1()

A B<

S s s s
n

= { }1 2
, , ,…

186 Chapter 7 Parallel Prefix

of the first element of S with the scalar quantity A and, because the records are
ordered, a comparison of B with the last point. Therefore, step 1 can be performed
in (1) time. Step 2 is completed with a simple (n) time scan through the array.
Similarly, the parallel prefix is performed on an array of 2n items with a scan that
takes (n) time. One final scan can be used to determine the first break in the cov-
erage of the line segments before determining in (1) time whether or not this
endpoint precedes B. Therefore, the running time of the RAM algorithm is (n),
which is optimal.

Computing Overlapping Line Segments 187

x1

Key

x1

x2

x3

x4

x5

x6

x7

x8

1

1

1

–1

–1

–1

1

–1

Operand

1

2

3

2

1

0

1

0

Prefix

x2 x3 x5

x4

x6 x7 x8BA

FIGURE 7.12 Transforming the coverage query problem to the parentheses
matching problem. For this example, notice that there is a break in coverage
between x6 and x7, as indicated by the 0 in the prefix value of x6.

PRAM

In order to attempt to derive a cost-optimal algorithm for this problem on the
PRAM, we will consider a PRAM with (n/log n) processors. In the first step, the
values of A and B can be broadcast to all processors in O(log n) time, even if
the PRAM is ER, as shown previously. This is followed by a (log n) time (OR)
semigroup operation to compute the desired comparison for A and then B, and
a (1) time (CR) or (log n) time (ER) broadcast of the decision concerning

halting. Step 2 requires (log n) time because every processor must examine all
(log n) of the records for which it is responsible. Step 3 is a straightforward par-

allel prefix, which can be performed on a PRAM with (n/log n) processors in
(log n) time, as discussed previously. A (log n) time semigroup operation can

be used to determine the first endpoint that breaks coverage, and a (1) time com-
parison can be used to resolve the final query. Therefore, the running time of the
algorithm is (log n) on a PRAM with (n/log n) processors, resulting in an opti-
mal cost of (n).

Mesh

As we have done previously when attempting to derive an algorithm with (n)
cost on a mesh, we consider an n1/3 � n1/3 mesh, in which each of the n2/3 proces-
sors initially contains the appropriate set of n1/3 contiguous items from S. If we
follow the flow of the PRAM algorithm, as implemented on a mesh of size n2/3, we
know that the broadcasts and parallel prefix operations can be performed in (n1/3)
time. Because these operations dominate the running time of the algorithm, we
have a (n1/3) time algorithm on a mesh with n2/3 processors, which results in an
optimal cost of (n).

Maximal Overlapping Point

The next variant of the overlapping line segments problem that we consider is the
problem of determining a point on the x-axis that is covered by the most line seg-
ments. The input to this problem consists of the set S of 2n ordered endpoint
records, as discussed earlier.

Solution
The solution we present for the maximal overlapping point problem is similar to
the solution just presented for the coverage query problem.

1. For each of the 2n records, create a fourth field that is set to 1 if the record rep-
resents a left endpoint, and is set to –1 if the record represents a right endpoint.
We will refer to this field as the operand field.

2. Considering all 2n records, perform a parallel prefix sum operation on the val-
ues in this operand field. For each of the 2n records, the result of the ith prefix
will be stored in the fifth field of the ith record.

3. Determine the maximum value of these prefix sums, denoted as M. All points
with a prefix sum of M in the fifth field of their record correspond to points
that are overlapped by a maximal number of line segments.

Analysis

The analysis of this algorithm follows that of the coverage query problem quite
closely. Both problems are dominated by operations that are efficiently performed

188 Chapter 7 Parallel Prefix

by parallel prefix computations. Therefore, the RAM algorithm is optimal at (n)
time. A PRAM algorithm can be constructed with (n/log n) processors that runs
in (log n) time, yielding an optimal cost of (n). Finally, a mesh algorithm can
be constructed with (n2/3) processors, running in (n1/3) time, which also yields
an algorithm with optimal (n) cost.

Summary

In this chapter, we introduce parallel prefix computations. Roughly, a parallel pre-
fix computation on n data items is the result of applying a binary opera-
tor when we wish to preserve not only the result but also the
sequence of partial results , , , …, . We dis-
cuss efficient to optimal implementation of parallel prefix on various computa-
tional models. We show the power of this computation by presenting several
applications.

Chapter Notes

In this chapter, we studied the implementation and application of parallel prefix,
an extremely powerful operation, especially on parallel computers. Parallel prefix-
based algorithms are presented in R. Miller’s and Q.F. Stout’s Parallel Algorithms
for Regular Architectures (The MIT Press, Cambridge, 1996), to solve funda-
mental problems as well as to solve application-oriented problems from fields
including image processing and computational geometry for mesh and pyramid
computers. A similar treatment is presented for the PRAM in J. Já Já’s An Intro-
duction to Parallel Algorithms (Addison-Wesley, Reading, MA, 1992). Parallel
prefix is presented in a straightforward fashion in the introductory text by M.J.
Quinn, Parallel Computing Theory and Practice (McGraw-Hill, Inc., New York,
1994). Finally, the Ph.D. thesis by G.E. Blelloch, Vector Models for Data-Parallel
Computing (The MIT Press, Cambridge, 1990), considers a model of computation
that includes parallel prefix as a fundamental unit-time operation.

Efficient gather and scatter algorithms for coarse-grained multicomputers are
demonstrated in L. Boxer’s and R. Miller’s paper, “Coarse Grained Gather and
Scatter Operations with Applications,” Journal of Parallel and Distributed Com-
puting, 64 (2004), 1297–1320. The availability of these algorithms is assumed in
the exercises, although their steps are not given.

Exercises

1. Show that a hypercube with (n/log n) processors can compute a parallel pre-
fix operation for a set of n data, , distributed (log n) items
per processor, in (log n) time.

x x x
n0 1 1

, , ,…{ }

x x
n1 1

…x x x
1 2 3

x x
1 2

x
1

x x
n1

…
x x

n1
, …

Exercises 189

2. The interval prefix computation is defined as performing a parallel prefix
within predefined disjoint subsequences of the data set. Give an efficient solu-
tion to this problem for the RAM, PRAM, and mesh. Discuss the running
time, space, and cost of your algorithm.

3. Show how a parallel prefix operation can be used to broadcast (1) data to all
the processors of a parallel computer in the asymptotic time of a parallel pre-
fix operation. This should be done by providing an algorithm that can be
implemented on any parallel model, with the running time of the algorithm
dominated by a parallel prefix operation.

4. Define InsertionSort in terms of parallel prefix operations for the RAM and
PRAM. Give an analysis of running time, space, and cost of the algorithm.

5. Give an optimal EREW PRAM algorithm to compute the parallel prefix of n
values .

6. Give an efficient algorithm to perform Carry-Lookahead Addition of two n-
bit numbers on a PRAM. Hint: Keep track of whether each one-bit subaddi-
tion stops (s) a carry, propagates (p) a carry, or generates (g) a carry. See the
following example. Notice that if the ith carry indicator is p, then the ith carry
is a 1 if and only if the leftmost non-p to the right of the ith position is a g.

0100111010110010010

0110010110101011100

sgpspgppgsgppsgppps

7. Give an efficient algorithm for computing the parallel prefix of n values, ini-
tially distributed one per processor on a q-dimensional mesh of size n. Discuss
the time and cost of your algorithm.

8. Suppose that you are given a set of n pairwise disjoint line segments in the
first quadrant of the Euclidean plane, each of which has one of its endpoints
on the x-axis. Think of these points as representing the skyline of a city. Give
an efficient algorithm for computing the piece of each line segment that is
observable from the origin. You can assume that the viewer does not have x-
ray vision. That is, the viewer cannot see through any piece of a line segment.
You may also assume the input is ordered from left to right. Discuss the time,
space, and cost complexity of your algorithms for each of the following mod-
els of computation.
a) PRAM
b) Mesh
c) Hypercube

9. Give an efficient algorithm for computing the parallel prefix of n values
stored one per processor in
a) the leaves of a tree machine;
b) the base of a mesh-of-trees of base size n.
Discuss the time and cost complexity of your algorithms.

x x x
n1 2

, , …,

190 Chapter 7 Parallel Prefix

10. Consider the array packing algorithms presented in this chapter. Which of the
routines is stable? That is, given duplicate items in the initial list, which of the
routines will preserve the initial ordering with respect to duplicate items?

11. Suppose a set of n data, , is distributed evenly among the
processors of a coarse-grained multicomputer CGM(n,q) such that processor

Pi has the data . Assume there exist algorithms (that you may use)

to gather (1) data from every processor into a single processor in O(q) time,
and scatter the gathered items (whose values may have been altered by actions
of the processor in which they were gathered) back to their original processors
in O(q) time.

Give the steps of an efficient algorithm to perform a parallel prefix compu-
tation on the CGM(n,q), and analyze its running time. (You should be able to
obtain an algorithm that runs in (n/q) time.)

x
j

j
i n

q

in
q{ }
= +()1

1

X x x x
n

= { }0 1 1
, , ,…

Exercises 191

192

8
Pointer Jumping

List Ranking

Linked List Parallel Prefix

Summary

Chapter Notes

Exercises

193

In this chapter, we consider algorithms for manipulating linked lists. We assume that
the linked list under consideration is arbitrarily distributed throughout the memory

of the model under consideration. Each element of the list consists of a data record and
a next field. The next field contains the address of the next element in the list. In addi-
tion, we assume that the next field of the last entry in the list is set to null.

On a RAM, the list is distributed arbitrarily throughout the memory, and we assume
that the location of the first element is known. On a PRAM, we assume that the list is dis-
tributed arbitrarily throughout the shared memory. Consider a linked list with n elements
distributed throughout the memory of a PRAM with n processors. In this situation, we
assume that every processor knows the location of a unique list element and that the
location of the first element in the list is known. Given a PRAM with processors,
each processor will be responsible for (n/m) such elements.

For the network models, we assume that the list is distributed evenly in an arbi-
trary fashion throughout the memory of the processing elements. Given a linked list of
size n, distributed one item per processor on a network model with n processors, every
processor will store one element. Each element consists of a data record and a next
pointer, which contains the processor ID of the next element in the list. Given a net-
work model with processors, every processor will store approximately n/m ele-
ments, and each pointer will now include the processor ID and the index of the next
element within that processor.

RAM: A linked list and a sequential machine provide a model for traversing the
data that is inherently sequential. Therefore, given a list of size n, problems
including linked list search, linked list traversal, semigroup operation, and parallel
prefix through the list, to name a few, can be solved in a straightforward fashion in

(n) time by a linear search.

Network Models: Given that the data is distributed arbitrarily among the
processors, the communication diameter of a network model serves as a lower
bound on the time required for a single link to be traversed. The time for all links
to be traversed simultaneously is bounded by the bisection width. Therefore, it is
often advantageous simply to consider a linked list of data as an unordered array of
data and operate on it with high-powered data movement operations. Such
operations will be discussed later in the book.

PRAM: The most interesting model to discuss in terms of linked list operations is
the PRAM. This is because the communication diameter is (1) and the bisection
width of a PRAM with n processors is equivalent to (n2). For many years, it was
believed that list-based operations were inherently sequential. However, some
clever techniques have been used to circumvent this notion. We demonstrate some
of these pointer-jumping techniques in the context of two problems. The problems
are list ranking and parallel prefix (for linked lists). A description of the problems,
along with PRAM implementations and analyses, follows.

m n

m n

List Ranking

Suppose that we are given a linked list L of size n, and we wish to determine the
distance from each element to the end of the list. That is, for list element L(i), we
want to compute the distance, call it d(i), to the end of the list. Recall that this is a
linked list of elements, so that except for the first element in the list, the position of
any element is initially unknown. We define the distance, d(i), as follows.

The PRAM algorithm we present operates by a recursive doubling procedure.
Initially, every processor finds the next element in the list, that is, the element that
succeeds it in a traversal of the list from beginning to end. In the next step, every
element locates the element two places away from it (that is, two positions closer
to the end of the list). In the next step, every element locates the element four
places closer to the end of the list, and so on. Notice that in the first step, every ele-
ment has a pointer to the next element. During the course of the algorithm, these
pointers are updated (otherwise, every element would need to maintain more than
a fixed number of pointers). During every step of the algorithm, each element L(i)
can determine easily the element twice as far as L(next(i)) is. Notice that the ele-
ment twice as far from L(i) as L(next(i)) is simply L(next(next(i))), as shown in
Figure 8.1. As the process progresses, every element needs to keep track of the
number of such links traversed to determine its distance to the end of the list. In
fact, some care needs to be taken for computing distances at the end of the list. The
details follow.

Input: A linked list L consisting of n elements, arbitrarily stored in the
shared memory of a PRAM with n processors.
Output: For every element L(i), determine the distance d(i) from that ele-
ment to the end of the list.

{First, initialize the distance entries}
For all L(i) do

End For all
{Perform pointer-jumping algorithm. The actual pointer

jumping step is }
While there exists an i such that , do

For all do
If then

d i d i d next i() () (())+
next i null()

L i()
next i null()

next i next next i() (())

d i
next i null

next i null
()

()

()

=0

1

if ;

if .

d i
next i null

d next i next i
()

()

() (
=

=
+ ()

0

1

if ;

if)) null.

194 Chapter 8 Pointer Jumping

End If
End For all

End While

next i next next i() (())

List Ranking 195

1 1 1 1 1 1 1 1 1 0

2 2 2 2 2 2 2 2 1 0

4 4 4 4 4 4 3 2 1 0

8 8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

(a) Initial list with data values set to 1; every processor knows the list element one place away

(b) Pointer jump to determine list elements two places away

(c) Pointer jump to determine list elements four places away

(d) Pointer jump to determine list elements eight places away

(e) Final data values after recursive doubling

FIGURE 8.1 An example of list ranking. Given a linked list, determine for each
element the number of elements in the list that follow it. The algorithm follows a
recursive doubling procedure. Initially, every processor finds the next element in
the list. (a) shows the initial list, in which every element knows the following
element one step away. In steps (b), (c), and (d), every element locates the ele-
ment 2, 4, and 8 places away from it, respectively. Step (e) shows the final values
at the end of the recursive doubling procedure. Given a list with 10 elements, the
number of iterations required is .log 10 = 4

2

196 Chapter 8 Pointer Jumping

Analysis: Given a PRAM of size n, the running time of this algorithm is
(log n). This can be seen by the fact that the first element in the list must tra-

verse links to reach the end of the list. Because the time for a PRAM
of size n to solve the list-ranking problem for a list of size n is (log n), the total
cost is (nlog n), which we know is suboptimal.

To reduce this cost, we can consider a PRAM with n/log2 n processors. In this
case, we can attempt to modify the algorithm as we have done previously. That is,
we can attempt to create a hybrid algorithm in which each processor first solves
the problem locally in (log n) time, and then the algorithm given previously is
run on this set of partial results. Finally, in (log n) time, we can make a final local
pass through the data. However, consider this algorithm carefully. It is important
to note that if each processor were responsible for (log n) items, there is no guar-
antee that these items form a contiguous segment of the linked list. Therefore,
there is no easy way to consider merging the (log n) items for which a processor
is responsible into a single partial result that can be used during the remainder of
the computation. In this case, such a transformation fails, and we are left with a
cost-suboptimal algorithm.

Linked List Parallel Prefix

Now let’s consider the parallel prefix problem. Although the problem is the same
as we have considered earlier the book, the input is significantly different. Previ-
ously, whenever we considered the parallel prefix problem, we had the advantage
of knowing that the data was ordered in a random access structure, that is, an array.
Now, we have to consider access to the data in the form of a linked list. Notice that
if we simply perform a scan on the data, the running time will be (n), which is
equivalent to the RAM algorithm. Instead, we consider applying techniques of
pointer jumping so that we can make progress simultaneously on multiple prefix
results. For completeness, recall that we are given a set of data and
a binary associative operator , from which we are required to compute prefix
values p1, p2, . . . , pn, where the kth prefix is defined as

We now present an algorithm for computing the parallel prefix of a linked list
of size n on a PRAM of size n, based on the concept of pointer jumping.

{ is used to store the ith prefix.}
For all i,
{Perform a pointer-jumping algorithm.}
While there exists an i such that , do

For all xi, do
next i null()

p x
i i

p
i

p
x k

p x k nk

k k

=
=

1

1

1

2

if ;

if .

X x x
n

= { }1
,…

log
2

1n +

If , then

End If
End For all

End While

An example of this algorithm is given in Figure 8.2, where we show the appli-
cation of a parallel prefix on a PRAM to a linked list of size 6. While going
through the algorithm, it is important to implement the update steps presented
inside of the “For all” statement in lockstep fashion across the processors.

Analysis: This algorithm is similar to that of the list ranking algorithm
just presented. That is, given a PRAM of size n, the running time of this algorithm
is (log n). This can be seen by the fact that the first element in the list must tra-
verse links to propagate x1 to all n prefix values. Because the time for a

PRAM of size n to compute the parallel prefix on a list of size n is (log n), the
total cost of the algorithm is (nlog n). As with the list ranking algorithm, the cost
of the parallel prefix computation is suboptimal.

log
2

n

next i next next i() ()()
p p p

next i i next i() ()

next i null()

Summary 197

FIGURE 8.2 An example of parallel prefix on a PRAM with linked list input.
Given a list of size 6, the recursive doubling procedure requires three iterations
().log

2
6 3=

Summary

In this chapter, we consider pointer-jumping computations on a PRAM for the linked
list data structure. The techniques presented allow us to double, in each parallel step,

the portion of a list “known” to each node of the list, so that in logarithmic time, each
node can know its relationship with all other nodes between its own position and the
end of the list. The problems we consider are those of list ranking and parallel prefix
(for linked lists). Our solutions are efficient, although not optimal.

Chapter Notes

The focus of this chapter is on pointer-jumping algorithms and efficient solutions
to problems involving linked lists, an inherently sequential structure. An excellent
chapter was written on this subject by R.M. Karp and V. Ramachandran, entitled
“A Survey of Parallel Algorithms and Shared Memory Machines,” which
appeared in the Handbook of Theoretical Computer Science: Algorithms and
Complexity (A.J. vanLeeuwen, ed., Elsevier, New York, 1990, pp. 869–941). It
contains numerous techniques and applications to interesting problems. In addi-
tion, pointer-jumping algorithms are discussed in An Introduction to Parallel
Algorithms, by J. Já Já (Addison-Wesley, Reading, MA, 1992).

Exercises

1. The component labeling problem has several variants in graph theory, compu-
tational geometry, and image analysis. Suppose we have a set ,
the members of which could be points in a Euclidean space, vertices of a
graph, or pixels of a digital image. Further, suppose we have a well-defined
notion of neighboring points that is symmetric (pi and pj are neighbors if and
only if pj and pi are neighbors) and anti-reflexive (no point is a neighbor of
itself). We say pi and pj are connected if

• , or

• pi and pj are neighbors, or

• there is a sequence such that , , and pij
and pij+1

are neighbors, .

A component C is a maximal subset of S such that all members of C are con-
nected. The label of C is the smallest index i (or some equivalent such as a
pointer to a unique member of C) such that . The component labeling
problem is to associate with each member pi of S the label of the component
of S containing pi.

Given a set of linked lists, solve this version of the component-labeling
problem. That is, given several linked lists with a total of n elements, regard
each list as a component of the totality of links; neighbors are links that are
adjacent in the same list. Give RAM and PRAM algorithms that efficiently
solve the component-labeling problem. The RAM solution should run in (n)

p C
i

0 <j k
p p

j ik
=p p

i i
=

0
p p p S

i i ik0 1
, , ,…{ }

p p
i j
=

S p p
n

= { }1
, ,…

198 Chapter 8 Pointer Jumping

time. The PRAM solution should have a cost of (nlog n). Hint: a PRAM
solution could use the pointer-jumping techniques illustrated in this chapter.

2. Give an efficient algorithm to solve the following problem. Given a collection
of linked lists with a total of n links, let every link know how many links are
in its list and how far the link is from the front of the list (the head link is num-
ber 1, the next link is number 2, and so on). Analyze for the RAM and the
PRAM.

3. Give an efficient algorithm to solve the following problem: for a linked list
with n links, report the number of links with a given data value x. Analyze for
the RAM and the PRAM.

4. Give an efficient algorithm to solve the following problem: for a set of
ordered linked lists with a total of n links, report to each link the median value
of the link’s list (in an ordered list of length k for even k, the median value can
be taken either as the value in link (k/2) or link (k/2 + 1) from the head). Do
not assume that it is known at the start of the algorithm how many links are in
any of the lists. Analyze for the RAM and the PRAM.

Exercises 199

200

9
Divide-and-Conquer

MergeSort (Revisited)

Selection

QuickSort (Partition Sort)

Improving QuickSort

Modifications of QuickSort for Parallel Models

BitonicSort (Revisited)

Concurrent Read/Write

Summary

Chapter Notes

Exercises

201

The phrase divide-and-conquer is used in the study of algorithms to refer to a
method of solving a problem that typically involves partitioning the problem into

smaller subproblems, recursively solving these subproblems, and then stitching
together these partial solutions to obtain a solution to the original problem. Thus, the
solution strategy involves doing some work to partition the problem into a number of
subproblems of the same form. Each of these subproblems is then solved recursively.
Finally, the solutions to these subproblems are combined to solve the original problem.
The divide-and-conquer strategy is summarized as follows:

• Divide the problem into subproblems, each of which is of a smaller size than the
original.

• Conquer all of the subproblems. In general, this is done by recursively solving the
problem. However, when the subproblem is “small enough,” the problem is solved
directly as a base case.

• Combine/Stitch the solutions to the subproblems together in order to obtain a solu-
tion to the original problem.

MergeSort (Revisited)

The divide-and-conquer paradigm is exhibited in MergeSort, a sorting algorithm
that we have previously discussed (see Chapter 2, “Induction and Recursion”).
MergeSort serves as a nice example for a concrete discussion of divide-and-
conquer. Recall that the input to the MergeSort routine consists of an unordered
list of n elements, and the output consists of an ordered list of the n elements. A
high-level description of MergeSort, in divide-and-conquer terminology, follows:

Divide: Divide the unordered n-element input sequence into two unordered
subsequences, each containing n/2 items.

Conquer: Recursively sort each of the two subsequences (general case). If
a subsequence has only one item, the subsequence need not be recursively
sorted, because a single item is already sorted (base case).

Stitch: Combine the two sorted sequences by merging them into the sorted
result.

We should point out that this is a “top-down” divide-and-conquer description
of MergeSort. This is in contrast to a “bottom-up” description that many students
see in their early courses. A bottom-up description is typically presented as
follows: “Merge pairs of (ordered) sequences of length 1 into ordered sequences
of length 2. Next, merge pairs of ordered sequences of length 2 into ordered
sequences of length 4, and so on.” Notice that while these two descriptions differ
significantly, the algorithm described and the work performed is identical.

We now consider the time and space analysis of MergeSort on a variety of
models of computation.

RAM

The analysis for the RAM should be familiar to readers who have taken a tradi-
tional year-long introduction to computer science or a course on data structures.
Let’s first consider a schematic of the operations performed by the MergeSort
algorithm on a RAM. The n elements in the list are divided initially into two lists,
each of which is recursively sorted. These two sorted lists are then merged into a
single ordered list. Notice that a traditional, sequential merge routine on n items
requires (n) time. This is true whether the ordered lists being merged are of equal
length (n/2 items apiece) or not, as long as the total of the lengths of the input lists
is n. So, regardless of the details of the data structure, and whether or not the split-
ting is done in (1) or (n) time, the total running time required for the initial split
and the final merge is (n). In fact, we can be a little more precise and say that the
running time for the highest-level split and merge is Cn, for some constant C.

Now, consider each list of size n/2. Again, we argue that the split and merge
routines are a function of the size of the input. That is, the running time to perform
the split and merge for each input set of size n/2 can be expressed as C1(n/2) for

202 Chapter 9 Divide-and-Conquer

some constant C1. In general, the running time of the algorithm behaves as shown
in Figure 9.1.

MergeSort (Revisited) 203

C1(n / 2)

C2(n / 4)
h = log2 n levels

C2(n / 4)

C1(n / 2)

Cn
Time per level

(n)

(n)

Total:

(n)

(n log n)

(n)

C2(n / 4) C2(n / 4)

FIGURE 9.1 A recursion tree giving insight into the time
required to perform a traditional MergeSort algorithm on
a RAM.

The top-down description and analysis of MergeSort can be used to derive the
running time of the algorithm in the form of a recurrence .
From the Master Method, we know that this recurrence has a solution of

. This is not surprising considering the recursion tree presented in
Figure 9.1.

Linear Array

We now consider an implementation of MergeSort on a linear array. Assume that
the elements of the list are distributed arbitrarily one per processor on a linear
array of size n, where for the sake of presentation, we assume that n is power of 2.
Let’s consider the stitch step of the algorithm. That is, assume that processors

contain an ordered subset of the data and that processors

contain the remaining elements in sorted order (see Figure 9.2). By knowing its
processor ID, every processor knows the rank of its element with respect to its
subsequence of size n/2 (see Figure 9.3). That is, processor , knows
that the element it currently contains is the ith element with respect to those

elements stored in processors . Similarly, processor ,

knows that the element it currently contains has a rank of i – n/2 with respect to
those elements stored in processors . Based on this information and

knowledge of where an element ranks in the other subsequence, every processor
will know the final position of the element it contains. That is, if the element in

P P
n n
2

1+
, …,

P
n

i n
i
,

2
1+P P

n1 2
, …,

/

P i n
i
, / 1 2

P P
n n
2

1+
, …, P P

n1 2
, ,

/
…

n n(log)
T n() =

T n T n n() (/) ()= +2 2

204 Chapter 9 Divide-and-Conquer

processor , is such that s elements in processors are

less than it, the final position for the element in processor Pi is i + s. Similarly, if
the element in processor , is such that t elements in processors

are less than it, the final position for the element in processor Pi is
i – (n/2) + t (see Figure 9.4).
P P

n1 2
, …

/

P
n

i n
i
,

2
1+

P P
n n
2

1+
, …, P i n

i
, / 1 2

Independently sorted
subarray data

Initial data 3 1 8 4

(a)

(b)

5 2 7 6

1 3 4 8 2 5 6 7

FIGURE 9.2 A snapshot of MergeSort on a linear array of size
8. The initial data is given in (a), and the result of independently
sorting both the Left and Right subarrays is shown in (b).

Data

Local Rank 1 2 3 4 1 2 3 4

1 3 4 8 2 5 6 7

FIGURE 9.3 A snapshot of MergeSort on a linear array of size
8, using the data from Figure 9.2. The snapshot shows the data
and local ranks that are determined after the independent sorts
on both the Left and Right subarrays.

Data

Local Rank

Rank in Other
 Subarray

1 2 3 4 1 2 3 4

0 1 1 4 1 3 3 3

1 3 4 8 2 5 6 7

FIGURE 9.4 A snapshot of MergeSort on a linear array of size
8 after the independent sorts on both the left and right subar-
rays. The data, local ranks, and ranks with respect to the
opposite subarray are all given. The data is from Figure 9.2.

To determine the rank of an element with respect to the other subsequence,
simply perform a rotation of the data and allow every processor to count the num-
ber of elements from the other subsequence that are less than the one that it is cur-
rently maintaining. A final rotation can then be used to send every element to its
correct sorted position. The running time of such an algorithm is given by the recur-
rence , which has a solution of , which is opti-
mal for this architecture. At this point, it is instructive to make two observations.

• The algorithm, as described, requires that during each recursive step a rotation
is performed only within the pairs of subsequences being merged. That is, a
complete rotation is not performed each time. If a complete (n) time rotation
were performed during each of the (log n) iterations, the resulting running
time would be (nlog n).

• Although the running time of this algorithm is asymptotically equivalent to the
tractor-tread/rotation-based sorting algorithm presented earlier for the linear
array, it is clear that the high-order constants for this MergeSort routine are sig-
nificantly larger than that of the tractor-tread algorithm. This is clear from the
fact that the last iteration of the MergeSort procedure requires two complete
rotations, whereas the rotation-based sort requires only one rotation in total.

Finally, consider the cost of the MergeSort algorithm. The running time is
(n) on a linear array with n processors, which yields a total cost of (n2). Notice

that this is significantly larger than the (nlog n) lower-bound result on the num-
ber of operations required for comparison-based sorting. Consider the (n) com-
munication diameter of the linear array. From this we know that it is not possible
to reduce the running time of MergeSort on a linear array of n processors. There-
fore, our only reasonable option for developing a MergeSort-based algorithm that
is cost optimal on a linear array is to consider reducing the number of processors.
Notice that if we reduce the number of processors to one, the cost-optimal RAM
algorithm can be executed. Because this yields no improvement in running time,
we would like to consider a linear array with more than a fixed number of proces-
sors but less than a linear number of processors in the size of the input, in an
asymptotic sense. We leave this problem as an exercise.

Selection

In this section, we consider the selection problem, which requires the identifica-
tion of the kth smallest element from a list of n elements, where the integer k is
given as input to the procedure and where we assume that . Notice that
this problem serves as a generalization of several important problems, which
include the following.

• The minimum problem (find a minimal entry), which corresponds to k = 1.
• The maximum problem (find a maximal entry), which corresponds to k = n.
• The median problem (find the median value), which corresponds to either

or .k n= / 2k n= / 2

1 k n

T n n() ()=T n T n n() (/) ()= +2

Selection 205

206 Chapter 9 Divide-and-Conquer

A naïve algorithm for the selection problem consists of sorting the data, and
then reporting the entry that now resides in the kth position of this ordered list.

Assume that on the given model of computation, the running time for the sort
step (step 1) dominates the running time for the report step (step 2). Given this sit-
uation, the asymptotic running time for selection is bounded by the running time
for sorting. So, on a RAM, our naïve algorithm has a running time of O(nlog n).

We know that a lower bound on a solution to the selection problem requires
that every element is examined. In fact, for the restricted problem of finding the
minimum or maximum element, we know that a more efficient solution can be
obtained by a semigroup operation, which may be implemented by a prefix-based
algorithm. For example, a simple scan through the data on a RAM provides an
asymptotically optimal (n) time solution for determining either the minimum or
the maximum element of the list. These observations suggest the possibility of
solving the more general selection problem in o(nlog n) time.

We first consider an efficient (n) time algorithm for the RAM, which is fol-
lowed by a discussion of selection on parallel machines.

RAM

The fact that a simple scan of the data will result in a (n) time solution to the min-
imum or maximum problem motivates us to consider developing a solution to the
general selection problem that does not require sorting. We now present an efficient
semigroup-based algorithm to the general selection problem. We assume that the n
data items are initially stored in arbitrary order in an array. For ease of explanation,
we assume that n, the number of elements in the array, is a multiple of 5.

The algorithm may appear to be more complex than those that have been pre-
sented previously in this text. However, it is really quite straightforward. Initially,
we take the unordered array as input and sort disjoint strings of five items (see Fig-
ure 9.5). That is, given an array S, we sort , , …, .
Notice that this requires the application of n/5 sorting routines. However, each
sorting routine requires only constant time (why?). Once the array is sorted within
these segments of size 5, we gather the medians of each of these segments. So we
now have a set of n/5 medians. Notice that after the initial local sort step, the first
median is in S[3] (this is the median of), the next median is in S[8] (the
median of), and so on. We now (recursively) find the median of these
n/5 median values. This median of medians, which we denote as AM, is an approx-
imate median of the entire set S. Once we have this approximation, we compare all
elements of S to AM and create three buckets, namely, those elements less than
AM, those elements equal to AM, and those elements greater than AM (see Figure
9.6). Finally, we determine which of these three buckets contains the kth element
and solve the problem on that bucket, recursively if necessary. (Notice that if the
kth element falls in the second bucket, then, because all elements have equal value,
we have identified the requested element.)

S[]6 10…
S[]1 5…

S n n[]4…S[]6 10…S[]1 5…

Selection 207

(a) Initial array of size 25

10 18 23 17 5 11 16 1 9 4 6 15 22 8 3 14 20 24 2 19 7 12 21 25 13

(b) Array after independent sorts

5 10 17 18 23 1 4 9 11 16 3 6 8 15 22 2 14 19 20 24 7 12 13 21 25

FIGURE 9.5 Using the Partition routine to solve the Selection Problem. An initial
input array of size 25 is given in (a). In (b), the array is shown after independently
sorting disjoint subarrays of size 5. (Note: contrary to the algorithm presented in the
chapter, for ease of presentation we ignore the fact the algorithm should proceed dif-
ferently when its recursion reaches a subarray of size 50 or smaller.)

smallList 5 10 1 4 9 11 3 6 8 2 7 12

equalList 13

17 18 23 16 15 22 14 19 20 24 21 25bigList

FIGURE 9.6 Creating three buckets based on AM=13, the median of the five
medians (17, 9, 8, 19, 13) given in Figure 9.5b. The data given in Figure 9.5b is
traversed from the beginning to the end of the array, with every element less than
13 being placed in smallList, every item equal to 13 being placed in equalList,
and every item greater than 13 being placed in bigList. Notice that the items
should be placed in these lists in a manner that allows for (1) time insertion.
So, given the order shown in this figure, one might assume that tail pointers were
maintained during the insertion process.

Function Selection(k, S, lower, upper)
Input: An array S, positions lower and upper, and a value k.
Output: The kth smallest item in S[lower . . . upper].
Local variables:
n, the size of the subarray;
M, used for medians of certain subarrays of S;
smallList, equalList, bigList: lists used to partition S;
j, an index variable;
AM, an approximation of the median of S

Action:

If , then {The base case of recursion}

return ;
End If
Else {The recursive case}

1.
2. Sort disjoint subarrays of size 5 or less. That is, independently sort

,…, .
3. For j = 1 to , do

Assign the jth median to . That is,
.

4. AM = , the median of M.
5. Create empty lists smallList, equalList, and bigList.
6. For j = 1 to n, do

Copy to

End For
7. If , then

CreateArray(smallList, smallList_array)
return

Else If then return AM
Else {find result in bigList}

CreateArray(bigList, bigList_array)
return

End Else {find result in bigList}
End Else recursive case

We now present a discussion of the correctness of this algorithm, which will
be followed by an analysis of its running time. Consider the lists smallList, equal-
List, and bigList. These lists contain members of S such that if ,

, and , then . Therefore,

• if , then the entries of smallList include the k smallest entries of S, so
the algorithm correctly returns ;

• if , then the kth smallest entry of S
belongs to equalList, each entry of which has a key value equal to AM, so the
algorithm correctly returns AM.

• if , then the kth smallest member of S must be the
th smallest member of bigList, so the algorithm cor-

rectly returns .Selection k smallList equalList bigList arra, _ yy bigList, ,1()
k smallList equalList()

smallList equalList k+ <

smallList k smallList equalList< +
Selection k smallList array smallList(, _ , , | 1 ||)

k smallList

x y z< <z bigListy equalList
x smallList

Selection k smallList equalList bigList arra, _ yy bigList, ,1()

k smallList equalList+
Selection k smallList array smallList(, _ , , | 1 ||)

k smallList

smallList S lower j AM

equalList S l

if

if

[] ;

[

+ <1

oower j AM

bigList

+ =1] ;

, otherwise.

S lower j[]+ 1

Selection M M n/ , , , /2 1 5()
M j S lower j[] []= + 5 3

M j[]
n / 5

S lower n upper+ ()5 5 1/ , ,…S lower lower, ,… + 4

n upper lower= +1

S lower k[]+ 1
SelectionSort S lower upper(, ,)

upper lower < 50

208 Chapter 9 Divide-and-Conquer

Analysis of Running Time

The base case of the recursive algorithm calls for sorting a list with length of at most
50. Therefore, the running time of the base case is (1). This is because any polyno-
mial time algorithm, such as the (n2) time SelectionSort, will run in constant time
on a fixed number of input items. We remark that the criterion value 50 is rather arbi-
trary; for analysis of our algorithm, any fixed positive integer will suffice.

We now consider the remainder of the algorithm.

• Step 1 clearly requires (1) time.
• Step 2 calls for sorting (n) sublists of the input list, where each sublist has at

most five entries. Because five is a constant, we know that each sublist can be
sorted in constant time. Therefore, the time to complete these (n) sorts, each
of which requires (1) time, is (n).

• Step 3 gathers the medians of each sublist, which requires making a copy of
elements, each of which can be retrieved in (1) time. Therefore, the

running time for this step is (n).
• Step 4 requires the application of the entire procedure on an array with

elements. Therefore, this step requires time. We can simplify nota-

tion by saying that this step requires less than T(n/5) time.
• Step 5 calls for the creation of a fixed number of lists, which requires (1)

time in most modern programming languages.
• Step 6 consists of copying each of the n input elements to exactly one of the

three lists created in step 4. Therefore, the running time for this step is (n).
• Step 7 determines which of the three lists needs to be inspected and, in two of

the three cases, a recursive call is performed. The running time for this step is
a function of the input value k as well as the order of the initial set of data. Due
to these complexities, analysis of the running time of this step is a bit more
involved. Three basic cases must be considered, each of which we evaluate
separately. Namely, the requested element could be in smallList, equalList, or
bigList.

• We first consider the case where the requested element is in smallList, which
occurs when . Let’s consider just how large smallList can be.
That is, what is the maximum number of elements that can be in smallList?
The maximal size of smallList can be determined as follows:
a) Consider the maximum number of elements that can be less than AM (the

median of the medians). At most members of M
are less than AM. For simplicity, and because our analysis is based on
asymptotic behavior, let’s say that at most n/10 (median) elements are less
than AM.

b) Notice that each is the third smallest entry of an ordered five-ele-
ment sublist of the input list S. In the n/10 sublists for which we have

m M

M n/ / /2 5 2=

k smallList

T n / 5()
n / 5

n / 5

Selection 209

, possibly all five members could be less than AM; however, in the
n/10 sublists for which we have , at most two members apiece are
less than AM.

c) Therefore, at most elements of the input list S can be sent

to smallList. Thus the recursive call to
requires at most T(7n/10) time.

• If and , then the required element is
in equalList, and this step requires only (1) time, because the required ele-
ment is equal to AM. (Notice at most one of the elements in equalList must be
examined.)

• If , then the required element is in bigList. Con-
sider the maximum number of elements that can appear in bigList. An argu-
ment similar to the one given above for the size of smallList can be used to
show that bigList has at most 7n/10 entries. Thus, the recursive call of the
Selection routine requires at most T(7n/10) time. Therefore, step 7 uses at
most T(7n/10) time.

• Finally, consider the total running time T(n) for the selection algorithm we
have presented. There are positive constants c, c0 such that the running time of
this algorithm is given by

By taking C = max{c, 10c0}, the previous statement yields

Thus, for 1 n 50 we have T(n) Cn. This statement serves as the base case
for an induction proof. Suppose we have T(n) Cn for all positive integer values
n < m. Then we have

T(m) T(m/5) + T(7m/10) + Cm/10

(by the inductive hypothesis)

Cm/5 + C(7m/10) + Cm/10 = Cm.

Thus, our induction shows T(n) = O(n). An upper bound on the right side of the
recursion relation is , where . BecauseC C C

2 0 1
= max{ , }C T n n

2
7 10(/)+

T n Cn n

T n T n T n Cn

() ;

() (/) (/) /+ +
for 1 50

5 7 10 100 50for n > .

T n cn n

T n T n T n c n

() ;

() (/) (/)+ +
for

f

1 50

5 7 10
0

oor n > 50.

| | | |smallList equalList k+ <

smallList equalList k+smallList k>
Selection k smallList array(, _ , ,|1

Selection k smallList array(, _ , ,|1

5

10

2

10

7

10

n n n
+ =

m AM
m AM<

210 Chapter 9 Divide-and-Conquer

reflects a geometric series that resolves as
(see Exercises in Chapter 2, “Induction and Recursion”), we

have T(n) = O(n). We also must examine every entry of the input list (because
were we to overlook an entry, it is possible that the entry overlooked has the
“answer”). Therefore, any selection algorithm must take (n) time. Thus, our
algorithm takes (n) time on a RAM, which is optimal.

Parallel Machines

Notice that a lower bound on the time required to perform selection on a parallel
machine is based on the communication diameter of the machine, not the bisection
width. Therefore, one might hope to construct an algorithm that runs in time pro-
portional to the communication diameter of the given parallel model.

Consider applying the algorithm we have just presented on a PRAM. Notice
that the independent sorting of step 2 can be performed in parallel in (1) time.
Step 3 requires that the median elements are placed in their proper positions,
which can be done quite simply on a PRAM in (1) time. Step 4 is a recursive step
that requires time proportional to T(n/5). Step 5 requires constant time. Step 6 is
interesting: the elements can be ordered and rearranged by performing a parallel
prefix operation to number the elements in each list, which results in identifying
the locations corresponding to the destinations of the elements. That is, for each of
the elements of S, we assign (by keeping a running count) its position in the appro-
priate of smallList, equalList, or bigList and copy the element of S into its assigned
position in the appropriate one of these auxiliary lists. Therefore, this step can be
performed in O(log n) time. Now consider the recursion in step 7. Again, the run-
ning time of this step is no more than T(7n/10). Therefore, the running time for the
algorithm can be expressed as , which is
asymptotically equivalent to , which resolves to T(n)
= O(log2 n). It should be noted that the running time of this algorithm can be
reduced to O(log n log log n) by applying some techniques that are outside the
scope of this text. In addition, the problem can also be solved by first sorting the
elements in (log n) time and then selecting the required element in (1) time.
This (log n) time sorting routine is also outside the scope of this book. In fact,

(n) optimal-cost algorithms for the selection problem on a PRAM are known.
These algorithms are also outside the scope of this text.

Consider the selection problem on a mesh of size n. Because the communica-
tion diameter of a mesh of size n is (n1/2), and because it will be shown later in this
chapter that sorting can be performed on the mesh in (n1/2) time, we know that the
problem of selection can be solved in optimal (n1/2) time on a mesh of size n.

QuickSort (Partition Sort)

QuickSort is an efficient and popular sorting algorithm that was originally
designed for the RAM by C.A.R. Hoare. It is a beautiful algorithm that serves as

T n T n O n() (/) (log)= +7 10
T n T n T n O n() (/) (/) (log)= + +7 10 5

T n n() ()=
T n C T n n() (/)= +

2
7 10

QuickSort (Partition Sort) 211

an excellent example of the divide-and-conquer paradigm. It is also a good exam-
ple of an algorithm without a deterministic running time, in the sense that its
expected- and worst-case running times are not identical. Depending on the
arrangement of the n input items, QuickSort has a (n) best-case running time and
a (n2) worst-case running time on a RAM. However, the reason that QuickSort is
so popular on the RAM is that it has a very fast (nlog n) expected-case running
time. One must take care with QuickSort, however, because it can have a rather
slow (n2) running time for important input sets, including data that is nearly
ordered or nearly reverse-ordered.

The basic algorithm consists of the three standard divide-and-conquer steps:

Divide: Divide the n input items into three lists, denoted as smallList,
equalList, and bigList, where all items in smallList are less than all items
in equalList, all items in equalList have the same value, and all items in
equalList are less than all items in bigList.

Conquer: Recursively sort smallList and bigList.

Stitch: Concatenate smallList, equalList, and bigList.

The reader should note the similarity of the Divide step with the Divide step of
the Selection algorithm discussed earlier in this chapter (see Figure 9.7). Also,
note the Conquer step does not require processing the equalList, because its mem-
bers are sorted (they all have the same value).

QuickSort is naturally implemented with data arranged in queue structures.
Because a queue can be efficiently and naturally implemented as a linked list, we
will compare the QuickSort and MergeSort algorithms. Consider the divide (split)
step. MergeSort requires a straightforward division of the elements into two lists
of equal size, whereas QuickSort requires some intelligent reorganization of the
data. However, during the stitch step, MergeSort requires an intricate combination
of the recursively sorted sublists, but QuickSort requires merely concatenation of
three lists. Thus, MergeSort is referred to as an easy split–hard join algorithm;
QuickSort is referred to as a hard split–easy join algorithm. That is, MergeSort is
more efficient than QuickSort in the divide stage but less efficient than QuickSort
in the stitch stage.

Notice that in MergeSort, comparisons are made between items in different
lists during the merge operation. In QuickSort, however, notice that comparisons
are made between elements during the divide stage. The reason that no compar-
isons are made during the stitch step in QuickSort is because the divide step guar-
antees that if element x is sent to list smallList, element y is sent to list equalList,
and element z is sent to bigList, then x < y < z.

Typically, the input data is divided into three lists by first using a small amount
of time to determine an element that has a high probability of being a good
approximation to the median element. We use the term splitValue to refer to the
element that is selected for this purpose. This value is then used much in the same

212 Chapter 9 Divide-and-Conquer

way as AM was used during the selection algorithm. Every element is sent to one
of three lists, corresponding to those elements less than splitValue (list smallList),
those elements equal to splitValue (list equalList), and those elements greater than
splitValue (list bigList). After recursively sorting bigList and smallList, the three
lists can simply be concatenated.

We mentioned earlier that depending on the order of the input, QuickSort
could turn out to be a relatively slow algorithm. Consider the split step. Suppose
that splitValue is chosen such that only a constant number of elements are either
smaller than it or larger than it. This would create a situation where all but a few
items wind up in either smallList or bigList, respectively. If this scenario continues
throughout the recursion, it is easy to see that the analysis of running time would
obey the recurrence , for some constant c, which sums asT n T n c n() () ()= +

QuickSort (Partition Sort) 213

q 5 8 1 2 6 7 4 9 3

1 2 4 3

8 6 7 9

equalList

smallList

5

bigList

1 2 3 4

6 7 8 9

equalList

smallList

5

bigList

1 2 3 4q 5 6 7 8 9

(a) Initial unsorted list

(b) Three lists after the partitioning based on the value of 5

(c) Three lists after smallList and bigList recursively sorted

(d) Completed list after the three sorted sublists are concatenated

FIGURE 9.7 An example of QuickSort on a linked list.
(a) shows the initial unsorted list. (b) shows three lists
after partitioning based on the value 5. (c) shows the
same lists after smallList and bigList have been recur-
sively sorted. (d) shows the completion of the sorting
process, after concatenation of the sorted sublists.

an arithmetic series to T(n) = (n2). Notice, unfortunately, that this worst-case
running time of (n2) occurs easily if the data is nearly ordered or nearly reverse-
ordered. Therefore, the user must be very careful in applying QuickSort to data for
which such situations might arise.

Naturally, we hope that the splitting item is chosen (recursively) to be close to
a median. Such a choice of splitValue would result in a running time given by

, which gives .
We now present details of a list-based QuickSort algorithm on a RAM. We

start with a top-down description of the algorithm.

Subprogram QuickSort(q)
Input: A list q.
Output: The list q, with the elements sorted.
Procedure: Use QuickSort to sort the list.
Local variables:
splitValue, key used to partition the list;
smallList, equalList, bigList, sublists for partitioning.

Action:

If q has at least two elements, then {do work}
Create empty lists smallList, equalList, and bigList.

{Divide: Partition the list}
splitValue = findSplitValue(q);
splitList(q, smallList, equalList, bigList, splitValue);

{Conquer: Recursively sort sublists}
QuickSort(smallList);
QuickSort(bigList);

{Stitch: Concatenate sublists}
Concatenate(smallList, equalList, bigList, q)

End If
End Sort

We reiterate that it is not necessary to sort equalList in the “Conquer” section
of the algorithm because all members of equalList have identical key fields. Now
let’s consider the running time of QuickSort.

• It takes (1) time to determine whether or not a list has at least two items.
Notice that a list having fewer than two items serves as the base case of recur-
sion, requiring no further work because such a list is already sorted.

• Constructing three empty lists requires (1) time using a modern program-
ming language.

T n n n() (log)=T n T n n() (/) ()= +2 2

214 Chapter 9 Divide-and-Conquer

• Consider the time it takes to find the splitValue. Ideally, we want this splitter to
be the median element, so that smallList and bigList are of approximately the
same size, which will serve to minimize the overall running time of the algo-
rithm. The splitter can be chosen in as little as (1) time, if one just grabs an
easily accessible item such as the first item of the list, or in as much as (n)
time, if one wants to determine the median precisely (see the selection algo-
rithm in the previous section). Initially, we will consider using a unit-time
algorithm to determine the splitter. We realize that this could lead to a bad split
and, if this continues at all levels of recursion, to a very slow algorithm. Later
in the chapter we will discuss improvements in choosing the splitter and the
effect that such improvements have on the overall algorithm.

Splitting the list requires (1) time per item, which results in a (n) time
algorithm to split the n elements into the three aforementioned lists. The algorithm
follows.

Subprogram splitList(A, smallList, equalList, bigList, splitValue)
Input: List A, partition element splitValue.
Output: Three sublists corresponding to items of A less than, equal to, and
greater than splitValue.
Local variable: temp, a pointer used for dequeueing and enqueueing

Action:

While not empty(A), do
getfirst(A, temp);
If , then

putelement(temp, smallList)
Else If , then

putelement(temp, equalList)
Else putelement(temp, bigList)

End While
End splitList

Notice that for the sake of efficiency, it is important to be able to add an ele-
ment to a list in (1) time. Many programmers make the mistake of adding a new
element to the end of a list without keeping a tail pointer. Because elements are
added to lists without respect to order, it is critical that elements be added effi-
ciently to the lists. In a queue, elements can be removed quite simply from the
front of the list (this operation is often called dequeueing—we called it getfirst
earlier) or added to the back of a list (this operation is often called enqueueing—
we called it putelement earlier) in (1) time per element, resulting in a (n)-time
split procedure.

temp key splitValue. =

temp key splitValue. <

QuickSort (Partition Sort) 215

Let’s resume a discussion of the running time of QuickSort, though we will
defer a detailed analysis until the next section. In the best case, every element of
the input list goes into the equalList, with smallList and bigList remaining empty.
If this is the case, the algorithm makes one pass through the data, places all of the
items in a single list, has recursive calls that use (1) time, and concatenates the
lists in (1) time. This results in a total running time of (n).

Without loss of generality, let’s now consider the case where all of the ele-
ments are distinct. Given this scenario, the best-case running time will occur when
an even split occurs. That is, when one item is placed in equalList, items
in either smallList or bigList, and items in bigList or smallList, respec-
tively. In this situation, the running time of the algorithm, T(n), is given (approxi-
mately) as follows:

Recall from the presentation of MergeSort, that this recurrence results in a
running time of . So, in the best case, the running time of Quick-
Sort is asymptotically optimal. In the next section, we will show that on average
the running time of QuickSort is (nlog n), which has important practical implica-
tions. In fact, its (nlog n) average running time is one of the reasons that Quick-
Sort comes packaged with so many computing systems.

Now consider the worst-case scenario of QuickSort. Suppose that at every
level of recursion, either the maximum or minimum element in the list is chosen as
splitValue. Therefore, after assigning elements to the three lists, one of the lists
will have n – 1 items in it, one will be empty, and equalList will have only the
splitter in it. In this case, the running time of the algorithm obeys the recurrence

, which has a solution of . That is, if one gets
very unlucky at each stage of the recursion, the running time of QuickSort could
be as bad as (n2). One should be concerned about this problem in the event that
such a running time is not acceptable. Further, if one anticipates data sets that have
large segments of ordered data, one may want to avoid a straightforward imple-
mentation of QuickSort. The scenario of a bad split at every stage of the recursion
could also be realized with an input list that does not have large segments of
ordered data (see the Exercises). Later in this chapter, we discuss techniques for
minimizing the possibility of a (n2)-time QuickSort algorithm.

Array Implementation

In this section, we discuss the application of QuickSort to a set of data stored in an
array. The astute reader might note that with modern programming languages, one
very rarely encounters a situation where the data to be sorted is maintained in a
static array. However, there are certain “dusty deck” codes that must be main-
tained in the original style of design and implementation for various reasons. This

T n n() ()= 2T n T n n() () ()= +1

T n n n() (log)=

T

T n T n n

() ();

() (/) ().

1 1

2 2

=
= +

n / 2 1
n / 2

216 Chapter 9 Divide-and-Conquer

includes vintage scientific software written in languages such as FORTRAN. In
addition, there are other reasons why we present this unnatural implementation of
QuickSort. The first is historic. When algorithms texts first appeared, the major
data structure was a static array. For this reason, QuickSort has been presented in
many texts predominantly from the array point of view. Although this is unfortu-
nate, we do believe that for historic reasons, it is also important to include an array
implementation of QuickSort in this book. Finally, although the linked list imple-
mentation that we presented in the preceding section is straightforward in its
design, implementation, and analysis, the array implementation is quite complex
and counterintuitive. The advantage of this is that it allows us to present some
interesting analysis techniques and to discuss some interesting algorithmic issues
in terms of optimization.

Assume that the input to the QuickSort routine consists of an array A contain-
ing n elements to be sorted. For simplicity, we will assume that A contains only the
keys of the data items. Note that the data associated with each element could more
generally be maintained in other fields if the language allows an array of records
or could be maintained in other (parallel) arrays. The latter situation was common
in the 1960s and 1970s, especially with languages such as FORTRAN.

Notice that a major problem with a static array is partitioning the elements. We
assume that additional data structures cannot be allocated in a dynamic fashion. For
historical reasons, let’s assume that all rearrangement of data is restricted to the
array(s) that contain the initial data plus a constant number of temporary data cells.
Although this situation may seem strange to current students of computer science
who have learned modern (that is, post-1980s) programming languages, we reiter-
ate that there are situations and languages for which this scenario is critical.

So, let’s consider the basic QuickSort algorithm as implemented on an array
A, where we wish to sort the elements , where are inte-
gers that serve as pointers into the array.

Input: An array A.
Output: The array A with elements sorted by the QuickSort method.
Subprogram QuickSort (A, left, right)

If left < right, then
Partition(A, left, right, partitionIndex)
QuickSort(A, left, partitionIndex)
QuickSort(A, partitionIndex+1, right)

End If
End QuickSort

Notice that the basic algorithm is similar to the generic version of QuickSort
presented previously. That is, we need to partition the elements and then sort each of
the subarrays. For purposes of our discussion in this section, we view the array as
being horizontal. To work more easily with an array, we will partition it into only
two “subarrays” under a relaxed criterion that requires all elements in the left subar-

left rightA left right[...]

QuickSort (Partition Sort) 217

218 Chapter 9 Divide-and-Conquer

ray to be less than or equal to all elements in the right subarray. (It is critical to note
that if the keys are not unique, copies of the split element could appear in both the
left and right subarrays.) We then recursively sort the left subarray and the right sub-
array. Notice that the concatenation step comes for free because concatenating two
adjacent subarrays does not require any work. Specifically, we have the following.

Divide: is partitioned into two nonempty subarrays
and such that all elements in are

less than or equal to all elements in .

Conquer: Sort the two subarrays, and ,
recursively.

Stitch: Requires no work because the data is in an array that is already
correctly joined.

So, given the basic algorithm, we need to fill in the algorithm only for the par-
tition routine (see Figure 9.8). We need to point out that this routine is specific to
array implementations. Over the years, we have watched numerous programmers
(predominantly students) try to implement this routine on a linked list because
they did not understand the fundamentals of QuickSort and did not realize that this
array implementation is unnatural. The (standard) partition routine that we are
about to present should be used only with an array.

A p right+1…A left p…

A p right+1…
A left p…A p right+1…A left p…

A left right…

5 8 1 2 6 7 4 9 3

1 2 3 4 5 6 7 8 9

(a) The initial unordered array is given.

3 4 1 2 6 7 8 9 5

(b) The data is shown after partitioning has been
 performed with respect to the value of 5. Notice
 that <3,4,1,2> are all less than or equal to 5 and
 <6,7,8,9,5> are all greater than or equal to 5.

(c) The array is presented after the recursive sorting on
 each of the two subarrays. Notice that this results in
 the entire array being sorted.

FIGURE 9.8 An example of QuickSort on an array of size
9. (a) shows the initial unordered array. (b) shows the
array after partitioning with respect to the value 5. Note
every member of (3,4,1,2) is less than 5, and every member
of (6,7,8,9,5) is greater than or equal to 5. (c) shows the
results of sorting each of the subarrays recursively. Notice
that the entire array is now sorted.

This partition routine works as follows. First, choose a partition value. Next,
partition the array into two subarrays so that all elements in the left subarray are
less than or equal to the partition value, whereas all elements in the right subarray
are greater than or equal to this value. This is done by marching through the array
from left to right in search of an element that is greater than or equal to the parti-
tion value, and similarly, from right to left in search of an element that is less than
or equal to the partition value. In other words, we march through the array from
the outside in, looking for misplaced items. If such elements are found (in a pair-
wise sense), they are swapped, and the search continues until the elements discov-
ered are in their proper subarrays. Refer again to Figure 9.8. Pseudo-code follows.

Subprogram Partition(A, left, right, partitionIndex)
Input: A subarray .
Output: An index, partitionIndex, and the subarray parti-
tioned so that all elements in are less than or equal
to all elements in .
Local variables: splitValue; indices i, j

Action:

splitValue A[left] {A simple choice of splitter}

While , do
Repeat until
Repeat until
If , then
Else

End While
End Partition

We now present an example of the partition routine. Notice that the marching
from left to right is accomplished by the movement of index i, whereas the marching
from right to left is accomplished by the movement of index j. It is important to note
that each is looking for an element that could be located in the other subarray. That is,
i will stop at any element greater than or equal to the splitter element, and j will stop
at any element less than or equal to the splitter element. The reader should note that
this guarantees the algorithm will terminate without allowing either index to move off
of the end of the array, so there is no infinite loop or out-of-bounds indexing.

partitionIndex j
Swap A i A j([], [])i j<

A j splitValue[]j j 1
A i splitValue[]i i +1

i j<
j right +1
i left 1

A partitionIndex right[, ,]+1…
A left partitionIndex[, ,]…

A left right[, ,]…
A left right[, ,]…

QuickSort (Partition Sort) 219

220 Chapter 9 Divide-and-Conquer

EXAMPLE

Initially, the splitValue is chosen to be , i is set to and j is
set to , as shown in Figure 9.9a.

Because , the algorithm proceeds by incrementing i until an element
is found that is greater than or equal to 5. Next, j is decremented until an ele-
ment is encountered that is less than or equal to 5. At the end of this first pair of
index updates, we have i = 1 and j = 7, as shown in Figure 9.9b.

i j<
right + =1 9

left =1 0A[]1 5=

5(a)

i

3 2 6 4 1 3 7

j

5(b)

i

3 2 6 4 1 3 7

j

3(c)

i

3 2 6 4 1 5 7

j

3
(d)

i

3 2 6 4 1 5 7

j

3
(e)

i

3 2 1 4 6 5 7

j

(f) 3

j

A[left...p] A[p+1...right]

3 2 1 4 6 5 7

i

FIGURE 9.9 An example of the Partition routine of QuickSort
on an array of 8 items.

Analysis of QuickSort

In this section, we consider the time and space requirements for the array version
of QuickSort, as implemented on a RAM.

Time
Notice that the running time is given by T(n) = T(nL) + T(nR) + (n), where (n)
is the time required for the partition and concatenation operations, T(nL) is the time
required to sort recursively the left subarray of size nL, and T(nR) is the time
required to sort recursively the right subarray of size nR, where .

Consider the best-case running time. That is, consider the situation that will
result in the minimum running time of the array version of QuickSort as presented.
Notice that to minimize the running time, we want T(nL) = (T(n)), which occurs
if nL = (nR). In fact, it is easy to see that the running time is minimized if we par-
tition the array into two approximately equally sized pieces at every step of the
recursion. This basically results in the recurrence , which
has a solution of . This situation will occur if every time the par-
tition element is selected, it is the median of the elements being sorted.

Consider the worst-case running time. Notice that the running time is maxi-
mized if either nL or nR is equal to n – 1. That is, the running time is maximized if
the partition is such that the subarrays are of size 1 and n – 1. This would yield a
recurrence of , which resolves to T(n) = (n2). Although
this situation can occur in a variety of ways, notice that this situation occurs easily
for data that is ordered or reverse-ordered. The user should be very careful of this
because sorting data that is nearly ordered can occur frequently in a number of
important situations.

T n T n n() () ()= +1

T n n n() (log)=
T n T n n() (/) ()= +2 2

n n n
L R
+ =

QuickSort (Partition Sort) 221

Because i < j, we swap elements and . This results in the con-
figuration of the array shown in Figure 9.9c.

Because i < j, the algorithm proceeds by incrementing i until an element is found that
is greater than or equal to 5. Next, j is decremented until an element is encountered that is
less than or equal to 5. At the end of this pair of index updates, we have i = 4 and j = 6, as
shown in Figure 9.9d.

Because i < j, we swap elements and . This results in the con-
figuration of the array shown in Figure 9.9e.

Because i < j, the algorithm continues. First, we increment i until an element (6) is
found that is greater than or equal to 5. Next, we decrement j until an element (4) is found
that is less than or equal to 5. At the end of this pair of index updates, we have i = 6 and j =
5 (see Figure 9.9f).

Because , the procedure terminates with the partitionIndex set to
j = 5. This means that QuickSort can be called recursively on and

.A[]6 8…
A[]1 5…

i j

A j A[] []= 6A i A[] []= 4

A j A[] []= 7A i A[] []= 1

Finally, consider the expected running time. As it turns out, the expected-case
running time is asymptotically equivalent to the best-case running time. That is,
given a set of elements with distinct keys arbitrarily distributed throughout the
array, we expect the running time of QuickSort to be (nlog n). The proof of this
running time is a bit complex, though very interesting. We present this proof later
in this chapter.

A summary of the running times for the array version of QuickSort is pre-
sented in the table below.

Scenario Running Time

Best-Case (nlog n)
Worst-Case (n2)
Expected-Case (nlog n)

Space
In this section, we consider the additional space used by the array version of
QuickSort as implemented on a RAM. This may seem like a trivial issue because
the routine does not use anything more than a few local variables. That is, there are
no additional arrays, no dynamic allocation of memory, and so on. However,
notice that the routine is recursive. This means that the system will create a system
stack entry for each procedure call pushed onto the system stack.

Consider the best-case space scenario. This occurs when both procedure calls
are placed on the stack, the first is popped off and immediately discarded, and the
second is popped off and evaluated. In this case, there will never be more than two
items on the stack—the initial call to QuickSort and one additional recursive call.
Notice that this situation occurs when the array is split into pieces of size 1 and
n – 1. Furthermore, the recursive calls must be pushed onto the system stack so
that the subarray of size 1 is sorted first. This procedure call terminates immedi-
ately because sorting an array of size 1 represents the base case of the QuickSort
routine. Next, the system stack is popped and the procedure is invoked to sort the
subarray of size n – 1. The system stack is prevented from growing to more than
two calls via a minor modification in the code that replaces a (tail-end) recursive
call by either an increment to left or a decrement to right, and a branch.

Now let’s consider the worst-case space scenario. This situation is almost
identical to the best-case space scenario. The only difference is that the procedure
calls are pushed onto the system stack in the reverse order. In this situation, the
procedure will first be invoked to evaluate the subarray of size n – 1 (which in turn
generates other recursive procedure calls), and after that routine is complete, the
system stack will be popped, and the subarray of size 1 will be sorted. In this situ-
ation, the chain of recursive calls generated by the call to evaluate the subarray of
size n – 1 requires the system stack to store (n) procedure calls. Demonstration
of this claim is left as an exercise.

222 Chapter 9 Divide-and-Conquer

It is interesting to note that both the best-case and worst-case space situations
occur with the (n2) worst-case running time.

Consider the expected-case space scenario. This occurs with the expected-
case (nlog n) running time, where no more than (log n) procedure calls are ever
on the system stack at any one time. Again, this can be seen in conjunction with
the expected-case analysis that will follow.

A summary of space requirements for the array version of QuickSort is pre-
sented in the following table.

Scenario Extra Space

Best-Case (1)
Worst-Case (n)
Expected-Case (log n)

Expected-Case Analysis of QuickSort

In this section, we consider the expected-case running time of QuickSort. The
analysis is intricate and suitable only for a reader who has a solid mathematical
background. We will make a variety of assumptions, most of which serve only to
simplify the analysis. Our first major assumption is that the array consists of n dis-
tinct keys, randomly distributed. In terms of fundamental notation, we let k(i) be
the expected number of key comparisons required to sort i items. QuickSort is a
comparison-based sort, and our analysis will focus on determining the number of
times QuickSort compares two elements during the sorting procedure. The reader
should note that k(0) = 0, k(1) = 0, and k(2) = 3.5. That is, an array with one (or
fewer) element(s) is already sorted and does not require any keys to be compared.
An array of size 2 requires (on average) 3.5 comparisons to be sorted by the array
version of QuickSort that we have presented. The reader should verify this.

We now consider some assumptions that apply to the partition routine.
Assume that we are required to sort .

• According to the partition routine, we will use as the partition element.
• As we are assuming distinct keys, if the partition element (originally) is

the ith largest of the n elements in and , then at the end of the
partition, the smallest elements will be stored in . We can
make a simple modification to the code so that at the end of the partition rou-
tine, the splitter is placed in position i, and partitionIndex is set to i. Notice
that this modification requires time.

• Therefore, notice that it suffices to have the recursive calls performed on
and .

Consider the number of comparisons that are made in the partition routine.

A i n[]+1…A i[]1 1…

()1

A i[]1 1…i 1
i >1A n[]1…

A[]1
A[]1

A n[]1…

QuickSort (Partition Sort) 223

• Notice that it takes (n) comparisons to partition the n elements. The reader
should verify this.

• Based on our notation and the recursive nature of QuickSort, we note that, on
average, it takes at most k(i – 1) and k(n – i) comparisons to sort
and , respectively.

We should point out that because we assume unique input elements and that
all arrangements of the input data are equally likely, it is equally likely that the
partitionIndex returned is any of the elements of . That is, the partitionIndex
will wind up with any value from 1 through and including n with probability 1/n.
Finally, we present details for determining the expected-case running time of
QuickSort.

We have , where

• k(n) is the expected number of key comparisons,
• (n + 1) is the number of comparisons required to partition n data items, assum-

ing that Partition is modified in such a way to prevent i and j from crossing,
• 1/n is the probability of the input A[j] being the ith largest entry of A,

,

• k(i – 1) is the expected number of key comparisons to sort , and
• k(n – i) is the expected number of key comparisons to sort .

So,

k(n) =

=

= .

(Note that we used the fact that k(0) = 0.)
Therefore, we now have

k(n) = .n
n

k n k n k n k+ + + + + +1
2

1 2 3 1() () () ()…

n
n

k i
i

n

+ +
=

1
2

1

1

()

n
n

k k n

k k n

k n k

+ +

+
+ +
+
+ +

1
1

0 1

1 2

1 0

() ()

() ()

() ()

…

() () ()n
n

k i k n i
i

n

+ + +
=

1
1

1
1

A i n[]+1…
A i[]1 1…

j n{ , }1…

k n n
n

k i k n i
i

n

() () () ()= + + +
=

1
1

1
1

{ , , }1… n

A i n[]+1…
A i[]1 1…

224 Chapter 9 Divide-and-Conquer

Notice that this means that

k(n – 1) = .

In order to simplify the equation for k(n), let’s define

.

By substituting into the previous equations for k(n) and k(n – 1), we obtain

and .

Therefore, .

So,

k(n) =

= .

Hence, .

To simplify, let’s define

.

Therefore,

.

So,

X n
n

X n
n n

X n
n n n

() () ()=
+

+ =
+

+ + =
+

+ +
2

1
1

2

1

2
2

2

1

2 2

11
3+ =X n() …

k n

n
X n

()
()=

1
1

X n
k n

n
()

()
=

+1

k n

n n

k n

n

() ()

+
=

+
+

1

2

1

1

n

n
k n

+
+

1
1 2()

n
n

k n
n

k n n+ + + ()1
2

1
1

2
1() ()

S
n

k n n=
1

2
1()

k n n
n

S() = +1
2

1
k n n

n
k n S() ()= + + +1

2
1

S k n k n k= + + +() () ()2 3 1…

n
n

k n k n k+ + + +
2

1
2 3 1() () ()…

QuickSort (Partition Sort) 225

The reader should be able to supply an induction argument from which it can
be concluded that

.

So, expected-case number of comparisons.
It is easily seen that the expected-case number of data moves (swaps) is

O(nlog n), because the number of data moves is no more than the number of com-
parisons. Therefore, the expected-case running time of QuickSort is (nlog n).
The previous argument requires little modification to show that our queue-based
implementation of QuickSort also has an expected-case running time of (nlog n).

Improving QuickSort

In this section, we discuss some improvements that can be made to QuickSort.
First, we consider modifications targeted at improving the running time. (It is
important to note that the modifications we suggest should be evaluated experi-
mentally on the systems under consideration.) One way to avoid the possibility of
a bad splitter is to sample more than one element. For example, choosing the
median of some small number of keys as the splitter might result in a small (single-
digit) percentage improvement in overall running time for large input sets. As an
extreme case, one might use the selection algorithm presented earlier in this chap-
ter to choose the splitter as the median value in the list. Notice that this raises the
time from (1) to (n) to choose the splitter. However, because the selection of a
splitter is bundled into the (n) time partition routine, this increased running time
will have no effect on the asymptotic expected-case running time of QuickSort (of
course, it will often have a significant effect on the real running time of Quick-
Sort); further, because it guarantees good splits, choosing the split value in this
fashion lowers the worst-case running time of QuickSort to (nlog n).

If one is really concerned about trying to avoid the worst-case running time of
QuickSort, it might be wise to reduce the possibility of having to sort mostly
ordered or reverse-ordered data. As strange as it may seem, a reasonable way to do
this is first to randomize the input data. That is, take the set of input data and ran-
domly permute it. This will have the effect of significantly reducing the possibility
of taking ordered sequences of significant length as input.

k n n X n n n() () () (log)= + =1

= + =
=

+

C
i

n
i

n

2
1

4

1

(log)

where (a constant) C X
k

= = = =()
() .

2
2

3

3 5

3

7

6
2

1

4

1

5

1

1
+ + +

+
+…

n
C

X n
n n n

X() ()=
+

+ + + + + =
2

1

2 2

1

2

4
2…

226 Chapter 9 Divide-and-Conquer

After experimentation, the reader will note that QuickSort is very fast for large
values of n but relatively slow when compared to (n2) time algorithms such as
SelectionSort, InsertionSort, or BubbleSort, for small values of n. The reader
might perform an experiment comparing QuickSort to SelectionSort, Insertion-
Sort, and other sorting methods for various values of n. One of the reasons that
QuickSort is slow for small n is that there is significant overhead to recursion. This
overhead does not exist for straight-sorting methods, like InsertionSort and Selec-
tionSort, which are constructed as tight, doubly nested loops. Therefore, one might
consider a hybrid approach to QuickSort that exploits an asymptotically inferior
routine, which is applied only in a situation where it is better in practice. Such a
hybrid sort can be constructed in several ways. The most obvious is to use Quick-
Sort (recursively) only as long as , for some experimentally deter-
mined m. That is, one uses the basic QuickSort routine of partitioning and calling
QuickSort recursively on both the left and right subarrays. However, the base case
changes from a simple evaluation of to . In the case
that , then one applies the straight-sorting routine that was used to
determine the cutoff value of m. Possibilities include SelectionSort and Insertion-
Sort, with SelectionSort typically being favored.

Consider an alternative approach. Sort the data recursively, so long as
. Whenever a partition is created such that , how-

ever, simply ignore that partition (that is, leave that partition in an unsorted state).
Notice that, at the end of the entire QuickSort procedure, every element will be
within m places of where it really belongs. At this point, one could run Insertion-
Sort on the entire set of data. Notice that InsertionSort runs in (mn) time, where
n is the number of elements in the array, and m is the maximum distance any ele-
ment must move. Therefore, for m small, InsertionSort is a fast routine. In fact, for
m constant, this implementation of InsertionSort requires only (n) time. (We
should not forget the preceding in analyzing the resulting hybrid version of Quick-
Sort, which from start to finish has the same asymptotic behavior as the non-
hybrid versions discussed earlier.) Further, compared to the previous hybrid
approach, this approach has an advantage in that only one additional procedure
call is made, compared to the O(n) procedure calls that could be made if small sub-
arrays are immediately sorted. Hence, this version of a hybrid QuickSort is gener-
ally preferred.

We now consider improvements in the space requirements of QuickSort. Recall
that the major space consideration is the additional space required for the system
stack. One might consider unrolling the recursion and rewriting QuickSort in a non-
recursive fashion, which requires maintaining your own stack. This can be used to
save some real space, but it does not have a major asymptotic benefit. Another
improvement we might consider is to maintain the stack only with jobs that need to
be done and not jobs representing tail-end recursion that are simply waiting for

right left m<right left m

right left m<
right left m<left right<

right left m

Improving QuickSort 227

another job to terminate. However, in terms of saving significant space, one should
consider pushing the jobs onto the stack in an intelligent fashion. That is, one
should always push the jobs onto the stack so that the smaller job (that is, the job
sorting the smaller of the two subarrays) is evaluated first. This helps to avoid or
lessen the (n) worst-case additional space problem, which can be quite important
if you are working in a relatively small programming environment.

Modifications of QuickSort for Parallel Models

There have been numerous attempts to parallelize QuickSort for various machines
and models of computation. One parallelization that is particularly interesting is
the extension of QuickSort, by Bruce Wagar, to HyperQuickSort, a QuickSort-
based algorithm targeted at medium- and coarse-grained parallel computers. In
this section, we first describe the HyperQuickSort algorithm for a medium-grained
hypercube and then present an analysis of its running time.

HyperQuickSort

1. Initially, it is assumed that the n elements are evenly distributed among the 2d

hypercube nodes so that every node contains N = n/2d elements.
2. Each node sorts its N items independently using some (N log N) time algo-

rithm.
3. Node 0 determines the median of its N elements, denoted as Med. This takes

(1) time because the elements in the node have just been sorted.
4. Node 0 broadcasts Med to all 2d nodes in (d) time by a straightforward

hypercube broadcast routine.
5. Every node logically partitions its local set of data into two groups, X and Y,

where X contains those elements less than or equal to Med, and Y contains
those elements greater than Med. This requires (log N) time via a binary
search for Med among the values of the node’s data.

6. Consider two disjoint subcubes of size 2d–1, denoted as L and U. For simplic-
ity, let L consist of all nodes with a 0 as the most significant bit of the node’s
address, and let U consist of all nodes with a 1 as the most significant bit of the
node’s address. Note that the union of L and U is the entire hypercube of size
2d. So every node of the hypercube is a member of either L or U. Each node
that is a member of L sends its set Y to its adjacent node in U. Likewise, each
node in U sends its set X to its adjacent node in L. Notice that when this step is
complete, all elements less than or equal to Med are in L, whereas all elements
greater than Med are in U. This step requires (N) time for the transmission of
the data.

7. Each node now merges the set of data just received with the one it has kept
(that is, a node in L merges its own set X with its U-neighbor’s set X; a node in
U merges its own set Y with its L-neighbor’s set Y). Therefore, after (N) time
for merging two sets of data, every node again has a sorted set of data.

228 Chapter 9 Divide-and-Conquer

Repeat steps 3 through 7 on each of L and U simultaneously, recursively, and
in parallel until the subcubes consist of a single node, at which point the data in the
entire hypercube is sorted.

The time analysis embedded in the previous presentation is not necessarily
correct because the algorithm continues to iterate (recurse) over steps 3 through 7,
because after some time the data may become quite unbalanced. That is, pairs of
processors may require (N) time to transmit and merge data. As a consequence,
when the algorithm terminates, all processors may not necessarily have N items.

Assuming that the data is initially distributed in a random fashion, Wagar has
shown that the expected-case running time of this algorithm is

The N log N term represents the sequential running time from step 2, the
d(d + 1) term represents the broadcast step used in step 4, and the dN term repre-
sents the time required for the exchanging and merging of the sets of elements. We
leave discussion of the efficiency of this running time as an exercise.

In the next section, we will consider a medium-grained implementation of
BitonicSort. We will see that BitonicSort offers the advantage that, throughout the
algorithm, all nodes maintain the same number of elements per processor. How-
ever, given good recursive choices of splitting elements, HyperQuickSort offers
the advantage that it is more efficient than BitonicSort.

BitonicSort (Revisited)

In Chapter 4, we presented some motivation, history, and a detailed description of
BitonicSort. In addition, we presented an analysis of the algorithm for several
models of computation. To recap, given a set of n elements, we showed that
BitonicSort will run in (log2n) time on a PRAM of size n, in (log2n) on a
hypercube of size n, and in (nlog2n) time on a RAM. In this section, we consider
BitonicSort on a medium-grained hypercube, as a means of comparison to the
HyperQuickSort routine presented in the preceding section. We then consider
BitonicSort on a mesh of size n.

Our initial assumptions are the same as they were for HyperQuickSort.
Assume that we are initially given n data elements evenly distributed among the 2d

processors (nodes) so that each processor contains N = n/2d items. Suppose that
each processor sorts its initial set of data in (N log N) time. Once this is done, we
simply follow the data movement and general philosophy of the fine-grained
BitonicSort algorithm, as previously presented. The major modification is to
accommodate the difference between processors performing a comparison and
exchange of two items (fine-grained model), and a comparison and exchange of
2N items (medium-grained model).

N N
d d

dNlog
()

+
+

+
1

2

BitonicSort (Revisited) 229

230 Chapter 9 Divide-and-Conquer

Suppose processor A and processor B need to order their 2N items in the
medium-grained model so that the N smaller items will reside in processor A and
the N larger items will reside in processor B. This can be accomplished as follows.
In (N) time, processors A and B exchange data so that each processor has the
complete set of 2N items. Each processor now merges the two sets of items in

(N) time simultaneously. Finally, processor A retains the N smallest items (dis-
carding the N largest items) and processor B retains the N largest items (discarding
the N smallest items).

The running time of BitonicSort on a medium-grained hypercube consists of
the initial (N log N) sequential sort, followed by the d(d + 1)/2 steps of Bitonic-
Sort, each of which now requires (N) time, resulting in a total running time of

As mentioned previously, the reader should note two major differences when
considering whether to use BitonicSort or HyperQuickSort on a medium-grained
hypercube. The first difference is the improvement in running time of Hyper-
QuickSort over BitonicSort by a relatively small factor. The second difference
concerns the placement of the data when the algorithm terminates. In BitonicSort,
the data is distributed evenly among the processors, whereas this is not the case
with HyperQuickSort.

BitonicSort on a Mesh

In this section, we present a straightforward implementation of the fine-grained
BitonicSort algorithm on a fine-grained mesh computer. After the presentation of
the algorithm, we discuss details of the implementation and the effect that such
details have on the running time of the algorithm.

Initially, let’s assume that a set of n data elements is given, arbitrarily distrib-
uted one per processor on a mesh of size n. To perform sorting on a distributed-
memory parallel machine, we must define the ordering of the processors, because
the elements are sorted with respect to the ordering of the processors. Initially, we
assume that the processors are ordered with respect to shuffled row-major index-
ing scheme, as shown in Figure 9.10. (Note that for a machine with more than 16
processors, this ordering holds recursively within each quadrant.)

At the end of this section, we will discuss a simple way to adapt BitonicSort to
whatever predefined processor ordering is required or utilized. Recall that Bitonic-
Sort is a variant of MergeSort. Viewed in a bottom-up fashion, initially bitonic
sequences of size 2 are bitonically merged into sorted sequences of size 4. Then
bitonic sequences of size 4 are bitonically merged into sorted sequences of size 8,
and so on. At each stage, the sequences being merged are independent, and the

N N
d d

Nlog
()

+
+1

2

merging is performed in parallel on all such sequences. In addition, recall that the
concatenation of an increasing sequence with a decreasing sequence forms a
bitonic sequence. Therefore, we must be careful to note when merging a bitonic
sequence into a sorted sequence whether it is merged into an increasing or a
decreasing sequence. The reader may wish to review the section on BitonicSort
before proceeding with the remainder of this section.

In the example presented next, notice that we exploit the shuffled row-major
indexing scheme. Therefore, sequences of size 2 are stored as 1 � 2 strings,
sequences of size 4 are stored as 2 � 2 strings, sequences of size 8 are stored as 2
� 4 strings, and so on. A critical observation is that if a comparison and (possible)
exchange must be made between data that reside in two processors, those proces-
sors always reside in either the same row or the same column. This is due to the
properties of the shuffled row-major indexing scheme coupled with the fact that
BitonicSort only compares entries that differ in one bit of their indexing.

Consider the example of BitonicSort on a mesh of size 16, as presented in Fig-
ure 9.11. This example shows how to sort the initial set of arbitrarily distributed
data into increasing order with respect to the shuffled row-major ordering of the
processors. The first matrix shows the initial set of arbitrarily distributed data.
Notice that a sequence of size 1 is, by default, sorted into both increasing and
decreasing order. Therefore, initially, there are n/2 bitonic sequences of size 2 (in
the form of 1 � 2 strings), each of which must be bitonically merged. This is
accomplished by a single comparison, representing the base case of the Bitonic-
Sort, resulting in the second matrix. Notice that some of the sequences are sorted
into increasing order and some into decreasing order. Next, we take this matrix
and wish to merge bitonic sequences of size 4 (in the form of 2 � 2 strings) into

BitonicSort (Revisited) 231

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

FIGURE 9.10 The shuffled-row major
index scheme as applied to a mesh of
size 16. It is important to note that on a
mesh of size n, this indexing continues
recursively within each quadrant.

232 Chapter 9 Divide-and-Conquer

+

Example:

initially ordered

into 1 1 sections

910 14 2

4 15 11 12

6 1 5 13

8 3 7 0

109 14 2

15 4 11 12

1 6 13 5

8 3 0 7

49 14 12

15 10 11 2

1 3 13 7

8 6 0 5

94 14 12

10 15 11 2

1 3 13 7

6 8 5 0

94 14 12

10 2 11 15

13 7 1 3

6 8 5 0

24 11 12

10 9 14 15

13 8 5 3

6 7 1 0

+

Now sorted into

1 2 sections+

Now sorted into

2 2 sections

01 5 4

2 3 7 6

9 8 13 12

11 10 14 15

10 4 5

2 3 6 7

8 9 12 13

10 11 14 15

+

42 11 12

9 10 14 15

13 8 5 3

7 6 1 0

42 5 3

7 6 1 0

13 8 11 12

9 10 14 15

32 5 4

1 0 7 6

11 8 13 12

9 10 14 15

Now sorted into

2 4 sections

+

Now sorted into

4 4 sections

FIGURE 9.11 An example of BitonicSort on a mesh of size 16. The elements are
sorted into shuffled-row major order, as given in Figure 9.10. The initial data is
given in the top-left matrix. After applying a comparison-exchange operation
between indicated elements (for example, 10-9, 14-2, 4-15, ...), the matrix has
been ordered into disjoint 1 � 2 segments, as indicated in the next matrix. The
interpretation of the figure continues in this manner. Note up to the final stage,
we have half of the sorted sections in ascending order, and the other half are in
descending order.

sorted order. This is accomplished by first performing a comparison-exchange
operation between items that are two places apart in the indexing, followed by
recursively sorting each of the 1 � 2 strings independently. The fourth matrix
shows the result of this sorting. Notice that each of the four quadrants has data in
sorted order with respect to the shuffled row-major indexing. (The northwest and
southwest quadrants are in increasing order, whereas the northeast and southeast
quadrants are in decreasing order.) The example continues, showing the details of
combining 2 � 2 strings into sorted 2 � 4 strings, and finally combining the two
2 � 4 strings into the final sorted 4 � 4 string.

Analysis of Running Time
Recall from the detailed analysis of BitonicSort presented in Chapter 4 that Biton-
icSort is based on MergeSort. Therefore, it requires (log n) parallel merge opera-
tions (that is, complete passes through the data), merging lists of size 1 into lists of
size 2, then lists of size 2 into lists of size 4, and so forth. However, the merge
operation is not the standard merge routine that one learns in a second-semester
computer science course but rather the more complex bitonic merge. Further, the
time for each bitonic merge requires a slightly more complex analysis than that of
determining the time for a traditional merge. For example, merging pairs of ele-
ments into ordered lists of size 2 requires one level of comparison-exchange oper-
ations (which can be thought of as one parallel comparison-exchange operation).
This is the base case. Merging bitonic sequences of size 2 into ordered lists of size
4 requires an initial comparison-exchange level (that is, n/2 comparison-exchange
operations), followed by applying the BitonicSort routine for sequences of size 2
to each of the resulting subsequences. Therefore, the total number of comparison-
exchange levels is 1 + 1 = 2. The time to merge bitonic sequences of size 4 into
ordered sequences of size 8 requires one comparison-exchange level to divide the
data, followed by two (parallel) comparison-exchange levels to sort each of the
bitonic subsequences of size 4. Therefore, the total number of comparison-
exchange levels to merge a bitonic sequence of size 8 into an ordered sequence is
three (1 + 2 = 3). In general, the time to merge two bitonic sequences of size n/2
into an ordered sequence of size n is (log2n).

Recall that to use the bitonic merge unit to create a sorting routine/network,
we apply the basic MergeSort scenario. That is, sorting an arbitrary sequence of n
items requires us first to sort (in parallel) two subsequences of size n/2, then to
perform a comparison-exchange on items n/2 apart, and then to merge recursively
each subsequence of size n/2. Therefore, the total number of comparison-
exchange levels (or parallel comparison-exchange operations) is

i
n n

n n
i

n

=

=
() +()

= +()
1

2 2 2
2 1

2

1

2

log log log
log log

BitonicSort (Revisited) 233

The reader should refer to the section on BitonicSort for the original presenta-
tion of this analysis.

Now, consider a mesh implementation. Suppose that each of the (log2n)
comparison-exchange levels is implemented by a rotation (either a column
rotation or a row rotation, as appropriate). Such an implementation leads to a

(n1/2 log2 n) running time on a mesh of size n. However, if we look closely at the
data movement operations that are required to perform the comparison-exchange
operations, we notice that during the first iteration, when creating the 1 � 2 lists,
the data items are only one link apart. When creating the 2 � 2 lists, the data items
are again only one link apart. When creating the 2 � 4 and 4 � 4 lists, the data
items are either one or two links apart, and so forth. Therefore, if we are careful to
construct modified row and column rotations that allow for simultaneous and dis-
joint rotations within segments of a row or column, respectively, the running time
of BitonicSort operations can be improved significantly. With this optimized rota-
tion scheme, the time to sort n items on a mesh of size n is given by the recurrence
T(n) = T(n/2) + (n1/2), where T(n/2) is the time to sort each of the subsequences
of size n/2, and (n1/2) is the time required to perform a set of n/2 comparison-
exchange operations (that is, one level of comparison-exchange operations).
Therefore, the running time of the BitonicSort algorithm is (n1/2), which is opti-
mal for a mesh of size n, due to the communication diameter. Although the algo-
rithm is optimal for this architecture, notice that the cost of the algorithm is

(n3/2), which is far from optimal. We leave as an exercise the possibility of mod-
ifying this architecture and algorithm to achieve a cost-optimal sorting algorithm
on a mesh.

Sorting Data with Respect to Other Orderings

How would we handle the situation of sorting a set of data on a fine-grained mesh
into an ordering other than shuffled row-major? For example, given a set of n data
items, initially distributed in an arbitrary fashion one per processor on a mesh of
size n, how would the data be sorted into row-major or snakelike order? If one is
concerned only about asymptotic complexity, the answer is quite simple: perform
two sorting operations. The first operation will sort data in terms of a known sort-
ing algorithm into the indexing order required by that algorithm. For example, one
could use BitonicSort and sort data into shuffled row-major order. During the sec-
ond sort, each processor would generate a sort key that corresponds to the desired
destination address with respect to the desired indexing scheme (such as row
major or snakelike ordering).

Suppose that one wants to sort the 16 data items from the previous example
into row-major order. One could first sort the data into shuffled row-major order
and then resort the items so that they are ordered appropriately. For example, dur-
ing the second sort, keys would be created so that processor 0 would send its data
to processor 0, processor 1 would send its data to processor 1, processor 2 would

234 Chapter 9 Divide-and-Conquer

Concurrent Read/Write 235

send its data to processor 4, processor 3 would send its data to processor 5, proces-
sor 4 would send its data to processor 2, and so forth (see Figure 9.12). The com-
bination of these two sorts would result in the data being sorted according to
row-major order in the same asymptotically optimal (n1/2) time. Notice that this
algorithm assumes that the destination addresses can be determined in O(n1/2)
time, which is sufficient for most well-defined indexing schemes.

5 2 10 6

12 8 4 0

14 1 11 13

15 7 3 9

(a) Initial data

00 11 42 53

24 35 66 77

88 99 1210 1311

1012 1113 1414 1515

(b) Sorted data with
 keys for resorting

00 11 24 35

42 53 66 77

88 99 1012 1113

1210 1311 1414 1515

(c) Resorted data
 with keys

FIGURE 9.12 An example of sorting data on a mesh into row-major order by two
applications of sorting into shuffled-row major order. The initial unordered set of
data is given in (a). After applying a shuffled-row major sort, the data appears as
in (b). Note that in the lower-right corner of each item is the index for where that
item should be placed with respect to shuffled-row major order so that the data will
be in row-major order. The items are then sorted into shuffled-row major order with
respect to these indices, with the results in row-major order as shown in (c).

Concurrent Read/Write

In this section, we discuss an important application of sorting that is concerned
with porting PRAM algorithms to other architectures. The PRAM is the most
widely studied parallel model of computation. As a result, a significant body of
algorithmic literature exists for that architecture. Therefore, when one considers
developing an efficient algorithm for a non-PRAM-based parallel machine, it is
often constructive to consider first the algorithm that would result from a direct
simulation of the PRAM algorithm on the target architecture. To simulate the
PRAM, one must be able to simulate the concurrent read and concurrent write
capabilities of the PRAM on the target machine.

A concurrent read (in its more general form, an associative read) can be used
in a situation where a set of processors must obtain data associated with a set of
keys, but where there need not be a priori knowledge as to which processor main-
tains the data associated with any particular key.

For example, processor Pi might need to know the data associated with the key
“blue” but might not know which processor Pj in the system is responsible for
maintaining the information associated with the key “blue.” In fact, all processors
in the system might be requesting one or more pieces of data associated with keys
that are not necessarily distinct.

A concurrent write (in its more general form, an associative write) can be used
in a situation where a set of processors Pi must update the data associated with a
set of keys, but again Pi does not necessarily know which processor is responsible
for maintaining the data associated with the key.

As one can see, these concurrent read/write operations generalize the CR/CW
operations of a PRAM by making them associative, in other words, by locating
data with respect to a key rather than by an address. To maintain consistency dur-
ing concurrent read and concurrent write operations, we will assume that there is
at most one master record, stored in some processor, associated with each unique
key. In a concurrent read, every processor generates one request record corre-
sponding to each key about which it wishes to receive information (a small fixed
number). A concurrent read permits multiple processors to request information
about the same key. A processor requesting information about a nonexistent key
will receive a null message at the end of the operation.

Implementation of a Concurrent Read

A relatively generic implementation of a concurrent read operation on a parallel
machine with n processors follows:

1. Every processor creates C1 master records of the form [Key, Return Address,
data, “MASTER”], where C1 is the maximum number of keyed master records
maintained by any processor, and Return Address is the index of the processor
that is creating the record. (Processors maintaining less than C1 master records
will create dummy records so that all processors create the same number of
master records.)

2. Every processor creates C2 request records of the form [Key, Return Address,
data, “REQUEST”], where C2 is the maximum number of request records
generated by any processor, and Return Address is the index of the processor
that is creating the record. (Processors requesting information associated with
less than C2 master records will create dummy records so that all processors
create the same number of request records.) Notice that the data fields of the
request records are presently undefined.

3. Sort all (C1 + C2)n records together by the Key field. In case of ties, place
records with the flag “MASTER” before records with the flag “REQUEST.”

4. Use a broadcast within ordered intervals to propagate the data associated with
each master record to the request records with the same Key field. This allows
all request records to find and store their required data.

236 Chapter 9 Divide-and-Conquer

5. Return all records to their original processors by sorting all records on the
Return Address field.

Therefore, the time to perform a concurrent read, as described, is bounded by
the time to perform a fixed number of sort and interval operations (see Figure 9.13.)

Concurrent Read/Write 237

[red,0,10,M],[blue,0,?,R] [–,1,–1,M],[blue,1,?,R] [blue,2,30,M],[red,2,?,R] [green,3,40,M],[blue,3,?,R]

[blue,2,30,M],[blue,0,?,R] [blue,1,?,R],[blue,3,?,R] [green,3,40,M],[red,0,10,M] [red,2,?,R],[–,1,–1,M]

[blue,2,30,M],[blue,0,30,R] [blue,1,30,R],[blue,3,30,R] [green,3,40,M],[red,0,10,M] [red,2,10,R],[–,1,–1,M]

[red,0,10,M],[blue,0,30,R] [–,1,–1,M],[blue,1,30,R] [blue,2,30,M],[red,2,10,R] [green,3,40,M],[blue,3,30,R]

(a) The initial data is given where each processor maintains one master record (signified by an “M” in the fourth
 field) and generates one request record (with an “R” in the fourth field).

(b) After sorting all of the data together based on the key (first) field, with ties broken in favor of master records,
 we arrive at the situation shown here.

(c) A segmented broadcast is then performed so that the information maintained in the master records is propagated
 to the appropriate request records.

(d) The data is resorted based on the return address (second) field.

FIGURE 9.13 An example of a concurrent read on a linear array of size 4. (a) shows
the initial data, where each processor maintains one master record (“M” in the fourth
field) and generates one request record (“R” in the fourth field). (b) shows the records
sorted by the first field, with ties broken in favor of master records. (c) shows the result
of a segmented broadcast that propagates the third field to appropriate request records.
(d) shows the data sorted by the return address (second field).

Implementation of Concurrent Write (overview)

The implementation of the concurrent write is quite similar to that of the concur-
rent read. In general, it consists of a sort step to group together records with simi-
lar keys, followed by a semigroup operation in each group to determine the value
to be written to the master record, followed by a sort step to return the records to
their original processors. Again, it is assumed that there is at most one master

record, stored in some processor, associated with each unique key. When proces-
sors generate update records, they specify the key of the record and the piece of
information they wish to update. If two or more update records contain the same
key, a master record will be updated with the minimum data value of these
records. (In other circumstances, one could replace the minimum operation with
any other commutative, associative, binary operation.) Therefore, one can see that
the implementation of the concurrent write is nearly identical to the implementa-
tion just described for the concurrent read.

Concurrent Read/Write on a Mesh

A mesh of size n can simulate any PRAM algorithm that works with n data items
on n processors by using a concurrent read and concurrent write to simulate every
step of the PRAM algorithm. Suppose that a given PRAM algorithm runs in T(n)
time. By simulating every read step and every write step of the PRAM algorithm
in a systematic fashion by a (n1/2) time concurrent read and concurrent write,
respectively, the running time of the PRAM algorithm as ported to a mesh of size
n will be O(T(n)n1/2), which is often quite good. In fact, it is often not more than
some polylogarithmic factor from optimal.

Summary

In this chapter, we examine the divide-and-conquer paradigm of solving problems
recursively. We show the power of this paradigm by illustrating its efficient usage
in several algorithms for sorting, including sequential versions of MergeSort and
QuickSort and their adaptations to several parallel models. In addition, we revis-
ited BitonicSort and its implementations on both a coarse-grained hypercube and
on a fine-grained mesh. Efficient to optimal divide-and-conquer algorithms for
selection and for concurrent read and write operations on parallel computers are
also given.

Chapter Notes

Divide-and-conquer is a paradigm central to the design and analysis of both paral-
lel and sequential algorithms. An excellent reference, particularly for sequential
algorithms, is Introduction to Algorithms by T.H. Cormen, C.E. Leiserson, R.L.
Rivest, and C. Stein (2nd ed.: The MIT Press, Cambridge, MA, 2001). A nice text
focusing on algorithms for the hypercube, which includes some divide-and-
conquer algorithms, is Hypercube Algorithms for Image Processing and Pattern
Recognition by S. Ranka and S. Sahni (Springer-Verlag, New York, 1990). More
general references for theoretical parallel algorithms that exploit the divide-and-
conquer paradigm are Parallel Algorithms for Regular Architectures by R. Miller
and Q.F. Stout (The MIT Press, Cambridge, MA, 1996), and Introduction to Paral-

238 Chapter 9 Divide-and-Conquer

lel Algorithms and Architectures: Arrays, Trees, Hypercubes, by F.T. Leighton
(Morgan Kaufmann Publishers, San Mateo, CA, 1992). Details of advanced PRAM
algorithms, including a (log n) time sorting algorithm, can be found in An Intro-
duction to Parallel Algorithms by J. Já Já, (Addison-Wesley, Reading, MA, 1992).

Optimal-cost PRAM algorithms for the selection problem are given in R.J.
Cole’s paper, “An Optimally Efficient Selection Algorithm,” Information Process-
ing Letters 26 (1987/88), 295–99.

The QuickSort algorithm was originally presented by in “QuickSort,” by
C.A.R. Hoare, Computer Journal, 5(1):10–15, 1962. Wagar’s HyperQuickSort
algorithm was originally presented in, “Hyperquicksort: A Fast Sorting Algorithm
for Hypercubes,” by B. Wagar in Hypercube Multiprocessors 1987, M.T. Heath,
ed., SIAM, 292–99.

Exercises

1. We have shown that QuickSort has a (n2) running time if its input list is
sorted or nearly sorted. Other forms of input can also produce a (n2) running
time. For example, let for some positive integer k and suppose

• the input list has key values ;

• the subsequence of odd-indexed keys is decreasing;

• the subsequence of even-indexed keys is increasing;

• (therefore, every member of O is greater than every member of E);

• queues are used for the lists, with the partitioning process enqueueing new
items to smallList, equalList, and bigList; and

• the split value is always taken to be the first key in the list.

Show that under these circumstances, the running time of QuickSort will be
(n2).

2. In our sequential implementation of QuickSort, the “conquer” part of the
algorithm consists of two recursive calls. The order of these calls clearly does
not matter in terms of the correctness of the algorithm. However, the order of
these recursive calls does affect the size of the stack needed to keep track of
the recursion. Show that if one always pushes the jobs onto the stack so that
the larger job is processed first, then the stack must be able to store n items.

3. Suppose that in a parallel computer with n processors, processor Pi has data
value xi, i {1, . . . , n}. Further, suppose that i ≠ j xi ≠ xj. Describe an effi-
cient algorithm so that each processor Pi can determine the rank of its data
value xi. That is, if xi is the kth largest member of {xj}n

j =1, then processor Pi will
store the value k at the end of the algorithm. Analyze the running time of your
algorithm in terms of operations discussed in this chapter. Your analysis may

x x
n n

>
1

E x x x x
n

=
2 4 6
, , , ,…

O x x x x
n

=
1 3 5 1
, , , ,…

x x x
n1 2

, , …,

n k= 2

Exercises 239

be quite abstract. For example, you may express the running time of your
algorithm in terms of the running times of the operations you use.

4. Suppose that you implement a linked-list version of QuickSort on a RAM
using predefined ADTs (abstract data types). Further, suppose the ADT for
inserting an element into a list is actually written so that it traverses a list from
the front to the end and then inserts the new element at the end of the list. Give
an analysis of the running time of QuickSort under this situation.

5. Suppose you are given a singly linked list on a RAM and mistakenly imple-
ment the array version of QuickSort to perform the partition step. Give the
running time of the partition step and use this result to give the running time
of the resulting version of the QuickSort algorithm.

6. Describe and analyze the running time of BitonicSort given a set of n data
items arbitrarily distributed n/p per processor on a hypercube with p proces-
sors where n >> p (where n is much larger than p).

7. Prove that algorithm Partition is correct.
8. Modify QuickSort so that it recursively sorts as long as the size of the subarray

under consideration is greater than some constant C. Suppose that if a subarray
of size C or less is reached, the subarray is not sorted. As a final postprocessing
step, suppose that this subarray of size at most C is then sorted by
a) InsertionSort
b) BubbleSort
c) SelectionSort
Give the total running time of the modified QuickSort algorithm. Prove that
the algorithm is correct.

9. Let S be a set of n distinct real numbers and let k be a positive integer with
1 < k < n. Give a (n) time RAM algorithm to determine the middle k entries
of S. The input entries of S should not be assumed ordered; however, if the
elements of S are such that , then the output of the algorithm is

the (unsorted) set . Because the running time of the

algorithm should be (n), sorting S should not be part of the algorithm.
10. Analyze the running time of the algorithm you presented in response to the

previous query as adapted in a straightforward fashion for
i. a PRAM and

ii. for a mesh.
11. Develop a version of MergeSort for a linear array of (log n) processors to sort

n data items, initially distributed (n/log n) items per processor. Your algo-
rithm should run in (n) time (which is cost optimal). Show that it does so.

12. Analyze the running time of a concurrent read operation involving (n) items
on a mesh of size n.

s s s
n k n k n k+ +

2 2
1

2
1

, , ,…

s s s
n1 2

< < <…

240 Chapter 9 Divide-and-Conquer

13. Given a set of n data items distributed on a mesh of size m, m n, so that each
processor contains n/m items, what is the best lower bound to sort these
items? Justify your answer. Provide an algorithm that matches these bounds.

14. Given a set of n input elements, arbitrarily ordered, prove that any sorting net-
work has a depth of at least log2 n.

15. Prove that the number of comparison units in any sorting network on n inputs
is (nlog n).

16. Suppose that you are given a sequence of arcs of a circle ,
and that you are required to find a point on the circle that has maximum over-
lap. That is, you are required to determine a (not necessarily unique) point q
that has a maximum number of arcs that overlap it. Suppose that no arc is con-
tained in any other arc, that no two arcs share a common endpoint, that the
endpoints of the arcs are given completely sorted in clockwise order, and that
the tail point of an arc appears only following the head of its arc. Give effi-
cient algorithms to solve this problem on the following architectures. Discuss
the time, space, and cost complexity.
a) RAM
b) PRAM
c) Mesh

17. Give an efficient algorithm to compute the parallel prefix of n values, initially
distributed one per processor in the base of a pyramid computer. Discuss the
time and cost complexity of your algorithm. You may assume processors in the
base mesh are in shuffled row major order, with data distributed accordingly.

18. Show that the expected time of Wagar’s Hyper-

QuickSort algorithm achieves the ideal for a coarse-

grained hypercube. Recall p = 2d is the number of processors, is

the initial number of data items in each processor, and in the coarse-grained
model we assume p2 n.

N
n

p

n
d

= =
2

T n
T n

ppar

seq()
()

=

N N
d d

dNlog
()

+
+

+
1

2

R r r r
n

=
1 2
, , ,…

Exercises 241

242

10
Computational
Geometry

Convex Hull

Smallest Enclosing Box

All-Nearest Neighbor Problem

Architecture-Independent Algorithm Development

Line Intersection Problems

Summary

Chapter Notes

Exercises

243

The field of computational geometry is concerned with problems involving geomet-
ric objects such as points, lines, and polygons. Algorithms from computational

geometry are used to solve problems in a variety of areas, including the design and
analysis of models that represent physical systems such as cars, buildings, airplanes,
and so on. In fact, in Chapter 7, “Parallel Prefix,” we presented a solution to domi-
nance, a fundamental problem in computational geometry. In this chapter, we consider
several additional problems from this important and interesting field. Many of the
problems in this chapter were chosen so that we could continue our exploration of the
divide-and-conquer solution strategy.

Convex Hull

The first problem we consider is that of determining the convex hull of a set of
points in the plane. The convex hull is an extremely important geometric structure
that has been studied extensively. The convex hull of an object can be used to
solve problems in image processing, feature extraction, layout and design, molec-
ular biology, geographic information systems, and so on. In fact, the convex hull
of a set S of points often gives a good approximation of S, typically accompanied
by a significant reduction in the volume of data used to approximate S. Further, the
convex hull of a set S is often used as an intermediate step to obtain additional geo-
metrical information about S.

244 Chapter 10 Computational Geometry

Definition: A set R is convex if and only if for every pair of points x, y R,
the line segment is contained in R (see Figure 10.1). Let S be a set of n points
in the plane. The convex hull of S is defined to be the smallest convex polygon
P containing all n points of S. A solution to the convex hull problem consists of
determining an ordered list of points of S that define the boundary of the convex
hull of S. This ordered list of points is referred to as hull(S). Each point in
hull(S) is called an extreme point of the convex hull and each pair of adjacent
extreme points is referred to as an edge of the convex hull (see Figure 10.2).

(a)

(b)

u
v

y

x

FIGURE 10.1 Examples of convex and non-convex regions. The regions in
(a) are convex. The regions in (b) are not convex, because the line segments

and are not contained in their respective regions.xyuv

The reader may wish to consider an intuitive construction of the convex hull.
Suppose that each of the planar points in S is represented as a (headless) nail stick-
ing out of a board. Now take an infinitely elastic rubber band and stretch it suffi-
ciently to surround all the nails. Lower the rubber band over the nails so that all the
nails are enclosed within the rubber band. Finally, let the rubber band go so that it is
restricted from collapsing only by the nails in S that it contacts. Then the polygon P,
determined by the rubber band and its interior, represents the convex hull of S. The
nails that cause the rubber band to change direction are the extreme points of the
convex hull. Further, adjacent extreme points define the edges of the convex hull.

Notice that a solution to the convex hull problem requires presenting a set of
points in a predefined order. Therefore, we first consider the relationship between
the convex hull problem and the sorting problem.

Theorem: Sorting is linear-time transformable to the convex hull
problem. That is, in (n) time, we can transform a problem of sorting n
real numbers to a problem of finding the convex hull of n points in the
Euclidean plane.

Proof: Given a set of n real numbers, , a convex hull
algorithm can be used to sort them with only linear overhead, as follows.
Corresponding to each number xi is the point pi = (xi , xi

2). Notice that
these n points all lie on the parabola y = x2. The convex hull of this set
consists of a list of all the distinct points pi sorted by x-coordinate. If

X x x
n

= { }1
, ,…

Convex Hull 245

FIGURE 10.2 The convex hull. The set S of n points in the plane is represented
by circles, some of which are black and some of which are gray. The extreme
points of S are represented by the gray points. The set of such extreme points
is denoted by hull(S). Each pair of adjacent extreme points represents an edge
of the convex hull.

246 Chapter 10 Computational Geometry

there are duplicated values, for example, if pi = pj, at most one of these
appears in the listing of members of hull(X), then the unique
representative in hull(X) of such duplicated values can keep track of the
frequency of its value’s representation in X; doing so adds O(n) time.
One linear-time pass through the list will enable us to read off the values
of xi in order.

Implications of Theorem: Based on this theorem, we know the
convex hull problem cannot be solved asymptotically faster than we can
sort a set of points presented in arbitrary order. So, given an arbitrary set
of n points in the Euclidean plane, solving the convex hull problem
requires (nlog n) time on a RAM.

Graham’s Scan

In this section, we present a traditional sequential solution to the convex hull prob-
lem, known as Graham’s scan. It is important to note that this solution is not based
on divide-and-conquer. For that reason, the reader interested primarily in divide-
and-conquer might wish to skip this section. For those who continue, you may
note that this algorithm is dominated by sort and scan operations. The Graham’s
Scan procedure is quite simple. A description follows (see Figure 10.3).

10

9 8

6

7

4

5

3

1
2

0

FIGURE 10.3 Graham’s scan is a technique for determining the convex hull of
a set of points. The lowest point is chosen as point 0, and the remaining points
are sorted in counterclockwise order with respect to the angles they make to a
horizontal line through point 0. Graham’s scan examines the points in the order
listed.

1. Select the lowest (and in the case of ties, leftmost) point in S and label this as
point 0.

2. Sort the remaining n – 1 points of S by angle in [0,) with respect to the ori-
gin (point 0). For any angle that includes multiple points, remove all dupli-
cates, retaining only the point at the maximum distance from point 0. Without
loss of generality, we will proceed under the assumption that the set S has n
distinct points.

3. Now consider the points [1, …, n – 1] in sequence. We build up the convex
hull in an iterative fashion. At the ith iteration, we consider point S(i). For i = 1,
we have point S(1) initially considered an “active point” (it is an extreme point
of the two element set S(0, . . . , 1)). For 1 < i < n, we proceed as follows.
Assume the active points prior to the ith iteration are S(0), S(j1), … , S(jk),
where .

a) Suppose that the path from S(jk–1) to S(jk) to S(i) turns toward the left at
S(jk) to reach S(i), as shown in Figure 10.4. Then the point S(i) is an extreme
point of the convex hull with respect to the set of points S(0, . . . , i), and it
remains active. Further, all of the currently active points in S(0, . . . , i – 1)
remain active (those points that were extreme points of S(0, . . . , i – 1) will
remain extreme points of S(0, . . . , i)).

0
1

< < < <j j i
k

…

Convex Hull 247

S(i)

S(jk)

S(jk�1)

FIGURE 10.4 A path from S(jk–1) to S(jk)
to S(i) that makes a left turn at S(jk).

b) Suppose that the path from S(jk–1) to S(jk) to S(i) turns toward the right at
S(jk) to reach S(i), as shown in Figure 10.5. Then the point S(i) is an
extreme point of the convex hull with respect to the set of points S(0, . . . , i),
and it remains active. However, we now know that some of the currently
active points in S(0, . . . , i – 1) are not extreme points in S(0, . . . , i) and must
be eliminated (become inactive). This elimination is performed by working
backward through the ordered list of currently active points and eliminat-
ing each point that continues to cause point S(i) to be reached via a right
turn with respect to the currently active points in S(0, . . . , i – 1). In fact, we
need work backward only through the ordered list of currently active
points until we reach an active point that is not eliminated.

248 Chapter 10 Computational Geometry

c) Suppose that S(jk–1), S(jk), and S(i) are collinear (that is, the path from
S(jk–1) to S(jk) to S(i) does not turn, or turns exactly half a revolution, at
S(jk) to reach S(i)). Then one of these three points is between the other two
and can be eliminated because it cannot be an extreme point in S(0, . . . , i).
Indeed, because we previously saw to it that active members of S(1, . . . , n)
have unique angles with respect to S(0) and the active points are ordered
with respect to these angles, the point that is eliminated is S(jk) (see Figure
10.6).

S(i)

S(jk)

S(jk�1)

FIGURE 10.6 A path from S(jk–1) to
S(jk) to S(i) that is straight. That is,
all three points are collinear.

S(i)

S(jk)

S(jk�1)

FIGURE 10.5 A path from S(jk–1) to
S(jk) to S(i) that makes a right turn
at S(jk).

Consider the example presented earlier in Figure 10.3. We are required to enu-
merate the convex hull of S, a set consisting of 11 points. Details of the algorithm,
as applied to this example, follow:

1. Scan the list of points to determine the lowest point. Label this lowest point 0.
Note: if there is more than one lowest point, choose the leftmost one.

2. Sort the remaining n – 1 points by angle with respect to a horizontal line
through point 0.

The points are now ordered in counterclockwise fashion with respect to point
0, as shown in Figure 10.3. Initially, all n points are candidates as extreme points
of hull(S).

3. The point labeled 0 must be an extreme point (hull vertex), because it is the
lowest point in the set S. We proceed to visit successive points in order, apply-
ing the “right-turn test” described in the algorithm given earlier.

4. The first stop on our tour is point number 1, which is accepted because points
0 and 1 form a convex set.

5. Now, consider point number 2. Notice that the turn from point 0 to 1 to 2 is a
left turn. Therefore, points 0, 1, and 2 are extreme points with respect to

. S(, ,)0 2…

6. Now, consider point number 3. Notice that the turn from point 1 to 2 to 3 is a
right turn. Therefore, we begin to work backward from the preceding point.
That is, point number 2 must be eliminated. Next, consider the turn from point
0 to 1 to 3. This is a left turn. Therefore, point number 1 remains, and this back-
ward scan to eliminate points is complete. So points 0, 1, and 3 are the extreme
points representing the convex hull of .

7. Now, consider point number 4. Notice that the turn from point 1 to 3 to 4 is a
left turn. Therefore, no points are eliminated, and we know that points 0, 1, 3,
and 4 are extreme points of .

8. Now, consider point number 5. Notice that the turn from point 3 to 4 to 5 is a
right turn. Therefore, we begin to work backward from the preceding point.
That is, point number 4 is eliminated. Next, consider the turn from point 1 to 3
to 5. Notice that this is a left turn. Therefore, the points 0, 1, 3, and 5 are the
extreme points representing the convex hull of .

9. Now, consider point number 6. Notice that the turn from point 3 to 5 to 6 is a
right turn. Therefore, we begin to work backward from the preceding point.
That is, point number 5 is eliminated. Next, consider the turn from point 1 to 3
to 6. This is a left turn. Therefore, the points 0, 1, 3, and 6 are the extreme
points representing the convex hull of .

10. Now, consider point number 7. Notice that the turn from point 3 to 6 to 7 is a
left turn. Therefore, no points are eliminated, and we know that points 0, 1, 3,
6, and 7 are extreme points of .

11. Now, consider point number 8. Notice that the turn from 6 to 7 to 8 is a right
turn. Therefore, we begin to work backward from the preceding point. That is,
point number 7 is eliminated. Now consider the turn from point 3 to 6 to 8.
This is a left turn. Therefore, the points 0, 1, 3, 6, and 8 are the extreme points
representing the convex hull of .

12. Now, consider point number 9. Notice that the turn from point 6 to 8 to 9 is a
right turn. Therefore, we begin to work backward from the preceding point.
That is, point number 8 is eliminated. Now consider the turn from point 3 to 6
to 9. This is a left turn. Therefore, the points 0, 1, 3, 6, and 9 are the extreme
points representing the convex hull of .

13. Now, consider point number 10. Notice that the turn from point 6 to 9 to 10 is a
left turn. Therefore, no points are eliminated, and we know that points 0, 1, 3,
6, 9, and 10 are extreme points of . The solution is now complete.

Analysis on a RAM
Let’s consider the running time and space requirements of Graham’s scan on a
RAM. The first step of the algorithm consists of determining point 0, the lowest
point in the set S (in the case of ties, the leftmost of these lowest points). Assum-
ing that S contains n points, the lowest point can be determined in (n) time by a
simple scan through the data. The remaining n – 1 points of S can then be sorted

S(, ,)0 10…

S(, ,)0 9…

S(, ,)0 8…

S(, ,)0 7…

S(, ,)0 6…

S(, ,)0 5…

S(, ,)0 4…

S(,)0 3…

Convex Hull 249

with respect to point 0 (and a horizontal line through it) in (nlog n) time. Next,
the algorithm considers the points in order and makes decisions about eliminating
points. Notice that each time a new point i is encountered during the scan, it will
be an extreme point of ; this is because we are traversing the points in
order according to their angles with respect to S(0), and we have eliminated (see
step 3c) all but one member of any set in that has the
same angle with S(0). Each time a new point is visited, (1) work is necessary to

• include the new point in the data structure if it is active, and
• to stop any backward search that might arise.

The remainder of the time spent in the tour is accounted for when considering
the total number of points that can be eliminated, because with a judicious choice
of data structures, such as a separate array or a stack, no point is ever considered
once it has been eliminated. It is important to consider the analysis from a global
perspective. No point is ever eliminated more than once, so the total time required
for the loop in step 3 is (n), though the analysis is a bit different than some of the
straightforward deterministic analyses presented earlier in the book. Therefore, the
running time of Graham’s scan on a RAM is a worst-case optimal (nlog n),
because the running time is dominated by the sort performed in step 2.

Next, we consider the space required in addition to that which is necessary to
maintain the initial set of points. Notice that this algorithm does not rely on recur-
sion, so we need not worry about the system stack. It does, however, require a sep-
arate data structure that in the worst case might require a copy of every point. That
is, it is possible to construct situations where (n) points are in the convex hull,
for example, when the n points approximate a circle. Therefore, if an additional
stack or array is used, the additional space will be (n). However, if one maintains
the points in a pointer-based data structure, it is possible to avoid making copies of
the points. Of course, the penalty one pays for this is the additional (n) pointers.

Parallel Implementation
Consider parallel implementations of Graham’s scan. Notice that steps 1 and 2,
which require computing a semigroup operation on the data as well as sorting the
data, can be done efficiently on most parallel models. However, step 3 does not
appear easily amenable to a parallel implementation. One might try to remove
concave regions in parallel and hope that (reminiscent of our pointer-jumping
algorithms) the number of such parallel removals will be polylogarithmic in the
number of points. However, consider the situation where the first n – 1 points form
a convex set, but when the last point is added to this set, (n) points must be
removed. It is not clear that such a situation can be easily parallelized.

Jarvis’ March

An alternative convex hull algorithm is Jarvis’ march, which works by a package
wrapping technique. To illustrate this, consider a piece of string with one end fixed

S S s S s S\{ ()} { ()}0 0= |

S i(, ,)0…

250 Chapter 10 Computational Geometry

at the lowest point (point number 0). Next, wrap the string around the nails repre-
senting the points in a counterclockwise fashion. This can be done by iteratively
adding the point with the least polar angle with respect to a horizontal line through
the most recently added point. Because all the remaining points are considered at
each iteration, the total running time of this algorithm is O(nh), where h is the
number of vertices (extreme points) on hull(S). Therefore, when the number of
extreme points is o(log n), Jarvis’ march is asymptotically faster than Graham’s
scan.

Divide-and-Conquer Solution

In this section, we focus on divide-and-conquer solutions to the convex hull prob-
lem. Initially, we present a generic divide-and-conquer solution. The analysis is
then presented based on an implementation for the RAM and mesh. At the conclu-
sion of this section, we present a divide-and-conquer algorithm, complete with
analysis, targeted at the PRAM.

Generic Divide-and-Conquer Solution to the Convex Hull Problem
Assume that we are required to enumerate the extreme points of a set S of n planar
points. We will enumerate the points so that the rightmost point is labeled 1 (in the
case of ties, the lowest rightmost point is labeled 1). At the conclusion of the algo-
rithm, the numbering of the extreme points will be given in counterclockwise
fashion, starting with a rightmost point. Notice that for algorithmic convenience,
the first enumerated extreme point determined by this algorithm differs in position
from the first enumerated extreme point derived from Graham’s scan (leftmost-
lowest point). A generic divide-and-conquer algorithm to determine the extreme
points of the convex hull of a set of n planar points follows.

1. If n = 2, then return. In this case, both of the points are extreme points of the
given set. If n > 2, then we continue with step 2.

2. Divide the n points by x-coordinate into two sets, A and B, each of size approx-
imately n/2. The division of points is done so that all points in A are to the left
of all points in B. That is, A is linearly separable from B by a vertical line (see
Figure 10.7).

3. Recursively compute hull(A) and hull(B). See Figure 10.8.
4. Stitch together hull(A) and hull(B) to determine hull(S). This is done as fol-

lows (see Figure 10.9).
a) Find the upper and lower common tangent lines (often referred to as the

lines of support) between hull(A) and hull(B).
b) Discard the points inside the quadrilateral formed by the four points that

determine these two lines of support.
c) Renumber the extreme points so that they remain ordered with respect to

the defined enumeration scheme. This is necessary because the algorithm
is recursive in nature.

Convex Hull 251

252 Chapter 10 Computational Geometry

A B

FIGURE 10.7 A set of n planar points evenly divided into two sets A and B by
x-coordinate. All points in A lie to the left of every point in B.

A B

FIGURE 10.8 An illustration of the situation after hull(A) and hull(B) have been
determined from input shown in Figure 10.7.

A B

FIGURE 10.9 The stitch step. To construct hull(S) from hull(A) and hull(B), the
upper common tangent line and lower common tangent line between hull(A) and
hull(B) are determined.

Notice that step 2 requires us to divide the input points into disjoint sets A and
B in such a fashion that

• every point of A is left of every point of B, and
• both A and B have “approximately” n/2 members.

Unfortunately, if we are overly strict in our interpretation of “approximately,”
these requirements might not be met. Such a situation might occur when the
median x-coordinate is shared by a large percentage of the input points. For exam-
ple, suppose five of 100 input points have an x-coordinate less than 0, 60 input
points have x-coordinate equal to 0, and 35 input points have x-coordinate greater
than 0. The requirement that every point of A is to the left of every point of B
results in either | A | = 5 and | B | = 95, or | A | = 65 and | B | = 35. This is not really a
problem because the recursion will quickly rectify the imbalance because at most
two points with the same x-coordinate can be extreme points of a convex hull.
Thus, when we determine the vertical line of separation between A and B, we can
arbitrarily assign any input points that fall on this line to A.

This algorithm is a fairly straightforward adaptation of divide-and-conquer.
The interesting step is that of determining the lines of support. It is important to
note that the lines of support are not necessarily determined by easily identified
special points. For example, the lines of support are not necessarily determined by
the topmost and bottommost points in the two convex hulls, as illustrated in Figure
10.10. Considerable thought is required to construct an efficient algorithm to
determine these four points, hence the two tangent lines.

Convex Hull 253

Lower
common
tangent
line

Upper common tangent
line

FIGURE 10.10 An illustration of the common tangent lines between linearly
separable convex hulls. The upper common tangent line between hull(A) and
hull(B) does not necessarily include the topmost extreme points in either set.
A similar remark can be made about the lower common tangent line.

254 Chapter 10 Computational Geometry

Because the convex hulls of A and B are linearly separable by a vertical line,
there are some restrictions on possibilities of points that determine the upper tan-
gent line. For example, consider al, a leftmost point of A and ar, a rightmost point
of A. Similarly, consider bl, a leftmost point of B, and br, a rightmost point of B. It
is then easy to show that the upper common tangent line is determined by an
extreme point of hull(A) on or above (the edges of hull(A) on or above
are referred to as the upper envelope of A) and an extreme point of hull(B) on or
above (on the upper envelope of B). Similarly, the lower common tangent
line is determined by an extreme point of hull(A) on or below and an extreme
point of hull(B) on or below . Therefore, without loss of generality, we focus
on determining the upper common tangent line, and note that determining the
lower common tangent line is similar.

The extreme point that determines the upper common tangent
line has the property that if x and y are, respectively, its left and right neighbors
among the extreme points of hull(A) (one or both of x and y may not exist), then
every extreme point of hull(B) lies on or below , whereas at least one extreme
point of hull(B) lies on or above (see Figure 10.11). Notice that the mirror
image scenario is valid in terms of identifying the right common tangent point,
that is, the upper common tangent point in hull(B).

py
� �� xp

���

p hull A()

b b
l r

a a
l r

b b
l r

a a
l r

a a
l r

Upper common tangent line

A

x
p

y

B

FIGURE 10.11 Constructing the upper common tangent lines. The upper common
tangent line includes the extreme point p hull(A) with the following properties.
Let the next extreme point in counterclockwise order be called x and the previous
extreme point in counterclockwise order be called y. Then every extreme point of
hull(B) lies on or below whereas at least one extreme point of hull(B) lies on
or above .py

� �� xp
� ��

Convex Hull Algorithm on a RAM
In this section, we consider the implementation details and running time of the
divide-and-conquer algorithm just presented on a RAM. To partition the points
with respect to x-coordinates, a (nlog n) time sorting procedure can be used. In
fact, it is important to notice that this single sort will serve to handle the partition-
ing that is required at every level of the recursion. That is, sorting is performed
only once for partitioning, not at every level of recursion. Now let’s consider the
stitch step. The necessary points can be identified in (log n) time by a clever
“teeter-totter” procedure. Basically, the procedure performs a type of binary
search in which endpoints of a line segment (one from hull(A) and the other from
hull(B)) are adjusted in a binary-type iterative fashion. Once the extreme points
are identified, then with an appropriate choice of data structures, the points can be
reordered and renumbered in (n) time. This eliminates the points inside the
quadrilateral determined by the lines of support. Therefore, the running time of the
algorithm is given by , where (nlog n) is the time
required for the initial sort, and R(n) is the time required for the recursive proce-
dure. Notice that , where (n) time is required to stitch
two convex hulls ((log n) time to identify the tangent line and (n) time to
reorder the points). Therefore, the running time of the entire algorithm is (nlog n),
which is asymptotically optimal.

Convex Hull Algorithm on a Mesh
In this section, we discuss a mesh implementation and provide an analysis of the
divide-and-conquer solution to the convex hull problem. Specifically, given n
points, arbitrarily distributed one point per processor on a mesh of size n, we will
show that the convex hull of the set S of planar points can be determined in opti-
mal (n1/2) time.

The basic algorithm follows. First, sort the points into shuffled row-major
order. This results in the first n/4 points (with respect to x-coordinate ordering)
being mapped to the northwest quadrant, the next n/4 points being mapped to the
northeast quadrant, and so forth, as shown in Figure 10.12. Notice that with this
indexing scheme, the partitioning holds recursively in each quadrant.

Because this algorithm is recursive, we now need discuss only the binary search
routine. Notice that due to the mesh environment and the way in which we have par-
titioned the data, we will perform simultaneous binary searches between S1 and S2,
as well as between S3 and S4. We will then perform a binary search between
and . Therefore, we need to describe the binary search only between S1 and
S2, with the others being similar. In fact, we will describe only the binary search that
will determine the upper common tangent line between S1 and S2.

Notice that it takes (n1/2) time to broadcast a query from S1 to S2 and then report
the result back to all processors in S1. So, in (n1/2) time, we can determine whether
some line from S1 goes above all of the points in S2 or whether there is at least one
point in S2 that is above the query line. If we continue performing this binary search in
a natural way, the running time of this convex hull algorithm will be (n1/2log n).

S S3 4
S S1 2

R n R n n() (/) ()= +2 2

T n n n R n() (log) ()= +

Convex Hull 255

256 Chapter 10 Computational Geometry

However, if we first perform a query from S1 to S2, and then one from S2 to
S1, notice that half of the data from S1 and half the data from S2 can be logically
eliminated. The reader should note that while logically eliminating points during
this back-and-forth binary search, reducing the total number of points under con-
sideration by at least half during each iteration, the points representing the com-
mon tangent line segments remain in the active sets.

So, if the logically active data is compressed (that is, copied into a smaller
submesh) after the binary search, which requires (n1/2) time, each iteration of
the binary search will take time proportional to the square root of the number of
items remaining. Therefore, such a dual binary search with compression will run
in B(n) = B(n/2) + (n1/2) = (n1/2) time. Therefore, the total running time of the
divide-and-conquer-based binary search on a mesh of size n is the (n1/2) time for
the initial sort plus

time for the remainder of the algorithm. Hence, the total running time to determine
the convex hull on a mesh of size n is (n1/2), which is optimal for this architecture.

Convex Hull Algorithm on a PRAM
In this section, we present a divide-and-conquer algorithm to solve the convex hull
problem on a PRAM. The algorithm follows the spirit of the divide-and-conquer
algorithm that we have presented; however, the individual steps have been opti-
mized for the PRAM. The algorithm follows.

1. Partition the set S of n planar points into n1/2 sets, denoted . The
partitioning is done so that all points in region Ri are to the left of all points in
region for (see Figure 10.13). This partitioning is most sim-
ply accomplished by sorting, as previously described.

1 11 2i n /R
i+1

R R R
n1 2 1 2, , …, /

T n T n B n T n n n() (/) () (/) / /= + = + () = ()4 4 1 2 1 2

S1 S2

S3 S4

S1 S1 S3 S4

FIGURE 10.12 Dividing the n planar points in S so that each
of the four linearly separable sets of points is stored in a
different quadrant of the mesh. Notice that the vertical slabs
of points in the plane need not cover the same area of space.
They simply must contain the same number of points.

2. Recursively (and in parallel) solve the convex hull problem for every Ri,
. At this point, hull(Ri) is now known for every Ri.

3. Stitch the n1/2 convex hulls together in order to determine hull(S). This is done
by the combine routine that we define next.

i n{ , , , }/1 2 1 2…

Convex Hull 257

R1 R2 R4 R5R3

FIGURE 10.13 An illustration of partitioning the set S
of n planar points into n1/2 linearly separable sets, each
with n1/2 points. The sets are denoted as . R , R , …, R

1 2 n1/2

Combine
The input to the combine routine is the set of convex hulls, hull(R1), hull(R2),
…, hull(R

n1/2), each represented by O(n1/2) extreme points. Notice that hull(R1)
hull(R2) … hull(R

n1/2), where we use “A B” to mean that “all points in A are to
the left of all points in B.” The combine routine will produce hull(S). As we have done
previously, we will consider only the upper envelopes of hull(Ri), , and
we will describe an algorithm to merge these n1/2 upper envelopes to produce the
upper envelope of hull(S). The procedure for determining the lower envelope is
analogous. The algorithm follows.

1. Assign n1/2 processors to each set Ri of points. For each Ri, determine the
n1/2 – 1 tangent lines between hull(Ri) and every distinct hull(Rj). Notice that a
total of such upper tangent lines are determined. These
tangent lines are computed as follows.
a) Let Ti,j be used to denote the (upper) common tangent line between hull(Ri)

and hull(Rj), i ≠ j.
b) For each Ri, use the kth processor that was assigned to it to determine the upper

tangent line between hull(Ri) and hull(Rk), i ≠ k. Each of these upper tangent
lines can be determined by a single processor in O(log n) time by invoking the
“teeter-totter” algorithm outlined earlier. In fact, all (n) tangent lines can be
determined simultaneously in O(log n) time on a CREW PRAM.

2. Let Vi be the tangent line with the smallest slope in . That is,
with respect to Ri, Vi represents the tangent line of minimum slope that “comes
from the left.” Let vi be the point of contact of Vi with hull(Ri).

3. Let Wi be the tangent line with largest slope in . That is,
with respect to Ri, Wi represents the tangent line of maximum slope that
“comes from the right.” Let wi be the point of contact of Wi with hull(Ri).

T T T
i i i i i n, , ,

, , , /+ +{ }1 2 1 2…

T T T
i i i i, , ,

, , ,
1 2 1

…{ }

n n O n1 2 1 2 1/ / ()× () =

1 1 2i n /

258 Chapter 10 Computational Geometry

4. Notice that both Vi and Wi can be found in O(log n) time by the n1/2 processors
assigned to Ri. This requires only that the n1/2 processors perform a minimum
or maximum operation, respectively.

5. Because neither Vi nor Wi can be vertical, they intersect and form an angle
(with the interior point upward). If this angle is 180°, or if wi is to the left of
vi, then none of the points of the upper envelope of hull(Ri) belong to hull(S);
otherwise, all points from vi to wi, inclusive, belong to hull(S) (see Figures
10.14, 10.15, 10.16, and 10.17). Notice that this determination is performed in

(1) time.
6. Finally, compress all of the extreme points of hull(S) into a compact region in

memory in O(log n) time by performing parallel prefix computations.

The running time of the combine routine is dominated by the time required to
determine the common tangent lines and the time required to organize the final
results. Therefore, the running time for the combine routine is O(log n).

vi wi

Ri

FIGURE 10.14 Suppose that vi is to the left of wi and that the angle above the
intersection of their tangents exceeds 180o. Then all of the extreme points of Ri

between (and including) vi and wi are extreme points of S.

vi = wi

Ri

FIGURE 10.15 Suppose that vi = wi and that the angle above the intersection of
their tangents exceeds 180o. Then vi is an extreme point of S.

PRAM Analysis
Although it is beyond the scope of this text, we have mentioned that sorting can be
performed on a PRAM in (log n) time. Therefore, the running time of this con-
vex hull algorithm is given by , where is the
time required for the initial sort, and R(n) = R(n1/2) + C(n) is the time required for
the recursive part of the algorithm, including the time combine
routine. Hence, the running time for this convex hull algorithm is (log n). Fur-
ther, this results in an optimal total cost of (nlog n).

C n O n() (log)=

S n n() (log)=T n S n R n() () ()= +

Convex Hull 259

vi = wi

Ri

FIGURE 10.16 Suppose that vi = wi and that the angle above the intersection of
their tangents does not exceed 180o. In this case, no extreme point on the upper
envelope of Ri is an extreme point of S.

vi

 wi

Ri

FIGURE 10.17 Suppose that wi is to the left of vi. Then no extreme point on the
upper envelope of Ri is an extreme point of S.

260 Chapter 10 Computational Geometry

Smallest Enclosing Box

In this section, we consider the problem of determining a smallest enclosing “box”
of a set of points. That is, given a set S of n planar points, determine a (not neces-
sarily unique) minimum-area enclosing rectangle of S. This problem has applica-
tions in layout and design. Because a rectangle is convex, it follows from the
definition of convex hull that any enclosing rectangle of S must enclose hull(S).
One can show that for a minimum-area enclosing rectangle, each of its edges must
intersect an extreme point of hull(S) and one of the edges of the rectangle must be
collinear with a pair of adjacent extreme points of hull(S) (see Figure 10.18).

x

W

N

E

FIGURE 10.18 A smallest enclosing box of S. A
(not necessarily unique) minimum-area enclosing
rectangle of S includes three edges, each of which
contains an extreme point of hull(S), and one edge
that is collinear with an edge of hull(S).

A straightforward solution to the smallest enclosing box problem consists of
the following steps:

1. Identify the extreme points of the set S of n planar points.
2. Consider every pair of adjacent extreme points in hull(S). For each such pair,

find the three maximum points, as shown in Figure 10.18, and as described
below.
a) Given a line collinear with , the point E associated with is the last

point of hull(S) encountered as a line perpendicular to passes through
hull(S) from left to right.

b) Similarly, the point N associated with is the last point encountered as a
line parallel to , originating at , passes through hull(S).

c) Finally, the point W associated with is the last point of hull(S) encoun-
tered as a line perpendicular to passes through hull(S) from right to
left.

xx '
xx '

xx 'xx '
xx '

xx '
xx 'xx '

3. For every adjacent pair of extreme points, x and , determine the area of the
minimum enclosing box that has an edge collinear with .

4. A smallest enclosing box of S is one that yields the minimum area over all of
the rectangles just determined. Therefore, identify a box that corresponds to
the minimum area with respect to those values determined in step 3.

RAM

We have shown that the convex hull of a set S of n planar points can be determined
in (nlog n) on a RAM. Further, given m enumerated extreme points, for each pair
of adjacent extreme points, one can determine the other three critical points by a
binary search type of procedure in (log m) time. Therefore, the time required to
determine the m restricted minimum-area rectangles is (mlog m). Once these m
rectangles have been determined, a minimum-area rectangle over this set can be
determined in (m) time by a simple scan. Therefore, the running time for the
entire algorithm on a RAM is (nlog n + mlog m) = (nlog n), because m = O(n).

PRAM

Consider the same basic strategy as just presented for the RAM. Notice that the m
restricted minimum-area rectangles can be determined simultaneously in (log m)
time on a PRAM. Further, a semigroup operation can be used to determine the
minimum of these in (log m) time. Therefore, the running time of the entire algo-
rithm, including the time to determine the extreme points of the convex hull, is

on a PRAM.

Mesh

Given a mesh of size n, we have shown how to enumerate the m extreme points of
hull(S) in (n1/2) time. To arrive at an asymptotically optimal algorithm for this
architecture, we need to be able to design a (n1/2) time algorithm to generate the
m rectangles. Once we have generated the rectangles, we know that a straight-
forward (n1/2) time semigroup operation can be used to identify one of these of
minimum area. So how do we determine all m minimum-area rectangles simulta-
neously in (n1/2) time?

Recall that the extreme points of hull(S) have been enumerated. Each point is
incident on two hull edges. Each such edge has an angle of support that it makes
with hull(S). These angles are all in the range of , where the angle (in radian
measure) is viewed with respect to the points of S (see Figure 10.19). Consider the
situation in which every edge is trying to determine its point N. This corre-
sponds to the situation in which every edge is searching for the extreme point
of hull(S) that has an angle of support that differs from that of by . For edge

to determine its other two points, E and W, it is simply searching for points
bounded by hull edges with angles of support that differ from that of by /2xx '
xx '

xx '
xx '

xx '

[,)0 2

(log log) (log)n m n+ =

xx '
x '

Smallest Enclosing Box 261

and 3 /2, respectively. Therefore, these simultaneous searches can be performed
simply by a fixed number of sort-based routines and ordered interval broadcasts.
We leave the details to the reader, though we should point out that these operations
are essentially performed by concurrent read operations. Therefore, the running
time of this algorithm, including the time to identify the extreme points of hull(S),
is (n1/2).

262 Chapter 10 Computational Geometry

B

E

D

C

A

FIGURE 10.19 An illustration of angles of
support. The angle of incidence of hull edge

is /2, of is 3 /4, of is and so
forth. An angle of support of extreme point
A is in [/2, 3 /4]. An angle of support of
extreme point B is in [3 /4,], and so forth.

BCABEA

All-Nearest Neighbor Problem

In this section, we consider another fundamental problem in computational geom-
etry. Suppose we have a set S of n planar points and for every point in S we want
to know its nearest neighbor with respect to the other points in S. That is, we are

required to determine for every point , a point , such that is the
minimum . For this reason, the problem is often referred to
as the all-nearest neighbor problem.

An optimal (nlog n)-time algorithm for the RAM typically consists of con-
structing the Voronoi Diagram of S and then traversing this structure. The Voronoi
Diagram of a set of planar points consists of a collection of n convex polygons,
where each such polygon Ci represents the region of two-dimensional space such
that any point in Ci is closer to than to any other point in S. The Voronoi
Diagram is an important structure in computational geometry. Unfortunately, a
detailed discussion of its construction, either sequentially or in parallel, is beyond
the scope of this book.

p S
i

dist p q p q q S(,), ,
dist p p,()pp S

In this section, we will concentrate on an interesting divide-and-conquer solu-
tion to the all-nearest neighbor problem for the mesh. Notice that an optimal

(n1/2)-time algorithm on a mesh of size n carries with it a cost of O(n3/2). It there-
fore seems possible that we can do better (lower cost) than a brute-force algorithm
that uses (n2) operations to compute distances between all pairs of points.

We consider an algorithm that partitions the points into disjoint sets of points,
solves the problem recursively within each set of points, and then stitches together
the partial results in an efficient fashion. We prevent the stitching process from
becoming the dominant step by partitioning in such a way that almost all of the
points in each partition know their final answer after the recursive solution. We
can accomplish this by partitioning the plane into linearly separable vertical slabs,
solving the problem recursively within each vertical slab, then repartitioning the
plane into linearly separable horizontal slabs, and solving the problem recursively
within each horizontal slab. We can then exploit a theorem from computational
geometry that states that there are no more than some fixed number of points in
each rectangle formed by the intersection of a horizontal and vertical slab that
could have a nearest neighbor somewhere other than in its horizontal or vertical
slab (see Figure 10.20).

All-Nearest Neighbor Problem 263

p

FIGURE 10.20 The nearest neighbor of p is in neither
the same horizontal nor vertical slab as p is.

We now give an outline of the algorithm.

1. Solve the problem recursively in vertical slabs, as follows.
a) Sort the n points in S by x-coordinate, creating four vertical slabs.
b) Solve the all-nearest neighbor problem recursively (steps 1 through 3)

within each vertical slab.

2. Solve the problem recursively in horizontal slabs, as follows.
a) Sort the n points in S by y-coordinate, creating four horizontal slabs.
b) Solve the all-nearest neighbor problem recursively (steps 1 through 3)

within each horizontal slab.
3. Sort the n points of S with respect to the identity of their boxes. The identity of

a specific box is given as the concatenation of the label of the vertical slab and
the label of the horizontal slab.
a) For the points in each box, it is important to note that a result from compu-

tational geometry shows that at most two points closest to each corner of
the box could be closer to a point outside the box than to any point found so
far. Notice that there are no more than 8 � 16 = 128 such corner points.

b) Each of these corner points can now be passed through the mesh so that
they can view (and be viewed by) all n points. After this traversal, each of
these corner points will know its nearest neighbor. Hence, the solution will
be complete.

Running Time

The running time of this algorithm on a mesh of size n is given as T(n) = 2T(n/4) +
(n1/2). Using the Master Method, we can determine that this recurrence has a

solution of T(n) = (n1/2 log n), which is within a log n factor of optimal for this
architecture.

Architecture-Independent Algorithm Development

A number of interesting problems in computational geometry lend themselves to
architecture-independent algorithm development. That is, we can state an algo-
rithm to solve the problem that may be implemented on a variety of architectures.
It should be noted that such algorithms are often stated at a very high level because
they usually involve basic operations such as sorting, prefix, semigroup opera-
tions, computation of the convex hull, and so forth. These are operations for which
implementation details may be quite different on different architectures. Neverthe-
less, these operations may be regarded as fundamental abstract operations in the
sense that efficient implementations are known on popular models of computa-
tion. Suppose problem X can be solved by an algorithm consisting of the computa-
tion of a convex hull, followed by a prefix computation, followed by a semigroup
operation. A straightforward implementation of this algorithm on a given model Y
results in a running time that is the sum of the times for these three fundamental
operations as implemented on model Y.

Algorithms discussed for the remainder of this chapter will be presented in an
architecture-independent style. In the exercises that follow, the reader will be asked
to analyze the running times of these algorithms on a variety of architectures.

264 Chapter 10 Computational Geometry

Line Intersection Problems

Suppose we are given a set L of n line segments in the Euclidean plane. The seg-
ments may be arbitrary, or we may have additional knowledge, such as that every
member of L is either horizontal or vertical. Common line intersection problems
include the following:

Intersection Query: Determine if there is at least one pair of members
of L that intersect.

Intersection Reporting: Find and report all pairs of members of L that
intersect.

An easy, though perhaps inefficient method of solving the intersection query
problem is to solve the intersection reporting problem and then observe whether
any intersections were reported. We might hope to obtain an asymptotically faster
solution to the intersection query problem that does not require us to solve the
intersection reporting problem.

An obvious approach to both problems is based on an examination of each of
the (n2) pairs of members of L. It is easy to see how such an approach yields a

(n2) time RAM algorithm for the intersection query problem, and a (n2) time
RAM algorithm for the intersection reporting problem. In fact, other solutions are
more efficient:

Consider the intersection query problem: In (n) time, create two
records for each member of L, one for each endpoint. Let each record
have an indicator as to whether the endpoint is a left or right endpoint
(lower corresponds to right in the case of a vertical segment). Sort these
records in ascending order by the x-coordinates of their endpoints, using
the left/right switch as the secondary key, with , and y-
coordinates as the tertiary key. Now, perform a plane sweep operation,
which allows us to “sweep the plane” from left to right, maintaining an
ordered data structure T of non-intersecting members of L not yet
eliminated from consideration, as possible members of an intersecting
pair. Assume that T is a data structure such as a red-black tree in which
insert, retrieve, and delete operations can be done in sequential (log n)
time. As we move the vertical “sweep line” from left to right and
encounter a left endpoint of a member s of L, we insert s into T, then
determine if s intersects either of its at most two neighbors in T; if we
find an intersection, we report its existence and halt. As the sweep line
encounters a right endpoint of a member s of L, we remove s from T,
and, as previously, determine if s intersects either of its at most two
neighbors in T. If we find an intersection, we report its existence and
halt; otherwise, we continue the plane sweep (see Figure 10.21).

right left<

Line Intersection Problems 265

266 Chapter 10 Computational Geometry

Consider the Intersection Reporting Problem: We can construct an
algorithm with an output-sensitive running time for the RAM, which is
asymptotically faster under certain conditions than the straightforward

(n2) time required for the brute-force algorithm. The term output-sensitive
refers to the fact that the amount of output is a parameter of the running
time. That is, if there are k intersections, a RAM algorithm for this problem
can be constructed to run in O((n + k) log n) time. Thus, if k = o(n2/log n),
such an algorithm is asymptotically faster than one that examines all pairs.
Such an algorithm can be obtained by making minor modifications to the
previous solution for the intersection query problem. The most important
change is that instead of halting upon discovering an intersection, we list the
intersection and continue the plane sweep to the right.

Overlapping Line Segments

In Chapter 7, we examined the following:

• The coverage query problem, in which we determine whether a given fixed
interval [a, b] is covered by the union of an input set of intervals, and

a
c

d

b

a a
b

c
a
b

c
b

c
b
d

c
d

c
e
d

e
d

e

e

FIGURE 10.21 Illustration of a plane sweep operation to solve the intersection
query problem. The line segments are labeled by left endpoint. As a sweep of all
the endpoints is performed from left to right, when a left endpoint is encountered,
the line segment is inserted into the list at the appropriate ordered (top to bottom)
position and is tested for intersection with its neighbors in the list. The currently
active ordered list of line segments is shown beneath each endpoint. When a right
endpoint is encountered, an evaluation of an intersection is made before remov-
ing that point from the ordering. Here, when the left endpoint of e is encountered,
the d-e intersection is detected.

• The maximal overlapping point problem, where we determine a point of the
real line that is covered by the largest number of members of an input set of
intervals.

Such problems fall within the scope of computational geometry. Another
problem in computational geometry that is concerned with overlapping line seg-
ments is the minimal-cover problem, which can be expressed as follows: Given an

interval [a, b] and a set of n intervals , find a minimal-membership

subset S ' of S such that [a, b] is contained in the union of the members of S ', if
such a set exists, or report that no such set exists. Another version of this problem
uses a circle and circular arcs instead of intervals.

An application of this problem is in minimizing the cost of security. The inter-
val [a, b] (respectively, a circle) might represent a borderline (respectively, convex
perimeter) to be guarded, and the members of S, sectors that can be watched by
individual guards. A positive solution to the problem might represent a minimal
cost solution, including a listing of the responsibilities of the individual guards, for
keeping the entire borderline or perimeter under surveillance.

Efficient solutions exist for both the interval and circular versions of these
problems, which are quite similar. The circular version seems to be the one that
has appeared most often in the literature. For the reader’s convenience, however,
the interval version will be the one we work with, because some of its steps are
easier to state than their analogs in the circular version of the problem.

We discuss a greedy algorithm, that is, an algorithm marked by steps designed
to reach as far as possible toward completion of a solution. The algorithm is
greedy in that it starts with a member of S that covers a and extends maximally to
the right. (If no such member of S exists, the algorithm terminates and reports that
the requested coverage does not exist.) Further, once a member is selected,
a maximal successor for s is determined (in other words, a member of S that inter-
sects with s and extends maximally to the right). This procedure continues until
either b is covered (a success) or a successor cannot be found (a failure). Thus, a
high-level view of this algorithm follows.

• Find a member that covers a and has a maximal right endpoint. If no
such member of S exists, report failure and halt.

• While failure has not been reported and s = [ai, bi] does not cover b, assign to
s a member of S\{s} that has a maximal right endpoint among those members
of S\{s} that contain bi. If no such member of S\{s} exists, report failure and
halt.

At the end of these steps, if failure has not been reported, the selected mem-
bers of S form a minimal-cardinality cover of [a, b]. See Figure 10.22, in which
the intervals of S have been raised vertically in the Euclidean plane for clear view-
ing but should be thought of as all belonging to the same Euclidean line.

s S

s S

S a b
i i i

n
= { }

=
,

1

Line Intersection Problems 267

268 Chapter 10 Computational Geometry

The preceding approach seems inherently sequential. We can make some
changes so that the resulting algorithm can be implemented in parallel, yet uses
key ideas mentioned earlier, as follows:

1. For each , find its successor, if one exists.
2. For each , take the union of t and its successor as a chain of at most two

connected intervals. Then take the union of this chain of at most two intervals
and its final arc’s successor’s chain of at most two intervals to produce a chain
of at most four. Repeat this doubling until the chain starting with t either does
not have a successor chain or covers b.

3. Use a minimum operation to find a chain that covers [a, b] with a minimal
number of intervals.

As is so often the case, “find” operations, including those mentioned previously,
are typically facilitated by having the data sorted appropriately. It is useful to have
the intervals ordered from left to right. However, because the data consists of inter-
vals rather than single values, some thought must be given to what such an ordering
means. Our primary concern is to order the intervals in such a way as to enable an
efficient solution to the problem at hand. The ordering that we use is embedded in
the algorithm that follows, which relies on a postfix operation on the ordered inter-
vals to determine maximal overlap of [a, b] with a minimum number of intervals.

1. Sort the interval records by left endpoint, breaking ties in favor of maximal
right endpoints.

2. We observe that if and , then any

connected chain of members of S of minimal-cardinality among those chains
that start with [ai, bi] and cover [a, b], will have at least as many members as a
connected chain of members of S of minimal-cardinality among those chains
that start with [aj, bj] and cover [a, b]. Therefore, we can remove all such
nonessential intervals [ai, bi] by performing a simple prefix operation on the
ordered set of interval data. Without loss of generality, we will proceed under
the assumption that no remaining member of S is a subset of another remain-
ing member of S.

a b a b
i i j j
, ,a b a b S

i i j j
, , ,{ }

t S
t S

a2 b2

a1 b1 a7 b7

a5 b5

a4 b4

a3 b3 a6 b6

a b

a8 b8

FIGURE 10.22 A minimal-cardinality cover of [a, b] consists of arcs 3, 4, 6, and 7.

3. For each remaining , create two records. The first set of records,
called successor records, consists of two components, namely, the index i
of the interval and the index j of the successor of the interval. For each inter-
val , we initialize its successor record to (i, i), with the interpreta-
tion that initially every interval is its own successor. Notice that during the
procedure, the first component of these records does not change, whereas the
second component will eventually point to the successor of interval [ai, bi].
The second set of records, referred to as information records, contains con-
nectivity information. The components of the information records include the
following.
• The first two components are the left and right endpoints, respectively, of

the connected union of members of S represented by the record’s chain of
intervals.

• The third and fourth components represent the indices of the leftmost and
rightmost members of the record’s chain, respectively.

• The fifth component is the index of the successor to the rightmost interval
in the record’s chain (the successor to the interval indexed by the fourth
component).

• The sixth component is the number of members of S in the arc’s chain.
For each record , we initialize an information record to

.
4. Sort the information records into ascending order by the second component.
5. In this step, we use the first four components of the information records.

Determine the successor of each member of S as follows, where ° is an opera-
tion defined as

Thus, represents , provided these arcs intersect,
, and [ak, bm] extends [ai, bi] to the right more than does [aj, bj];

otherwise, . Use a parallel postfix operation with operator ° to
compute, for each information record representing [ai, bi], the transitive
closure of ° on all records representing arc i up through and including the
information record representing arc n. Because the intervals are ordered by
their right endpoints, it follows that the fourth component of the postfix infor-
mation record representing arc [ai, bi] is the index of the successor of the chain
initiated by [ai, bi].

6. For all , copy the fourth component of the postfix information
record created in the previous step, representing [ai, bi], to the second compo-
nent of the successor record representing [ai, bi], so that the successor record

i n{ }1 2, , ,…

A B A� =
b a b

i j
[,]

[,] [,]a b a b
i j k mA B�

a b i j a b k m

a b i m a a

i j k m

i m i k

, , , , , ,

, , ,

() () =
()

�

if <

()

b b

b a b

a b i j

i m

i j

i j

and

otherwise.

[,];

, , ,

a b i i i
i i
, , , , ,1()

a b S
i i
,

a b S
i i
,

a b S
i i
,

Line Intersection Problems 269

for [ai, bi] will have the form (i, si), where si is the index of the successor of
[ai, bi].

7. For all , compute the chain of intervals vi obtained by starting
with [ai, bi] and adding successors until either b is covered or we reach an
interval that is its own successor. This can be done via a parallel postfix com-
putation in which we define as

8. A minimum operation on , in which we seek the minimal sixth compo-
nent such that the interval determined by the first and second components con-
tains [a, b], determines whether a minimal-cardinality covering of [a, b] by
members of S exists, and, if so, its cardinality. If j is an index such that vj

yields a minimal-cardinality covering of [a, b] by members of S, the members
of S that make up this covering can be listed by a parallel prefix operation that
marks a succession of successors starting with [aj, bj].

Summary

In this chapter, we consider algorithms to solve several interesting problems from
computational geometry. Problems considered include computation of the convex
hull of a set of planar points, computation of a smallest enclosing box for a set of
planar points, the all-nearest neighbor problem, and several problems concerning
line intersections and overlaps in the Euclidean plane. Several of these problems
are discussed in an architecture-independent fashion, which allows us to obtain
efficient to optimal solutions for a variety of models of computation.

Chapter Notes

The focus of this chapter is on efficient sequential and parallel solutions to funda-
mental problems in the field of computational geometry. The reader interested in a
more comprehensive exploration of computational geometry is referred to Com-
putational Geometry by F.P. Preparata and M.I. Shamos (Springer-Verlag, 1985).
In fact, the proof that sorting is linear-time transformable to the convex hull prob-
lem comes from this source. The reader interested in parallel implementations of
solutions to problems in computational geometry is referred to S.G. Akl and K.A.
Lyons’ Parallel Computational Geometry (Prentice Hall, 1993).

The Graham’s scan algorithm was originally presented in “An Efficient Algo-
rithm for Determining the Convex Hull of a Finite Planar Set,” by R.L. Graham in
Information Processing Letters 1, 1972, 132–33. The Jarvis’ march algorithm was
originally presented by R.A. Jarvis in the paper “On the Identification of the Con-
vex Hull of a Finite Set of Points in the Plane,” Information Processing Letters 2,

v
i i

n{ } =1

a b i j k c a b m q r s
a b i q r

i j m q

i q
, , , , , , , , , ,

, , , ,()• () = ,, ;

, , , , ,

c s k m

a b i j k c
i j

+() =

()
if

otherwise.

•

i n{ }1 2, , ,…

270 Chapter 10 Computational Geometry

1973, 18–21. These algorithms are also presented in a thorough fashion in Intro-
duction to Algorithms (2nd ed.: The MIT Press, Cambridge, MA, 2001) by T.H.
Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein.

The generic divide-and-conquer solution to the convex hull problem presented
in this chapter is motivated by the material presented in Parallel Algorithms for
Regular Architectures by R. Miller and Q.F. Stout (The MIT Press, Cambridge,
MA, 1996). The “teeter-totter” binary search algorithm referred to when describ-
ing an intricate binary search for determining common tangent lines was originally
presented by M.H. Overmars and J. van Leeuwen in “Maintenance of Configura-
tions in the Plane,” in the Journal of Computer and Systems Sciences, vol. 23,
1981, 166–204. The interesting divide-and-conquer algorithm for the PRAM was
first presented by M. Atallah and M. Goodrich in “Efficient Parallel Solutions to
Some Geometric Problems,” in the Journal of Parallel and Distributed Comput-
ing 3, 1986, 492–507. One might note that this algorithm exploits the CR capabil-
ities of a CREW PRAM. We should point out that an optimal time
EREW PRAM algorithm to solve the convex hull problem has been presented by
R. Miller & Q.F. Stout in “Efficient Parallel Convex Hull Algorithms,” in IEEE
Transactions on Computers, 37 (12), 1988. However, the presentation of the
Miller and Stout algorithm is beyond the scope of this book.

The notion of angles of support is interesting in that it allows multiple parallel
searches to be implemented by a series of sort steps. Details of the mesh convex
hull algorithm that relies on angles of support can be found in Parallel Algorithms
for Regular Architectures.

The reader interested in learning more about the Voronoi Diagram and its
application to problems involving proximity might consult Computational Geom-
etry by F.P. Preparata and M.I. Shamos (Springer-Verlag, 1985). Details of the all-
nearest neighbor algorithm for the mesh can be found in Parallel Algorithms for
Regular Architectures.

A RAM algorithm for the circular version of the cover problem was presented
by C.C. Lee and D.T. Lee in “On a Cover-Circle Minimization Problem,” in Infor-
mation Processing Letters 18 (1984), 180–85. A CREW PRAM algorithm for the
circular version of this problem appears in “Parallel Circle-Cover Algorithms,” by
A.A. Bertossi in Information Processing Letters 27 (1988), 133–39. The algorithm
by Bertossi was improved independently in each of the following papers:

• M.J. Atallah and D.Z. Chen, “An Optimal Parallel Algorithm for the Minimum
Circle-Cover Problem,” Information Processing Letters 32 (1989), 159–65.

• L. Boxer and R. Miller, “A Parallel Circle-Cover Minimization Algorithm,”
Information Processing Letters 32 (1989), 57–60.

• D. Sarkar and I. Stojmenovic, “An Optimal Parallel Circle-Cover Algorithm,”
Information Processing Letters 32 (1989), 3–6.

The exercises of this chapter, which appear in the next section, include ques-
tions concerning the all maximal equally spaced collinear points problem. This
and several related problems were studied in the following papers:

(log)n

Chapter Notes 271

• A.B. Kahng and G. Robins, “Optimal Algorithms for Extracting Spatial Regu-
larity in Images,” Pattern Recognition Letters 12 (1991), 757–64.

• L. Boxer and R. Miller, “Parallel Algorithms for All Maximal Equally Spaced
Collinear Sets and All Maximal Regular Coplanar Lattices,” Pattern Recogni-
tion Letters 14 (1993), 17–22.

• G. Robins, B.L. Robinson, and B.S. Sethi, “On Detecting Spatial Regularity in
Noisy Images,” Information Processing Letters 69 (1999), 189–95.

• L. Boxer and R. Miller, “A Parallel Algorithm for Approximate Regularity,”
Information Processing Letters 80 (2001), 311–16.

These problems have considerable practical value, because the presence of the
regularity amidst seeming or expected chaos is often meaningful. For example, the
members of S might represent points observed in an aerial or satellite photo, and
the maximal equally spaced collinear sets might represent traffic lights, military
formations, property or national boundaries in the form of fence posts, and so
forth. The paper of Kahng and Robins presents a RAM algorithm for the all maxi-
mal equally spaced collinear sets problem that runs in optimal (n2) time. This
algorithm seems to be essentially sequential. The 1993 Boxer and Miller paper
shows how a rather different algorithm can be implemented in efficient to optimal
time on parallel architectures. These two papers are concerned with exact solu-
tions. The Robins et al. paper gives an approximate sequential solution that runs in
O(n5/2) time. The asymptotically slower running time for an approximate solution
(as opposed to an exact solution) is because an approximate solution may have
more output than an exact solution; notice, however, that an approximate solution
is likely to be more useful than an exact solution, because data is generally not
exact. On the other hand, the approximate solution to this problem is beyond the
scope of this book. The algorithm of Robins et al. seems essentially sequential. A
rather different algorithm appears in the 2001 Boxer and Miller paper, giving
an efficient approximate parallel solution that can be implemented on multiple
platforms.

Exercises

Many of the exercises in this section can be considered for a variety of models of
computation.

1. Given a set S of n planar points, construct an efficient algorithm to determine
whether there exist three points in S that are collinear. Although there are

(n3) triples of members of S, it is possible (and you should try) to obtain an
algorithm that runs in o(n3) sequential time.

2. Given a set of n line segments in the plane, prove that there may be as many
as (n2) intersections.

3. Show that the algorithm sketched in this chapter to solve the intersection
query problem runs in (nlog n) time on a RAM.

272 Chapter 10 Computational Geometry

4. Given a set of n line segments in the plane that have a total of k intersections,
show that a RAM algorithm can solve the intersection reporting problem,
reporting all intersections, in O((n + k) log n) time.

5. Given a convex polygon with n vertices, construct an efficient algorithm to
determine the area of the polygon. Input to the problem consists of the circu-
larly ordered edges (equivalently, vertices) of the polygon.

6. Given a polygon with n vertices, construct an efficient algorithm to determine
whether or not the polygon is simple.

7. Given two simple polygons, each consisting of n vertices, give an efficient
algorithm to determine whether or not the polygons intersect.

8. Given a simple polygon P and a point p, give an efficient algorithm to deter-
mine whether or not p is contained in P.

9. Give an efficient algorithm to determine the convex hull of a simple polygon.
10. On a fine-grained parallel computer, a very different approach can be taken to

the Intersection Reporting Problem. Suppose input to a PRAM, mesh, or
hypercube of n processors consists of the n line segments in the Euclidean
plane. In the case of a mesh or hypercube, assume the segments are initially
distributed one per processor. Provide a solution to the Intersection Reporting
Problem that is optimal in the worst case, and prove the optimality, for each of
these architectures. Hints: This can be done with an algorithm that “seems”
simpler to describe than the RAM algorithm described in the text. Also, the
processors of a hypercube may be renumbered in a circular fashion.

11. In this chapter, we sketched an algorithm to solve the following problem: for
a set of n intervals and a range [a, b], determine a minimal-cardinality subset
of the intervals that cover [a, b] or to show, when appropriate, that no such
cover exists. Prove the algorithm runs in
• (nlog n) time on a RAM;
• (log n) time on a CREW PRAM;
• (n1/2) time on a mesh of n processors, assuming the intervals are initially

distributed one per processor.
12. In the Graham’s scan procedure given in this chapter, prove that both the point

chosen as the origin and the last point encountered in the tour must be extreme
points of the convex hull.

13. Given a set S of n planar points, prove that a pair of farthest neighbors (a pair
of points at maximum distance over all pairs of points in S) must be chosen
from the set of extreme points.

14. Given two sets of points, P and Q, give an efficient algorithm to determine
whether P and Q are linearly separable. That is, give an efficient algorithm to
determine whether or not it is possible to define a line l with the property that
all points of P lie on one side of l whereas all points of Q lie on the other side
of l.

15. In this problem, we consider the all maximal equally spaced collinear points
problem in the Euclidean plane R2: given a set S of n points in R2, identify all

Exercises 273

of the maximal equally spaced collinear subsets of S that have at least three
members. A collinear set (assume the points are numbered
according to their order on their common line) is equally spaced if all the line
segments , , have the same length. Assume that we are
given a set S of n points in R2, where each point is represented by its Cartesian
coordinates (see Figure 10.23).

i k{ }1 2 1, , ,…p p
i i+1

p p p
k1 2

, , ,…{ }

274 Chapter 10 Computational Geometry

FIGURE 10.23 The all maximal equally spaced collinear points problem.
An illustration of three equally spaced collinear line segments.

a) Show that O(n2) is an upper bound for the output of this problem. Hint:
show that every pair of distinct points can be a consecutive pair
of at most one maximal equally spaced collinear subset of S.

b) Show that (n2) is a lower bound for the worst-case output of this prob-
lem. Hint: let n be a square and let S be the square of integer points

.

Let be defined by

.

Show that if , , then is a consecutive pair in a max-
imal equally spaced collinear subset C of S such that . Together
with the previous exercise, this shows the worst-case output for this prob-
lem is (n2).

c) Consider the following algorithm, which can be implemented on a variety
of architectures (the details of implementing some of the steps will vary
with the architecture).
i) Form the set P of all ordered pairs such that p < q in the

lexicographic order of points in R2. The lexicographic order is defined
as follows: if p = (px ,py) and q = (qx ,qy), then p < q if either px < qx or
both px = qx and py < qy.

(,)p q S

| |C 3
{ , }p qp q{ , } 'p q S

S a b
n

a
n n

b
n

' , ,
/ / / /

= ()
1 2 1 2 1 2 1 2

3

2

3 3

2

3

S S'

S a b a n b n= (){ }, ,/ / 1 11 2 1 2

{ , }p q S

ii) Sort the members of P in ascending order with respect to all the fol-
lowing keys:
• Slope of the line determined by a member of P as the primary key

(use for a vertical segment);
• Length of the line segment determined by a member of P as the sec-

ondary key;
• Lexicographic order of the endpoints of P as the tertiary key.

iii) Use a parallel postfix operation on P to identify all maximal equally
spaced collinear subsets of S. The operation is based on the formation
of quintuples and a binary operation specified as follows. Initial quin-
tuples are of the form (p,q, length, 2, true), where the first two com-
ponents are the endpoints (members of S) in an equally spaced
collinear set; the third is the length of segments that make up the cur-
rent equally spaced collinear set; the fourth component is the number
of input points in the equally spaced collinear set; and the fifth com-
ponent is true or false according to whether the first component is the
first point in an equally spaced collinear set. The binary operation is
defined by

and in the former case, set .
iv) A postfix operation on the members of P is used to enumerate mem-

bers of each equally spaced collinear set of more than two points. This
operation is based on members of P with a postfix quintuple having
the fifth component true and the fourth component greater than two.

d) Analyze the running time of this algorithm for each of a RAM, a CREW
PRAM of n2 processors, and a mesh of n2 processors. In the case of the
mesh, assume that the members of S are initially distributed so that no
processor has more than one member of S. Formation of the set P can thus
be done on the mesh by appropriate row and column rotations, and/or ran-
dom-access write operations. The details are left to the reader.

v false=

a b c d u e f g h v

a f c d h u b

, , , , (, , , ,)

(, , , ,)

() =

+ 1 if == =e c g

a b f

a b c

 and and

{ is collinear;, , }

, , ,dd u,() otherwise.

Exercises 275

276

11
Image Processing

Preliminaries

Component Labeling

Convex Hull

Distance Problems

Summary

Chapter Notes

Exercises

277

In this chapter, we consider some fundamental problems in image processing, an
important and challenging area of computer science. A focus of this chapter is

divide-and-conquer algorithms for the mesh. Even though this chapter focuses pre-
dominantly on one solution strategy for one particular model of parallel computation,
we will present algorithms for the RAM, as appropriate.

Preliminaries

In this chapter, we consider the input to the problems to be an n � n digitized
black-and-white picture. That is, the input can be viewed as a matrix (mesh) of
data in which every element is either a 1 (black) or a 0 (white). These “picture ele-
ments” are typically referred to as pixels. The interpretation of the image is that it
is a black image on a white background, and the set of black pixels can be referred
to as a digital image. The terminology and assumptions that we use in this chapter
represent the norm in the field of image processing.

Readers must be very careful to recalibrate their expectations. In most of the
preceding chapters, the input was of size n, whereas in this chapter the input is
of size n2. Therefore, a linear time sequential algorithm will run in (n2) time, not
in (n) time. If the input data is to be sorted on a RAM, an optimal worst-case
comparison-based sequential sorting algorithm will take (n2 log n) time, not

(n log n) time.
Because we want to map the image directly onto the mesh, we assume that

pixel Pi,j is mapped to mesh processor Pi,j on a mesh of size n2. Again, we need to
recalibrate. For a mesh of size n2, the communication diameter and bisection width
are both (n). So, for any problem that might require pixels at opposite ends of the
mesh to be combined in some way, a lower bound on the running time of an algo-
rithm to solve such a problem is given as (n).

There is an important mesh result that we will use in this chapter, concerned
with determining the transitive closure of a matrix. Let G be a directed graph with
n vertices, represented by an adjacency matrix A. That is, A(i, j) = 1 if and only if
there is a directed edge in G from vertex i to vertex j. Otherwise, A(i, j) = 0. The
transitive closure of A, which is typically written as A*, is an n � n matrix such
that A*(i, j) = 1 if and only if there is a (directed) path in G from vertex i to vertex
j. A*(i, j) = 0 otherwise.

It is important to note that both A and A* are binary matrices. That is, A and A*
are matrices in which all entries are either 0 or 1. Consider the effect of “multiply-
ing” matrix A by itself to obtain the matrix we denote as A2, where the usual
method of matrix multiplication is modified by replacing addition (+) with OR ()
and multiplication () with AND (). Notice that an entry A2(i, j) = 1 if and only
if either

• A(i, j) = 1, or
• A(i, k) = 1 AND A(k, j) = 1 for some k.

That is, A2(i, j) = 1 if and only if there is a path of length no more than two
from vertex i to vertex j. Now consider the matrix A3, which can be computed in a
similar fashion from A and A2. Notice that A3(i, j) = 1 if and only if there is a path
from vertex i to vertex j that consists of three or fewer edges. Continuing this line
of thought, notice that the matrix An is such that An (i, j) = 1 if and only if there is
a path from vertex i to vertex j that consists of n or fewer edges (see Exercises).

×

278 Chapter 11 Image Processing

That is, An contains information about the existence of a directed path in the graph
G from vertex i to vertex j, for every pair of vertices (i, j). The matrix An, which is
often referred to as the connectivity matrix, represents the transitive closure of A.
That is, An = A*.

Consider a sequential solution to the problem of determining the transitive
closure of an n � n matrix A. Based on the preceding discussion, it is clear that the
transitive closure can be determined by multiplying A by itself n times. Because
the traditional matrix multiplication algorithm on two n � n matrices takes (n3)
time, we know that the transitive closure of A can be determined in O(n � n3) =
O(n4) time. So the question is, can we do better? Well, consider matrix A2. Once A2

has been determined, we can multiply it by A to arrive at A3 or multiply it by itself
(A2) to arrive at A4. If our interest is in determining An using the least number of
matrix multiplications, it is far more efficient to produce A4, rather than A3, from
A2 and all preceding matrices. In fact, notice that if we overshoot An, it doesn’t
matter. It is easily verified that An+c = An for any positive integer c (see Exercises).
Therefore, if we perform (log n) matrix multiplication operations, each time
squaring the resulting matrix, we can reduce the natural running time of transitive
closure from (n4) down to (n3 log n).

In fact, we can produce the matrix An even more efficiently, as follows. Define
a Boolean matrix Ak so that Ak(i, j) = 1 if and only if there is a path from vertex i to
vertex j using no intermediate vertex with label greater than k. Notice that this is a
nonstandard interpretation of a Boolean matrix. Given this matrix, an algorithm
can be designed that will iteratively transform A0 = A to An = An = A* through a
series of intermediate matrix computations Ak, 0 < k < n. We define Ak(i, j) = 1 if
and only if

• there is a path from vertex i to vertex j using no intermediate vertex greater
than k – 1, or

• there is a path from vertex i to vertex k using no intermediate vertex greater
than k – 1 and there is a path from vertex k to vertex j using no intermediate
vertex greater than k – 1.

We now present Warshall’s algorithm to determine the transitive closure of a
Boolean matrix:

for k = 1 to n, do
for i = 1 to n, do

for j = 1 to n, do

Whereas the running time of Warshall’s algorithm on a RAM is (n3), notice
that the algorithm requires (n2) additional memory. This is because at the kth iter-
ation of the outermost loop, it is necessary to keep the previous iteration’s matrix
Ak–1 in memory.

A i j A i j A i k A k j
k k k k
(,) (,) (,) (,)=

1 1 1

Preliminaries 279

280 Chapter 11 Image Processing

F.L. Van Scoy has shown that given an n � n adjacency A matrix mapped onto
a mesh of size n2 such that A(i, j) is mapped to processor Pi,j, the transitive closure
of A can be determined in optimal (n) time. Details of this algorithm are pre-
sented in Chapter 12.

Because pixels are mapped to processors of a fine-grained mesh in a natural
fashion, we tend to think about pixels and processors as coupled when designing
mesh algorithms. Therefore, when there is no confusion, we will use the terms
pixel and processor interchangeably in describing fine-grained mesh algorithms.

Component Labeling

In this section, we consider the problem of uniquely labeling every maximally
connected component in an image. Efficient algorithms to solve the component-
labeling problem serve as fundamental tools to many image-processing tasks.
Given a digitized black-and-white picture, viewed as a black image on a white
background, one of the early steps in image processing is to label uniquely each of
the distinct figures (that is, components) in the picture. Once the figures are
labeled, one can process the image at a higher level to recognize shapes and to
develop relationships among objects.

It is often convenient to recast the component-labeling problem in graph theo-
retic terms. Consider every black pixel to be a vertex. Consider that an edge exists
between every pair of vertices represented by neighboring black pixels. We assume
that pixels are neighbors if and only if they are directly above, below, to the left of,
or to the right of each other. (This notion of neighbors is called 4-adjacency in the
literature.) In particular, pixels that are diagonally adjacent are not considered
neighbors for the purpose of this presentation, though such an interpretation does
not typically affect the asymptotic analysis of component-labeling algorithms. The
goal of a component-labeling algorithm is to label uniquely every maximally con-
nected set of pixels (vertices). Although the label chosen for every component is
irrelevant, in this book we will choose to label every component with the minimum
label over any pixel (vertex) in the figure (component). This is a fairly standard
means of labeling components (see Figure 11.1).

RAM

Initially, let’s consider a sequential algorithm to label the maximally connected
components of an n � n digitized black-and-white picture. Suppose we use a
straightforward propagation-based algorithm. Initialize the component label for
every pixel to nil. Initialize the vertex label for every pixel to the concatenation of
its row and column indices. Now traverse the image in row-major order. When a
black pixel is encountered that has not previously been assigned a component
label, assign that pixel’s vertex label as its component label. Next, recursively

propagate this component label to all of its black neighbors (which recursively
propagate the label to all of their black neighbors, and so on).

Let’s consider the running time of this simple propagation algorithm. Every
pixel is visited once during the row-major scan. Now consider the backtracking
phase of the algorithm, in which both black and white pixels can be visited. The
black pixels can be visited as the propagation continues, and the white pixels serve
as stopping points to the backtracking. Fortunately, every component is labeled
only once, and if backtracking is done properly, every black pixel is visited only a
fixed number of times during a given backtracking/propagation phase. That is,
when a black pixel p is visited, no more than three of its neighbors need to be con-
sidered (why?). Further, during the recursion, control returns to the pixel p three
times before it returns control to its parent pixel (that is, the black pixel visited
immediately prior to visiting p for the first time). A white pixel can be visited only
by four of its neighbors during some propagation phase, each time returning con-
trol immediately. Therefore, the running time of the algorithm is linear in the num-
ber of pixels, which is (n2).

Mesh

We will now consider a divide-and-conquer algorithm to solve the general compo-
nent-labeling problem on a mesh. This algorithm is traditional and exhibits an
asymptotically optimal worst-case running time. Assume that we are given an n � n
digitized black-and-white picture mapped in a natural fashion onto a mesh of size
n2 so that pixel pi,j is mapped to processor Pi,j. The first algorithm we might con-
sider is a direct implementation of the sequential propagation algorithm. If we
implement the algorithm directly, then clearly the running time remains at (n2),

Component Labeling 281

1 4

12

126

6

6

6

(a) (b)

FIGURE 11.1 (a) A digitized 4 � 4 picture. The interpreta-
tion is that it is a black image on a white background. (b)
The same 4 � 4 picture with its maximally connected com-
ponents labeled under 4-adjacency definition of connected-
ness. Each component is labeled with the pixel of minimum
label in its components, where the pixel labels are taken to
be the row-major labeling with values 1, . . . ,16.

which is unacceptable for this architecture. Therefore, let’s consider the natural
parallel variant of a propagation-type algorithm. That is, every processor that
maintains a black pixel continually exchanges its current component label with
each of its black neighbors (four at most). During each such exchange, a processor
accepts the minimum of its current label and that of its black neighbors as its new
component label. The effect is that the minimum vertex/processor label in a com-
ponent is propagated throughout the component in the minimum time required
(that is, using the minimum number of communication links required), assuming
that all messages must remain within a component. In fact, this label reaches every
processor in its component in the minimum time necessary to broadcast the label
between them, assuming that all messages must remain within the component.
Therefore, if all the (maximally) connected components (figures) are relatively
small, this is an effective algorithm. If every figure is enclosed in some k � k
region, the running time of the algorithm is O(k2). This is efficient if k2 = O(n). In
fact, if we regard k as constant, the running time is (1) (see Figure 11.2).

282 Chapter 11 Image Processing

FIGURE 11.2 Each connected component is con-
fined to a 3 � 3 region. In such situations, the
mesh propagation algorithm will run in (1) time.

Now let’s consider the worst-case running time of this parallel propagation
algorithm. Suppose we have a picture that consists of a single figure. Further, sup-
pose that the internal diameter (the maximum distance between two black pixels,
assuming that one travels only between pixels that are members of the figure) is
large. For example, consider Figure 11.3, which includes a “spiral” on the left and
a “snake” on the right.

We see that it is easy to construct a figure that has an internal diameter of
(n2). This propagation algorithm will run in (n2) time on such a figure. So, our

parallel propagation algorithm has a running time of (1) and O(n2). For many sit-
uations, we might be willing to accept such an algorithm if we know a priori that
these troublesome situations (that is, the worst-case running time) will not occur.
There may be situations in which, even if such an image might occur, we know
that no figure of interest could have such characteristics, and we could then mod-
ify the algorithm so that it terminates after some more reasonable predetermined
amount of time. However, there are many situations in which we care about mini-
mizing the general worst-case running time.

We will now consider a divide-and-conquer algorithm to solve the general
component-labeling problem on a mesh. This divide-and-conquer algorithm is
fairly traditional and exhibits an asymptotically optimal worst-case running time:

1. Divide the problem into four subproblems, each of size (n/2) � (n/2).
2. Recursively label each of the independent subproblems.
3. Stitch the partial solutions together to obtain a labeled image.

As with many divide-and-conquer algorithms, the stitch step is crucial. Notice
that once each (n/2) � (n/2) subproblem has been solved, there are only O(n)
labels in each such submesh that might be incorrect in a global sense. That is, for
every (global) component completely contained within its (n/2) � (n/2) region,
the recursive label must be correct. Only those local components (components of
one of the (n/2) � (n/2) regions) with at least one pixel on an edge between neigh-
boring submeshes might need to be relabeled (see Figure 11.4). Therefore,
whereas the initial problem had (n2) pieces of data (pixels), after the recursive
solutions were obtained, there are only O(n) critical pieces of information (that is,

Component Labeling 283

FIGURE 11.3 Two problematic figures. A “spiral” is shown on the left, and a
“snake” is shown on the right.

284 Chapter 11 Image Processing

information that is necessary to obtain the final result). We can stitch together the
partial results as follows.

First, each processor P containing a black pixel on the border of one of the
(n/2) � (n/2) regions examines its neighbors that are located in a distinct (n/2) �
(n/2) region. For each such border processor P, there are either one or two such
neighbors. For each neighboring black pixel in a different region, processor P gen-
erates a record containing the identity and current component label of both P and
the neighboring pixel. Notice that there are at most two records generated by any
processor containing a border vertex. However, also notice that for every record
generated by one processor, a “mirror image” record is generated by its neighbor-
ing processor. Next, compress these O(n) records into an n1/2 � n1/2 region within
the n � n mesh. In the n1/2 � n1/2 region, use these O(n) unordered edge records to
solve the component-labeling problem on the underlying graph.

Notice that the stitch step can perform the compression operation by sorting
the necessary records in (n) time. Once the critical data is compressed to an n1/2

� n1/2 region, we can perform a logarithmic number of iterations to merge compo-
nents together until they are maximally connected. Each such iteration involves a

20

27 32

54

54

5457573939

39

16

204 4

FIGURE 11.4 An 8 � 8 image after labeling
each of its 4 � 4 quadrants. Notice that the
component labels come from the shuffled row-
major indexing scheme, starting with proces-
sor 1 (not 0). The global components that are
completely contained in a quadrant (compo-
nents 4 and 20) do not need to be considered
further. The remaining components are
required for a global relabeling procedure.

fixed number of sort-based operations, including concurrent reads and writes.
Therefore, each iteration is performed in (n1/2) time. Hence, the time required
for computing maximally connected components within the n1/2 � n1/2 region is

(n1/2 log n). Completing the stitch step involves a complete (n) time concurrent
read so that every pixel in the image can determine its new label. Because the
compression and concurrent read steps dominate the running time of the Stitch
routine, the running time of the algorithm is given as T(n2) = T(n2/4) + (n),
which sums to T(n2) = (n) (one can reach this conclusion, for example, by
substituting N = n2 and applying the Master Theorem to the resulting recursion,
T(N) = T(N/4) + (N1/2)). Notice that this is a time-optimal algorithm for a mesh of
size n2. However, the total cost of such an algorithm is (n3), although the prob-
lem has a lower bound of (n2) total cost.

We now consider an interesting alternative to the stitch step. In the approach
that we presented, we reduced the amount of data from (n2) to O(n), compressed
the O(n) data, and then spent time working on it leisurely. Instead, we can consider
creating a cross product with the reduced amount of critical data. That is, once we
have reduced the data to O(n) critical pieces, representing an undirected graph, we
can create an adjacency matrix. Notice that the adjacency matrix will fit easily into
the n � n mesh. Once the adjacency matrix is created, we can perform the (n)
time transitive closure algorithm of Van Scoy mentioned at the beginning of the
chapter to determine maximally connected components. The minimum vertex
label can be chosen as the label of each connected component, and a concurrent
read by all pixels can be used for the final relabeling. Although the running time of
this algorithm remains at (n), it is instructive to show different approaches to
dealing with a situation in which one can drastically reduce the size of the set of
data under consideration.

Convex Hull

In this section, we consider the problem of marking the extreme points of the con-
vex hull for each labeled set of pixels in a given image. Suppose that we have a
mesh of size n2 and that we associate every processor Pi,j with the lattice point (i, j).
Suppose that every processor contains a label in the range of , where the
interpretation is that 0 represents the background (a white pixel) and that values in
the range of represent labels of foreground (non-white) pixels. Further,
assume that all pixels with the same label are members of the same set of points and
that we want to determine the convex hull for each distinctly labeled set of points.

Notice that a maximal set of points with the same label need not be a con-
nected component. In fact, the sets might be intertwined and their convex hulls
might overlap, as shown in Figure 11.5.

1 2…n

0 2…n

Convex Hull 285

286 Chapter 11 Image Processing

FIGURE 11.5 An illustration of overlapping
convex hulls of labeled (not necessarily
connected) sets of pixels.

We have discussed the general convex hull problem for various models in a
preceding chapter. Clearly, the image input considered in this section can be sim-
ply and efficiently converted to the more general form of two-dimensional point
data input. From such input, the algorithms of the previous chapter can be invoked
in a straightforward fashion. Our goal in this section, however, is to introduce
some new techniques, which will result in a greatly simplified routine for a lattice
of labeled points imposed on a mesh.

Initially, we determine the extreme points for each labeled set as restricted to
each row. Once this is done, we note that there are no more than two possible
extreme points in any row for any labeled set. Within each such set, every row-
restricted extreme point can consider all other row-restricted extreme points of its
set and determine whether or not it is contained in some triangle formed by the
remaining points, in which case it is not an extreme point. Further, if no such trian-
gle can be found, it is an extreme point. The algorithm follows.

Initially in every row, we wish to identify the extreme points for every labeled
set. In a given row, the extreme points of each set are simply the (at most two) out-
ermost nonzero points of the set. This identification can be done by a simple row
rotation, simultaneously for all rows, so that every processor can view all of the
data within its row and decide whether it is an extreme point for its labeled set.

Next, sort all of these row-restricted extreme points by label so that after the
sort is complete, elements with the same label are stored in adjacent processors.
Although there are O(n2) such points, it is important to note that for any label,
there are at most 2n such points (at most two points per each row). Because all of
the row-restricted extreme points for a given set are now in a contiguous set of
processors, we can perform rotations within such ordered intervals. These rota-
tions are similar to row and column rotations but work within intervals that might
cover fractions of one or more rows. Thus, simultaneously for all intervals (that is,
labeled sets), rotate the set of row-restricted extreme points. During the rotation,
suppose a processor is responsible for lattice point X. Then as a new lattice point Y
arrives, the processor responsible for X performs the following operations.

• If no other point is stored in the processor, then the processor stores Y.
• Suppose the processor has stored one other point previously, say, U; then the

processor will store Y. However, if X, Y, and U are on the same line, then the
processor eliminates the interior point of these three.

• Suppose the processor has previously stored two other points, U and V, before
Y arrives.

1. If X is in the triangle determined by U, V, and Y, then the processor determines
that X is not an extreme point.

2. Otherwise, if Y is on a line segment determined by X and either U or V, then of
the three collinear points, X is not interior (otherwise, the previous case would
apply). Discard the interior of the three collinear points, Y or U (respectively,
Y or V).

3. Otherwise, the processor should eliminate whichever of U, V, and Y is inside
the angle formed by X and the other two, with X as the vertex of the angle.
(Note the “eliminated” point is not eliminated as a possible extreme point, just
as a point that is useful in determining whether X is an extreme point.)

If after the rotation, the processor responsible for row-restricted extreme point
X has not determined that X should be eliminated, then X is an extreme point.

A final concurrent read can be used to send the row-restricted extreme points
back to their originating processors (corresponding to their lattice points) and the
extreme points can then be marked.

Running Time

The analysis of running time is straightforward because no recursion is involved.
The algorithm consists of a fixed number of (n) time rotations and sort-based
operations. Therefore, the running time of this algorithm is (n). Notice that the
cost of the algorithm is (n3), and we know that the problem can be solved

Convex Hull 287

288 Chapter 11 Image Processing

sequentially in (n2 log n) time by the traditional convex hull algorithm on arbi-
trary point data.

Distance Problems

In this section, we consider the problem of determining distances between labeled
sets of pixels. This problem is concerned with determining for every labeled set of
pixels, a nearest distinctly labeled set of pixels, where the input consists of a
labeled set of (not necessarily connected) pixels. We also consider the problem of
determining distances within connected components. Specifically, we assume that
one special pixel in each connected component is “marked” and that every pixel
needs to find its minimal internal distance to this marked pixel.

All-Nearest Neighbor between Labeled Sets

In this section, we consider the all-nearest neighbor between labeled sets problem.
Assume that the input consists of a labeled set of pixels. That is, assume that every
processor Pi,j is associated with the lattice point (i, j) on a mesh of size n2. As we
did in the previous section, assume that every processor contains a label in the
range of , where the interpretation is that 0 represents the background (a
white pixel) and that values in the range of represent labels of foreground
(non-white) pixels. Recall that pixels in the same labeled set are not necessarily
connected.

The problem we are concerned with is that of determining for every labeled
set of pixels, the label of a nearest distinctly labeled set of pixels. Algorithmically,
we first determine, for every pixel, the label and distance to a nearest distinctly
labeled pixel. This solves the problem on a per pixel basis. To solve the problem
for every labeled set, we then determine the minimum of these pixels’ nearest-
pixel distances over all pixels within a labeled set. Details of the algorithm follow.

The first step is to find, for every labeled processor P, a nearest distinctly
labeled processor to P. To do this, we exploit the fact that the pixels are laid out on
a grid and that we are using the Euclidean distance as a metric. Suppose that p and
q are labeled pixels that are in the same column. Further, let r be a nearest dis-
tinctly labeled pixel to p in the same row as p, as shown in Figure 11.6. Because
we have made no assumption about the labels of p and q (they could be identical
or distinct), then with respect to p’s row, either p or r is a nearest distinctly labeled
pixel to q. We refer to this observation as “work-reducing.” An algorithm to solve
the all-nearest neighbor between labeled sets problem follows.

1. Perform parallel row rotations of every row so that every processor Pi,j finds at
most two nearest processors in its row with distinct labels, if they exist. With re-
spect to processor Pi,j, we denote these nearest distinctly labeled processors as

1 2…n
0 2…n

Pi,j1
and Pi,j2

, where either j1 or j2 is equal to j if Pi,j is a labeled processor. We
need two such processors if the row has foreground pixels with distinct labels,
because one of them may have the same label as a processor in the column of p.

2. Perform parallel column rotations of every column. Every processor Pi,j sends
its information (labels and positions) and the information associated with its
row-restricted nearest distinctly labeled processors Pi,j1

and Pi,j2
. During the

rotation, every processor is able to determine its nearest distinctly labeled
processor, using the work-reducing observation.

3. Sort all of the near neighbor information by initial pixel (set) label.
4. Within every labeled set of data, perform a semigroup operation (in particular,

a minimum operation) and broadcast so that every pixel knows the label of a
nearest distinctly labeled set to its set.

5. Finally, use a concurrent read so that the initial set of pixels can determine the
final result.

Running Time

Given an n � n mesh, the running time of this algorithm is (n). This is due to the
fact that the algorithm is dominated by a row rotation, column rotation, semigroup
operation, and sort-based operations. Again, the cost of the algorithm is (n3),

Distance Problems 289

p r

q

FIGURE 11.6 The all-nearest neighbor between
labeled sets problem. Suppose p, q, and r are
labeled pixels. If r is a closest distinctly labeled
pixel in row two to p, then either p or r is a closest
distinctly labeled pixel to q among those in row 2.

which is suboptimal, because the problem can be solved in (n2 log n) time on a
RAM.

Minimum Internal Distance within Connected Components

In this section, we consider the all-points minimal internal distance problem. The
input to this problem is a set of figures (that is, maximally connected components
that have been properly labeled) and one marked pixel per figure. The problem
requires that the minimum internal distance be determined from every black pixel
to the unique marked pixel in its figure.

Let’s first consider a simple propagation algorithm over a single figure.
Assume the marked processor is labeled X. The processor associated with X
assigns its distance to 0, because it is the marked processor. All other processors in
the figure assign their initial distance to . Now every black processor exchanges
distance information with its neighboring black processors. A given processor
with current distance of s to the marked processor will receive at most four addi-
tional pieces of distance information, denoted as a, b, c, and d. This processor will
now set s = min {s, min{a,b,c,d} + 1}. The algorithm continues until no distances
in the figure change. Notice that the algorithm will terminate when information
from the marked processor X reaches the processor(s) at maximal internal distance
from it. As with propagation algorithms discussed earlier, this algorithm is quite
efficient for figures with a small internal diameter, but it can be quite bad for fig-
ures with large internal diameters. In fact, if we consider a spiral or snakelike fig-
ure, we see that this algorithm has a running time of O(n2) on a mesh of size n2.

We now consider a significantly more complicated algorithm, based on
divide-and-conquer, which exhibits a (n) worst-case running time. This algo-
rithm involves both data reduction and the application of a generalized transitive
closure algorithm, which was mentioned earlier.

The algorithm consists of two phases. The first phase of the algorithm can be
viewed as exploiting a bottom-up divide-and-conquer strategy. During the ith stage
of the first phase, the objective is to determine correctly the internal distance from
every black pixel on the border of a 2i � 2i region

• to every other border pixel, and
• to the marked pixel.

The assumption in determining this information during the ith stage is that the
image is restricted to the appropriate 2i � 2i region. Notice that pixels within a fig-
ure might not even be connected within such a 2i � 2i region, and these will result
in a distance of after performing the required computations during the ith stage.
Further, notice that the marked pixel of a figure can be in only one of the 2i � 2i

regions. Therefore, after stage log2 n – 1, three of the four (n/2) � (n/2) regions

290 Chapter 11 Image Processing

will be such that every entry between a border pixel and the marked pixel will be
set to .

The first stage of this bottom-up phase is stage 0, in which every pixel has a
distance of to the marked pixel, with the exception of the marked pixel itself,
which has a distance of 0. The final stage of this phase is stage log2 n in which the
(at most) 4n – 4 outer pixels of the n � n mesh obtain the correct internal distance
from their pixel to each other, as well as to the marked pixel.

The second phase of this algorithm consists of using the information deter-
mined during the first phase to determine recursively the correct internal distances
for all remaining pixels. This is accomplished by a divide-and-conquer algorithm
that can be viewed as top-down. That is, the correct outer border pixel distances
for the entire n � n mesh are used to determine the correct outer border pixel dis-
tances for each of the four (n/2) � (n/2) regions, which can be used to determine
the correct outer border pixel distances for each of the 16 (n/4) � (n/4) regions,
and so on.

Before we give details of each phase of the algorithm, we will take the
unorthodox approach of discussing the running time. It will be shown that each
stage i of the first phase can be performed in time (2i). Hence, the running time
of the first phase of the algorithm is given by

Therefore, the running time of the first phase of the algorithm is T(n2) = (n).
We will also show that the time for each stage of the second phase can be per-
formed by following the same steps as in the first phase, but with a slightly differ-
ent set of input. So the running time for the second phase, which uses the first
phase as a subroutine, is given by T(n2) = T(n2/4) + (n). This yields T(n2) = (n).
Therefore, the algorithm that we are discussing is asymptotically optimal for the
model and input under discussion.

We now discuss some of the details of the two phases of the algorithm. First,
we consider the ith stage of the first phase. We show how to determine properly the
restricted internal distances from the outer pixels of the 2i � 2i region to the
marked pixel. Assume that for each of the (2i/2) � (2i/2) subsquares of the region,
the problem for the first phase has been solved recursively. Then we need to show
how to combine the distance results from each of the four (2i/2) � (2i/2) regions
into the required result for the 2i � 2i region. At the end of stage i – 1, we assume
that each of the four subsquares has the correct restricted internal distance not only
from every outer pixel to the marked pixel but also from every outer pixel to every
other outer pixel. Notice that there is room to store this as a matrix within each of
the four (2i/2) � (2i/2) subsquares. The algorithm performed at the ith phase consists

T n T n T n nn2 2 24 2 42() = () + () = () +/ / ()log

Distance Problems 291

292 Chapter 11 Image Processing

simply of combining all of this internal distance information in an appropriate
way. This is done by combining the four internal distance matrices into one dis-
tance matrix. This matrix contains restricted internal distances between the outer
border elements of the four subsquares and also to the marked pixel (see Figure
11.7).

Now, to consider the 2i � 2i region, we simply have to modify the matrix
to include a distance of 1 (instead of) between those outer black pixels in a
(2i/2) � (2i/2) subsquare that have a neighboring black pixel in an adjacent (2i/2)
� (2i/2) subsquare. Once the distance matrix is initialized, a generalized transitive
closure algorithm can be run to determine the necessary distances. Notice that if
we define Sk(i, j) to be the minimal internal distance from vertex i to vertex j using
no intermediate vertex with label greater than k, then Sk+1 (i, j) = min{Sk (i, j), Sk

(i,k + 1) + Sk (k + 1, j)}. Notice that the matrices can be moved into their proper
location in (2i) time, as shown in Figure 11.8. Further, the necessary edges can
be added in (2i) time, and the transitive closure and final random access read can
also be performed in (2i) time. Therefore, the running time of phase 1 is as
claimed.

Consider phase 2 of the algorithm. We need to show that, given the final matri-
ces and distances involving the outer border elements of the (n/2) � (n/2) regions

row 1

row k/2
row k/2+1

row k
column k/2 column k/2+1

outer
border
element

inner
border
element

FIGURE 11.7 An illustration of the possible border elements in a
k � k submesh.

(computed while determining the final correct distances for the outer border ele-
ments of the n � n mesh), we can continue to pass this information on down to
recursively smaller and smaller subsquares. This is fairly straightforward because
all we are required to do is to run the phase 1 algorithm on each subsquare with the
final outer border distance information included. Therefore, this phase can be
completed in the time claimed.

Distance Problems 293

A1

R1

C1 A2

R2

C2

A4

R4

C4 A3

R3

C3

A1

A2

A3

A4

R4R3R2R1

C4

C3

C2

C1

FIGURE 11.8 A mapping that shows how to rearrange the distance matrices from
recursive solutions in an effort to solve the all-points minimal internal distance
problem.

Hausdorff Metric for Digital Images

Let A and B be nonempty, closed, bounded subsets of a Euclidean space Rk. The
Hausdorff metric, H(A,B), is used to measure how well the elements of each such
pair of sets approximates the other. In general, the Hausdorff metric provides the
following properties.

• H(A,B) is small if every point of A is close to some point of B and every point
of B is close to some point of A.

• H(A,B) is large if some point of A is far from every point of B, or some point
of B is far from every point of A.

Formally, we can define the Hausdorff metric as follows. Let d be the Euclid-
ean metric for Rk. For , , define d(x,Y) = min {d(x,y) | y Y}.
Let , where H*(A,B) is said to be the “one-
way” or “nonsymmetric” Hausdorff distance. Note that H*(A,B) is not truly a “dis-
tance” in the sense of a metric function. Then the Hausdorff metric, which is
indeed a metric function when applied to sets A and B that are nonempty, bounded,
and closed, is defined by . This definition isH A B H A B H B A(,) max (,), (,)= { }

H A B d a B a A= { }(,) max (,) |
Y Rkx Rk

equivalent to the statement that if is the minimum of all positive
numbers r for which each of A and B is contained in the r-neighborhood of the
other, where the r-neighborhood of Y in Rk is the set of all points in Rk that are less
than r distant from some point in Y. See Figure 11.9 for an example of .H A B(,)

H A B(,) =

294 Chapter 11 Image Processing

y

x B

A

FIGURE 11.9 An example of the Hausdorff metric.
The distances x and y respectively mark a furthest
member of A from B and a furthest member of B
from A. H(A,B) = max{x,y}.

Suppose that A and B are finite sets of points in R2 or R3. Further, suppose that
these points represent black pixels corresponding to digital images. That is, sup-
pose A and B represent distinct digital images in the same dimensional space.
Then, to determine whether the probability is high that A and B represent the same
physical object, one might consider the result of applying a rigid motion M (trans-
lation, rotation, and/or reflection) to B and evaluating the result of H(A,M(B)). If
for some M, H(A,M(B)) is small, then in certain situations there is a good chance
that A and B represent the same physical object; but if no rigid motion translates B
close to A in the Hausdorff sense, it is unlikely that A and B represent the same
object.

It is interesting to note that two sets in a Euclidean space can occupy approxi-
mately the same space, yet have very different geometric features. Although better
image recognition might result from a metric that reflects geometric as well as
positional similarity, such metrics are often much more difficult to work with, both
conceptually and computationally.

A simple, although inefficient algorithm for computing the Hausdorff metric
for two digital images A and B, each contained in an n � n digital picture, is
described next. The algorithm is a straightforward implementation of the defini-

tion of the Hausdorff metric as applied to digital images. As we outline a more
efficient algorithm in the Exercises, we will discuss only the current algorithm’s
implementation for a RAM.

1. For every (black) pixel , compute the distance d(a,b) from a to every
point and compute d(a,B) = min {d(a,b) | b B}. On a RAM, this takes
O(n4) time, because each of the O(n2) black pixels of A is compared with each
of the O(n2) black pixels of B.

2. Compute H* (A,B) = max {d(a,B) | a A} by a semigroup operation. This
takes (n2) time on a RAM.

3. Interchange the roles of A and B and repeat steps 1 and 2. Now H* (B,A) is
known.

4. Compute H(A,B) = max {H* (A,B), H* (B,A)}. This takes (1) time.

This algorithm has a running time dominated by its first step, which takes
O(n4) time on a RAM. Clearly, the running time of the algorithm leaves much to
be desired. Indeed, a simple, more efficient algorithm for computing the Hausdorff
metric between two digital images on a RAM can be given using techniques pre-
sented in this chapter. We leave this problem as an exercise.

We now consider metrics related to the Hausdorff metric for measuring the
difference between two fuzzy sets. Fuzzy set generalizes the notion of a set; as
implemented in a digital picture, a fuzzy set is not necessarily a binary image.
Rather, a fuzzy set is defined to be a function such that the domain,
S, is nonempty. S is called the support set of f. For , the value f (s) is the
“degree of membership” or the “membership value” of s in S. is a crisp set,
or an “ordinary set,” for the fuzzy set f if T = f –1({1}) = {s S | f (s) = 1} and

. Thus, as implemented in a digital picture, a crisp set is a digital
image (the set of 1 pixels) in a support set S consisting of an n � n grid of pixels.
In a more general fuzzy set (not necessarily a binary digital image), membership
values could represent color codes for a colored picture or local physical informa-
tion for a map, such as land elevation, temperature or other meteorological data,
and so on.

Let F be a family of fuzzy sets defined on the nonempty support set S with the
following properties:

• S is a metric space (this is a technical requirement; for purposes of our discus-
sion, the reader unfamiliar with such notions can assume S is a subset of a
Euclidean space, such as a grid of pixels);

• There is a finite set of membership values such that
for every , ;

• For every and , the set is
bounded and closed in S;

•
• For every , there exists such that .f s() = 1s Sf F

1 T

f t s S t f s
k k() = { }1 1 1, () | t T

kf F
f S T()f F

T t t t
m

= { }1 2
0 1, , , [,]…

f S() { , }0 1

T S
s S

f S: [,]0 1

b B
a A

Distance Problems 295

Then the formula

, for all ,

defines a metric. The reader should examine the preceding formula carefully. At
first it may look quite complex, but it is in fact rather simple and can be computed
efficiently. We leave it as an exercise to develop an efficient algorithm to compute
this formula.

Summary

In this chapter, we examine several fundamental problems from image processing.
Problems examined include component labeling, computation of the convex hull,
and various distance problems. Among the distance problems discussed is that of
computing the Hausdorff distance between two digital images; this problem has
appeared in many recent papers as a tool for image pattern matching. RAM solu-
tions are presented; because of the natural mapping of a digital image to the
processors of a mesh, it is the latter model we use for discussion of parallel
solutions.

Chapter Notes

This chapter focuses on fundamental problems in image analysis for the RAM and
mesh. These problems serve as a nice vehicle to present interesting paradigms.
Many of the mesh algorithms presented in this chapter are derived from algo-
rithms presented by R. Miller and Q.F. Stout in Parallel Algorithms for Regular
Architectures (The MIT Press, Cambridge, MA, 1996). These algorithms include
the component-labeling algorithm, the all-nearest neighbor between labeled sets
algorithm, and the minimum internal distance within connected components algo-
rithm. The book by R. Miller and Q.F. Stout also contains details of some of the
data-movement operations that were presented and utilized in this chapter, includ-
ing rotation operations based on ordered intervals and so on. The ingenious algo-
rithm used to compute the transitive closure of an n � n matrix on a RAM was
devised by S. Warshall in his paper “A Theorem on Boolean Matrices,” in the
Journal of the ACM 9 (1962), 11–12. Further, in 1980, F.L. Van Scoy (“The Paral-
lel Recognition of Classes of Graphs,” IEEE Transactions on Computers 29
(1980), 563–70) showed that the transitive closure of an n � n matrix could be
computed in (n) time on an n � n mesh.

f g F,D f g
t H f t g t

k k k
k(,)

, , ,
=

() (){ }
=

1 1

1

1 1
mm

k
k

m

t
=1

296 Chapter 11 Image Processing

For more information about the Hausdorff metric, see Hyperspaces of Sets, by
S.B. Nadler, Jr. (Marcel Dekker, New York, 1978). The reader interested in addi-
tional information on Hausdorff metrics for fuzzy sets is referred to the following
papers:

• L. Boxer, “On Hausdorff-like Metrics for Fuzzy Sets,” Pattern Recognition
Letters 18 (1997), 115–18;

• B.B. Chaudhuri and A. Rosenfeld, “On a Metric Distance Between Fuzzy
Sets,” Pattern Recognition Letters 17 (1996), 1157–60;

• M.L. Puri and D.A. Ralescu, “Differentielle d’un fonction floue,” Comptes
Rendes Acad. Sci. Paris, Serie I 293 (1981), 237–39.

The paper that introduced the notion of digitally continuous functions (used in
the exercises) is: A. Rosenfeld, “‘Continuous’ Functions on Digital Pictures” in
Pattern Recognition Letters 4 (1986), 177–84.

Exercises

1. Given an n � n digitized image, give an efficient algorithm to determine both
the number of black pixels in the image, and the number of white pixels in the
image. Present an algorithm and analysis for both the RAM and mesh.

2. Let A be the adjacency matrix of a graph G with n vertices. For integer k > 0,
let Ak be the kth power of A, as discussed in the chapter.
a) Prove that for i ≠ j, if and only if there is a path in G from ver-

tex i to vertex j that has at most k edges, for .
b) Prove that for any positive integer c.

3. Given an n � n digitized image in which each pixel is associated with a
numerical value, provide an efficient algorithm that will set to zero (0) all of
the pixel values that are below the median pixel value of the image. Present
analysis for both the RAM and mesh.

4. Given an n � n digitized image, provide an efficient algorithm that will set
each pixel to the average of itself and its eight (8) nearest neighbors. Present
analysis for both the RAM and mesh.

5. Given a labeled n � n digitized image, give an efficient algorithm to count the
number of connected components in the image. Present analysis for both the
RAM and mesh.

6. Given a labeled n � n digitized image and a single “marked” pixel some-
where in the image, give an efficient algorithm that will mark all other pixels
in the same connected component as the “marked” pixel. Present analysis for
both the RAM and mesh.

A An c n+ =
1 k n

A i jk (,) = 1

Exercises 297

7. Given a labeled n � n digitized image, give an efficient algorithm to deter-
mine the number of pixels in every connected component. Present analysis for
both the RAM and mesh.

8. Given a labeled n � n digitized image and one “marked” pixel per compo-
nent, give an efficient algorithm for every pixel to determine its distance to its
marked pixel. Present analysis for both the RAM and mesh.

9. Given a labeled n � n digitized image, give an efficient algorithm to deter-
mine a minimum enclosing box of every connected component. Present
analysis for both the RAM and mesh.

10. Give an efficient algorithm for computing H(A,B), the Hausdorff metric
between A and B, where each of A and B is an n � n digital image. Hint: the
algorithm presented in the text can be improved on by using row and column
rotations similar to those that appeared in our algorithm for the all-nearest
neighbor between labeled sets problem, modified to allow that a pixel could
belong to both A and B. Show that your algorithm can be implemented in
worst-case times of (n2) for the RAM and (n) for the n � n mesh.

11. Let F be a family of fuzzy sets with support set S consisting of an n � n
grid of pixels. Present an algorithm and analysis for the RAM and mesh to
compute the distance formula D(f ,g) described earlier for members of F.
Your algorithm should run in O(mn2) time on a RAM and in O(mn) time on
the n � n mesh.

12. Suppose A and B are sets of black pixels for distinct n � n digital pictures. Let
be a function, that is, for every (black) pixel , f(a) is a

(black) pixel in B. Using the 4-adjacency notion of neighboring pixels, we
say f is (digitally) continuous if for every pair of neighboring black pixels

, either f (a0) = f (a1) or f (a0) and f (a1) are neighbors in B. Prove that
the following are equivalent:
• is a digitally continuous function.
• For every connected subset A0 of A, the image f (A0) is a connected subset

of B.
• Using the Euclidean metric (in which four connected neighboring pixels are

at distance one apart and non-neighboring pixels are at distance greater than
1), for every , there is a such that if and d(a0,a1) ≤ ,
then d[f (a0), f (a1) | ≤ .

13. Refer to the previous exercise. Let A and B be sets of black pixels within
respective n � n digital pictures. Let be a function. Suppose the
value of can be computed in (1) time for every . Present an algo-
rithm to determine whether or not the function f is digitally continuous (and,
in the case of the mesh, let every processor know the result of this determina-
tion), and give your analysis for the RAM and n � n mesh. Your algorithm
should take (n2) time on a RAM and (n) time on an n � n mesh.

a Af a()
f A B:

a a A
0 1
,11

f A B:

a a A
0 1
,

a Af A B:

298 Chapter 11 Image Processing

14. Conway’s Game of Life can be regarded as a population simulation that is
implemented on an n � n digitized picture A. The focus of the “game” is the
transition between a “parent generation” and a “child generation”; the child
generation becomes the parent generation for the next transition. In one ver-
sion of the game, the transition proceeds as follows:
• If in the parent generation A[i, j] is a black pixel and exactly two or three of

its nearest 8-neighbors are black, then in the child generation A[i, j] is a
black pixel (life is propagated under “favorable” living conditions). How-
ever, if in the parent generation A[i, j] is a black pixel with less than two
black 8-neighbors (“loneliness”) or more than three black 8-neighbors
(“overcrowding”), then in the child generation A[i, j] is a white pixel.

• If in the parent generation A[i, j] is a white pixel, then in the child genera-
tion A[i, j] is a black pixel if and only if exactly three of its nearest 8-neighbors
are black.

Present and analyze an algorithm to compute the child generation matrix A
from the parent generation matrix for one transition, for the RAM and the
mesh. Your algorithm should run in (n2) time on the RAM and in (1) time
on the mesh.

Exercises 299

300

12
Graph Algorithms

Terminology

Representations

Fundamental Algorithms

Fundamental PRAM Graph Techniques

Computing the Transitive Closure of an Adjacency Matrix

Connected Component Labeling

Minimum-Cost Spanning Trees

Shortest-Path Problems

Summary

Chapter Notes

Exercises

301

In this chapter, we focus on algorithms and paradigms to solve fundamental prob-
lems for problems in graph theory, where the input consists of data representing sets

of vertices and edges. We will present efficient solutions to problems such as deter-
mining the connected components of a graph, constructing a minimal-cost spanning
forest, and determining shortest paths between vertices in a graph. The algorithms will
be presented for the sequential model (RAM), the PRAM, and the mesh. In this way,
we will be able to present a variety of techniques and paradigms. Some of the material
presented in this chapter will rely on algorithms presented earlier in the book.

Many important problems can be expressed in terms of graphs, including prob-
lems involving communications, power grids, cyberinfrastructure and grid computing,
general and special purpose networking, the scheduling or routing of airplanes, and so
on. The following is a list of tasks for which graphs are often used:

• Provide a representation for a set of locations with distances or costs between the
locations. This can arise in transportation systems (airline, bus, or train systems)
where the costs can be distance, time, or money.

• Provide a representation for the connectivity in networks of objects. Such networks
can be internal to devices (VLSI design of computer chips) or among higher-level
devices (communication or computer networks).

• Provide a representation for problems concerned with network flow capacity, which
is important in the water, gas, and electric industries, to name a few.

• Provide a representation for an ordered list of tasks. For example, one might create
an ordered list of the tasks necessary to build a guitar from instructions and materi-
als available on the Web.

One of the first uses of graphs dates back to 1736, when Leonhard Euler consid-
ered the town of Königsberg, in which the Pregel River flows around the island of
Kneiphof, as shown in Figure 12.1. Notice that the Pregel River borders on four land
regions in this area, which are connected by seven bridges, as shown in Figure 12.2.
Euler considered the problem of whether it was possible to start on one of the four land
areas, cross every bridge exactly once, and return to the original land area. In fact, for
this situation, which is represented in the graph in Figure 12.3, Euler was able to prove
that such a tour was not possible. The generalization of this problem has become
known as the Euler tour. That is, an Euler tour of a connected, directed graph is a
cycle (the path starts and ends at the same vertex) that traverses each edge of the graph
exactly once, although it may visit a vertex more than once.

302 Chapter 12 Graph Algorithms

Kneiphof

FIGURE 12.1 In 1736, Leonhard Euler graphed the town of
Königsberg, where the Pregel River flows around the island of
Kneiphof.

Kneiphof

FIGURE 12.2 The seven bridges in the area of Kneiphof and the
Pregel River that Euler considered in terms of navigating the
town of Königsberg.

K

FIGURE 12.3 A graph with four vertices and seven edges representing Königs-
berg. Euler considered this graph in terms of whether or not it was possible to
start on one of the four land masses (vertices), cross every bridge exactly once,
and return to the original land area. The generalization of this problem is now
known as the Euler tour problem.

Terminology

Let G = (V, E) be a graph consisting of a set V of vertices and a set E of edges. The
edges, which connect members of V, can be either directed or undirected, resulting
in either a directed graph (digraph) or an undirected graph, respectively. That is,
given a directed graph G = (V, E), an edge represents a directed connec-
tion from vertex a to vertex b, where both . Given an undirected graph, an
edge represents an undirected connection between a and b. Usually, we
do not permit self-edges, in which an edge connects a vertex to itself, nor do we
permit multiple occurrences of an edge (resulting in a multigraph). See Figure
12.4 for examples of directed and undirected graphs.

(,)a b E
a b V,
(,)a b E

Terminology 303

(a) (b)

(c) (d)

FIGURE 12.4 Four sample graphs. (a) shows a complete undirected graph of five
vertices. (b) is a directed graph with pairs of vertices (u, v) such that the graph
has no directed path from u to v. (c) is an undirected tree with seven vertices.
(d) is an undirected mesh of nine vertices.

The number of vertices in G = (V, E) is written as , and the number of
edges is written as . However, for convenience, whenever the number of ver-
tices or number of edges is represented inside of an asymptotic notation, we will
typically avoid the vertical bars since there is no ambiguity. For example, an algo-
rithm that runs in time linear in the sum of the vertices and edges will be said to
run in time.()V E+

| |E
| |V

304 Chapter 12 Graph Algorithms

In any description of a graph, we assume that there is a unique representation
of the vertices and edges. That is, no vertex will have more than one identity and
no edge will be represented more than once. In a directed graph, the maximum
number of edges is |V |(|V | – 1), whereas in an undirected graph, the maximum
number of unique edges is |V |(|V | – 1)/2. Therefore, the number of edges in a
graph G = (V, E) is such that |E | = O(V 2). A complete graph G = (V, E) is one in
which all possible edges are present. A sparse graph is one in which there are not
very many edges, whereas a dense graph is one in which a high percentage of
the possible edges are present. Alternately, a graph is typically termed sparse if
|E | / | V|2 is very small, but a graph is typically referred to as dense if |E | / | V|2 is
at least of moderate size.

Vertex b is said to be adjacent to vertex a if and only if . At times,
adjacent vertices will be described as neighbors. An edge is said to be
incident on vertices a and b. In a weighted graph, every edge will have
an associated weight or cost (see Figure 12.5).

(,)a b E
(,)a b E

(,)a b E

(a)

a

d

c

f

b

2

4

11

1 1

3

1

e

(b)

a

d

c

f

b

2

4

11

1 1

3

1

e

FIGURE 12.5 Notice in (a) (an undirected weighted graph) that there
are eight pairs of neighboring (adjacent) vertices. Also, notice in (a)
that the entire graph is connected because there is a path between
every pair of vertices. In graph (b) (a directed, weighted graph), how-
ever, paths are not formed between every pair of vertices. In fact,
notice that vertex e is isolated in that e does not serve as the source of
any nontrivial path. Notice in (a) that a minimum-weight path from a
to e is , which has a total weight of 3, whereas in (b) mini-
mum-weight paths from a to e are and .a, b, f, d, ea, d, e

a, c, d, e

A path in a graph G = (V, E) is a sequence of vertices such that
(vi, vi + 1) E for all . The length of such a path is defined to be the
number of edges on the path, which in this case is k – 1. A simple path is defined
to be a path in which all vertices are unique. A cycle is a path of length 3 or more
in which v1 = vk. A graph is called acyclic if it has no cycles. A directed acyclic
graph is often referred to as a dag.

1 1i k
v v v

k1 2
, , …,

An undirected graph is called connected if and only if there is at least one path
from every vertex to every other vertex. Given a graph G = (V, E), a subgraph S of G
is a pair , where and is a subset of those edges in E that con-
tain vertices only in . The connected components of an undirected graph G =
(V, E) correspond to the maximally connected subgraphs of G (see Figure 12.6).

V '
E 'V V'S V E= (', ')

Terminology 305

FIGURE 12.6 An undirected graph with three connected
components.

A directed graph is called strongly connected if and only if there is at least one
path from every vertex to every other vertex. If a directed graph is not strongly
connected but the underlying graph in which all directed edges are replaced by
undirected edges is connected, then the original directed graph is called weakly
connected (see Figure 12.7). As a point of information, note that a tree in which all
edges point away from the root is a directed acyclic graph.

FIGURE 12.7 A directed graph with three weakly connected
components and seven strongly connected components.

306 Chapter 12 Graph Algorithms

Given an undirected graph, the degree of a vertex is the number of edges inci-
dent on the vertex, and the degree of the graph is the maximum degree of any ver-
tex in the graph. Given a directed graph, the in-degree of a vertex is the number of
edges that terminate at the vertex and the out-degree of a vertex is the number of
edges that originate at the vertex (see Figure 12.8).

a

b c

d e

FIGURE 12.8 A directed graph. The in-degree of
is , respectively, and the out-

degree of is , respectively.1 1 2 1 2, , , ,a,b,c,d,e
2,0,1,2,2a,b,c,d,e

Frequently, it makes sense to assign weights to the edges or vertices in a
graph. A graph G = (V, E) is called an edge-weighted graph if there is a weight
W(vi,vj) associated with every edge (vi, vj) E. In the case of edge-weighted
graphs, the distance (or shortest path) between vertices vi and vj is defined as the
sum over the edge weights in a path from vi to vj of minimum total weight. The
diameter of such a graph is defined to be the maximum of the distances between
all pairs of vertices. Notice that for many applications, it makes sense to consider
all edges in an (otherwise) unweighted graph as having a weight of 1.

Representations

There are several ways to represent a graph. In this book, we will consider three of
the most common, namely,

• an adjacency list,
• an adjacency matrix, and
• a set of arbitrarily distributed edges.

It is important to note that in some cases, the user may have a choice of repre-
sentations and can therefore choose a representation for which the computational
resources may be optimized. In other situations, the user may be given the graph in

a particular form and may need to design and implement efficient algorithms to
solve problems on the structure.

Adjacency Lists

The adjacency-list representation of a graph G = (V, E) typically consists of
linked lists, one corresponding to each vertex vi V. For each such vertex vi, its
linked list contains an entry corresponding to each edge (vi, vj) E. To navigate
efficiently through a graph, the headers of the linked lists are typically stored
in an array or linked list, which we call Adj, as shown in Figure 12.9. In this chap-
ter, unless otherwise specified, we will assume an array implementation of Adj so
that we can refer to the adjacency list associated with vertex vi V as Adj(vi). It is
important to note that the vertices stored in each adjacency list, which represent
the edges in the graph, are typically stored in arbitrary order.

| |V

| |V

Representations 307

1

1

Adj.

2

3

4

5

2

4

5

3

3

5

1 4

2 3

4 5

FIGURE 12.9 A directed graph and its adjacency list representation.

If the graph G = (V, E) is a directed graph, the total number of entries in all
adjacency lists is , because every edge (vi, vj) E is represented in Adj(vi).
However, if the graph G = (V, E) is an undirected graph, then the total number of
entries in all adjacency lists is , because every edge (vi, vj) E is repre-
sented in both Adj(vi) and Adj(vj). Notice that, regardless of the type of graph, an
adjacency-list representation has the feature that the space required to store the
graph is . Assuming that one must store some information about every
vertex and about every edge in the graph, this is an optimal representation.

Suppose the graph G = (V, E) is weighted. Then the elements in the individual
adjacency lists can be modified to store the weight of each edge or vertex, as
appropriate. For example, given an edge-weighted graph, an entry in Adj(vi) corre-
sponding to edge (vi, vj) E can store the identity of vj, a pointer to Adj(vj), the
weight W(vi,vj), other miscellaneous fields required for necessary operations, and
a pointer to the next record in the list.

()V E+

2 | |E

| |E

308 Chapter 12 Graph Algorithms

Although the adjacency list representation is robust, in that it can be modified to
support a wide variety of graphs and is efficient in storage, it does have the drawback
of not being able to identify quickly whether or not a given edge (vi,vj) is present. In
the next section, we consider a representation that will overcome this deficiency.

Adjacency Matrix

An adjacency matrix is presented in Figure 12.10 that corresponds to the adja-
cency list presented in Figure 12.9. Given a graph G = (V, E), the adjacency matrix
A is a matrix in which entry A(i, j) = 1 if (vi, vj) E and if
(vi, vj) E. Thus, row i of the adjacency matrix contains all information in Adj(vi)
of the corresponding adjacency list. Notice that the matrix contains a single bit at
each of the (V 2) positions. Further, if the graph is undirected and , there is
no need to store both A(i, j) and A(j, i), because . That is, given an
undirected graph, one needs only to maintain either the upper triangular or lower
triangular portion of the adjacency matrix. Given an edge-weight graph, each
entry A(i, j) will be set to the weight of edge (vi ,vj) if the edge exists and will be set
to 0 otherwise. Given either a weighted or unweighted graph that is either directed
or undirected, the total space required by an adjacency matrix is (V 2).

A i j A j i(,) (,)=
i j

A i j(,) = 0| | | |V V×

0

0

0

0

1

1

2

3

4

5

1

0

0

0

0

1

0

0

0

1

0

0

1

0

1

0

1 2 3 4 5

0

1

1

0

FIGURE 12.10 An adjacency matrix represen-
tation of the graph presented in Figure 12.9.

The adjacency matrix has the advantage of providing direct access to informa-
tion concerning the existence or absence of an edge. Given a dense graph, the
adjacency matrix also has the advantage that it requires only one bit per entry, as
opposed to the additional pointers required by the adjacency list representation.
However, for relatively small (typically sparse) graphs, the adjacency list has the
advantage of requiring less space and providing a relatively simplistic manner in
which to traverse a graph. For an algorithm that requires the examination of all
vertices and all edges, an adjacency list implementation can provide a sequential
algorithm with running time , whereas an adjacency matrix representa-
tion would result in a sequential running time of (V 2). Thus, the algorithm based
on the adjacency list might be significantly more efficient.

()V E+

Unordered Edges

A third form of input that we discuss in this book is that of unordered edges, which
provides the least amount of information and structure. Given a graph G = (V, E),
unordered edge input is such that the edges are distributed in an arbitrary
fashion throughout the memory of the machine. On a sequential computer, one
will typically restructure this information to create adjacency-list or adjacency-
matrix input. However, on parallel machines, it is not always economical or feasi-
ble to perform such a conversion.

Fundamental Algorithms

In this section, we consider fundamental algorithms for traversing and manipulating
graphs. It is often useful to be able to visit the vertices of a graph in some well-
defined order based on the graph’s topology. We first consider sequential approaches
to this concept of graph traversal. The two major techniques we consider, breadth-
first search and depth-first search, both have the property that they begin with a
specified vertex and then visit all other vertices in a deterministic fashion. In the pre-
sentation of both of these algorithms, the reader will notice that we keep track of the
vertices as they are visited. Following the presentations of fundamental sequential
traversal methods, several fundamental techniques will be presented for the RAM,
PRAM, and mesh. In particular, we discuss an Euler tour technique for the RAM;
list ranking via pointer jumping and tree contraction for the PRAM; and the transi-
tive closure of a Boolean matrix for the RAM, PRAM, and mesh.

Breadth-First Search

The first algorithm we consider for traversing a graph on a RAM is called breadth-
first search, which is sometimes referred to as BFS. The general flow of a BFS tra-
versal is first to visit a predetermined “root” vertex r, then visit all vertices at
distance 1 from r, then visit all vertices at distance 2 from r, and so forth. This is a
standard sequential technique for traversing a graph G = (V, E). A high-level
description of this search procedure follows:

1. Start at a root vertex r V.
2. Add neighboring vertices to a queue as they are encountered.
3. Process the queue in a standard FIFO (first-in, first-out) order.

So, initially all vertices v V are marked as unvisited, and the queue is initial-
ized to contain only a root vertex r V. The algorithm then proceeds by removing
the root from the queue (the queue is now empty), determining all neighbors of the
root, and placing each of these neighbors into the queue. In general, each iteration
of the algorithm consists of

• removing the next vertex v V from the queue,
• examining all neighbors of v in G to determine those that have not yet been

marked (those that have not yet been visited in the breadth-first search),

| |E

Fundamental Algorithms 309

310 Chapter 12 Graph Algorithms

• marking each of these previously unvisited neighbors as visited, and
• inserting these previously unvisited neighbors of v into the queue (specifically,

enqueueing them, i.e., inserting them at the end of the queue).

This process of removing an element from the queue and inserting its previ-
ously unvisited neighbors into the queue continues until the queue is empty. Once
the queue is empty at the conclusion of a remove-explore-insert step, all vertices
reachable from the root vertex r V (that is, all vertices in the same component of
G as r) have been visited. Further, if the vertices are output as they are removed
from the queue, the resulting list corresponds to a breadth-first search tree over the
graph G = (V, E) with root r V (see Figure 12.11).

1

3

16
2

15 12

13 14

11

10

17

9

7

8

18

19

6

5

4

1

3

16
2

15 12

13 14

11

10

17

9

7

8

18

19

6

5

4

(a) A given graph G (b) This tree is associated with a traversal
 <10, 3, 12, 11, 9, 5, 17, 16, 2, 1, 15, 13,
 14, 7, 4, 6, 18, 8, 19> of G, though other
 traversals of G would also yield this tree

FIGURE 12.11 An example of a breadth-first search traversal. Depending on the
order in which the vertices given in graph G of (a) are stored in the associated
data structure, a BFS initiated at vertex 10 could yield a variety of breadth-
first search trees. For example, the tree in (b) is associated with the traversal
(10,3,12,11,9,5,17,16,2,1,15,13,14,7,4,6,18,8,19), though other traversals of G
might also yield this tree. Similarly, the tree in (c) is associated with the traversal
(10,9,12,11,3,17,7,13,14,15,16,2,1,5,18,8,6,4,19) of G.

1

3

16
2

15 12

13 14

11

10

17

9

7

8

18

19

6

5

4

(c) This tree is associated with a traversal
 <10, 9, 12, 11, 3, 17, 7, 13, 14, 15, 16,
 2, 1, 5, 18, 8, 6, 4, 19> of G, though
 the traversals of G would also yield this tree

We now present an algorithm that will implement a sequential breadth-first
search of a graph and record the distance from the root to every reachable vertex
(see Figure 12.12). The reader should note that our algorithm is presented as a
graph traversal, that is, a procedure that visits every vertex of the root’s compo-
nent. This procedure is modified easily to solve the query problem by returning to
the calling routine with the appropriate information when a vertex is reached that
is associated with the requested key.

BFSroutine (G, r)
CreateEmptyQueue(Q) {Initialize the queue}
For all vertices v V, do

{Initialize vertices to “unvisited”}
{Initialize all distances}

{Initialize parents of all vertices}
End For
{*} {Initialize root vertex—it is visited,

it has distance 0 from itself,
PlaceInQueue (Q, r) and it goes into the queue}
While NotEmptyQueue(Q), do

RemoveFromQueue(Q) {Take first element from queue: v}
For all vertices , do {Examine all neighbors of v}
If not then {Process those neighbors not

previously visited}
{Mark neighbor as visited}
{The BFS parent of w is v}

{Dist. fr. w to r is 1 more than distance
from its parent (v) to r}

PlaceInQueue (Q, w) {Place w at the end of the queue}
End If

End For
End While

dist w dist v() () +1
parent w v()
visited w true()

visited(w)
w Adj v()

v

dist r() 0
visited r true()

parent v nil()
dist v()
visited v false()

Fundamental Algorithms 311

a

d

g ih

e kf

j

l

n

o

mb

r
0

1 1 5 51

2

3 4 3 3 7

2
42 6

c

FIGURE 12.12 An undirected connected graph with distances from the root vertex
r recorded next to the vertices. One possible traversal of the vertices in this graph
by a breadth-first search is .r,c,b,a,e,f,d,i,j,g,h,k,l,m,n,o

Notice that the steps that compute the parent of a vertex v and the distance of
v from the root are not necessary to the graph traversal. We have included these
steps because they are useful to other problems we discuss in following sections.
Also, note that what we have described as “ RemoveFromQueue(Q)” may
involve not only dequeueing a node from the queue, but also processing the node
as required by the graph traversal.

Given a connected undirected graph G = (V, E), a call to BFSroutine(G, r), for
any , will visit every vertex and every edge. In fact, a careful examination
shows that every edge will be visited exactly twice and that every vertex will be
considered at least once. Therefore, assuming that inserting and removing items
from a queue are performed in (1) time, the sequential running time for this
BFSroutine on a connected undirected graph is .

Now, suppose that the undirected graph G = (V, E) is not necessarily con-
nected. We can extend the BFSroutine to visit all vertices of G. See Figure 12.13
while considering the next algorithm.

BFS-all-undirected (G = (V, E))
CreateEmptyQueue (Q) {Initialize the queue}
For all vertices v V, do

{Initialize vertex to “unvisited”}
{Initialize distance}

{Initialize parent}
End For
For all v V, do {Consider all vertices in the graph}

If not , then
BFSroutine (G, v) at line {*} {Perform a BFS starting at every

vertex not previously visited—
call BFSroutine, but jump
immediately to line {*}}

End For

visited v()

parent v nil()
dist v()
visited v false()

()V E+

r V

v

312 Chapter 12 Graph Algorithms

a

d

g ih

e kf

l

n

o

mb

r

c

FIGURE 12.13 An undirected graph that is not connected. The two connected
components can be labeled in time linear in the number of vertices plus the
number of edges by a simple extrapolation of the breadth-first search algorithm.

Notice that given an undirected graph G = (V, E), the procedure BFS-all-undi-
rected will visit all vertices and traverse all edges in the graph in time
on a sequential machine.

Depth-First Search

The second algorithm we consider for traversing a graph is called depth-first
search, which is sometimes referred to as DFS. The philosophy of DFS is to start
at a predetermined “root” vertex r and recursively visit a previously unvisited
neighbor v of r, one by one, until all neighbors of r are marked as visited. This is a
standard sequential technique for traversing a graph. The DFS procedure follows:

1. Start at a root vertex r V.
2. Consider a previously unvisited neighbor v of r.
3. Recursively visit v.
4. Continue with another previously unvisited neighbor of r.

The algorithm is recursive in nature. Given a graph G = (V, E), choose an ini-
tial vertex r V, which we again call the root, and mark r as visited. Next, find a
previously unvisited neighbor of r, say, v. Recursively perform a depth-first search
on v and then return to consider any other neighbors of r that have not been visited
(see Figure 12.14). A simple recursive presentation of this algorithm is given next.

{Assume that
for all v V prior to this routine being called}

DFSroutine (G, r)
{Mark r as being visited}

For all vertices , do {Consider all neighbors of r in turn}
If not do {If a given neighbor has not been visited,

mark its parent as r and recursively
DFSroutine (G, v) visit this neighbor. Note the recursive

step causes v to be marked visited}
End If

End For

As in the breadth-first search graph traversal just presented, the step that com-
putes the parent of a vertex is not necessary to perform a depth-first search graph
traversal, but it is included due to its usefulness in a number of related problems.
The step we have described as “ ” is typically preceded or fol-
lowed by steps that process the vertex r as required by the graph traversal. Also, as
with a breadth-first search, we have presented depth-first search as a graph traver-
sal algorithm that can be modified by the insertion of a conditional exit instruction
if a traditional search is desired that stops on realizing success.

visited r true()

parent v r()
visited v()

v Adj r()
visited r true()

visited v false()

()V E+

Fundamental Algorithms 313

Depth-first search is an example of a standard “backtracking” algorithm. That
is, when considering a given vertex v, the algorithm considers all of v’s “descen-
dants” before backtracking to the parent of v in order to allow its parent to con-
tinue with the traversal. Now, consider the analysis of DFSroutine on a sequential
platform. Notice that every vertex is initialized to unvisited and that every vertex
is visited exactly once during the search. Also, notice that every directed edge in a
graph is considered exactly once. (Every undirected edge would be considered
twice, once from the point of view of each incident vertex.) Therefore, the running

314 Chapter 12 Graph Algorithms

1

3

16
2

15 12

13 14

11

10

17

9

7

8

18

19

6

5

4

(a) A given graph G (b) This tree is associated with a traversal
 <10, 3, 1, 2, 15, 12, 13, 14, 16, 5, 4, 6,
 19, 18, 7, 8, 9, 11, 17> of G, though
 other traversals of G would also yield this tree

(c) This tree is associated with a traversal
 <10, 12, 16, 3, 17, 9, 11, 7, 18, 19, 6, 5,
 4, 8, 1, 2, 15, 14, 13> of G, though
 other traversals of G would also yield this tree

1

3

16
2

15 12

13 14

11

10

17

9

7

8

18

19

6

5

4

1

3

16
2

15 12

13 14

11

10

17

9

7

8

18

19

6

5

4

FIGURE 12.14 An example of a depth-first search traversal. Notice that the graph
given in (a) is identical to the graph G utilized in Figure 12.11a. In (b) we see
the tree associated with the traversal (10,3,1,2,15,12,13,14,16,5,4,6,19,18,7,8,9,
11,17) of G, though other traversals of G might produce the same tree. Similarly,
in (c) we see the tree associated with the traversal (10,12,16,3,17,9,11,7,18,19,
6,5,4,8,1,2,15,14,13) of G.

time of DFSroutine on a graph G = (V, E) is , which is the same as the
running time of BFSroutine.

Discussion of Depth-First and Breadth-First Search

A depth-first search tree of a graph G = (V, E) is formed during a
depth-first search of the graph G, as follows. An edge is a member of

if and only if one of its vertices is the parent of the other vertex. Given a depth-
first search tree of G, it should be noted that if an edge is
not in , then either

• u is a descendant of v in T and v is not the parent of u, or
• v is a descendant of u in T and u is not the parent of v.

See Figure 12.15.

E '
(,)u v ET V E= (, ')

E '
(,)u v E

T V E= (, ')

()V E+

Fundamental Algorithms 315

xv

G=(V, E)

u

r

v

T=(V, E’)

u

r

x

FIGURE 12.15 A depth-first search tree T = (V, E') of a graph G = (V, E). An
edge (u,v) E is a member of E' if and only if one of its vertices is the parent of
the other vertex. Edge (u,x) E is not in E', corresponding to the fact that one of
its vertices is an ancestor but not the parent of the other.

Each vertex v in a depth-first search tree of G can be given a time stamp corre-
sponding to when the vertex was first encountered and another time stamp corre-
sponding to when the search finished examining all of v’s neighbors. These time
stamps can be used in higher-level graph algorithms to solve interesting and im-
portant problems. Problems typically solved through a depth-first search include
labeling the strongly connected components of a directed graph, performing a topo-
logical sort of a directed graph, determining articulation points and biconnected
components, and labeling connected components of undirected graphs, to name a
few.

316 Chapter 12 Graph Algorithms

A breadth-first search tree is similarly formed from the edges joining parent
and child vertices in a BFS of a graph G = (V, E). Given a breadth-first search tree

of G, it should be noted that if an edge is not in , then u
is not a descendant of v in T and v is not a descendant of u in T (see Figure 12.16).

E '(,)u v ET V E= (, ')

G=(V, E)

u v

r

u v

r

v

G=(V, E) T=(V, E’)

u

r

vu

r

FIGURE 12.16 A breadth-first search tree T = (V, E') of
G = (V, E). If an edge (u,v) E is not in E', then u is not
a descendant of v in T and v is not a descendant of u in T.

The vertices in a breadth-first search tree of G = (V, E) are at min-
imum distance from the root r V of the tree. That is, the distance of u V in T
from r is the length of a shortest path in G from u to r. This is a useful property
when we consider certain minimal path-length problems, including the single-
source shortest-path problem. Such searches, however, are not useful when one is
considering weighted paths (as when in solving the minimal weight spanning tree
problem). A breadth-first search of a graph can be used to solve a number of prob-
lems, including determining whether or not a graph is bipartite.

Fundamental PRAM Graph Techniques

In this section, we will present some techniques amenable to managing pointer-
based graph structures on a PRAM. The working assumption in this section is that
the data structure is distributed arbitrarily throughout the shared memory of the
PRAM. We briefly review the pointer-jumping technique, which was introduced
in Chapter 8, “Pointer Jumping.” We will then present the Euler tour technique,
discuss the consequences of list ranking and Euler tour, and then present a critical
tree-based contraction technique.

List Ranking via Pointer Jumping

Assume that we have a linked list L stored in the shared memory of a PRAM. Let
L(i) represent the contents of the ith item and next(i) be a pointer to L(i + 1). We
assume that the last element in the list has next(i) = nil. The list ranking problem

T V E= (, ')

requires that every element i in the list determine its distance, dist(i), to the end of
the list. The following algorithm solves the list ranking problem via pointer jump-
ing, where it is assumed that each of the n processors knows the location in mem-
ory of a unique list element.

Forall L(i), do {Assume there are n elements}
If , then {Initialize all distance values}
If , then

{Store original next pointers}
End Forall
For iterations, do {Prepare to pointer-jump until done}

Forall L(i), do
If , then {Perform the

pointer jumping
{*} step of the algorithm}

End If
End Forall

End For-do
Forall L(i), do

{Restore original pointer values}
End Forall

Our assumption that there are n elements is stated only to facilitate our analy-
sis. In practice, no fixed value of n is assumed in general, and the loop we have
introduced via “For iterations” would be introduced by something like
“In parallel, each processor Pi proceeds while , as follows.” The
operation used in step {*} of this algorithm (replacing a pointer by the pointer’s
pointer) is called the pointer-jumping step of the algorithm. When the algorithm
terminates, dist(i) is the rank of the ith item in the list, for all i. A proof is straight-
forward, and we have previously discussed the analysis of this algorithm, which
has a running time of (log n). The cost of an algorithm that runs in (log n) time
with (n) processors is (nlog n), which is suboptimal for this problem because
we know that a linear-time sequential traversal can be used to solve the problem in

(n) time on a RAM. We note that it is possible to construct an EREW PRAM
algorithm to solve the list-ranking problem in (log n) time using only (n/log n)
processors. Although the algorithm is beyond the scope of this book, an outline of
the algorithm follows:

1. Reduce the size of the linked list L from n nodes to O(n/log n) nodes. Call the
new list R.

2. Apply the previous pointer-jumping algorithm to R in order to compute the
rank of all nodes in R. Transfer the ranks of all nodes in R to their correspond-
ing nodes in the original list L.

3. Rank all nodes in L that do not have a rank (that were not members of R).

next i nil()
log

2
n

next i orig next i() _ ()

next i next next i() ()()
dist i dist i dist next i() () ()+ ()
next i nil()

log
2

n

orig next i next i_ () ()
dist i() 1next i nil()
dist i() 0next i nil() =

Fundamental PRAM Graph Techniques 317

318 Chapter 12 Graph Algorithms

Euler Tour Technique

Given a tree T = (V, E) represented by an undirected graph, we let be
a directed graph obtained from T in which every undirected edge is
replaced by two directed edges, . An Euler circuit of is a
cycle of that traverses every directed edge exactly once. An Euler circuit of

can be defined by specifying a successor function next(e) for every
edge , so that a circuit is defined using all edges in . This can be accom-
plished as follows. Suppose that for a given vertex v V, the set of neighbors D of
v is enumerated as . Then we define next ((vi, v)) = (v, v(i+1) mod d).
Notice that we do not generally traverse all edges incident on a given vertex con-
secutively; an edge (u, v) is followed by the edge determined by the next function
as determined by adj(v), not adj(u) (see Figure 12.17). It follows that an Euler cir-
cuit of T can be listed on a RAM in (E) time. Straightforward applications of list
ranking and Euler tour include the following:

• A tree T can be rooted. That is, all vertices v can determine parent(v).
• The vertices can be assigned labels corresponding to the postorder number of

the vertex.
• The level of every vertex can be determined.
• The preorder number of every vertex can be determined.
• The number of descendants of every vertex can be determined.

Tree Contraction

In this section, we consider a procedure for contracting a tree, initially presented
as a pointer-based data structure on a PRAM. The tree contraction problem has
wide applicability, including providing an efficient solution to the expression eval-
uation problem. The expression evaluation problem requires the evaluation of an
expression stored in an expression tree, where an expression tree is typically pre-
sented as a binary tree in which every node is either a leaf node containing a value
or an internal node containing an operator (+, –, �, �, and so forth), as shown in
Figure 12.18.

Tree contraction consists of successively compressing leaf nodes with their
respective parents until the tree collapses into a single vertex. When considering
the expression evaluation problem, notice that when a leaf is compressed with a
parent, the appropriate arithmetic operation is performed, so that partial results are
provided in an iterative fashion until the tree finally collapses, at which point the
complete expression has been evaluated.

For the purpose of the PRAM algorithm that we present, we will make several
assumptions about the tree that is given as input. It should be noted that some of
these assumptions are not critical and that the problem could be solved within the
same time bounds if these restrictions were removed. We impose these restrictions
simply to facilitate a clean presentation. We assume that the input is a rooted

v v v
d0 1 1

, , ,…

E 'e E '
T V E' (, ')=

T '
T '(,), (,) 'u v v u E

(,)u v E
T V E' (, ')=

binary tree T = (V, E), in which each vertex is either a leaf node or an internal node
with two children. The root is denoted as r. The vertices are assumed to be labeled
with integers in such a fashion that the interior leaves are labeled consecutively
from left to right, as shown in Figure 12.19. (Do not confuse the labels of the ver-
tices with the contents of the vertices, which are operators for interior vertices or
values for leaf vertices.) We also assume that every vertex v knows the location of

Fundamental PRAM Graph Techniques 319

5

6

1

73

2

8

9

10

11

4

(a) An undirected tree

(b) An adjacency representation

e
(1, 4)
(2, 4)
(3, 4)
(4, 1)
(4, 2)
(4, 3)
(4, 5)
(5, 4)
(5, 6)
(6, 5)
(6, 7)
(6, 8)
(6, 9)
(7, 6)
(8, 6)
(9, 6)

(9, 10)
(9, 11)
(10, 9)
(11, 9)

next(e)
(4, 5)
(4, 1)
(4, 2)
(1, 4)
(2, 4)
(3, 4)
(5, 6)
(4, 3)
(6, 7)
(5, 4)
(7, 6)
(8, 6)

(9, 10)
(6, 8)
(6, 9)
(6, 5)

(10, 9)
(11, 9)
(9, 11)
(9, 6)

(c) The next edge function

1 4

2 4

3 4

4 3 2 1 5

5 4 6

6 5 7 8 9

7 6

8 6

9 6 10 11

10 9

11 9

FIGURE 12.17 An undirected tree T = (V, E) is presented in (a), along with an
adjacency representation of the graph in (b). In (c), the next edge function is
given for the Euler tour of the graph; this is a function of the adjacency represen-
tation. Because an adjacency representation is not unique, if the representation
given in (b) were changed, the next function given in (c) would be different. By
starting at any directed edge in the graph T' = (V, E') (every undirected edge
(u,v) E is replaced by two directed edges, (u,v), (v,u) E'), and following the
next function, an Euler tour can be achieved.

320 Chapter 12 Graph Algorithms

�

+

46 3 1

/

–4–8

FIGURE 12.18 An expression tree for the expression [8 + (6 – 4)] � [4/(3 – 1)].

15

17

14

13

4 5

12

9

2 3

10 7 16

116

18

FIGURE 12.19 Input to a tree contraction algorithm is a rooted binary tree in
which each vertex has either two children or none at all. Further, it is assumed
that the leaves have been labeled consecutively from left to right, with the excep-
tion of the leftmost and rightmost leaves.

parent(v), sibling(v), left_child(v), and right_child(v). Notice that the root will
have parent(v) = nil, and the leaves will have left_child(v) = nil and right_child(v)
= nil.

The collapse or rake operation applied to a leaf node v consists of removing v
and parent(v) from the tree and connecting sibling(v) to parent(parent(v)), as
shown in Figure 12.20. The tree-contraction algorithm consists of collapsing leaf
nodes in an iterative and parallel fashion so that approximately half of the leaf
nodes disappear each time through the loop. This results in an algorithm that runs
in (log n) time. See Figure 12.21 for an example. The algorithm follows:

1. Given a tree T = (V, E), assume that the m leaves are labeled consecutively from
left to right, excluding the leftmost and rightmost leaves (the exterior leaves).

2. Let be an ordered list of the interior leaf labels. Notice
that Active does not include the label of the leftmost or rightmost leaf.

3. For iterations, do
a) Apply the collapse operation to all leaf nodes with odd indexed entries in

Active that are left children. That is, apply collapse simultaneously to nodes
that are left children from the set of first, third, fifth, …, elements in Active.

b) Apply the collapse operation to the remaining leaf nodes that correspond to
odd indexed entries in Active.

c) Update Active by removing the indices of the odd indexed leaves that were
just collapsed and then compressing the array Active.

End For

Notice that at the end of the algorithm, the input tree T = (V, E) with root ver-
tex r has been reduced to three vertices, namely, the root and two children. We
remark without proof that this algorithm can be implemented on an EREW PRAM
in (log n) time.

log ()
2

1 1n

Active m= (, , ,)1 2…

Fundamental PRAM Graph Techniques 321

9

5 6

8

2 3

714 3 8

9

6

4 1

5

FIGURE 12.20 An example of a collapse operation applied to vertex number 2.

Finally, we should note that if one is interested in compressing a tree in which
a root has not been identified and the vertices have not been labeled, efficient
PRAM procedures exist to identify a root and label the vertices. The algorithms to
solve the latter two problems rely on an efficient solution to the Euler tour prob-
lem, which can be solved by using list ranking as a subroutine. It should be noted
that a solution to the Euler tour problem can also be used to determine preorder,
postorder, and inorder numbering of the vertices of a tree.

322 Chapter 12 Graph Algorithms

15

17

13

4 5

12

9

2 3

10 7 16

14

116

1

[1]

[2] [3] [4] [5]

[6]

[7]

8

(a) The initial tree (b) The tree after contraction on vertex 7

(c) The tree after contraction on vertices 1, 3, and 5

(d) The tree after contraction on
 vertices 2 and 6

(e) The tree after contraction
 on vertex 4

[1]

[2] [3] [4] [5]

[6]

15

17

13

4 5

12

9

2 3

10

14

166

18

[1] [2]

[3]

15

17

8 12

42

14

166

48

17

15 16

[1]

17

168

FIGURE 12.21 An example of tree contraction. Indices of nodes in the array Active are
shown below the nodes (these are updated following compression of Active as the steps are
executed). The initial tree is given in (a). The tree is shown in (b) after performing contrac-
tion on vertex 7 during the first iteration of the algorithm. The tree is shown in (c) after per-
forming contraction on vertices 1, 3, and 5 to finish the first iteration of the algorithm. The
tree is shown in (d) after performing tree contraction on vertices 2 and 6 to initiate the sec-
ond iteration of the algorithm. The tree is shown in (e) after performing tree contraction on
vertex 4 to conclude the algorithm (after the third iteration).

Computing the Transitive Closure of an
Adjacency Matrix

In this section, we review both the sequential and mesh implementations of a tran-
sitive closure algorithm. The solution to this problem is critical to efficient solu-
tions to fundamental graph problems. Assume that an n � n adjacency matrix
representation of a directed graph G = (V, E) is given, where . In such a
representation, if and only if there is an edge from vi to vj in E, and

0 if (vi, vj) . The transitive closure of A is represented as a Boolean
matrix in which if and only if there is a path in G from vi to vj.

if no such path exists. As we have discussed previously, one way to
obtain the transitive closure of an adjacency matrix A is to multiply A by itself n
times. This is not very efficient, however. Alternatively, one could perform

operations of squaring the matrix: , , and so on
until a matrix is obtained where . Sequentially, this squaring procedure
would result in a (n3 log n) time algorithm, whereas on a mesh of size n2, the pro-
cedure would run in (nlog n) time. The reader should verify both of these results.

Consider the Boolean matrix Ak(i, j) representing G, with the interpretation
that Ak(i, j) = 1 if and only if there is a path from vi to vj that only uses {v1,...,vk} as
intermediate vertices. Notice that A0 = A and that An = A*. Further, notice that there
is a path from vi to vj using intermediate vertices {v1,...,vk} if and only if either
there is a path from vi to vj using intermediate vertices {v1,...,vk–1} or there is a path
from vi to vk using intermediate vertices {v1,...,vk–1} and a path from vk to vj also
using only intermediate vertices {v1,...,vk–1}. This observation forms the founda-
tion of Warshall’s algorithm, which can be used to compute the transitive closure
of A on a sequential machine in (n3) time. The sequential algorithm follows:

For k = 1 to n, do
For i = 1 to n, do
For j = 1 to n, do

End For j
End For i

End For k

Now consider an implementation of Warshall’s algorithm on a mesh com-
puter. Suppose A is stored in an n � n mesh such that processor Pi,j stores entry
A(i, j). Further, suppose that at the end of the algorithm processor Pi,j is required to
store entry . This can be accomplished with some interesting
movement of data that adheres to the following conditions.

1. Entry Ak(i, j) is computed in processor Pi,j at time 3k + |k – i| + k – j | –2.
2. For all k and i, the value of Ak(i, j) moves in a horizontal lockstep fashion (in

row i) away from processor Pi,k.

A i j A i j
n

=(,) (,)

A i j A i j A i k A k j
k k k k
(,) (,) (,) (,)

1 1 1

m nAm
A A A2 2 4× =A A A× = 2log

2
n

A i j =(,) 0
A i j =(,) 1A

n n×

EA i j(,) =
A i j(,) = 1

n V= | |

Computing the Transitive Closure of an Adjacency Matrix 323

3. For all k and j, the value of Ak(k, j) moves in a vertical lockstep fashion (in col-
umn j) away from processor Pk ,j.

See Figure 12.22 for an illustration of this data movement. Notice from condi-
tion 1 that the algorithm runs in (n) time. The reader is advised to spend some
time with small examples of the mesh implementation of Warshall’s algorithm to
be comfortable with the fact that the appropriate items arrive at the appropriate
processors at the precise time that they are required. Therefore, there is no conges-
tion or bottleneck in any of the rows or columns.

324 Chapter 12 Graph Algorithms

Ak(k,k)

(a) At time t = 3k – 2, Ak(k, k) is
 computed in processor Pk, k.

(b) The values Ak(k – 1, k), Ak(k, k + 1), Ak(k + 1, k),
 and Ak(k, k – 1) are computed in processors Pk–1, k,
 Pk, k+1, Pk+1, k, and Pk, k–1, respectively.

Ak(k,k�1)

Ak(k�1,k)

Ak(k+1,k)

Ak(k,k+1)

FIGURE 12.22 Data movement of van Scoy’s implementation of Warshall’s
transitive closure algorithm on a mesh. Ak(k,k) is computed at time t = 3k – 2,
in processor Pk,k. During the next time step, this value is transmitted to proces-
sors Pk,k+1, Pk,k–1, Pk+1,k, and Pk–1,k, as shown in (a). At time t = 1, the values
Ak(k – 1,k), Ak(k, k + 1), Ak(k + 1,k), and Ak(k, k – 1) are computed in proces-
sors Pk–1,k, Pk,k+1, Pk+1,k, and Pk,k–1, respectively, as shown in (b). The arrows dis-
playing data movement in (b) show the direction that this information begins to
move during time step t + 2.

Finally, it should be noted that the data movement associated with the mesh
transitive closure algorithm can be used to provide solutions to many recurrences
of the form , or

. As with the previous algorithm, the initial value f0(i,j) will be
stored in processor Pi,j and the final value will be computed in processor
Pi,j.

The mesh algorithm for the (generalized) transitive closure can be used to
solve a number of important problems, including the connected component-label-
ing problem, the all-pairs shortest-path problem, and the determination of whether
or not a given graph is a tree, to name a few. The first two algorithms will be dis-
cussed in more detail later in the chapter.

f i j
n
(,)

f i k f k j
k k
(,), (,))

f i j g f i j
k k
(,) (,),= (1

f i j g f i j f i k f k j
k k k k
(,) (,), (,), (,)= ()1 1 1

Connected Component Labeling

In this section, we consider the problem of labeling the connected components of
an undirected graph. The labeling should be such that if vertex v is assigned a label
label(v), then all vertices to which v is connected are also assigned a component
label of label(v).

RAM

A simple sequential algorithm can be given to label all of the vertices of an undi-
rected graph. Such an algorithm consists of applying the breadth-first search pro-
cedure to a given vertex. During the breadth-first search, the label corresponding
to the initial vertex is propagated. Once the breadth-first search is complete, a
search is made for any unlabeled vertex. If one is found, then the BFS is repeated,
labeling the next component, and so on. An algorithm follows:

Given a graph G = (V, E), where .
Assign for all {Initialize labels of all vertices,

representing each vertex as currently unvisited}
For i = 1 to n, do

If label(vi) = nil, then {If vertex hasn’t been visited/
labeled so far, then initiate

BFSroutine(G, vi) a search, during which we
set label(v) = i for every vertex visited}

End If
End For

The algorithm is straightforward. Because the graph is undirected, every invo-
cation of BFSroutine will visit and label all vertices that are connected to the given
vertex vi. Due to the For loop, the algorithm will consider every connected compo-
nent. The total running time for all applications of the comparison in the If state-
ment is (V). Further, the running time for the step that calls BFSroutine in
aggregate is (V + E) because every vertex and every edge in the graph is visited
within the context of one and only one breadth-first search. Hence, the running
time of the algorithm is (V + E), which is optimal in the size of the graph.

PRAM

The problem of computing the connected components of a graph G = (V, E) is con-
sidered a fundamental problem in the area of graph algorithms. Unfortunately, an
efficient parallel strategy for performing a breadth-first search or a depth-first
search of a graph on a PRAM is not known. For this reason, a significant amount of
effort has been applied to the development of an efficient PRAM algorithm to solve
the graph-based connected component problem. Several efficient algorithms have
been presented with slightly different running times and on a variety of PRAM
models. The basic strategy of these algorithms consists of processing the graph for

v Vlabel v nil() =
V v v v

n
= { }1 2

, ,…

Connected Component Labeling 325

O(log V) stages. During each stage, the vertices are organized as a forest of directed
trees, where each vertex is in one tree and has a link (a directed edge or pointer) to
its parent in that tree. All vertices in such a tree are in the same connected compo-
nent of the graph. The algorithm repeatedly combines trees containing vertices in
the same connected component. However, until the algorithm terminates, there is
no guarantee that every such tree represents a maximally connected component.

Initially, there are directed trees, each consisting of a vertex pointing to
itself. (Refer to the example presented in Figure 12.23.) During the ith stage of the
algorithm, trees from stage i – 1 are hooked or grafted together and compressed by a
pointer-jumping operation so that the trees do not become unwieldy. Each such com-
pressed tree is referred to as a supervertex. When the algorithm terminates, each
supervertex corresponds to a maximally connected component in the graph and
takes the form of a star, that is, a directed tree in which all vertices point directly to
the root vertex. It is the implementation of hooking that is critical to designing an
algorithm that runs in O(log V) stages. We will present an algorithm for an arbitrary
CRCW PRAM that runs in O(log V) time using (V + E) processors.

Define index(vi) = i to be the index of vertex vi. Define root(vi) as a pointer to
the root of the tree (or supervertex) that vi is currently a member of. Then we can
define the hooking operation hook(vi,vj) as an operation that attaches root(vi) to
root(vj), as shown in Figure 12.24.

We can determine, for each vertex vi V, whether or not vi belongs to a star,
via the following procedure.

Determine the Boolean function star(vi) for all vi V, as follows:

For all vertices vi, do in parallel
star(vi) true
If root(vi) ≠ root(root(vi)), then

star(vi) false
star(root(vi)) false
star(root(root(vi))) false

End If
star(vi) star(root(vi)) {*}

End For

See Figure 12.25 for an example that shows the necessity of the step marked
{*}. It is easily seen that this procedure requires (1) time.

The basic component labeling algorithm follows.

• We wish to label the connected components of an undirected graph G = (V, E).
• Assume that every edge between vertices vi and vj is represented by a pair of

unordered edges (vi,vj) and (vj,vi).
• Recall that we assume an arbitrary CRCW PRAM. That is, if there is a write

conflict, one of the writes will arbitrarily succeed.

| |V

326 Chapter 12 Graph Algorithms

Connected Component Labeling 327

3131

2 10

12 11 15

497

148 6

5

(a) The initial undirected graph G = (V,E)

(b) The initial forest consisting of a distinct tree representing every vertex in V

(c) The result of every vertex in V attaching to its minimum-labeled neighbor

(d) The four disjoint subgraphs resulting from the compression given in (c)

(e) The result from each of these four supervertices choosing its minimum-labeled neighbor

(f) The final stage of the algorithm in which all vertices in the connected graph have been
 compressed into a single supervertex

1

8

2

9

3

10

4

11

5

12

6

13

7

14 15

1

65

14

13
4

9

7

2

12

3

11

15

10

8

< 1, 4, 5, 6, 9, 13> < 2, 3, 10, 12 > < 7, 8, 14 > < 11, 15 >

< 1, 4, 5, 6, 9, 13 >

< 2, 3, 10, 12 > < 7, 8, 14 >

< 11, 15 >

< 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 >

FIGURE 12.23 A general description of a parallel component-labeling algorithm.
The initial undirected graph G = (V, E) is given in (a). In (b), the initial forest is
presented. The initial forest consists of a distinct tree representing every vertex in V.
The graph presented in (c) shows the result of every vertex in V attaching to its
minimum-labeled neighbor. The graph that results from the compression of these
four disjoint subgraphs is given in (d). Notice that four supervertices are generated.
The directed graph in (e) shows the result from each of these four supervertices
choosing its minimum-labeled neighbor. Finally, (f) shows the result from the final
stage of the algorithm in which all vertices in the connected graph have been com-
pressed into a single supervertex. Note that when we present supervertices, the first
vertex (minimum label) in the list will serve as the label for the supervertex.

328 Chapter 12 Graph Algorithms

For all vi V, set root(vi) = vi {Initialize supervertices}
For all (vi,vj) E, do {Loop uses arbitrary CRCW property}

If index(vi) > index(vj), then hook(vi,vj) {Hook larger
indexed vertices into smaller indexed vertices}

End For all edges
Repeat

Determine star(vi) for all vi V
For all edges (vi,vj) E, do

If vi is in a star and index(root (vi)) > index(root (vj)), then
hook(vi,vj) {Hook vertices in star to neighbors

with lower-indexed roots}

root(parent(vi))

(a) v
i
 and parent(v

i
) are in different supervertices

(b) The supervertex that v
i
 is a member of chooses to

hook to the supervertex containing parent(v
i
) since

since root(parent(v
i
)) is a minimum label over

all of the supervertices to which members of the
supervertex labeled root(v

i
) are connected

(c) The two supervertices are merged

parent(vi)

root(parent(vi))

vi

root(vi)

vi

parent(vi)

root(vi)

vi parent(vi)

root(parent(vi))

FIGURE 12.24 A demonstration of the hooking operation. In (a), vi and parent(vi)
are in different supervertices. In (b), the supervertex to which vi belongs hooks to
the supervertex containing parent(vi) because root(parent(vi)) is a minimum label
over all the supervertices to which members of the supervertex labeled root(vi)
are connected. In (c), these supervertices are merged.

Determine star(vi) for all vi V
For all vertices vi, do

If vi is not in a star, then
root(vi) root(root(vi)) {pointer jumping}

Until no changes are produced by the steps of the Repeat loop

Although it is beyond the scope of this book, it can be shown that the preced-
ing algorithm is correct for an arbitrary CRCW PRAM. Critical observations can
be made, such as,

• at any time during the algorithm, the structure defined by the set of root point-
ers corresponds to a proper (upward) directed forest, because no vertex ever
has a root with a larger index, and

• when the algorithm terminates, the forest defined by the root pointers consists
of stars.

Given an arbitrary CRCW PRAM with (V + E) processors, every computa-
tional step in the algorithm defined earlier requires (1) time. Therefore, we need
to determine only the number of iterations required for the main loop before the
algorithm naturally terminates with stars corresponding to every connected com-
ponent. It can be shown that each pass through the loop reduces the height of a
non-star tree by a fixed fraction. Therefore, the algorithm will terminate after
O(log V) steps, yielding an algorithm with total cost of O((V + E) log V), which is

Connected Component Labeling 329

a

eb

c

d

FIGURE 12.25 Computing the star function in paral-
lel. Arrows represent root pointers. Step 3 initializes
star(vi) true for all vertices. Steps 5 through 7
change star(a), star(b), star(c), and star(d) to false.
However, we require step 9 to change star(e) to false.

not optimal. In fact, slightly more efficient algorithms are possible, but they are
beyond the scope of this book.

Mesh

Recall that a single step of a PRAM computation with n processors operating on a
set of n data items can be simulated on a mesh of size n in (n1/2) time by a sort-
based associative read and associative write operation. Therefore, given a graph
G = (V, E) represented by a set of unordered edges, distributed arbitrarily one
per processor on a mesh of size , the component labeling algorithm can be
solved in (E1/2 log E) time. Notice that this is at most a factor of (log E) from
optimal on a mesh of size . However, it is often convenient to represent dense
graphs by an adjacency matrix. So consider the situation in which a adja-

cency matrix is distributed in a natural fashion on a mesh of size . Then, by
applying the time-optimal transitive closure algorithm followed by a simple row
or column rotation, the component labeling algorithm can be solved in (V) time,
which is optimal for this combination of architecture and graph representation.

Minimum-Cost Spanning Trees

Suppose we want to run fiber optic cable on a college campus so that there is at
least one cable path between every pair of buildings. Further, suppose we want to
minimize the total amount of cable that we lay. Viewing the buildings as vertices
and the cables between buildings as edges, this cabling problem is reduced to
determining a spanning tree covering the buildings on campus in which the total
length of cable that is laid is minimized. This leads to the definition of a minimum-
cost spanning tree.

Given a connected undirected graph G = (V, E), we define a spanning tree
T = (V, E'), where , to be a connected acyclic graph. The reader should ver-
ify that for T to have the same vertex set as the connected graph G, and for T not to
contain any cycles, T must contain exactly edges. Suppose that for every
edge e V, there exists a weight w(e), where such a weight might represent, for
example, the cost, length, or time required to traverse the edge. Then a minimum-
cost spanning tree T (sometimes referred to as a minimal spanning tree, minimum-
weight spanning tree, minimum spanning tree, or MST), is a spanning tree over G
in which the weight of the tree is minimized with respect to every spanning tree of
G. The weight of a tree T = (V, E') is defined intuitively to be

RAM

In this section, we consider three traditional algorithms for determining a mini-
mum-cost spanning tree of a connected, weighted, undirected graph G = (V, E) on

w T w e
e E

() ()
'

=

| |V 1

E E'

V
2

V V×
| |E

| |E
| |E

330 Chapter 12 Graph Algorithms

a RAM. All three algorithms use a greedy approach to solve the problem. At any
point during these algorithms, a set of edges E' exists that represents a subset of
some minimal spanning tree of G. At each step of these algorithms, a “best” edge
is selected from those that remain, based on certain properties, and added to the
working minimal spanning tree. One of the critical properties of any edge that is
added to E' is that it is safe, that is, that the updated edge set E' will continue to
represent a subset of the edges of some minimal spanning tree for G.

Kruskal’s Algorithm
The first algorithm we consider is Kruskal’s algorithm. In this greedy algorithm,
E' will always represent a forest over all vertices V in G. Furthermore, this forest
will always be a subset of some minimum spanning tree. Initially, we set E' = ,
which represents the forest of isolated vertices. We also sort the edges of the graph
into increasing order by weight. At each step in the algorithm, the next smallest
weight edge from the ordered list is chosen and that edge is added to E', so long as
it does not create a cycle. The algorithm follows.

Kruskal’s MST Algorithm
The input consists of a connected, weighted, undirected graph G = (V, E) with
weight function w on the edges e V.

For each v V, create . That is, every vertex is currently its
own tree.
Sort the edges of E into nondecreasing order by the weight function w.
While there is more than one distinct tree, consider each by
sorted order.

If , then

Merge and
End If

End While

The analysis of this algorithm depends on the data structure used to implement
the graph G = (V, E), which is critical to the time required to perform a sort opera-
tion, the time necessary to execute the function Tree(u), and the time required for
the merge operation over two trees in the forest. Suppose that each tree is imple-
mented as a linked list with a header element. The header element will contain the
name of the tree, the number of vertices in the tree, a pointer to the first element in
the list, and a pointer to the last element in the list. Assuming that the vertices are
labeled by integers in , the name of a tree will correspond to the minimum
vertex in the tree. Suppose that every list element contains a pointer to the next
element in the list and a pointer to the head of the list. (See Figure 12.26.) With
such a data structure, notice that Tree(u) can be determined in (1) time, and that
two trees T1 and T2 can be merged in time.min ,T T

1 2{ }()

1…V

Tree v()Tree u()
E E u v' ' (,)
Tree u Tree v() ()

(,)u v E

Tree v v() { }=
E '

Minimum-Cost Spanning Trees 331

Given the data structures described, it takes (1) time to set , (V)
time to create the initial forest of isolated elements, and time to sort
the edges. The reader should verify that the union operation is invoked exactly

times. The difficult part of the analysis is in determining the total time for
the merge operations. We leave it as an exercise to show that in the worst
case, the time to perform all merge operations is . Therefore, the run-
ning time of the algorithm, as described, is O(E log E), which is O(E log V).

An alternative implementation to our presentation of Kruskal’s algorithm fol-
lows. Suppose that instead of initially sorting the edges into decreasing order by
weight, we place the weighted edges into a heap, and that during each iteration of
the algorithm, we simply extract the minimum weighted edge left in the heap.
Recall (perhaps from a previous course in data structures) that such a heap can be
constructed in time, and a heap extraction can be per-
formed in time. Therefore, the heap-based (or priority-
queue-based) variant of this algorithm requires time to set up the
initial heap and time to perform the operation required during each of
the (E) iterations. Therefore, a heap-based approach results in a total running
time of , including the merge operations.

Prim’s Algorithm
The second algorithm we consider is Prim’s algorithm for determining a mini-
mum-cost spanning forest of a weighted, connected, undirected graph G = (V, E),
with edge weight function w. The approach taken in this greedy algorithm is to add

(log)E V

(log)V
(log)E V

(log) (log)E V=
(log) (log)E E E V=

(log)V V
| |V 1

| |V 1

(log)E E
E '

332 Chapter 12 Graph Algorithms

1

#Vertices Tail HeadName

1
H N H N H N

7

18

29

3

2

3

4

17 8

7
H N H N

23

18
H N H N H N

75 36

29
H N H N H N H N

47 31 40

FIGURE 12.26 A representation of a data structure that allows for an efficient
implementation of Kruskal’s algorithm. H is a pointer to the head of the list.
N is a pointer to the next element in the list.

edges continually to so that always represents a tree with the property
that it is a subtree of some minimum spanning tree of G. Initially, an arbitrary
vertex r V is chosen to be the root of the tree that will be grown. Next, an edge
(r, u) is used to initialize , where (r, u) has minimal weight among edges inci-
dent on r. As the algorithm continues, an edge of minimum weight between some
vertex in the current tree, represented by , and some vertex not in the current
tree, is chosen and added to . The algorithm follows.

Prim’s MST Algorithm
The input consists of a connected, weighted, undirected graph G = (V, E) with
weight function w on the edges e V.

Let vertex set .
Let the root of the tree be .
Initialize . {a}
For all , initialize .
Set because r is in the tree.
Set because r is the root of the tree.
For all , do

End For all {b}
While , do {c}

Add to and remove u from NotInTree.
For all do

If and , then
{e}
{f}

End If
End For

End While {d}

The structure NotInTree is most efficiently implemented as a priority queue
because the major operations include finding a minimum weight vertex in NotInTree
and removing it from NotInTree. Suppose that NotInTree is implemented as a
heap. Then the heap can be initialized (lines {a} through {b}) in (V logV) time.
The While loop (lines {c} through {d}) is executed times. Therefore, the
O(log V) time ExtractMin operation is invoked (V) times. Thus, the total time to
perform all ExtractMin operations is O(V log V).

Now consider the time required to perform the operations specified in lines
{e} and {f}. Because every edge in a graph is determined by two vertices, lines

| |V 1

smalledge v w u v() (,)
parent v u()

w u v smalledge v(,) ()<v NotInTree
v Adj u()

E 'u parent u, ()()
u ExtractMin NotInTree()

NotInTree
v Adj r()

smalledge v w r v() (,)
parent v r()

v Adj r()
parent r nil()
smalledge r() 0

smalledge v()v NotInTree
NotInTree v v

n
= { }2

, ,…
r v=

1

V v v v
n

= { }1 2
, , ,…

E '
E '

E '

E 'E E'

Minimum-Cost Spanning Trees 333

{e} and {f} can be invoked at most twice for every edge. Therefore, these assign-
ments are performed (E) times at most. However, notice that line {f} requires
the adjustment of an entry in the priority queue, which requires O(log V) time.
Therefore, the running time for the entire algorithm is O(V log V + E log V)),
which is O(E log V). Notice that this is the same asymptotic running time as
Kruskal’s algorithm. However, by using Fibonacci heaps instead of traditional
heaps, it should be noted that the time required to perform Prim’s algorithm on a
RAM can be reduced to .

Sollin’s Algorithm
Finally, we mention Sollin’s algorithm. In this greedy algorithm, E ' will always
represent a forest over all vertices V in G. Initially, , which represents the
forest of isolated vertices. At each step in the algorithm, every tree in the forest
nominates one edge to be considered for inclusion in E'. Specifically, every tree
nominates an edge of minimal weight between a vertex in its tree and a vertex in a
distinct tree. So, during the ith iteration of the algorithm, the trees rep-
resented by E ' generate not necessarily distinct edges to be considered
for inclusion. The minimal weight edge will then be selected from these nominees
for inclusion in E '. The sequential algorithm and analysis is left as an exercise.

PRAM

In this section, we consider the problem of constructing a minimum-cost spanning
tree for a connected graph represented by a weight matrix on a CREW PRAM.
Given a connected graph G = (V, E), we assume that the weights of the edges are
stored in a matrix W. That is, entry W(i, j) corresponds to the weight of edge

. Because the graph is not necessarily complete, we define if
the edge . We assume that self-edges are not present in the input; there-
fore, we should note that for all . Notice that we use to
represent nonexistent edges because the problem is one of determining a minimum-
weight spanning tree.

The algorithm we consider is based on Sollin’s algorithm, as described previ-
ously. Initially, we construct a forest of isolated vertices, which are then repeti-
tively merged into trees until a single tree (a minimum spanning tree) remains. The
procedure for merging trees at a given stage of the algorithm is to consider one
candidate edge ei from every tree Ti. The candidate edge ei corresponds to an edge
of minimum weight connecting a vertex of Ti to a vertex in some Tj where i ≠ j. All
candidate edges are then added to the set of edges representing a minimum weight
spanning tree of G, as we have done with previously described minimum spanning
tree algorithms.

During each of the merge steps, we must collapse every tree in the forest into
a virtual vertex (that is, a supervertex). Throughout the algorithm, every vertex

1 i nW i i(,) =
(,)i j E

W i j(,) =(,)i j E

| | ()V i 1
| | ()V i 1

E ' =

(log)E V V+

334 Chapter 12 Graph Algorithms

must know the identity of the tree that it is a member of so that candidate edges
can be chosen in a proper fashion during each iteration of the algorithm. We will
use the component labeling technique, described earlier in this chapter, to accom-
plish this task.

Without loss of generality, we assume that every edge has a unique weight.
Notice that in practice, ties in edge weight can be broken by appending unique
edge labels to every weight. The basic algorithm follows.

The input consists of a connected, weighted, undirected graph G = (V, E) with
weight function w on the edges e V. Let weight matrix W be used to store the
weights of the edges, where W(i, j) = w(i, j).

Let vertex set .
Let represent a minimum spanning tree of G that is under
construction.
Initially, set .
Initially, set the forest of trees where . That is,
every vertex is its own tree.
While , do

For all , determine , an edge of minimum weight between
a vertex in Ti and a vertex in Tj where .

For all i, add to E'.
Combine all trees in F that are in the same connected component with

respect to the edges just added to E'. Assuming that r trees remain in the
forest, relabel these virtual vertices (connected components) so that

.
Relabel the edges in E so that the vertices correspond to the appropriate

virtual vertices. This can be accomplished by reducing the weight matrix
W so that it contains only information pertaining to the r virtual vertices.

End While

Consider the running time of the algorithm as described. Because the graph G
is connected, we know that every time through the While loop, the number of trees
in the forest will be reduced by at least half. That is, every tree in the forest will
hook up with at least one other tree. Therefore, the number of iterations of the
While loop is O(log V). The operations described inside of the While loop can be
performed by invoking procedures to sort edges based on vertex labels, perform
parallel prefix to determine candidate edges, and apply the component-labeling
algorithm to collapse connected components into virtual vertices. Because each of
these procedures can be performed in time logarithmic in the size of the input, the
running time for the entire algorithm as given is O(log2 V).

F T T
r

= { }1
, ,…

Cand
i

i j
Cand

i
T F

i

F >1

T v
i i
= { }(),F T T

n
= { }1

, ,…
E ' =

G V E' (, ')=
V v v

n
= { }1

, ,…

Minimum-Cost Spanning Trees 335

336 Chapter 12 Graph Algorithms

Mesh

The mesh algorithm we discuss in this section is identical in spirit to that just pre-
sented for the PRAM. Our focus in this section is on the implementation of the
specific steps of the algorithm. We assume that the input to the problem is a weight
matrix W representing a graph G = (V, E), where . Initially, W(i, j), the
weight of edge , is stored in mesh processor Pi,j. Again we assume that

if the edge does not exist or if i = j. We also assume, without loss of
generality, that the edge weights are unique.

Initially, we define the forest where . During
each of the iterations of the algorithm, the number of virtual vertices
(supervertices) in the forest is reduced by at least half. The reader might also note
that at any point during the course of the algorithm, only a single minimum-weight
edge needs to be maintained between any two virtual vertices. We need to discuss
the details of reducing the forest during a generic iteration of the algorithm. Sup-
pose that the forest F currently has r virtual vertices. Notice that at the start of an
iteration of the While loop, as given in the previous section, every virtual vertex is
represented by a unique row and column in an r � r weight matrix W. As shown
in Figure 12.27, entry W(i, j), , denotes the weight and identity of a
minimum-weight edge between virtual vertex i and virtual vertex j.

1 i j r,

log
2

n
T v

i i
= { }(),F T T

n
= { }1

, ,…

W i j(,) =
(,)i j E

| |V n=

. . .

. . .

. . .

. . .

. . .

. .
 .

–

–

–

–

FIGURE 12.27 The r � r matrix W, as distributed one entry per processor in a
natural fashion on an r � r submesh. Notice that each entry in processor Pi,j,
1 i, j r, contains the record (Wi,j, ei,j), which represents the minimum weight
of any edge between virtual vertices (that is, supervertices) vi and v j, as well as
information about one such edge ei, j to which the weight corresponds. In this
situation, the “edge” ei, j is actually a record containing information identifying
its original vertices and its current virtual vertices.

To determine the candidate edge for every virtual vertex , simply per-
form a row rotation simultaneously over all rows of W, where the rotation is
restricted to the r � r region of the mesh currently storing W. The edge in E that
this virtual edge represents can be conveniently stored in the rightmost column of
the r � r region because there is only one such edge per row, as shown in Figure
12.28. Based on the virtual vertex indices of these edges being added to E', an
adjacency matrix can be created in the r � r region that represents the connections
being formed between the current virtual vertices, as shown in Figure 12.29. War-
shall’s algorithm can then be applied to this adjacency matrix to determine the
connected components. That is, an application of Warshall’s algorithm will deter-
mine which trees in F have just been combined using the edges in E '. The rows of
the matrix can now be sorted according to their new virtual vertex number. Next,
in a similar fashion, the columns of the matrix can be sorted with respect to the
new virtual vertex numbers. Now, within every interval of rows, a minimum
weight edge can be determined to every other new virtual vertex by a combination
of row and column rotations. Finally, a concurrent write can be used to compress
the r � r matrix to an r ' � r ' matrix, as shown in Figure 12.30.

1 i r

Minimum-Cost Spanning Trees 337

17,e1,3

1

1

98

2

17

3

36

4

47

5

58

21,e2,5

982 38 89 21 39

17,e3,1

173 38 97 27 73

9,e4,6

364 89 97 18 9

18,e5,4

475 21 27 18 47

9,e6,4

586 39 73 9 47

6

FIGURE 12.28 A sample 6 � 6 weight
matrix in which, for simplicity’s sake, only
the weights of the records are given. Notice
that the processors in the last column also
contain a minimum-weight edge and its
identity after the row rotation.

338 Chapter 12 Graph Algorithms

Notice that each of the critical mesh operations working in an r � r region can
be performed in O(r) time. Because the size of the matrix is reduced by at least a
constant factor after every iteration, the running time of the algorithm is (n),
which includes the time to perform a final concurrent read to mark all of the edges
in the minimum spanning tree that was determined.

01

1

0

2

1

3

0

4

0

5

0

02 0 0 0 1 0

13 0 0 0 0 0

04 0 0 0 0 1

05 0 0 1 0 0

06 0 0 1 0 0

6

FIGURE 12.29 The 6 � 6 adjacency matrix corre-
sponding to the minimum-weight edges selected by
the row rotations as shown in Figure 12.28.

1

1 2

1 2

2

1

2

r

r

FIGURE 12.30 A concurrent write is used within the
r � r region of the mesh to compress and update the r '
rows and columns corresponding to the r ' superver-
tices. This results in the creation of an r ' � r ' weight
matrix in the upper-left regions of the r � r region so
that the algorithm can proceed to the next stage.

Shortest-Path Problems

In this section, we consider problems involving shortest paths within graphs.
Specifically, we consider two fundamental problems.

Single-Source Shortest-Path Problem: Given a weighted, directed
graph G = (V, E), a solution to the single-source shortest-path problem
requires that we determine a shortest (minimum-weight) path from
source vertex s V to every other vertex v V. Notice that the notion of
a minimum-weight path generalizes that of a shortest path in that a
shortest path (a path containing a minimal number of edges) can be
regarded as a minimum-weight path in a graph in which all edges have
weight 1.

All-Pairs Shortest-Path Problem: Given a weighted, directed graph
G = (V, E), a solution to the all-pairs shortest-path problem requires the
determination of a shortest (minimum weight) path between every pair of
distinct vertices u, v V.

For problems involving shortest paths, several issues must be considered, such
as whether or not negative weights and/or cycles are permitted in the input graph.
It is also important to decide whether the total weight of a minimum-weight path
will be presented as the sole result or if a representation of a path that generates
such a weight is also required. Critical details such as these, which often depend
on the definition of the problem, have a great effect on the algorithm that is to be
developed and utilized. In the remainder of this section, we consider representa-
tive variants of shortest-path problems as ways to introduce critical paradigms.

RAM

For the RAM, we will consider the single-source shortest-path problem in which
we need to determine the weight of a shortest path from a unique source vertex to
every other vertex in the graph. Further, we assume that the result must contain
a representation of an appropriate shortest path from the source vertex to every
other vertex in the graph. Assume that we are given a weighted, directed graph
G = (V, E), in which every edge e V has an associated weight w(e). Let s V be
the known source vertex. The algorithm that we present will produce a shortest-
path tree , rooted at s, where , , V ' is the set of vertices
reachable from s, and for all v V', the unique simple path from s to v in T is a
minimum-weight path from s to v in G. It is important to emphasize that “shortest”
paths (minimum-weight paths) are not necessarily unique and that shortest-path
trees (trees representing minimum-weight paths) are also not necessarily unique.
See Figure 12.31, which shows two shortest path trees for the given graph G.

E E'V V'T V E= (', ')

Shortest-Path Problems 339

340 Chapter 12 Graph Algorithms

We consider Dijkstra’s algorithm for solving the single-source shortest-path prob-
lem on a weighted, directed graph G = (V, E) where all of the edge weights are
nonnegative. Let s V be the predetermined source vertex. The algorithm will
create and maintain a set V ' of vertices that, when complete, is used to represent
the final shortest-path tree T. When a vertex v is inserted into V ', it is assumed that
the edge (parent(v), v) is inserted into E'.

Initially, every vertex v V is assumed to be at distance dist(v) = from the
source vertex s, with the exception of all vertices directly connected to s by an
edge. Let u be a neighboring vertex of s. Then, because (s,u) E, we initialize the
distance from s to u to be dist(u) = w(s,u), the weight of the edge originating at s
and terminating at u.

The algorithm consists of continually identifying a vertex that has not been
added to V ', which is at minimum distance from s. Suppose the new vertex to be
added to V ' is called x. Then, after adding x to V ', all vertices t for which (x,t) E
are examined. If the current minimum distance from s, which is maintained in
dist(t), can now be improved based on the fact that x is in V ', then dist(t) is updated
and parent(t) is set to x (see Figure 12.32).

1

2
4

2

3 3

3
466

4

6

8

3

7
7

8

5

(a) A weighted, undirected
 graph G = (V, E)

(c) A different shortest-path tree. Notice that
 the path <1, 6, 5, 7> chosen between
 vertices 1 and 7 is also of total weight 12.

(b) A shortest-path tree. Notice the path
 <1, 2, 8, 7> of weight 12 chosen between
 source vertex 1 and sink vertex 7

7

4

5

6

8

2

1
8

3

3
6

7

2 6

3

7

4

5

6

8

2

1
8

3

3

3

6

2

6

3

FIGURE 12.31 A demonstration that shortest paths and shortest-path trees need
not be unique. The weighted, undirected graph G is shown in (a). In (b), we see
a shortest-path tree. Notice the path (1,2,8,7) of total weight 12 chosen between
source vertex 1 and sink vertex 7. A different shortest-path tree is shown in
(c). Notice the path (1,6,5,7) between vertices 1 and 7 is also of total weight 12.

The algorithm follows.

• The algorithm takes a weighted, directed graph G = (V, E) as input.
• Initialize the vertices and edges in the shortest-path tree that this

algorithm produces to be empty sets. That is, set and .
• Initialize the set of available vertices to be added to V ' to be the entire set of

vertices. That is, set .

For every vertex v V, do
Set . That is, the distance from every vertex to the source is

initialized to be infinity.
Set . That is, the parent of every vertex is initially as-

sumed to be nonexistent.
End For
Set . That is, the distance from the source to itself is 0. This step
is critical to seeding the While loop that follows.

GrowingTree true

dist s() 0

parent v nil()

dist v()

Avail V

E 'V '
T V E= (', ')

Shortest-Path Problems 341

s
dist=0 dist=

dist=

dist= dist=

(a) After initializations

s=u0
dist=0 dist=8

dist=

dist=2 dist=

(b) After adding s = u0

2 3

5

1

8

2 3

5

1

8

s=u0
dist=0 dist=8

dist=

u1
dist=2 dist=3

(c) After adding u1

2 3

5

1

8
s=u0
dist=0 dist=6

dist=8

u1
dist=2

u2
dist=3

(d) After adding u2 (Note the vertex
 with distance of 6 has a new parent)

2 3

5

1

8

s=u0
dist=0

u3
dist=6

dist=8

u1
dist=2

u2
dist=3

(e) After adding u3

2 3

5

1

8
s=u0
dist=0

u3
dist=6

u4
dist=8

u1
dist=2

u2
dist=3

(f) After adding u4

2 3

5

1

8

FIGURE 12.32 A demonstration of the progress of Dijkstra’s algorithm,
through the iterations of its While loop, for constructing a shortest-path
tree. The vertices are numbered u0, u1, . . . , in the order in which they are
inserted into the tree. Arrows represent parent pointers. Dark edges are
those inserted into the tree.

While and GrowingTree, do
Determine , where dist(u) is a minimum over all distances of

vertices in Avail. (Note the first pass through the loop yields u = s.)
If is finite, then

and . That is, add u to the shortest-
path tree and remove u from Avail.

If , then . That is, add
to the edge set of T.

For every vertex , do {Check to see if neighboring vertices
should be updated.}

If , then {update distance and parent
information since a shorter path is now possible}

End If
End For

End If dist(u) is finite
Else {(V', E') is the finished component of

source vertex}
End While

The algorithm is greedy in nature in that at each step the best local choice is
taken and that choice is never undone. Dijkstra’s algorithm relies on an efficient
implementation of a priority queue, because the set Avail of available vertices is
continually queried in terms of minimum distance. Suppose that the priority queue
of Avail is maintained in a simple linear array. Then a generic query to the priority
queue will take (V) time. Because there are (V) such queries, the total time
required for querying the priority queue is (V 2). Each vertex is inserted into the
shortest-path tree exactly once, so this means that every edge in E is examined
exactly twice in terms of trying to update distance information to neighboring ver-
tices. Therefore, the total time to update distance and parent information is (E);
the running time of the algorithm is (V 2 + E), or (V 2), because E = O(V 2).

Notice that this algorithm is efficient for dense graphs. That is, if E = (V 2),
then the algorithm has an efficient running time of (E). However, if the graph is
sparse, this implementation is not necessarily efficient. In fact, for a sparse graph,
one might implement the priority queue as a binary heap or a Fibonacci heap to
achieve a slightly more efficient running time.

PRAM and Mesh

For both of these parallel models of computation, we consider the all-pairs short-
est-path problem, given a weight matrix as input. Specifically, suppose we are
given a weighted, directed graph G = (V, E) as input, where and every edgeV n=

GrowingTree false

dist v dist u w u v() () (,)> +
parent v u()
dist v dist u w u v() () (,)+

dist v dist u w u v() () (,)> +

v Adj u()

parent u u(),()E E parent u u' ' (),(){ }u s

Avail Avail u\{ }V V u' ' { }
dist u()

u Avail
Avail

342 Chapter 12 Graph Algorithms

has an associated weight . Further, assume that G is represented
by an n � n weight matrix W, where if and

otherwise.
Let Wk (u,v) represent the weight of a minimum-weight path from vertex u to

vertex v, assuming that the intermediate vertices traversed on the path from u to v
are indexed in . Then the matrix Wn will contain the final weights rep-
resenting a directed minimum-weight path between every pair of vertices. That is,
Wn(u,v) will contain the weight of a minimum-weight directed path with source u
and sink v, if such a path exists. Wn(u,v) will have a value of if a path
does not exist.

Notice that we have recast the all-pairs shortest-path problem as a variant of
the transitive closure problem discussed earlier in this chapter in the section
“Computing the Transitive Closure of an Adjacency Matrix.” Given a mesh of size
n2 in which processor Pi, j stores weight information concerning a path from vertex
i to vertex j, we can represent the computation of W as

Therefore, we can apply van Scoy’s implementation of Warshall’s algorithm,
as described earlier in this chapter, to solve the problem on a mesh of size n2 in
optimal (n) time. Notice that if the graph is dense (that is, E = (V 2)), the weight
matrix input is an efficient representation.

On a PRAM, notice that we can also implement Warshall’s algorithm for com-
puting the transitive closure of the input matrix W. Recall that two matrices can be
multiplied in (log n) time on a PRAM containing n3/log n processors. Given an
n � n matrix as input on a PRAM, Wn can be determined by performing (log n)
such matrix multiplications. Therefore, given an n � n weight-matrix as input, the
running time to solve the all-pairs shortest-path problem on a PRAM with n3/log n
processors is (log2 n).

Summary

In this chapter, we study algorithms to solve a variety of problems concerned with
graphs. We present several methods of representing a graph, including an adja-
cency list, an adjacency matrix, or a set of unordered edges. We introduce efficient
RAM solutions to fundamental problems such as breadth-first search, depth-first
search, and Euler tour. The PRAM algorithm for list ranking via pointer jumping,
first presented in Chapter 8, is reviewed. Another PRAM algorithm presented is
the one for tree contraction. Warshall’s efficient algorithm for computing the tran-
sitive closure of the adjacency matrix is discussed for the RAM, and van Scoy’s
efficient adaptation of the algorithm to the mesh is also presented. Connected
component labeling algorithms are given for several models of computation. Sev-
eral sequential and parallel algorithms for computing minimal-cost spanning trees

W i j W i j W i k W k j
k k k k
(,) min (,), (,) (,)= +{ }1 1 1

u v

1 2, , ,… k{ }

W u v(,) =
(,)u v EW u v w u v(,) (,)=

w u v(,)(,)u v E

Summary 343

are discussed. Solutions to shortest-path problems are given for multiple models
of computation.

Chapter Notes

In this chapter, we have considered algorithms and paradigms to solve fundamen-
tal graph problems on a RAM, PRAM, and mesh computer. For the reader inter-
ested in a more in-depth treatment of sequential graph algorithms, please refer to
the following sources:

• Graph Algorithms by S. Even (Computer Science Press, 1979).
• Data Structures and Network Algorithms by R.E. Tarjan (Society for Indus-

trial and Applied Mathematics, 1983).
• “Basic Graph Algorithms” by S. Khuller and B. Raghavachari, in Algorithms

and Theory of Computation Handbook, M.J. Atallah, ed., CRC Press, Boca
Raton, FL, 1999.

For the reader interested in a survey of PRAM graph algorithms, complete
with an extensive citation list, please refer to the following:

• “A Survey of Parallel Algorithms and Shared Memory Machines” by R.M.
Karp and V. Ramachandran, in the Handbook of Theoretical Computer Sci-
ence: Algorithms and Complexity, A.J. vanLeeuwen, ed. (Elsevier, New York,
1990, pp. 869–941).

The depth-first search procedure was developed by J.E. Hopcroft and R.E.
Tarjan. Early citations to this work include the following:

• “Efficient Algorithms for Graph Manipulation” by J.E. Hopcroft and R.E. Tar-
jan, Communications of the ACM (16:372–378, 1973), and

• “Depth-First Search and Linear Graph Algorithms” by R.E. Tarjan, SIAM
Journal on Computing, 1(2):146–60, June, 1972.

Warshall’s innovative and efficient transitive closure algorithm was first pre-
sented in “A Theorem on Boolean Matrices” by S. Warshall in the Journal of the
ACM 9, 1962, 11–12. An efficient mesh implementation of Warshall’s algorithm is
discussed in detail in Parallel Algorithms for Regular Architectures by R. Miller
and Q.F. Stout (The MIT Press, Cambridge, MA, 1996).

An in-depth presentation of tree contraction for the PRAM can be found in An
Introduction to Parallel Algorithms by J. Já Já (Addison-Wesley, Reading, MA,
1992). This book also contains details of PRAM algorithms for additional prob-
lems discussed in this chapter, including component labeling and minimum span-
ning trees. The PRAM component-labeling algorithm presented in this chapter
comes from a combination of the algorithms presented in the following sources:

344 Chapter 12 Graph Algorithms

• “A Survey of Parallel Algorithms and Shared Memory Machines” by R.M.
Karp and V. Ramachandran in the Handbook of Theoretical Computer Sci-
ence: Algorithms and Complexity, A.J. vanLeeuwen, ed. (Elsevier, New York,
1990, pp. 869–941), and

• “Introduction to Parallel Connectivity, List Ranking, and Euler Tour Tech-
niques” by S. Baase in Synthesis of Parallel Algorithms, J.H. Reif, ed. (Mor-
gan Kaufmann Publishers, San Mateo, CA, 1993, pp. 61–114).

The sequential minimum spanning tree algorithm presented in this chapter
combines techniques presented in Data Structures and Algorithms in JAVA by
M.T. Goodrich and R. Tamassia (John Wiley & Sons, Inc., New York, 1998), with
those presented in Introduction to Algorithms by T.H. Cormen, C.E. Leiserson,
R.L. Rivest, and C. Stein (2nd ed.: The MIT Press, Cambridge, MA, 2001). The
minimum spanning tree algorithm for the PRAM was inspired by the one pre-
sented in An Introduction to Parallel Algorithms by J. Já Já (Addison Wesley,
1992), whereas the MST algorithm for the mesh was inspired by the one that
appears in Parallel Algorithms for Regular Architectures by R. Miller and Q.F.
Stout (The MIT Press, Cambridge, MA, 1996).

The reader interested in exploring additional problems involving shortest
paths, as well as techniques and algorithms for solving such problems, is referred
to the following sources:

• Introduction to Algorithms by T.H. Cormen, C.E. Leiserson, R.L. Rivest, and
C. Stein (2nd ed.: The MIT Press, Cambridge, MA, 2001).

• An Introduction to Parallel Algorithms by J. Já Já (Addison Wesley, 1992).
• Parallel Algorithms for Regular Architectures by R. Miller and Q.F. Stout

(The MIT Press, Cambridge, MA, 1996).

Exercises

1. Suppose a graph G is represented by unordered edges. Give efficient algo-
rithms for the following:
a) Construct an adjacency list representation of G. Analyze the running time

of your algorithm for the RAM and for a PRAM with processors.
b) Construct an adjacency matrix representation of G. Analyze the running

time of your algorithm for the RAM, for a PRAM of (V 2) processors,
and for a mesh of (V 2) processors. For the mesh, assume an initial distri-
bution so that no processor has more than one edge, and include appropri-
ate data movement operations in your algorithm.

2. Give an efficient RAM algorithm to compute the height of a nonempty binary
tree. The height is the maximum number of edges between the root node and
any leaf node. (Hint: recursion makes this a short problem.) What is the run-
ning time of your algorithm?

V E+

Exercises 345

3. Prove that if v0 and v1 are distinct vertices of a graph G = (V, E) and a path
exists in G from v0 to v1, then there is a simple path in G from v0 to v1. (Hint:
this can be done using mathematical induction on the number of edges in a
shortest path from v0 to v1.)

4. A graph G = (V, E) is complete if an edge exists between every pair of vertices.
Given an adjacency list representation of G, describe an algorithm that deter-
mines whether or not G is complete. Analyze the algorithm for the RAM and
for a CREW PRAM with processors.

5. Suppose the graph G = (V, E) is represented by an adjacency matrix. Let
. Give an algorithm that determines whether or not G is complete (see

the previous exercise for the definition). Analyze the algorithm for the RAM,
for an arbitrary CRCW PRAM with n2 processors, and for an n � n mesh.
(For the mesh, at the end of the algorithm, every processor should know
whether or not G is complete.)

6. Let v0 and v1 be distinct vertices of a graph G = (V, E). Suppose we want to
determine whether or not these two vertices are in the same component of G.
One way to answer this query is by executing a component-labeling algo-
rithm, then comparing the component with v0 and v1. However, simpler algo-
rithms (perhaps not asymptotically faster) can determine whether two vertices
belong to the same component. Give such an algorithm and its running time
on a RAM.

7. The distance between two vertices in the same component of a graph is the
number of edges in a shortest path connecting the vertices. The diameter of a
connected graph is the maximum distance between a pair of vertices of the
graph. Give an algorithm to find the maximal diameter of the components of a
graph. Analyze the algorithm’s running time for the PRAM and the mesh.

8. Let G = (V, E) be a connected graph. Suppose there is a Boolean function
hasTrait(vertex) that can be applied to any vertex of G in order to determine in

(1) RAM time whether or not the vertex has a certain trait.
a) Given a graph represented by adjacency lists, describe an efficient RAM

algorithm to determine whether or not there are adjacent vertices with the
trait tested for by this function. Give an analysis of your algorithm.

b) Suppose instead that the graph is represented by an adjacency matrix.
Describe an efficient RAM algorithm to determine whether or not there are
adjacent vertices with the trait tested for by this function. Give an analysis
of your algorithm.

9. A bipartite graph is an undirected graph G = (V, E) with subsets V0, V1 of V
such that , , and every member of E joins a member of
V0 to a member of V1. Let be a minimum spanning tree of a con-
nected bipartite graph G. Show that T is also a bipartite graph.

10. Suppose G is a connected graph. Give an algorithm to determine whether or
not G is a bipartite graph (see the previous problem). Analyze the algorithm’s
running time for the RAM.

T V E= (, ')
V V

0 1
=V V V

0 1
=

n V=

n V=

346 Chapter 12 Graph Algorithms

11. Let be a set of intervals on the real line. An interval

graph G = (V, E) is determined by S as follows. , and for distinct

indices i and j, there is an edge from vi to vj if and only if . Give an
algorithm to construct an interval graph determined by a given set S of inter-
vals and analyze the algorithm’s running time for a RAM. Note: there is a
naïve algorithm that runs in (n2), where . You should be able to give
a more sophisticated algorithm that runs in time.

12. Suppose T = (V, E) is a tree. What is the asymptotic relationship between
and ? Explain.

13. Let G = (V, E) be a connected graph. We say e E is a bridge of G if the graph
is disconnected. It is easy to see that if G represents a traffic

system, its bridges represent potential bottlenecks. Thus, it is useful to be able
to identify all bridges in a graph.
a) A naïve (non-optimal) algorithm may be given to identify all bridge edges

as follows. Every edge e is regarded as a possible bridge, and the graph Ge

is tested for connectedness. Show that such an algorithm runs on a RAM in
time.

b) Let T be a minimal spanning tree for G. Show that every bridge of G must
be an edge of T.

c) Use the result of part b to obtain an algorithm for finding all bridges of G that
runs on a RAM in O(V2 + E log V) time. Hint: use the result of Exercise 12.

14. Let G = (V, E) be a connected graph. An articulation point is a vertex of G
whose removal would leave the resulting graph disconnected. That is, v is an
articulation point of G if and only if the graph , where

, is a disconnected graph. Thus, an articu-
lation point plays a role among vertices analogous to that of a bridge among
edges.
a) Suppose . Show that at least one vertex of a bridge of G must be an

articulation point of G.
b) Let v V be an articulation point of G. Must there be a bridge of G inci-

dent on v? If so, give a proof; if not, give an example.
c) Let G be a connected graph for which there is a positive number C such

that no vertex has degree greater than C. Let v V be a vertex of G. Give
an algorithm to determine whether or not v is an articulation point. Discuss
the running time of implementations of your algorithm on the RAM,
CRCW PRAM, and mesh.

15. Let be an associative binary operation that is commutative and that can be
applied to data stored in the vertices of a graph G = (V, E). Assume a single
computation using requires (1) time. Suppose G is connected and repre-
sented in memory by unordered edges. How can we perform an efficient
RAM semigroup computation based on , on the vertices of G? Give the
running time of your algorithm.

V > 2

E e E e v
v
= { }| is not incident on

G V v E
v v
= ()\{ },

O E V E()+()

G V E e
e
= (), \{ }

V
E

(log)n n E+
n V=

I I
i j

V v
i i

n
= { } =1

S I a b
i i i i

n
= ={ }

=
,

1

Exercises 347

16. Let be an associative binary operation that is commutative and that can be
applied to the edges of a tree T = (V, E). Assume a single computation using

requires (1) time. How can we perform an efficient RAM semigroup
computation on the edges of T? Give the running time of your algorithm.
(Note that your algorithm could be used for such purposes as totaling the
weights of the edges of a weighted tree.)

17. Suppose an Euler tour of a tree starts at the root vertex. Show that for every
non-root vertex v of the tree, the tour uses the edge (parent(v),v) before using
any edge from v to a child of v.

18. Suppose it is known that a graph G = (V, E) is a tree with root vertex ,
but the identity of the parent vertex parent(v) is not known for .
How can every vertex v determine parent(v)? What is the running time of
your algorithm on a RAM?

19. Give an efficient RAM algorithm to determine for a binary tree T = (V, E) with
root vertex , the number of descendants of every vertex. What is the
running time of your algorithm?

20. Suppose T = (V, E) is a binary tree with root vertex . Let T ' be the graph
derived from T as described in the Euler tour section of the chapter. Is a pre-
order (respectively, inorder or postorder) traversal (see Figure 12.33) of T ' an
Euler tour? What is the running time on a RAM of a preorder (respectively,
inorder or postorder) traversal?

21. Prove that the time required for all merge operations in Kruskal’s algo-
rithm, as outlined in the text, is in the worst case on a RAM.

22. Analyze the running time of Sollin’s algorithm as described in the text.
23. Given a labeled n � n digitized image, and one “marked” pixel per compo-

nent, provide an efficient algorithm to construct a minimum-distance span-
ning tree within every component with respect to using the “marked” pixel as
the root. Present analysis for the RAM.

(log)V V
V 1

v V

v V

v V v{ }\
v V

348 Chapter 12 Graph Algorithms

Exercises 349

3

1

2

6

5

1

4

2

3

Preorder(Root)
If Root ≠ nil then
1. Process(Root)
2. Preorder(Root Left Child)
3. Preorder(Root Right Child)
End if

Order of steps at level of
graph’s root

Preorder numbering of
vertices (order of processing)

3

2

1

6

5

4

3

2

1

Inorder(Root)
If Root ≠ nil then
1. Inorder(Root Left Child)
2. Process(Root)
3. Inorder(Root Right Child)
End if

Order of steps at level of
graph’s root

Inorder numbering of
vertices (order of processing)

2

3

1

4

5

6

2

3

1

Postorder(Root)
If Root ≠ nil then
1. Postorder(Root Left Child)
2. Postorder(Root Right Child)
3. Process(Root)
End if

Order of steps at level of
graph’s root

Postorder numbering of
vertices (order of processing)

FIGURE 12.33 Tree traversals. Steps of each recursive algorithm are shown at
the top level of recursion; also, the order in which the vertices are processed by
each algorithm.

350

13
Numerical Problems

Primality

Greatest Common Divisor

Integral Powers

Evaluating a Polynomial

Approximation by Taylor Series

Trapezoidal Integration

Summary

Chapter Notes

Exercises

351

With the exception of Chapter 6, “Matrix Operations,” most of this book has been
concerned with solutions to “non-numerical” problems. That is not to say that

we have avoided doing arithmetic. Rather, we have concentrated on problems in which
algorithms do not require the intensive use of floating-point calculations or the
unusual storage required for very large integers. It is important to realize that a stable,
accurate, and efficient use of numerically intensive calculations plays an important
role in scientific and technical computing. As we have mentioned previously, the
emerging discipline of computational science and engineering is already being called
the third science, complementing both theoretical science and laboratory science.
Computational science and engineering is an interdisciplinary discipline that unites
computing, computer science, and applied mathematics with disciplinary research in
chemistry, biology, physics, and other scientific and engineering fields. Computational
science and engineering typically focuses on solutions to problems in engineering and
science that are best served via simulation and modeling. In this chapter, we examine
algorithms for some fundamental numerical problems.

In most of our previous discussions, we have used n as a measure of the size of a
problem, in the sense of how much data is processed by an algorithm (or how much
storage is required by the data processed). This is not always the case for the problems
discussed in this chapter. For example, the value of xn can be determined with only

(1) data items. However, the value of n will still play a role in determining the run-
ning time and memory usage of the algorithms discussed. The focus of this chapter is
on RAM algorithms, but several of the exercises consider the design and analysis of
parallel algorithms to solve numerical problems.

Primality

Given an integer n > 1, suppose we wish to determine if n is a prime number; that
is, if the only positive integer factors of n are 1 and n. This problem, from the area
of mathematics known as number theory, was once thought to be largely of theo-
retical interest. However, modern data encryption techniques depend on factoring
large integers, so there is considerable practical value in the primality problem.

Our analysis of any solution to the primality problem depends in part on
assumptions that we should reexamine. For most of this book, we have assumed
that operations such as computing the quotient of two numbers or the square root
of a number can be done in (1) time. This assumption is appropriate if we
assume the operands have magnitudes that are bounded both above and below.
However, researchers are now considering the primality problem for numbers with
millions of decimal digits. For such numbers n, computations of n/u (where u is a
smaller integer) and n1/2 (with accuracy, say, to some fixed number of decimal
places) take time approximately proportional to the number of digits in n, thus,

(log n) time. (Magnitudes of numbers considered are bounded by available
memory. However, when we allow the possibility of integers with thousands or
millions of decimal digits and observe that the time to perform arithmetic opera-
tions depends on the number of digits in the operands, it seems more appropriate
to say such operations take (log n) time than to say they take (1) time.) In the
following, we say “n is bounded” if there is a positive integer C such that n < C
(hence the number of digits of n is bounded), whereas “n is arbitrary” means n is
not bounded; and we speak of “bounded n” and “arbitrary n” models, respectively.

Recall that n is prime if and only if the only integral factorization n = u � v of
n with integers is u = 1, v = n. This naturally suggests a RAM algorithm
in which we test every integer u from 2 to n – 1 to see if u is a factor of n. Such an
algorithm runs in O(n) time under the bounded n model; O(n log n) time under the
arbitrary n model. However, we can improve our analysis by observing that any
factorization n = u � v of n with integers must satisfy (other-
wise, we would have n1/2 < u < v, hence , yielding
the contradictory conclusion that n < n). Thus, we obtain the following RAM
algorithm:

Procedure Primality(n, nIsPrime, factor)
Input: n, an integer greater than 1
Output: nIsPrime, true or false according to whether n is prime;
factor, the smallest prime factor of n if n is not prime
Local variable: Root_n, integer approximation of n1/2

Action:

;
;Root n n_ /= 1 2

factor = 2

n n n u u u v n= × < × × =1 2 1 2/ /
1 1 2u n /1 u v

1 u v

352 Chapter 13 Numerical Problems

;
Repeat

If , then nIsPrime
Else ;

Until (not nIsPrime) or ();

It is easily seen that this algorithm takes O(n1/2) time under the bounded n
model and O(n1/2 log n) time under the arbitrary n model. Notice that worst-case
running times of (n1/2) under the bounded n model and (n1/2 log n) time under
the arbitrary n model are achieved when n is prime.

Notice that exploring non-prime values of factor in the preceding algorithm is
unnecessary, because if n is divisible by a composite integer u � v, it follows that
n is divisible by u. Therefore, if we have in memory a list of the prime integers that
are at most n1/2 and use only these values for factor in the preceding algorithm, we
obtain a faster algorithm. It is known that the number (n) of prime numbers that
are less than or equal to n satisfies (n) = (n/log n). This follows from the Prime
Number Theorem, which states that

Thus, we can modify the previous algorithm, as follows:

Procedure Primality(n, prime, nIsPrime, factor)
Input: n, a positive integer;
prime, an array in which consecutive entries are successive primes
including all primes n1/2, and the next prime
Output: nIsPrime, true or false according to whether n is prime;
factor, the smallest prime factor of n if n is not prime
Local variables: i, an index;
Root_n, integer approximation of n1/2

Action:

{set index for first entry of prime}
;

nIs Prime true;
Repeat

;
If , then nIsPrime
Else ;

Until (not nIsPrime) or ();prime i Root n[] _>
i i +1

falsen factor n factor/ /=
factor prime i[]

Root n n_ /1 2

i 1

lim
()

/ lnn

n

n n
= 1

factor Root n> _
factor factor +1

falsen factor n factor/ /=

nIs ime truePr

Primality 353

354 Chapter 13 Numerical Problems

In light of the asymptotic behavior of the function (n), it is easily seen that

this RAM algorithm runs in O time under the bounded n model and in

O(n1/2) time under the arbitrary n model.
In the Exercises, the reader is asked to devise a parallel algorithm for the pri-

mality problem.

Greatest Common Divisor

Another problem concerned with factoring integers is the greatest common divisor
(gcd) problem. Given nonnegative integers n0 and n1, we wish to find the largest
positive integer, denoted gcd(n0, n0), that is a factor of both n0 and n1. We will find
it useful to define gcd(0, n) = gcd(n,0) = n for all positive integers n.

The greatest common divisor is used in the familiar process of “reducing a
fraction to its lowest terms.” This can be important in computer programming
when calculations originating with integer quantities must compute divisions
without roundoff error. For example, we would store 1/3 as the pair (1,3) rather
than as 0.333…33. In such a representation of real numbers, for example, we
would have (5,60) = (3,36), because each of the pairs represents the fraction 1/12.

The Euclidean algorithm, a classical solution to the gcd problem, is based on
the following observation. Suppose there are integers q and r (quotient and
remainder, respectively) such that

Then any common factor of n0 and n1 must also be a factor of r. Therefore, if
and , we have and

These observations give us the following recursive algorithm:

Function gcd(n0, n1) {greatest common divisor of arguments}
Input: nonnegative integers n0, n1
Local variables: integer quotient, remainder

Action:

If , then swap(n0, n1); {Thus, we assume .}
If , return n0
Else

;
;

return gcd(n1, remainder)
End else

remainder n n quotient×0 1
quotient n n0 1/

n1 0=
n n0 1n n0 1<

gcd , gcd , .n n n r
0 1 1() = ()

n r
1

0>q n n=
0 1

/n n
0 1

n q n r
0 1
= × + .

n

n

1 2/

log

In terms of the variables discussed above, we easily see that the running time
of this algorithm T(n0, n1), satisfies the recursive relation

It is perhaps not immediately obvious how to solve this recursion, but we can
make use of the following.

Lamé’s Theorem

The number of division operations needed to find gcd(n0, n1), for integers satisfy-
ing , is no more than five times the number of decimal digits of n1.

It follows that if we use the bounded n model discussed earlier for the primal-
ity problem, our implementation of the Euclidean algorithm on a RAM requires
T(n0, n1) = O(log(min{n0, n1})) time for positive integers n0, n1.

The Euclidean algorithm seems inherently sequential. In the exercises, a very
different approach is suggested that can be parallelized efficiently.

Integral Powers

Let x be a real (that is, floating-point) number and let n be an integer. Often we
consider the computation of xn to be a constant-time operation. This is a reason-
able assumption to make if the absolute value of n is bounded by some constant.
For example, we might assume that the computation of xn requires (1) time for

. However, if we regard n as an unbounded parameter of this problem, it
is clear that the time to compute xn is likely to be related to the value of n.

We can easily reduce this problem to the assumption that n 0 because an
algorithm to compute xn for an arbitrary integer n can be constructed by the fol-
lowing algorithm:

1. Compute .
2. If n 0, return temp else return .

Notice that step 2 requires (1) time. Therefore, the running time of the algo-
rithm is dominated by the computation of a nonnegative power. Thus, without loss
of generality in the analysis of the running time of an algorithm to solve this prob-
lem, we will assume that n 0. A standard, brute-force, algorithm is given next for
computing a simple power function on a RAM.

Function power(x, n) {return the value of xn}
Input: x, a real number
n, a nonnegative integer
Output: xn

Local variables: product, a partial result
counter, the current power

1/ temp
temp x n=

n 100

n n
0 1

0

T n n T n r
0 1 1

1, , ().() = () +

Integral Powers 355

Action:
product = 1;
If n > 0, then

For counter = 1 to n, do

End For
End If
Return product

The reader should verify that the running time of the previous RAM algorithm
is (n), and that this algorithm requires (1) extra space.

Now, let’s consider computing x19 for any real value x. The brute-force algo-
rithm given earlier requires 19 multiplications. However, by exploiting the con-
cept of recursive doubling that has been used throughout the book, observe that we
can compute x19 much more efficiently, as follows.

1. Compute (and save) .
2. Compute (and save) .
3. Compute (and save) .
4. Compute (and save) .
5. Compute and return .

Notice that this procedure requires a mere six multiplications, although we
pay a (small) price in requiring extra memory.

To generalize from our example, we remark that the key to our recursive dou-
bling algorithm is in the repeated squaring of powers of x instead of the repeated
multiplication by x. The general recursive doubling algorithm follows:

Function power(x, n) {return the value of xn}
Input: x, a real number

n, a nonnegative integer
Output: xn

Local variables: product, a partial result
counter, exponent: integers
p[0 . . . log2 n], an array used for certain powers of x
q[0 . . . log2 n], an array used for powers of 2

Action:

Product = 1;
If n > 0, then

p[0] = x;
q[0] = 1;
For counter = 1 to , dolog

2
n

x x x x19 16 2= × ×
x x x16 8 8= ×
x x x8 4 4= ×
x x x4 2 2= ×
x x x2 = ×

product product x= ×

356 Chapter 13 Numerical Problems

; { }

{ }
End For
exponent = 0;
For downto 0, do

If exponent then
exponent = exponent ;

End If exponent
End For

End If n > 0
Return product

The reader should be able to verify that this algorithm runs in (log n) time on
a RAM, using (log n) extra space. The reader will be asked to consider paral-
lelizing this RAM algorithm as an exercise.

Evaluating a Polynomial

Let f (x) be a polynomial function,

for some set of real numbers , with an ≠ 0 if n > 0. Then n is the degree
of f (x). As was the case in evaluating xn, a straightforward algorithm for evaluat-
ing f (t), for a given real number t, does not yield optimal performance. Consider
the following naïve algorithm.

evaluation = 0.
For i = 0 to n, do

If ai ≠ 0, then .
Return evaluation.

Notice that we could, instead, use an unconditional assignment in the body of
the For loop. Because the calculation of xi takes (1) time, it is often useful to
omit this calculation when it isn’t necessary (i.e., when ai = 0).

It is clear that the For loop dominates the running time. If we use the brute-
force linear time algorithm to compute xn, then the algorithm presented earlier for
evaluating a polynomial will run on a RAM in

i n
i

n

=

= ()
1

2

evaluation evaluation a x
i

i= + ×

a
i i

n{ } =0

f x a x a x a x a
n

n
n

n() = + + + +
1

1
1 0

…

+q counter n[]
product product p counter= × []

+q counter[]
+q counter n[]

counter n= log
2

p i x xq i i

[] []= = 2p counter p counter[] []= ()1
2

= 2counterq counter q counter[] []= ×2 1

Evaluating a Polynomial 357

worst-case time. Even if we use our recursive doubling (log n) time algorithm
for computing xn, this straightforward algorithm for evaluating a polynomial will
run on a RAM in

worst-case time. However, we can do better than this.
Let’s consider a third-degree polynomial. We have

For example,

This illustrates a general principle, that by grouping expressions appropriately,
we can reduce the number of arithmetic operations to a number linear in n, the
degree of the polynomial. This observation is the basis for Horner’s Rule and a
corresponding algorithm, given next.

Function Evaluate(a, x)
{evaluate the polynomial represented by the coefficient array a at
the input value x}
Input: Array of real coefficients , real number x.

Output: Value .

Local variables: i, an index variable; result to accumulate the return value

Action:

Result = a[n];
If n > 0, then

For i = n downto 1, do

End For
End If
Return result

The reader should verify that the preceding algorithm implements Horner’s
Rule on a RAM in (n) time. This polynomial evaluation method appears to be
inherently sequential, that is, it is difficult to see how Horner’s method might be
recognizable if modified for efficient implementation on a fine-grained parallel
computer. In the exercises, the reader is asked to consider other approaches to con-
structing an efficient parallel algorithm to evaluate a polynomial.

result result x a i= × + []1

f x a i xi

i

n

() []= ×
=0

a n[]0…

10 5 8 4 10 5 8 43 2x x x x x x+ + = +()() + .

a x a x a x a a x a x a x a
3

3
2

2
1 0 3 2 1 0

+ + + = +() +() + .

log (log)i n n
i

n

=

=
1

358 Chapter 13 Numerical Problems

Approximation by Taylor Series

Recall from calculus that a function that is sufficiently differentiable may be
approximately evaluated by using a Taylor polynomial (Taylor series). In particu-
lar, let f (x) be continuous everywhere on a closed interval [a, b] and n times differ-

entiable on the open interval (a, b) containing values x and x0, and let be
the set of polynomial functions defined by

where f (i) denotes the ith order derivative function and i! denotes the factorial
function. Then the error term in approximating f (x) by pn–1(x) is

for some between x and x0. (Actually, this quantity is the truncation error in such
a calculation, so called because it is typically due to replacing an exact value of an
infinite computation by the approximation obtained via truncating to a finite com-
putation. By contrast, a roundoff error occurs whenever an exact calculation yields
more non-zero decimal places than can be stored. In the remainder of this section,
we will consider only truncation errors.)

Often, we do not know the exact value of in the error term. If we knew the
value of , we could compute the error and adjust our calculation by its value to
obtain a net truncation error of 0. However, we can often obtain a useful upper
bound on the magnitude of the error. Such a bound may provide us with informa-
tion regarding how hard we must work to obtain an acceptable approximation.

For example, we may have an error tolerance > 0. This means we wish to allow
no more than of error in our approximation. The value of may give us a measure
of how much work (how much computer time) is necessary to compute an acceptable
approximation. Therefore, we may wish to express our running time as a function of
. Notice that this is significantly different from the analysis of algorithms presented

in previous chapters. We are used to the idea that the larger the value of n, the larger
the running time of an algorithm. However, in a problem in which error tolerance
determines running time, it is usually the case that the smaller the value of , the
larger the running time, that is, the smaller the error we can tolerate, the more we must
work to obtain a satisfactory approximation. It is difficult to give an analysis for large
classes of functions. This is because the rate of convergence of a Taylor series for the
function f (x) that it represents depends on the nature of f (x) and the interval [a, b] on
which the approximation is desired. Of course, the analysis also depends on the error
tolerance. Next, we present examples to illustrate typical methods.

n n

n
n

x f x p x
f

n
x x() () ()

()

!

()

= = ()1 0

p x
f x

i
x x

k

i
i

i

k

()
!

,
()

=
() ()

=

0

0
0

p
k k

n{ } =0

1

Approximation by Taylor Series 359

360 Chapter 13 Numerical Problems

EXAMPLE

Give a polynomial of minimal or nearly minimal degree that will approximate
the exponential function ex to d decimal places of accuracy on the interval
[–1,1], for some positive integer d.

Solution: Let’s take x0 = 0 and observe that for all i. Our esti-
mate of the truncation error then becomes

Notice that ex is a positive and increasing (because its first derivative is al-
ways positive) function. Therefore, its maximum absolute value on any interval
is at the interval’s right endpoint. Thus, on the interval [–1,1], we have

(Note the choice of 2.8 as an upper bound for e is somewhat arbitrary; we
could have used 3 or 2.72 instead.) The requirement of approximation accurate
to d decimal places means we need to have . Therefore, it
suffices to take

(13.1)

in order that the polynomial

approximate ex to d decimal places of accuracy on the interval [–1,1].
We would prefer to solve inequality (13.1) for n in terms of d, but a solution

does not appear to be straightforward. However, it is not hard to see from in-
equality (13.1) that n = o(d) (see the Exercises), although for small values of d,
this claim may not seem to be suggested (see the following discussion). The as-
sertion is important because we know that on a RAM, for example, n as a mea-
sure of the degree of a polynomial is also the measure of the running time in
evaluating the polynomial (in the sense that Horner’s algorithm runs in (n)
time).

p x
x

in

i

i

n

=

=
1

0

1

()
!

5 6 10. !× d n

2 8
0 5 10

2 8 10

0 5

.

!
.

.

.
!

n
nd

d

×
×

n
dx() . ×0 5 10

n
nx

e

n

e

n n
()

! !

.

!
.= <

1

1
2 8

n
nx

e

n
x()

!
.=

f x ei x() () =

Approximation by Taylor Series 361

For a given value of d, let nd be the smallest value of n satisfying inequal-
ity (13.1). Simple calculations based on inequality (13.1) yield the values
shown in Table 13.1.

Table 13.1 Values of d (decimal places) and
nd (number of terms) for the Taylor series for
ex expanded about x0 = 0 on [–1,1]

nd d

1 5
2 6
3 8
4 9
5 10

Thus, if d = 3, the desired approximating polynomial for ex on [–1,1] is

p x
x

in

i

i
3 1

0

7

=

=()
!

EXAMPLE

Give a polynomial of minimal or nearly minimal degree that will approximate
the trigonometric function sin x to d decimal places of accuracy on the interval
[– ,] for some positive integer d.

Solution: Let’s take x0 = 0 and observe that for all i. If
the latter claim is not obvious to the reader, it is a good exercise in mathemati-
cal induction. Our estimate of the truncation error then becomes

As in the previous example, accuracy to d decimal places implies an error
tolerance of . Hence, it suffices to take

(13.2)
2 10

3 2
× d

n

n!

.

3 2
0 5 10

.

!
.

n
d

n
×

n
dx() . ×0 5 10

n
n

n n

x
n

x
n n

()
! !

.

!
.<

1 3 2

f i() () , ,0 1 0 1{ }

362 Chapter 13 Numerical Problems

If we take the minimal value of n that satisfies inequality (13.2) for a given
d, we have n = o(d) (see the Exercises), although for small values of d, this
claim may not seem to be suggested (see the following discussion).

For a given value of d, let nd be the smallest value of n satisfying inequal-
ity (13.2). Simple calculations based on inequality (13.2) yield the values
shown in Table 13.2.

Table 13.2 Values of d (decimal places) and
nd (number of terms) for the Taylor series for

expanded about x0 = 0 on [– ,]

d nd

1 10
2 12
3 14
4 15
5 17

Thus, for d = 2 we can approximate sin x on the interval [– ,] to two dec-
imal places of accuracy by the polynomial

= + +x
x x x x x3 5 7 9 11

6 120 5 040 362 880 39 916 80, , , , 00
.

0
1

1

0

2

1

3

0

4

1

5
0

6

1

7

2 3 4 5

6 7

+ + + + +

+ +

x x x x x

x x
! ! ! ! !

! !! ! ! ! !
+ + + +

0

8

1

9

0

10

1

11

8 9 10 11x x x x

p x
n2 1

=()

sin x

Trapezoidal Integration

A fundamental theorem of calculus is that if for every ,
then

Unfortunately, for many important functions f (x), the corresponding anti-
derivative function F(x) is difficult to evaluate for a given value of x. As an exam-
ple, consider the function withf x x() = 1

f x dx F b F a
a

b
() () ().=

x a b[,]F x f x'() ()=

For such functions, it is important to have approximation techniques to evalu-
ate definite integrals.

One of the best-known approximation techniques for definite integrals is
Trapezoidal Integration, in which we use the relationship between definite inte-
grals and the area between the graph and the x-axis to approximate a slab of the
definite integral with a trapezoid. We will not bother to prove the following state-
ment, because its derivation can be found in many calculus or numerical analysis
textbooks.

Theorem: Let f (x) be a function that is twice differentiable on the interval
[a,b] and let n be a positive integer. Let

and let xi, , be defined by xi = a + ih. Let

Then tn is an approximation to

with the error in the estimate given by

(13.3)

for some .
The reader may wish to consider Figure 13.1 to recall the principles behind

Trapezoidal Integration.
The value of in equation (13.3) is often unknown to us, but an upper bound

for is often sufficient, as what we hope to achieve is that be small.
If we assume that for , each value of f (x) can be computed on a RAM

in (1) time, then it is easy to see that tn can be computed on a RAM in (n) time
(see the Exercises). We expect that the running time of an algorithm will be a fac-
tor of the quality of the approximation, much as was the case of computing the
Taylor series to within a predetermined error.

x a b[,]
nf "()

(,)a b

n n
a

b

t f x dx
b a f

n
= =

()
()

"()
3

212

f x dx
a

b
() ,

t h
f a f b

f x
n i

i

n

=
+

+ ()
=

() ()
.

2 1

1

i n{ }1 2 1, , ,…

h
b a

n
=

F x x f t dt
x

() ln () .= =
1

Trapezoidal Integration 363

364 Chapter 13 Numerical Problems

EXAMPLE

For some positive integer d, compute ln 2 to d decimal places via trapezoidal in-
tegration. Give an analysis of the running time of your algorithm in terms of d.

Solution: Because

we take , , , , [a,b] =
[1,2]. Notice on [1,2], and is a decreasing function (because its
derivative, , is negative for all). Therefore, attains its
maximum absolute value on [1,2] at the left endpoint. It follows that

Because we wish to attain d decimal place accuracy, we want
, so it suffices to take

(13.4)

We leave to the reader as an exercise the computation of ln 2 accurate to
a desired number of decimal places by Trapezoidal Integration, as discussed earlier.

1

6
0 5 10

10

3

10

3

2

2

2

1 2

n
n

n

d
d

d

×.

/

/

n
d×0 5 10.

n

f

n n n
=

×
=

() "() ()
.

2 1 1

12

1 2 1

12

1

6

3

2

3

2 2

f "x [,]1 2f x() ()3
f "f x"() > 0

f x x() ()3 46=f x x"() = 2 3f x x'() = 2f x x() = 1

ln ,2 1

1

2

= x dx

y = f(x)

a x1 x2 xn�1 b

FIGURE 13.1 Trapezoidal Integration. The dashed lines represent the tops of
the trapezoids. The area under each small arc is approximated by the area of a
trapezoid. It is often much easier to compute the area of a trapezoid than the
exact area under an arc. The total area of the trapezoids serves as an approxima-
tion to the total area under the curve.

If we choose the smallest value of n satisfying the inequality (13.4), we con-
clude that the running time of our approximation of ln 2 via Trapezoidal Integra-
tion as discussed previously is exponential in the number of decimal places of
accuracy, (10d/2).

We remark that it is not unusual to find that the amount of work required is
exponential in the number of decimal places of accuracy required. In these situa-
tions, trapezoidal integration may not be a very good technique to use for comput-
ing approximations that are required to be extremely accurate. Another way of
looking at this analysis is to observe that using an error tolerance of ,
we have . Further, if we substitute this into inequality (13.4), we
conclude that the minimal value of n satisfying the inequality is (–1/2).

Notice also, for example, that for d = 6 (for many purposes, a highly accurate
estimate), the minimum value of n to satisfy inequality (13.4) is n = 578. Although
this indicates an unreasonable amount of work for a student in a calculus class
using only pencil, paper, and a nonprogrammable calculator, it is still a small prob-
lem for a modern computer.

Other methods of “numerical integration” such as Simpson’s Method tend to
converge faster (not asymptotically so) to the definite integral represented by the
approximation. Fortunately, for many purposes, only a small number of decimal
places of accuracy are required. Also, it may be that another technique, such as
using a Taylor series, is more efficient for computing the value of a logarithm.

Summary

In contrast with most previous chapters, this chapter is concerned with numerical
computations. Many such problems have running times that do not depend on the
volume of input to be processed, but rather on the value of a constant number of
parameters, or, in some cases, on an error tolerance. The problems considered come
from branches of mathematics such as algebra and number theory, calculus, and
numerical analysis. We consider problems of prime factorization, greatest common
divisor, integral powers, evaluation of a polynomial, approximations via a Taylor
series, and trapezoidal integration. The solutions presented are all for the RAM;
readers will be asked to consider parallel models of computation in the Exercises.

Chapter Notes

The primality problem and the greatest common divisor problem are taken from
Number Theory, a branch of mathematics devoted to fundamental properties of
numbers, particularly (although not exclusively) integers.

We have used the Prime Number Theorem concerning the asymptotic behav-
ior of the function (n), the number of primes less than or equal to the positive
integer n. This theorem is discussed in the following sources:

• T.M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New
York, 2001.

d = log ()
10

2
= ×0 5 10. d

Chapter Notes 365

• W. Narkiewicz, The Development of Prime Number Theory, Springer-Verlag,
Berlin, 2000.

• K.H. Rosen, Elementary Number Theory and Its Applications, Addison-
Wesley Publishing, Reading, MA, 1993.

The latter also discusses the Euclidean algorithm for the greatest common
divisor problem and contains a proof of Lamé’s Theorem.

Other problems we have discussed in this chapter are taken from numerical
analysis, an area of applied mathematics and computing that is concerned with
computationally intensive problems involving numerical algorithms, approxima-
tion, error analysis, and related issues. Problems in numerical analysis have appli-
cations in branches of mathematics that derive from calculus (differential
equations, probability, and statistics) and linear algebra (matrix multiplication,
solution of systems of linear equations, and linear programming) and their applica-
tion areas. For an introduction to the field, the reader is referred to the following:

• N.S. Asaithambi, Numerical Analysis: Theory and Practice, Saunders College
Publishing, Fort Worth, 1995.

• R.L. Burden and J.D. Faires, Numerical Analysis, PWS-Kent Publishing
Company, Boston, 1993.

• S. Yakowitz and Ferenc Szidarovszky, An Introduction to Numerical Compu-
tations, Prentice Hall, Upper Saddle River, NJ, 1990.

We have discussed approximation problems with regard to the algorithmic
efficiency of our solutions in terms of error tolerance, sometimes expressed in
terms of the number of decimal places of accurate calculation. It is tempting to say
this is rarely important, that most calculations require only a small number of dec-
imal places of accuracy. One should note, however, that there are situations in
which very large numbers of accurate decimal places are required. As an extreme
example, some mathematicians are interested in computing the value of to mil-
lions of decimal places. Although these examples involve techniques beyond the
scope of this book (because, for example, ordinary treatment of real numbers
allows for the storage of only a few decimal places), the point is that interest exists
in computations with more than “ordinary” accuracy.

Exercises

1. Devise a parallel algorithm to solve the primality problem for the positive
integer n. At the end of the algorithm, every processor should know whether n
is prime and, if so, what the smallest prime factor of n is. Use the bounded n
model and assume your computer has processors, but that a list of
primes is not already stored in memory. Analyze the running time of your
algorithm on each of the following platforms: CREW PRAM, EREW PRAM,
mesh, and hypercube.

n1 2/

366 Chapter 13 Numerical Problems

2. Suppose you modify the algorithm of the previous exercise as follows:
assume a list of primes p satisfying is distributed one prime per
processor. How many processors are needed? Analyze the running time of the
resulting algorithm run on each of the following platforms: CREW PRAM,
EREW PRAM, mesh, and hypercube.

3. Consider the problem of computing gcd(n0,n1) for nonnegative integers n0, n1,
where . Assume a list of primes p satisfying is kept in
memory (for a parallel model of computation, assume these primes are dis-
tributed one prime per processor). Devise an algorithm for computing
gcd(n0,n1) efficiently based on finding, for each prime p on this list, the maxi-
mal nonnegative integer k such that pk is a common factor of n0 and n1.
Assume multiplication and division operations can be done in (1) time. For
parallel machines, at the end of the algorithm, every processor should have
the value of gcd(n0,n1). Analyze the running time of such an algorithm for the
RAM, CREW PRAM, EREW PRAM, mesh, and hypercube. Hint: consider
using our efficient sequential algorithm for computing xn.

4. Decide whether our (log n)-time algorithm for computing xn is effectively
parallelizable. That is, either give a version of this algorithm for a PRAM that
runs in o(log n) time and show that it does so, or argue why it is difficult or
impossible to do so.

5. Show that a RAM algorithm to evaluate a polynomial of degree n must take
(n) time; hence, our (n) time algorithm is optimal.

6. Devise an algorithm for evaluation of a polynomial of degree n on a PRAM.
This will be somewhat easier on a CREW PRAM than on an EREW PRAM,
but in either case, you should be able to achieve (log n) time using (n/log n)
processors, hence an optimal cost of (n).

7. Modify your algorithm for the previous exercise to run on a mesh or hyper-
cube of size n. Assume the coefficients of the polynomial are distributed (1)
per processor. Analyze the running time for each of these architectures.

8. Show that for any , the value of ex can be computed to within
for positive integer d (that is, to d-decimal place accuracy) in o(d)

time on a RAM. You may use inequality (13.1).
9. Show that inequality (13.2) implies n = o(d) and use this result to show that

the function sin x can be computed for any to d-decimal place
accuracy in o(d) time on a RAM.

10. Show that if we assume the value of f (x) can be computed in (1) time for all
, the Trapezoidal Integration estimate tn can be computed on a RAM

in (n) time.
11. Analyze the running time of using Trapezoidal Integration to compute

to d decimal places, as an asymptotic expression in d. To simplify the prob-
lem, you may assume (possibly incorrectly) that for all , ex can be
computed with sufficient accuracy in (1) time.

x [,]0 1

e dxx2

0

1

x a b[,]

x [,]

0 5 10. × d
x [,]1 1

p n1 2/n n
0 1

p n1 2/

Exercises 367

368

Bibliography

369

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.

2. S.G. Akl and K.A. Lyons, Parallel Computational Geometry, Prentice Hall, 1993.
3. G.S. Almasi and A. Gottlieb, Highly Parallel Computing, The Benjamin/Cum-

mings Publishing Company, New York, 1994.
4. G. Amdahl, “Validity of the single processor approach to achieving large scale

computing capabilities,” AFIPS Conference Proceedings, vol. 30, Thompson
Books, 1967, 483–85.

5. T.M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New
York, 2001.

6. N.S. Asaithambi, Numerical Analysis: Theory and Practice, Saunders College
Publishing, Fort Worth, TX, 1995.

7. M.J. Atallah, ed., Algorithms and Theory of Computation Handbook, CRC Press,
Boca Raton, FL, 1999.

8. M.J. Atallah and D.Z. Chen, “An optimal parallel algorithm for the minimum
circle-cover problem,” Information Processing Letters 32, 1989, 159–65.

9. M. Atallah and M. Goodrich, “Efficient parallel solutions to some geometric prob-
lems,” Journal of Parallel and Distributed Computing 3, 1986, 492–507.

10. S. Baase, “Introduction to parallel connectivity, list ranking, and Euler tour tech-
niques,” in Synthesis of Parallel Algorithms, J.H. Reif, ed., Morgan Kaufmann
Publishers, San Mateo, CA, 1993, 61–114.

11. K.E. Batcher, “Sorting networks and their applications,” Proc. AFIPS Spring Joint
Computer Conference 32, 1968, 307–14.

12. J.L. Bentley, D. Haken, and J.B. Saxe, “A general method for solving divide-and-
conquer recurrences,” SIGACT News, 12 (3), 1980, 36–44.

13. A.A. Bertossi, “Parallel circle-cover algorithms,” Information Processing Letters
27, 1988, 133–39.

14. G.E. Blelloch, Vector Models for Data-Parallel Computing, The MIT Press, Cam-
bridge, MA, 1990.

15. G. Brassard and P. Bratley, Algorithmics: Theory and Practice, Prentice Hall,
1988.

16. L. Boxer, “On Hausdorff-like metrics for fuzzy sets,” Pattern Recognition Letters
18, 1997, 115–18.

17. L. Boxer and R. Miller, “A parallel circle-cover minimization algorithm,” Infor-
mation Processing Letters 32, 1989, 57–60.

18. L. Boxer and R. Miller, “Parallel algorithms for all maximal equally spaced
collinear sets and all maximal regular coplanar lattices,” Pattern Recognition Let-
ters 14, 1993, 17–22.

19. L. Boxer and R. Miller, “A parallel algorithm for approximate regularity,” Infor-
mation Processing Letters 80 (2001), 311–16.

20. L. Boxer and R. Miller, “Coarse-grained gather and scatter operations with
applications,” Journal of Parallel and Distributed Computing, 64 (2004),
1297–1320.

21. R.L. Burden and J.D. Faires, Numerical Analysis, PWS-Kent Publishing
Company, Boston, 1993.

22. B.B. Chaudhuri and A. Rosenfeld, “On a metric distance between fuzzy sets,”
Pattern Recognition Letters 17, 1996, 1157–60.

23. R.J. Cole, “An optimally efficient selection algorithm,” Information Process-
ing Letters 26 (1987/88), 295–99.

24. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algo-
rithms, 2nd ed., The MIT Press, Cambridge, MA, 2001.

25. F. Dehne, ed., special edition of Algorithmica 24, no. 3–4, 1999.
26. F. Dehne, A. Fabri, and A. Rau-Chaplin, “Scalable parallel geometric algo-

rithms for multicomputers,” Proceedings 9th ACM Symposium on Computa-
tional Geometry (1993), 298–307.

27. S. Even, Graph Algorithms, Computer Science Press, 1979.
28. M.J. Flynn, “Very high-speed computing systems,” Proceedings of the IEEE,

54 (12), 1966, 1901–09.
29. M.J. Flynn, “Some computer organizations and their effectiveness,” IEEE

Transactions on Computers, C-21, 1972, 948–60.
30. M.T. Goodrich and R. Tamassia, Data Structures and Algorithms in JAVA,

John Wiley & Sons, Inc., New York, 1998.
31. R.L. Graham, “An efficient algorithm for determining the convex hull of a

finite planar set,” Information Processing Letters 1, 1972, 132–33.
32. R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-

Wesley Publishing Company, Reading, MA, 1989.
33. C.A.R. Hoare, “Quicksort,” Computer Journal, 5 (1), 1962, 10–15.
34. J.E. Hopcroft and R.E. Tarjan, “Efficient algorithms for graph manipulation,”

Communications of the ACM 16, 1973, 372–78.
35. E. Horowitz, S. Sahni, and S. Rajasekaran, Computer Algorithms in C++,

Computer Science Press, New York, 1997.
36. J. Já Já, An Introduction to Parallel Algorithms, Addison-Wesley, Reading,

MA, 1992.
37. R.A. Jarvis, “On the identification of the convex hull of a finite set of points in

the plane,” Information Processing Letters 2, 1973, 18–21.
38. A.B. Kahng and G. Robins, “Optimal algorithms for extracting spatial regu-

larity in images,” Pattern Recognition Letters 12, 1991, 757–64.
39. R.M. Karp and V. Ramachandran, “A survey of parallel algorithms and shared

memory machines,” in Handbook of Theoretical Computer Science: Algo-
rithms and Complexity, A.J. vanLeeuwen, ed., Elsevier, New York, 1990,
869–941.

370 Bibliography

40. S. Khuller and B. Raghavachari, “Basic graph algorithms,” in Algorithms and
Theory of Computation Handbook, M.J. Atallah, ed., CRC Press, Boca Raton,
FL, 1999.

41. D.E. Knuth, Fundamental Algorithms, Volume 1 of The Art of Computer Pro-
gramming, Addison-Wesley, Reading, MA, 1968.

42. D.E. Knuth, Seminumerical Algorithms, Volume 2 of The Art of Computer
Programming, Addison-Wesley, Reading, MA, 1969.

43. D.E. Knuth, Sorting and Searching, Volume 3 of The Art of Computer Pro-
gramming, Addison-Wesley, Reading, MA, 1973.

44. D.E. Knuth, “Big omicron and big omega and big theta,” ACM SIGACT News,
8 (2), 1976, 18–23.

45. C.C. Lee and D.T. Lee, “On a cover-circle minimization problem,” Informa-
tion Processing Letters 18, 1984, 180–85.

46. F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes, Morgan Kaufmann Publishers, San Mateo, CA, 1992.

47. S.B. Maurer and A. Ralston, Discrete Algorithmic Mathematics, Addison-
Wesley Publishing Company, Reading, MA, 1991.

48. R. Miller and Q.F. Stout, “Efficient parallel convex hull algorithms,” IEEE
Transactions on Computers, 37 (12), 1988.

49. R. Miller and Q.F. Stout, Parallel Algorithms for Regular Architectures:
Meshes and Pyramids, The MIT Press, Cambridge, MA, 1996.

50. R. Miller and Q.F. Stout, “Algorithmic techniques for networks of proces-
sors,” in Algorithms and Theory of Computation Handbook, M. Atallah, ed.,
CRC Press, Boca Raton, FL, 1999.

51. S.B. Nadler, Jr., Hyperspaces of Sets, Marcel Dekker, New York, 1978.
52. W. Narkiewicz, The Development of Prime Number Theory, Springer-Verlag,

Berlin, 2000.
53. M.H. Overmars and J. van Leeuwen, “Maintenance of configurations in the

plane,” Journal of Computer and Systems Sciences 23, 1981, 166–204.
54. M.L. Puri and D.A. Ralescu, “Differentielle d’un fonction floue,” Comptes

Rendes Acad. Sci. Paris, Serie I 293, 1981, 237–39.
55. F.P. Preparata and M.I. Shamos, Computational Geometry, Springer-Verlag,

New York, 1985.
56. M.J. Quinn, Parallel Computing Theory and Practice, McGraw-Hill, Inc.,

New York, 1994.
57. S. Ranka and S. Sahni, Hypercube Algorithms for Image Processing and Pat-

tern Recognition, Springer-Verlag, New York, 1990.
58. G. Robins, B.L. Robinson, and B.S. Sethi, “On detecting spatial regularity in

noisy images,” Information Processing Letters 69 (1999), 189–95.
59. K.H. Rosen, Elementary Number Theory and Its Applications, Addison-Wes-

ley Publishing, Reading, MA, 1993.

Bibliography 371

60. A. Rosenfeld, “‘Continuous’ functions on digital pictures,” Pattern Recogni-
tion Letters 4, 1986, 177–84.

61. D. Sarkar and I. Stojmenovic, “An optimal parallel circle-cover algorithm,”
Information Processing Letters 32, 1989, 3–6.

62. G.W. Stout, High Performance Computing, Addison-Wesley Publishing Com-
pany, New York, 1995.

63. V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathematik
14 (3), 1969, 354–56.

64. R.E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM Journal
on Computing, 1 (2), June 1972, 146–60.

65. R.E. Tarjan, Data Structures and Network Algorithms, Society for Industrial
and Applied Mathematics, 1983.

66. F.L. Van Scoy, “The parallel recognition of classes of graphs,” IEEE Transac-
tions on Computers 29, 1980, 563–70.

67. B. Wagar, “Hyperquicksort: A fast sorting algorithm for hypercubes,” in
Hypercube Multiprocessors 1987, M.T. Heath, ed., SIAM, 292–99.

68. S. Warshall, “A theorem on Boolean matrices,” Journal of the ACM 9, 1962,
11–12.

69. S. Yakowitz and Ferenc Szidarovszky, An Introduction to Numerical Compu-
tations, Prentice Hall, Upper Saddle River, NJ, 1990.

372 Bibliography

373

Index

Symbols
(left arrow), using with values and
variables, 9–10

= (equal sign), using with values and
variables, 9–10
(theta) notation
in asymptotic relationships, 11–12
example of, 6–7
and recursion, 42

(1) time
and operator, 166
in BinSort algorithm, 26–27
in bitonic merge, 82
and combinational circuits, 76
in CR PRAM example, 99
in CRCW PRAM example, 105
in ER PRAM example, 100, 102
executing fundamental operations in,

21–27
explanation of, 29
and Gaussian elimination, 158, 159
and HyperQuickSort, 228
and integral powers, 355
for linked lists on PRAMs, 193
memory access on RAMs in, 92, 94
in merged list example, 51
for mesh propagation algorithm, 282
on PRAMs, 94–95, 96
and RAMs for overlapping line seg-

ments, 187
and running time for selection prob-

lem, 209
in sequential searches, 44–45
in Split algorithm, 51
for splitting lists with QuickSort, 215

(log k) time, relationship to RAMs, 92
(log n) time
and array packing on PRAMs, 181
in bitonic merge, 82
and BitonicSort, 233
and convex hull on PRAMs, 259
in CRCW PRAM example, 106
and cross products for mesh-of-trees,

131
in ER PRAM example, 100, 102, 103,

104, 105
explanation of, 29
and Gaussian elimination, 158
and linked lists on PRAMs, 196
and mesh-of-trees, 128
and parallel prefix on PRAMs, 168
and PRAMs for overlapping line seg-

ments, 187–188
and pyramids, 125
relationship to matrix multiplication,

149–150
and trees, 125

(log2 n) time
and BitonicSort, 85
and hypercubes, 133
role in BitonicSort, 87

(logk n) time, explanation of, 29
(n) space, using in InsertionSort
routine, 23–24

(n) time
and array packing on RAMs, 180
for convex hull in image processing,

287–288
in CRCW PRAM example, 105
and divide-and-conquer with Merge-

Sort, 202
in ER PRAM example, 100, 103
explanation of, 29
and Gaussian elimination, 158
and Graham’s scan on RAMs, 249–250
and linear arrays in interconnection

networks, 110–111, 112–113
for linked lists on RAMs, 193
and matrix multiplication, 153
in merged list example, 51
and meshes for overlapping line seg-

ments, 188
and parallel prefix, 166
and parallel prefix on PRAMs, 170
and point domination query, 185
and QuickSort, 212
and RAMs for overlapping line seg-

ments, 186–187
and RAMs for parallel prefix,

176–177
and RAMs for selection problem, 206
and running time for algorithm on

RAMs, 183
and running time for selection prob-

lem, 209
in sequential searches, 45
in Split algorithm, 51
in tractor-tread algorithm, 115–116
and trees, 125

(n2) time
explanation of, 29
running algorithms in, 28

(nlog n) time
and all-nearest neighbor problem, 262
and convex hull on RAMs, 255
in ER PRAM example, 102–103
and linked lists on PRAMs, 196
and parallel prefix on PRAMs, 170

(n/log n) time
and PRAMs for parallel prefix, 177
and RAMs for overlapping line seg-

ments, 187
and trees, 125

(n/q) time, relationship to DBM, 138
(prq) time, relationship to matrix multi-
plication, 148

(q) time, relationship to matrix multi-
plication, 148
(omega) notation
in asymptotic relationships, 11–12
example of, 6–7

(n) time
and parallel prefix, 166
using with linear arrays, 116

(nlog n) worst case running times, sig-
nificance of, 25

, expressing running times as functions
of, 359

(n), asymptotic behavior of, 365–366
, value in error terms, 359
(little omega) notation
in asymptotic relationships, 11–12
example of, 7–8
operator
defining for segment broadcasting,

182–183
and parallel prefix, 166
role in ER PRAM example, 100
as unit-time operator, 166

A
a ≥ 1 and b > 1

in Lemma 1 of Master Theorem, 61
in Lemma 2 of Master Theorem, 63
in Lemma 3 of Master Theorem, 65
in Master Method, 59

address space, significance of, 108
adjacency lists, representing graphs as,

307–308
adjacency matrix graph representation

computing transitive closure of,
323–324

example of, 308
adjacent vertex, description of, 304
algorithms

analyzing, 4–5
for comparisons, 28
for copying operations, 28
dependence on functions in, 14–20
implementing, 4
phases in, 93
for pointer manipulation operations,

28
rules for analysis of, 21–27
See also architecture-independent

algorithm development; graph
algorithms

all-nearest neighbor problem
between labeled sets, 288–289
overview of, 262–264

all-points minimal internal distance prob-
lem, relationship to image processing,
290–293

Amdahl’s Law
definition of, 141–142
resource for, 143

approximation by Taylor series,
overview of, 359–362

arbitrary CW model, relationship to
PRAMs, 97

architecture-independent algorithm de-
velopment, overview of, 264. See also
algorithms; graph algorithms

arithmetic operations, constant amounts
of time for, 21

array implementation, relationship to
QuickSort, 216–221

array packing
and network models, 181–182
overview of, 179–180
and PRAMs, 181
and RAMs, 180

374 Index

Index 375

array version of QuickSort
running times for, 222
space requirements for, 223

associative read, definition of, 235
asymptotic analysis, 6–9, 11–12

of g(n) in Lemma 2 of Master
Theorem, 64

implication of, 5
limitations of, 27–28
and limits, 12–14
resource for, 30
of summation by integration, 14–20

B
back substitution, performing for matrix

multiplication, 156–158
backtracking algorithm, DFS as, 314
base case, relationship to recursion, 41,

42
Batcher, Ken (BitonicSort and Odd-Even

MergeSort), 75, 86–87, 88
BFS (breadth-first search) algorithm

versus DFS (depth-first search),
313–315

overview of, 315–316
using with graphs, 309–313

bidirectional communication links,
significance to interconnection
networks, 110

bigList, relationship to QuickSort,
212–216

binary, relationship to parallel prefix, 166
binary associative operation, semigroup

operation as, 100
binary search

overview of, 43–47
on RAMs, 105
recurrence related to, 72
See also recursion

BinSort algorithm, using, 26–27
bisection width

of hypercubes, 133
of linear arrays, 111
of meshes, 120
of mesh-of-trees, 128
of pyramids, 126
relationship to interconnection net-

works, 109
bitonic merge, overview of, 80–83
bitonic sequences

conceptualizing, 77–78
creating ordered lists from, 84
example of, 79, 80

BitonicSort
analysis of running time for, 233–234
on meshes, 230–233, 234
overview of, 84–87, 229–230
relationship to sorting networks, 76–77
resources for, 88

bitwise operations, constant amounts of
time for, 21

black-and-white picture, image process-
ing problems related to, 278–280

bounding summation, example of, 19
broadcasting units of data

with CR PRAM, 98–99
with ER PRAM, 99–105

BRSroutine, using with RAMs and con-
nected component labeling, 325

C
ceiling functions, examples of, 9–11
CGM (coarse-grained multicomputer)

model
and parallel prefix, 176
resource for, 143
significance of, 137–138

closed binary operator, relationship to
parallel prefix, 166

coarse-grained
multicomputers, 91
parallel computers and interconnec-

tion networks, 136–138
collapse operation

example of, 321
relationship to tree contraction, 320

combinational circuits, significance of,
76

combine routine, running on convex hull,
258

Combine/Stitch, role in divide-and-
conquer strategy, 201

combining CW model, relationship to
PRAMs, 97

common CW model, relationship to
PRAMs, 97

communication diameter
for hypercubes, 131, 132–133
of linear arrays, 116
of mesh-of-trees, 128
relationship to interconnection

networks, 109
of trees, 124

comparison elements, role in sorting
networks, 76–77

comparison operators, constant amounts
of time for, 21

comparisons
algorithms for, 28
capturing for algorithms, 14

complete graph, description of, 304
component labeling problem

and meshes, 281–285
and RAMs, 280–281
significance of, 198

computational geography, 183, 243. See
also convex hull algorithm; smallest
enclosing box

compute phase of algorithms, explana-
tion of, 93

computing-science problems, resources
for, 161

concurrent read
definition of, 235
implementing, 236–237
on mesh, 238

concurrent write
definition of, 236
implementing, 237–238
on mesh, 238

conditional/branch operations, constant
amounts of time for, 21

connected component labeling
and meshes, 330
and PRAMs, 325–330
and RAMs, 325

connected graph, description of, 305
conquer strategy, explanation of, 201
convex hull algorithm

analyzing for PRAMs, 259
combining, 257–259
divide-and-conquer solution for,

251–259
and Graham’s scan, 246–260
and image processing, 285–288
on meshes, 255–256
overview of, 244–246
on PRAMs, 256–257
on RAMs, 255
See also Jarvis’ march; smallest

enclosing box
copying operations, algorithms for, 28
cost/work, definition of, 140
counting sort

and array packing, 180, 181–182
using with mesh-of-trees, 129
See also MergeSort algorithm; Quick-

Sort; sorting
coverage query problem, description of,

266–267
CPU time, analyzing algorithms in terms

of, 4–5
CR (concurrent read) model, relationship

to PRAMs, 96
CR PRAM model

example of, 98–99
and Gaussian elimination, 159
and matrix multiplication, 150

CRCW PRAM model
and connected component labeling,

328–329
description of, 97
example of, 105–106

CREW PRAM model
description of, 97
and PRAMs for minimum-cost span-

ning trees, 334–335
cross product, creating for mesh-of-trees,

131
CS&E (computational science and engi-

neering), overview of, 147
CW (concurrent write) model, relation-

ship to PRAMs, 96

D
dag (directed acyclic graph), description

of, 304–305
data

comparing and exchanging on two
processors, 231

sorting with respect to other order-
ings, 234–235

deck of cards, splitting, 51
degree of processors and networks

explanations of, 108

relationship to mesh-of-trees, 128
degree of vertex and graph, descriptions

of, 306
dense graph, description of, 304
dequeuing operation, relationship to

QuickSort, 215
DFS (depth-first search) algorithm

overview of, 315–316
using with graphs, 313–315

digital images
definition of, 278
Hausdorff metric for, 293–296

Dijkstra’s algorithm, using in shortest-
path problems, 340–342

directed graph, description of, 303
distance problems in image processing

all-nearest neighbor between labeled
sets, 288–289

all-points minimal internal distance,
290–293

Hausdorff metric for digital images,
293–296

and running times, 289–290
distributed

versus shared address space, 108
versus shared memory, 107

divide-and-conquer algorithm
and component labeling, 283
for component labeling problem,

281–285
and convex hull, 251–259
definition of, 201
and linear arrays, 203–205
and MergeSort algorithm, 202
resources for, 238–239
and selection problem, 205–206

dot products, relationship to matrix
multiplication, 148

“dusty deck” codes, examples of,
216–217

E
easy split-hard join algorithm, MergeSort

as, 212
edges of graphs

assigning weights to, 306
representing, 304

edge-weighted graph, description of, 306
efficiency, definition of, 141
elementary row operation, relationship to

matrix multiplication, 154
elements, determining ranks of, 205
enqueuing operation, relationship to

QuickSort, 215
equal sign (=), using with values and

variables, 9–10
equalList, relationship to QuickSort, 212,

214, 216
equations, using for induction, 37–40
ER (exclusive read) model, relationship

to PRAMs, 96
ER PRAM model

example of, 99–105
and Gaussian elimination, 159
and segment broadcasting, 182

EREW PRAM model
description of, 97
using with graphs, 317

Euclidean algorithm, description of, 354
Euler, Leonhard and graphs, 301–302
Euler tour, using with PRAMs and

graphs, 318
EW (exclusive write) model, relationship

to PRAMs, 96
EW PRAM model, relationship to

Gaussian elimination, 159
examples

approximation by Taylor series,
360–362

asymptotic analysis, 12–14
asymptotic complexity, 16–20
asymptotic notation, 8, 10–11
binary searches, 46
BinSort algorithm, 25–27
Bitonic Sort, 84–87
collapse operation, 321
graphs, 303
induction, 37–40
InsertionSort routine, 22–24
merged list, 50
merging ordered lists, 49
Partition routine of QuickSort on

array of 8 items, 220–221
PRAMs, 98–106
recurrences, 71–72
SelectionSort, 31
sequential search, 44
Split algorithm, 51
Trapezoidal Integration, 364
See also illustrations

execution
on PRAMs, 95
on RAMs, 93

expression evaluation problem, require-
ments of, 318

F
f and g functions, asymptotic analysis of,

12–14
factorial function, computing, 40–41
fan-in and fan-out, relationship to combi-

national circuits, 76
figures. See illustrations
“find” operations, sorting of data in, 268
floor functions, examples of, 9–11
Flynn’s Taxonomy

explanation of, 139–140
resource for, 143

f(n) function
growth rate of, 5
in Lemma 2 of Master Theorem, 63
in Lemma 3 of Master Theorem, 65
in Master Method, 59
in Master Theorem, 61
See also functions; g(n) function

functions
evaluating by Taylor series, 359
expressing in terms of functions, 6–9
factorial functions, 40–41
floor and ceiling functions, 9–11

growth rates of, 5
increasing functions, 19–20
nondecreasing functions, 14–15
nonincreasing functions, 17–18
set-valued functions, 8
See also f(n) function; g(n) function

fundamental operations, executing in
(1) time, 21–27

fuzzy sets, role in Hausdorff metric for
digital images, 295–296

G
gather operations, relationship to CGM,

137–138
Gaussian elimination

overview of, 153–160
resource for, 161
sensitivity to roundoff error, 160–161

gcd (greatest common divisor), overview
of, 354–355

getfirst operation, relationship to Quick-
Sort, 215

g(n) function
evaluating asymptotically in Master

Theorem, 68
growth rate of, 5
in Lemma 2 of Master Theorem, 63,

65
See also f(n) function; functions

Graham’s scan
analysis on RAMs, 249–250
parallel implementations of, 250
relationship to convex hull, 246–249

granularity, definition of, 140
graph algorithms

BFS (breadth-first search), 309–313
DFS (depth-first search), 313–315
DFS and BFS, 315–316
overview of, 309
See also algorithms; graph algorithms

graph representations
adjacency lists, 307–308
adjacency matrix, 308
overview of, 306–307
unordered edges, 309

graph traversal, definition of, 309
graphs

assigning weights to edges and
vertices of, 306

describing, 304
paths in, 304
representing vertices and edges in,

304
resources for, 344–345
tasks associated with, 301
terminology of, 303–306
types of, 304–306
See also PRAM graph techniques

greatest common divisor, resource for,
366

Greatest Lower Bound Axiom, relation-
ship to induction, 36

greedy algorithm, relationship to over-
lapping line segments, 267

growth rate, significance to functions, 5

376 Index

H
hard split-easy join algorithm, QuickSort

as, 212
Harris, Sidney, 42
Hausdorff metric for digital images,

overview of, 293–296
head pointer variable, role in merging

ordered lists, 49
Heapsort routine, significance of, 76
h(i) = i nondecreasing function, example

of, 14, 16–17
Hoare, C.A.R. (QuickSort), 211
hooking operation, role in connected

component labeling, 328
Horner’s Rule, relationship to evaluating

polynomials, 358
hypercubes

and array packing for network mod-
els, 182

and parallel prefix, 174–175
relationship to interconnection net-

works, 131–136
resource for, 142, 238

HyperQuickSort
versus BitonicSort, 229–230
using for medium-grained hypercube,

228–229

I
identity matrix, definition of, 153–154
illustrations

notation, 7
notation, 8

6�6 weight adjacency matrix, 338
6�6 weight matrix for minimum-cost

spanning trees, 337
8�8 image after labeling 4�4 quad-

rants, 284
adjacency matrix graph representa-

tion, 308
all-nearest neighbor between labeled

sets problem, 289
angles of support for smallest enclos-

ing box, 262
BFS (breadth-first search) traversal,

310
BFS search tree, 316
binary search, 46
BinSort applied to array, 27
bitonic merge units, 83
bitonic sequence, 78, 79
BitonicSort, 84
BitonicSort for eight elements, 86
BitonicSort on mesh of size 16, 232
border elements in k�k submesh, 292
bottom-up treelike computation in ER

PRAM, 101
bounding summation, 15, 19
broadcasting data on meshes, 123
buckets based on AM=13, 207
collapse operation, 321
combining convex hull algorithms,

258, 259
comparison element, 77
computing minimum on input-based

linear array, 114
computing parallel prefix on PRAMs,

170
computing star function in parallel,

329
concurrent read on linear array of size

4, 237
concurrent write in r�r region, 338
connected components confined to

3_3 region, 282
convex and non-convex regions, 244
convex hull, 245
convex hull with divide-and-conquer,

252
cross product of items, 129
data distribution for hypercubes, 134
data flow for matrix multiplication on

2n�2n mesh, 152
data movement in semigroup opera-

tion on hypercube, 136
data movement of van Scoy’s imple-

mentation of Warshall’s algorithm,
324

DFS (depth-first search) traversal, 314
DFS search tree, 315
digitized 4�4 picture, 281
Dijkstra’s algorithm, 341
directed graph, 306
directed graph and adjacency list

graph representation, 307
directed graph with connected compo-

nents, 305
distance matrices rearranged from

recursive solutions, 293
dividing n planar points in S, 256
expression tree, 320
f(t) = 5 + sin t, 8
Graham’s scan, 246
graphs, 303, 304
graphs by Euler, 302
growth rate of two functions, 5
Hausdorff metric for digital images,

294
hooking operation, 328
hypercube of size 16, 131
hypercube of size n, 132
increasing function in range [a,b], 20
input and output for bitonic merge

unit, 80
input into tree contraction algorithm,

320
InsertionSort routine, 25
iterative rule for constructing bitonic

merge unit, 82
Kruskal’s algorithm, 332
linear array of size n, 111
linked list with support for dynamic

allocation, 49
list ranking, 195
matrix multiplication, 148
matrix multiplication on 2n�2n mesh,

151
maximum sum subsequence problem,

178
for MergeSort algorithm, 60

MergeSort on linear array, 204
merging two ordered lists, 49
mesh of size 16, 120
mesh-of-trees, 127
minimal-cardinality cover of [a,b],

268
minimum of n items with n/log2 n

processors on PRAMs, 104
n items for processors on linear ar-

rays, 112, 113
n processors partitioned into subsets,

144
nearest neighbor of p, 263
O notation, 7
o notation, 7
overlapping convex hulls, 286
overlapping line segments, 185–189
parallel component-labeling algo-

rithm, 327
parallel on PRAMs with linked list

input, 197
parallel prefix, 167
parallel prefix computation, 169
parallel prefix on hypercubes, 175
Partition routine to solve selection

problem, 207
partitioning set S of n planar points,

257
paths from S() for Graham’s scan,

247–248
plane sweep operation for intersection

query problem, 266
point domination problem, 184
PRAM characteristics, 94
PRAM performance improvement,

104
pyramid of base size n, 126

notation, 6
QuickSort on array of size 9, 218
QuickSort on linked list, 213
RAMs (random access machines), 92
recursion tree for MergeSort on

RAMs, 203
recursion tree for recurrence equation,

60
recursive doubling algorithm to com-

pare parallel prefix, 169
recursively sorting set of data, 48
ring of size 8, 119
row and column rotations for matrix

multiplication, 153
row-major index scheme for mesh,

172
segmented broadcast, 183
SelectionSort, 31
semigroup operation on hypercube of

size n, 135
sequential search, 44
shared-memory machine, 107
shortest paths and shortest-path trees,

340
shuffled-row major index scheme,

231
smallest enclosing box of S, 260
sorting data on input-based linear

Index 377

array, 115
sorting data on meshes, 235
sorting reduced set of data on mesh-

of-trees, 130
“spiral” and “snake”, 283
star-shaped computer of size 6, 143
stitch step for convex-hull divide-and-

conquer, 252
tangent lines for convex hulls, 253
tractor-tread algorithm, 115
transmit-and-compare for hypercubes,

134–135
Trapezoidal Integration, 364
tree contraction, 322
tree of base size 8, 124
undirected connected graph, 311
undirected graph with connected com-

ponents, 305
undirected tree, 319
undirected unconnected graph, 312
upper common tangent lines for con-

vex hulls, 254
See also examples

image processing
analyzing running time for, 287–288
of black-and-white pictures, 278–280
and component labeling, 280–285
and convex hull, 285–288
and distance problems, 288–296
resources for, 296–297

increasing function, example of, 19–20
in-degree of vertex, description of, 306
indexes, using with QuickSort partition

routine, 219
induction

definition of, 35
examples of, 37–40
in Lemma 1 of Master Theorem, 62
in Master Theorem, 67, 70–71
overview of, 36–37
and QuickSort partition routine, 226
versus recursion, 40
resource for, 54

inductive hypothesis, explanation of, 36
input-based linear array model

description of, 113–114
sorting data on, 115

InsertionSort routine
analysis of, 22–25
computing comparisons in, 14

instruction stream, definition in Flynn’s
Taxonomy, 139

integral powers, overview of, 355–357
integrals, using in asymptotic relation-

ships, 14–20
interconnection networks

characteristics of, 108–109
and coarse-grained parallel comput-

ers, 136–138
definition of, 106–107
and hypercubes, 131–136
and linear arrays, 110–118
and meshes, 119–125
and mesh-of-trees, 127–131
neighbors in, 110

and processor organizations, 109–110
and pyramids, 125–127
and rings, 118–119
and trees, 123–125

intersection query line intersection prob-
lem, description of, 265

intersection reporting problem, descrip-
tion of, 265–266

interval broadcasting, overview of,
182–183

inverse of n�n matrix, finding, 153–160
I/O bandwidth, relationship to intercon-

nection networks, 109
I/O operations, constant amounts of time

for, 21

J
Jarvis’ march, overview of, 250–251. See

also convex hull algorithm; smallest
enclosing box

K
k-dimensional edge, relationship to

hypercubes, 133
Knuth, Donald E. and asymptotic analy-

sis, 30, 54
Kruskal’s algorithms, relationship to

minimum-cost spanning trees,
331–332

L
labeled processors, finding in image

processing, 288–289
labels, sorting row-restricted extreme

points by, 287
Lamé’s theorem

description of, 355
proof of, 366

leaves, relationship to trees in intercon-
nection networks, 123

left arrow (), using with values and
variables, 9–10

Lemma 1 of Master Theorem
overview of, 61–62
proof of, 62–63

Lemma 2 of Master Theorem, overview
of, 63–65

Lemma 3 of Master Theorem, overview
of, 65

length of paths, determining for graphs,
304

line intersection problems, overview of,
265–270

line segments, computing, 185–189
linear arrays

and divide-and-conquer strategy,
203–205

versus meshes, 121
relationship to interconnection net-

works, 110–118
linear speedup, definition of, 141
linked lists

example of, 48–49
manipulating, 193
merging, 48–49

and parallel prefix, 196–197
QuickSort on, 213

list comparisons. See MergeSort algo-
rithm; QuickSort algorithm

list ranking, overview of, 194–196
list ranking via pointer jumping, using

with PRAMs and graphs, 316–317
list-based QuickSort on RAMs, example

of, 214
lists of data, sorting and splitting, 47, 51
little oh (o) notation

in asymptotic relationships, 11–12
example of, 6–7

little omega () notation
in asymptotic relationships, 11–12
example of, 7–8

logarithmic notation, relationship to as-
ymptotic analysis, 13–14

logical operators, constant amounts of
time for, 21

lower bound
considering on g(n), 18
and parallel prefix, 166

M
marked items

and array packing, 179–180
and segment broadcasting, 182

marked processors, relationship to dis-
tance problems in image processing,
290

Master Method
and recursion relations, 59–60
resources for, 73

master record
relationship to concurrent read, 236
relationship to concurrent write,

237–238
Master Theorem

general case for, 66–72
proof of, 61–65
recurrence related to, 71, 72

mathematical induction. See induction
matrix multiplication

and meshes, 150–151
overview of, 148–153
resources for, 161

maximal overlapping point problem,
description of, 267

maximum sum subsequence example,
176–179

maximum-y-vale operator, relationship
to point domination query, 184–185

memory
on PRAMs, 95
on RAMs, description of, 92

memory access, relationship to PRAMs,
96

memory access unit
on PRAMs, 95
on RAMs, 93

merged list, example of, 50
MergeSort algorithm

analyzing, 52–54
versus BitonicMerge, 81

378 Index

versus BitonicSort, 84, 230
and divide-and-conquer strategy,

202–205
versus QuickSort, 212
recurrence related to, 72
recursion tree for, 60
See also counting sort; QuickSort al-

gorithm; sorting
merging and MergeSort, overview of,

47–54
merging networks, using with monotonic

sequences, 78
meshes

BitonicSort on, 230–233, 234
and component labeling problem,

281–285
concurrent read/write on, 238
and connected component labeling,

330
convex hull algorithm on, 255–256
and Gaussian elimination, 159–160
versus hypercubes, 132
versus linear arrays, 121
mapping images onto, 278
and matrix multiplication, 150–151
and maximum sum subsequence, 179
and minimum-cost spanning trees,

336–338
and overlapping line segments, 188
and parallel prefix, 171–174
versus pyramids, 126–127
relationship to interconnection net-

works, 119–125
and shortest-path problems, 342–343
and smallest enclosing box, 261–262
sorting data on, 235

mesh-of-trees, relationship to intercon-
nection networks, 127–131

MIMD (multiple-instruction, multiple-
data stream), definition in Flynn’s
Taxonomy, 140

minimum semigroup operation, role in
ER PRAM example, 100

minimum-cost spanning trees
and meshes, 336–338
overview of, 330
and PRAMs, 334–335
and RAMs, 330–334
resources for, 345

MISD (multiple-instruction, single-data
stream), definition in Flynn’s Taxon-
omy, 139

monotonic sequences
for bitonic merge, 80
significance of, 78

N
n / b, significance in Master Theorem, 66
n items, sorting with BitonicSort, 87
n linear equations, solving systems of,

153–160
n positive integer

f and g as positive functions of, 11–12
large and small examples of, 5
use of, 4

n�n matrix, finding inverse of, 153–160
n2 processors

and Gaussian elimination, 159–160
using with CR PRAM and matrix

multiplication, 150
neighbors

adjacent vertices as, 304
pixels as, 280

network models
array packing for, 181–182
for linked lists, 193

next field
in linked lists, 193
role in merging ordered lists, 48

n/log2 n processors, computing minimum
of n items with, 104

nondecreasing functions, example of,
14–15

nonincreasing functions, example of,
17–18

notation
asymptotic notation, 6–9
floor and ceiling functions, 9–10

NUMA (non-uniform memory access)
machines, significance of, 108

numerical analysis, description of, 366
numerical integration, examples of, 365

O
o (little oh) notation

in asymptotic relationships, 11–12
example of, 6–7

O (oh) notation
in asymptotic relationships, 11–12
example of, 6–7
resource for, 30

O(f (n)) time, significance of, 29
O(k + log m), relationship to PRAMs, 95
O(log k), relationship to PRAMs, 95
O(log m), relationship to PRAMs, 95
O(log M) time, relationship to RAMs, 93
o(log n) time, explanation of, 29
O(log n) time, using with mesh-of-trees,

128
O(logk) time binary search, performing

for InsertionSort routine, 23
omega () notation

in asymptotic relationships, 11–12
example of, 6–7

o(n) time, explanation of, 29
O(n1/2) time, performing with parallel

prefix and meshes, 173
O(nlog n) time

and array packing, 180
and array packing on PRAMs, 181

o(nlog n) time-sorting algorithm, benefit
of, 25–26

optimal time, explanation of, 29
ordered arrays

searching on CRCW PRAMs,
105–106

searching on PRAMs, 105
ordered databases, searching, 45–46
ordered lists

creating from bitonic sequences, 84

merging, 48–49
out-degree of vertex, description of, 306
overlapping line segments

computing, 185–189
overview of, 266–270

P
package wrapping, relationship to Jarvis’

march, 250–251
parallel algorithms, overview of, 167
parallel machines

implementing concurrent read on,
236–237

relationship to selection problem, 211
parallel models, modifying QuickSort

for, 228–229
parallel postfix maximum, computing,

178
parallel prefix

application of, 176–179
and CGM, 176
description of, 165
and hypercubes, 174–175
and linked lists, 196–197
and meshes, 171–174
overview of, 166–167
and point domination query, 184
on PRAMs, 167–171
and PRAMs, 177–179
and RAMs, 176–177
resources for, 189

Partition routine, using with QuickSort,
219, 223–224

paths in graphs, description of, 304
PEs (processing elements), relationship

to interconnection networks, 108
phone books, searching, 45–46
pixels

determining distances between la-
beled sets of, 288–296

initializing vertex labels for, 280
as neighbors, 280
relationship to processors, 280

P(n) predicate example, 36
point domination query, overview of,

183–185
pointer constants, values of, 48
pointer jumping

relationship to linked lists and parallel
prefix, 196–197

resources for, 198
using with PRAMs and graphs, 317

pointer manipulation operations, algo-
rithms for, 28

points
determining convex hull of, 246–249
marking for convex hull in image

processing, 285–288
presenting in predefined order for

convex hull, 245–246
polynomial time algorithm, description

of, 209
polynomials, evaluating, 357–358. See

also Taylor series
positive integers, proving true state of, 36

Index 379

PRAMs (parallel random access ma-
chines)
advisory about, 98
analyzing for convex hull, 259
and array packing, 181
characteristics of, 94
and computing overlapping line seg-

ments, 187–188
and connected component labeling,

325–330
convex hull algorithm on, 256–257
examples of, 98–106
and Gaussian elimination, 158–159
linked lists on, 193
and list ranking, 194, 196
and matrix multiplication, 150
and maximum sum subsequence,

177–179
and minimum-cost spanning trees,

334–335
and network models for point domina-

tion query, 185
overview of, 95–97
parallel prefix on, 167–171, 197
searching ordered arrays on, 105
and selection problem, 211
and shortest-path problems, 342–343
significance of, 91
and smallest enclosing box, 261
speed of, 98
and tree contraction, 318–322

PRAM algorithms
improving performance of, 104
porting to other architectures,

235–238
resource for, 239

PRAM examples
CR PRAM, 98–99
CRCW PRAM, 105–106
ER PRAM, 99–105

PRAM graph techniques
Euler tour, 318
list ranking via pointer jumping,

316–317
resources for, 344
tree contraction, 318–322
See also graphs

PRAM models, popularity of, 97
predicate, representing in induction, 36
primality

overview of, 352–354
resources for, 365–366

Prime Number Theorem, resources for,
365–366

Prim’s algorithm, relationship to mini-
mum-cost spanning trees, 332–334

priority CW model, relationship to
PRAMs, 96–97

processor organizations, relationship to
interconnection networks, 109–110

processor sorting table, 87
processors

and coarse-grained parallel comput-
ers, 137

in CRCW PRAM example, 106

distributed memory for, 107
in ER PRAM example, 101, 102, 104
generating update records with, 238
and hypercubes, 134
and linear arrays in interconnection

networks, 110–118
linear arrays of, 118–119
and meshes, 120
ordering for BitonicSort on meshes,

230
and parallel prefix on PRAMs,

168–170
and pixels, 280
on PRAMs, 95
on RAMs, 92–93
row-major ordering of, 171–174
shared memory for, 107
and trees in interconnection networks,

123–124
propagation algorithm, using in compo-

nent labeling, 280–281, 282
putelement operation, relationship to

QuickSort, 215
pyramids, relationship to interconnection

networks, 125–127

Q
QuickSort algorithm

analyzing running time for, 221–222
analyzing space for, 222–223
and array implementation, 216–221
versus BitonicMerge, 81
comparing to SelectionSort, 227
expected case analysis of, 223–226
features of, 211–212
improving, 226–228
improving space requirements of,

227–228
versus MergeSort, 212
modifying for parallel models,

228–229
resource for, 239
running times of, 216
significance of, 76
using Partition routine with, 219
worst-case scenario of, 216
See also counting sort; MergeSort

algorithm; sorting
quotients, role in asymptotic relation-

ships, 12–13

R
radix sort. See counting sort
rake operation, relationship to tree con-

traction, 320
RAMs (random access machines)

and all-nearest neighbor problem, 262
analyzing Graham’s scan on, 249–250
and array packing, 180
binary search on, 105
characteristics of, 92–94
and component labeling, 280–281
and computing overlapping line seg-

ments, 186–187
and connected component labeling, 325

convex hull algorithm on, 255
and divide-and-conquer with Merge-

Sort, 202–203
and Gaussian elimination, 158
and Hausdorff metric for digital im-

ages, 295
linked lists on, 193
list-based QuickSort on, 214
and matrix multiplication, 150
and maximum sum subsequence,

176–177
and minimum-cost spanning trees,

330–334
and parallel prefix, 166
and parallel-prefix meshes, 173
and point domination query, 185
and primality, 352–353
and segment broadcasting, 183
and selection problem, 206–208
and shortest-path problems, 339–342
significance of, 91
and smallest enclosing box, 261

read conflicts, handling on PRAMs, 96
read phase of algorithms, explanation of,

93
rectangles, aligning in asymptotic rela-

tionships, 15–16
recurrences, examples of, 71–72
recursion

CGM (coarse-grained multicomputer)
model, 143

definition of, 35
and hypercube construction, 131–132
overview of, 40–43
resource for, 54
See also binary search

recursion relations
analyzing worst-case running time of,

46–47
and Master Method, 59–60
for merging, 47

recursion trees
for MergeSort algorithm, 60
for MergeSort on RAMs, 203
for T(n) = aT(n/b) + f(n), 60

recursive doubling algorithm
example of, 99–100
for integral powers, 356–357

recursive relations, example of, 42
references. See resources
request record, relationship to concurrent

read, 236
resources, 369–372

for asymptotic analysis, 30
for BitonicSort, 88
for computing-science problems, 161
for divide-and-conquer, 238–239
for Gaussian elimination, 161
for graph problems, 344–345
for hypercube algorithms, 142, 238
for image processing, 296–297
for induction and recursion, 54
for Master Method, 73
for matrix multiplication, 161
for numerical analysis, 366

380 Index

for O (oh) notation, 30
for parallel models of computation,

142–143
for parallel prefix, 189
for pointer jumping, 198
for PRAM algorithms, 239
for primality, 365–366
for QuickSort algorithm, 239
for sequential algorithms, 238

rings, relationship to linear arrays,
118–119

roundoff error, explanation of, 359
roundoff error, relationship to Gaussian

elimination, 160–161
row rotation

performing for parallel prefix and
meshes, 172

significance in meshes, 121–122
row-major ordering of processors

and BitonicSort on meshes, 230
relationship to parallel prefix,

171–174
rows, identifying extreme points in, 286
running times

of all-nearest neighbor, 264
analyzing for BitonicSort, 233–234
analyzing for QuickSort, 221–222
anticipating for QuickSort, 223–226
of BitonicSort, 230
of convex hull in image processing,

287–288
for distance problems in image pro-

cessing, 289–290
explanations of, 29
as functions of , 359
improving for QuickSort, 226
in interconnection networks, 109
of matrix-multiplication algorithm,

152
for MergeSort algorithm, 53
of mesh broadcast operations, 123
on PRAMs, 95–96
for processors and linear arrays, 111,

113
of propagation algorithm, 281
of QuickSort, 216
for RAMs, 93–94
for selection problem, 209–211
of sequential parallel prefix, 166

running_min register, setting for linear
arrays, 111

S
scalability, definition of, 142
scans, relationship to parallel prefix, 166
scatter operations, relationship to CGM,

137–138
searches, using in InsertionSort routine,

23
segment broadcasting, overview of,

182–183
segments, relationship to parallel prefix

on PRAMs, 167–171
selection problem

analyzing running time for, 209–211

overview of, 205–206
and parallel machines, 211
and RAMs, 206–208

SelectionSort
comparing to QuickSort, 227
example of, 31

self-edges, relationship to graphs, 303
semigroup operation

computing for trees, 124
and hypercubes, 133, 135, 136
for mesh-of-trees, 128
performing for meshes, 121–122
and pyramids, 126
role in ER PRAM example, 100–101

sequential algorithms, resource for, 238
sequential search, performing, 43–44
sequential solution for image processing,

explanation of, 279
set of data, sorting recursively, 48
set-valued functions, examples of, 8
shared versus distributed address space,

108
shared versus distributed memory, 107
shortest-path problems

and meshes, 342–343
overview of, 339
and PRAMs, 342–343
and RAMs, 339–342
resources for, 345

shuffled row-major indexing, using with
BitonicSort on mesh, 230–231

SIMD (single-instruction, multiple-data
stream), definition in Flynn’s Taxon-
omy, 139

Simpson’s Method, relationship to
Trapezoidal Integration, 365

single-source shortest-path problem,
considering for RAMs, 339–342

SISD (single-instruction, single-data
stream), definition in Flynn’s
Taxonomy, 139

smallest enclosing box, determining,
260–262. See also convex hull algo-
rithm; Jarvis’ march

smallList, relationship to QuickSort,
212–216

Sollin’s algorithm, relationship to mini-
mum-cost spanning trees, 334

sorting
and concurrent read/write, 235–238
of data from restricted sets, 26
of data in “find” operations, 268
of data recursively, 48
data with respect to other orderings,

234–235
and linear arrays, 116
as linear-time for convex hull, 245
problems associated with, 25, 28
reduced amounts of data, 129
row-restricted extreme points by

label, 287
See also counting sort; MergeSort

algorithm; QuickSort algorithm
sorting networks

alternative view of, 86

overview of, 76–80
sorting technique example, 22–25
sortkey field, role in merging ordered

lists, 48
space, analyzing and improving for

QuickSort, 222–223, 227–228
spanning trees. See minimum-cost span-

ning trees
sparse graph, description of, 304
speedup, definition of, 141
Split algorithm example, 51
splitters, improving for QuickSort, 226
splitValue, relationship to QuickSort,

212–213, 214, 215
stitch

for divide-and-conquer and compo-
nent labeling, 285

role in divide-and-conquer with
MergeSort, 202

significance in QuickSort, 212
strongly connected graph, description of,

305
sublists, splitting entries into, 47, 51
subsequences of data, determining with

parallel prefix, 176–179
summations

bounding, 15
in Lemma 1 of Master Theorem, 63
in Lemma 2 of Master Theorem, 64
in Master Theorem, 69

sweep operation, relationship to parallel
prefix, 166

T
tangent lines, determining for convex

hulls, 254
Taylor series, approximation by,

359–362, 365. See also polynomials
THEN A MIRACLE OCCURS, signifi-

cance of, 42
theta () notation, 42

in asymptotic relationships, 11–12
example of, 6–7

throughput, definition of, 140
time. See running times
T(n) = O(f (n)) running time, significance

of, 29
T(n) time

in binary search, 46
in Lemma 1 of Master Theorem,

61–62
in Lemma 3 of Master Theorem, 65
and Master Method, 59
in Master Theorem, 69
and MergeSort on linear array, 205
in merging example, 47
and QuickSort, 216
in recursion, 42–43
representing running times of

algorithms with, 4–5
as running time of MergeSort

algorithm, 53–54
for selection problem, 209

tractor-tread algorithm
power of, 116

Index 381

382 Index

relationship to linear arrays, 115
transitive closure, computing for adja-

cency matrix, 323–324
Trapezoidal Integration, overview of,

362–365
tree contraction technique, using with

PRAMs and graphs, 318–322
trees

versus pyramids, 126–127
relationship to interconnection net-

works, 123–125
truncation error, explanation of, 359

U
UMA (uniform memory access) ma-

chines, significance of, 108
undirected graphs

connected type of, 305
description of, 303
labeling connected components of,

325–330
unidirectional links, relationship to com-

binational circuits, 76

uniform analysis, significance to RAMs,
94

uniform-access model, relationship to
PRAMs, 96

unmarked items, relationship to array
packing, 179–180

unordered edges, representing graphs as,
309

unordered lists, using with MergeSort, 81
update records, generation by processors,

238
upper bound, considering on g(n), 18

V
values, assigning to variables, 9–10
Van Scoy, F.L., 280, 324
variables, assigning values to, 9–10
vertex labels, initializing for pixels, 280
vertices of graphs

adjacent vertices, 304
assigning weights to, 306
in BFS search trees, 316
degrees of, 306

in DFS search trees, 315
distance between, 306
representing, 303–304

von Neumann model. See RAMs (ran-
dom access machines)

Voronoi Diagram, using with all-nearest
neighbor problem, 262

W
Wagar, Bruce (HyperQuickSort),

228–229
Warshall’s algorithm

foundation of, 323
resource for, 344
using in image processing, 279

weakly connected graph, description of,
305

weighted graph, description of, 304
work/cost, definition of, 140
write conflicts, handling on PRAMs,

96–97
write phase of algorithms, explanation

of, 93

	Contents
	Preface
	1 Asymptotic Analysis
	Notation and Terminology
	Asymptotic Notation
	More Notation

	Asymptotic Relationships
	Asymptotic Analysis and Limits
	Summations and Integrals

	Rules for Analysis of Algorithms
	Limitations of Asymptotic Analysis
	Common Terminology
	Summary
	Chapter Notes
	Exercises

	2 Induction and Recursion
	Mathematical Induction
	Induction Examples
	Recursion
	Binary Search
	Merging and Mergesort
	Summary
	Chapter Notes
	Exercises

	3 The Master Method
	Master Theorem
	Proof of the Master Theorem (optional)
	The General Case

	Summary
	Chapter Notes
	Exercises

	4 Combinational Circuits
	Combinational Circuits and Sorting Networks
	Sorting Networks

	Bitonic Merge
	BitonicSort
	Summary
	Chapter Notes
	Exercises

	5 Models of Computation
	RAM (Random Access Machine)
	PRAM (Parallel Random Access Machine)
	Examples: Simple Algorithms

	Fundamental Terminology
	Distributed Memory versus Shared Memory
	Distributed Address Space versus Shared Address Space

	Interconnection Networks
	Processor Organizations
	Linear Array
	Ring
	Mesh
	Tree
	Pyramid
	Mesh-of-trees
	Hypercube
	Coarse-Grained Parallel Computers

	Additional Terminology
	Summary
	Chapter Notes
	Exercises

	6 Matrix Operations
	Matrix Multiplication
	Gaussian Elimination
	Roundoff Error
	Summary
	Chapter Notes
	Exercises

	7 Parallel Prefix
	Parallel Prefix
	Parallel Algorithms
	Parallel Prefix on the PRAM
	Mesh
	Hypercube
	Analysis
	Coarse-Grained Multicomputer

	Application: Maximum Sum Subsequence
	RAM
	PRAM
	Mesh

	Array Packing
	RAM
	PRAM
	Network Models

	Interval (Segment) Broadcasting
	Solution Strategy
	Analysis

	(Simple) Point Domination Query
	RAM
	PRAM and Network Models

	Computing Overlapping Line Segments
	RAM
	PRAM
	Mesh
	Maximal Overlapping Point
	Analysis

	Summary
	Chapter Notes
	Exercises

	8 Pointer Jumping
	List Ranking
	Linked List Parallel Prefix
	Summary
	Chapter Notes
	Exercises

	9 Divide-and-Conquer
	MergeSort (Revisited)
	RAM
	Linear Array

	Selection
	RAM
	Analysis of Running Time
	Parallel Machines

	QuickSort (Partition Sort)
	Array Implementation
	Analysis of QuickSort
	Expected-Case Analysis of QuickSort

	Improving QuickSort
	Modifications of QuickSort for Parallel Models
	HyperQuickSort

	BitonicSort (Revisited)
	BitonicSort on a Mesh
	Sorting Data with Respect to Other Orderings

	Concurrent Read/Write
	Implementation of a Concurrent Read
	Implementation of Concurrent Write (overview)
	Concurrent Read/Write on a Mesh

	Summary
	Chapter Notes
	Exercises

	10 Computational Geometry
	Convex Hull
	Graham’s Scan
	Jarvis’ March
	Divide-and-Conquer Solution

	Smallest Enclosing Box
	RAM
	PRAM
	Mesh

	All-Nearest Neighbor Problem
	Running Time

	Architecture-Independent Algorithm Development
	Line Intersection Problems
	Overlapping Line Segments

	Summary
	Chapter Notes
	Exercises

	11 Image Processing
	Preliminaries
	Component Labeling
	RAM
	Mesh

	Convex Hull
	Running Time

	Distance Problems
	All-Nearest Neighbor between Labeled Sets
	Running Time
	Minimum Internal Distance within Connected Components
	Hausdorff Metric for Digital Images

	Summary
	Chapter Notes
	Exercises

	12 Graph Algorithms
	Terminology
	Representations
	Adjacency Lists
	Adjacency Matrix
	Unordered Edges

	Fundamental Algorithms
	Breadth-First Search
	Depth-First Search
	Discussion of Depth-First and Breadth-First Search

	Fundamental PRAM Graph Techniques
	List Ranking via Pointer Jumping
	Euler Tour Technique
	Tree Contraction

	Computing the Transitive Closure of an Adjacency Matrix
	Connected Component Labeling
	RAM
	PRAM
	Mesh

	Minimum-Cost Spanning Trees
	RAM
	PRAM
	Mesh

	Shortest-Path Problems
	RAM
	PRAM and Mesh

	Summary
	Chapter Notes
	Exercises

	13 Numerical Problems
	Primality
	Greatest Common Divisor
	Lamé’s Theorem

	Integral Powers
	Evaluating a Polynomial
	Approximation by Taylor Series
	Trapezoidal Integration
	Summary
	Chapter Notes
	Exercises

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

